1. Let \(X_1, X_2, \ldots \), be a sequence of independent, identically distributed random variables with (common) mean \(\mu \) and variance \(\sigma^2 \).

For \(n = 1, 2, \ldots \), let \(Y_n = (1/n)(X_1 + X_2 + \ldots + X_n) \).

For \(n = 1, 2, \ldots \), let \(W_n = (Y_n - \mu)/\sigma \).

For \(n = 1, 2, \ldots \), let \(Z_n = (\sqrt{n})W_n \).

For each of the sequences \(\{X_n\} \), \(\{Y_n\} \), \(\{W_n\} \) and \(\{Z_n\} \) state whether or not it converges in probability and/or in distribution and, if so, to what. Give brief justifications for your answers.

2. Let \(Z \) be a standard 0, 1 normal and let \(W \) be a chi square with \(n \) degrees of freedom.

a. Write down the density functions of \(Z \) and \(W \).

b. If \(Z \) and \(W \) are independent, find the density function of

\((\sqrt{n})Z/\sqrt{W} \). What name is given to this distribution?

3. Let \(X \) have a gamma distribution with parameters \(\alpha = 3 \) and \(\beta = \theta > 0 \).

a. Find the Fisher information \(I(\theta) \).

b. If \(X_1, X_2, \ldots , X_n \) is a random sample from this distribution, find the maximum likelihood estimator of \(\theta \) and find the efficiency of this maximum likelihood estimator.
4. Let X_1, X_2, \ldots, X_n be independent uniform distributions on the real interval $[0, \theta]$, where θ is unknown.

 a. Find a sufficient statistic for θ and justify your answer.

 b. Is your sufficient statistic an unbiased estimator of θ? Prove your answer.

5. Suppose X_1, X_2, \ldots, X_n are an independent random sample from a Bernoulli distribution with success parameter p, where p itself has the prior distribution $f(p) = 12p^2(1-p)$, where $0 < p < 1$.

 a. Find the mean of the prior distribution of p.

 b. Find the posterior distribution of p.

 c. If $n = 6$ and the X's are 0, 1, 1, 1, 0, 0, find the mean of the posterior distribution of p.