University at Albany
Department of Mathematics and Statistics
Probability Preliminary Examination
January 2010

Do all 4 problems.

Problem 1. Let \(\{X_n\} \) be independent identically distributed random variables with mean 0 and variance 1. Let \(S_n = \sum_{i=1}^{n} X_i \) and let \(\tau \) be a stopping time with respect to filtration given by \(\{X_n\} \), that is \(\{\tau = j\} \) is measurable with respect to \(\sigma(X_1, X_2, \ldots, X_j) \), such that \(E(\tau) < \infty \).

(a) Explain why \(X_n \) and \(1_{\{\tau \geq n\}} \) are independent.
(b) Show \(E(S_\tau^2) = E(S_{\tau \wedge (n-1)}^2) + P(\tau \geq n) \).
(c) Use that \(S_{\tau \wedge (n+k)} = S_{\tau \wedge n} + \sum_{i=n+1}^{n+k} X_i 1_{\{\tau \geq i\}} \) to show that \(\{S_{\tau \wedge n}\} \) is a Cauchy sequence in \(L^1 \). (Note: The \(L^1 \)-norm of a random variable \(Y \) is simply \(E(|Y|) \).)
(d) Use the above to show \(E(S_\tau^2) = E(\tau) \)

Problem 2.

(a) Prove that if \(\sum_{n=1}^{\infty} P(A_n) < \infty \) then \(P(A_n \text{ i.o.}) = 0 \).
(b) Prove that if \(\sum_{n=1}^{\infty} P(A_n) = \infty \) and \(\{A_n\} \) are independent events then \(P(A_n \text{ i.o.}) = 1 \).
(c) Construct a sequence \(\{X_n\} \) taking values \(\{0, 1\} \) such that \(X_n \to 0 \) in probability but \(\lim \sup_{n \to \infty} X_n = 1 \) with probability one.

Problem 3. Let \(\{A_n\} \) be a sequence of independent events such that \(\sum_{n=1}^{\infty} P(A_n) = \infty \). Show that

\[
\lim_{n \to \infty} \frac{\sum_{i=1}^{n} 1_{A_i}}{\sum_{i=1}^{n} P(A_i)} = 1 \quad \text{in probability.}
\]

Problem 4. For \(\epsilon \in (0, 1) \), let \(\{X_n^\epsilon\} \) be i.i.d. random variables with \(P(X_n^\epsilon = \epsilon) = P(X_n^\epsilon = -\epsilon) = 1/2 \). Let \(N^\epsilon \) be a Poisson random variable with parameter \(\epsilon^2/2 \), independent of \(\{X_n^\epsilon\} \). Let

\[
Y_\epsilon = \sum_{i=1}^{N^\epsilon} X_i^\epsilon.
\]

(a) Compute the characteristic function of \(Y_\epsilon \), \(E(e^{itY_\epsilon}) \).
(b) Find \(\lim_{\epsilon \to 0} E(e^{itY_\epsilon}) \). What does this say about the convergence in distribution of \(Y_\epsilon \) as \(\epsilon \to 0 \)? Explain.