Answer all questions!

1. Suppose X has gamma distribution with parameters α_1 and β; Y has gamma distribution with parameters α_2 and β, and X and Y are independent.
 a. Use the probability density function of X to find the moment generating function of X.
 b. Find the expected value and variance of X.
 c. What kind of distribution does $X + Y$ have? Justify!

2. Suppose X_1, \ldots, X_n is a random sample from a distribution with probability density function

 $$f(x; \theta) = \begin{cases} \frac{\Gamma(3\theta)}{\Gamma(\theta)\Gamma(2\theta)} x^{\theta-1} (1-x)^{2\theta-1} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

 Find, with justification, a sufficient statistic for θ.

3. Suppose a random sample X_1, \ldots, X_{100} is drawn from a distribution with probability density function

 $$f(x; \theta) = \begin{cases} 1 & \text{if } 0 < x < 1 \text{ and } \theta = 0 \\ 6x(1-x) & \text{if } 0 < x < 1 \text{ and } \theta = 1 \\ 0 & \text{if } x \leq 0 \text{ or } x \geq 1. \end{cases}$$

 Describe as best you can the best critical region of size α for testing the hypothesis $\theta = 0$ against the alternative hypothesis $\theta = 1$.

4. Suppose X_1 and X_2 are independent random variables, X_1 has $\Gamma(\alpha, 1)$ distribution, and X_2 has $\Gamma(\beta, 1)$ distribution. Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1/(X_1 + X_2)$. Find the joint probability density function of Y_1 and Y_2. Are Y_1 and Y_2 independent?

5. The standard decision theory approach to the estimation of an unknown parameter θ introduces the loss function $L(\theta, a)$ which is the cost of deciding that the parameter has the value a when it is in fact equal to θ. The estimate a can be chosen to minimize the posterior expected loss,

 $$E[L(a|y)] = \int L(\theta, a)p(\theta|y) \, d\theta.$$

 This optimal choice of a is called a Bayes estimate for the loss function L. Let k_0 and k_1 be nonnegative numbers, not both zero, and define $L(\theta, a)$ to be $k_0(\theta - a)$ if $\theta \geq a$ and otherwise it is $k_1(a - \theta)$. Show that any $k_0/(k_0 + k_1)$ quantile of the posterior distribution is a Bayes estimate of θ for this loss.

6. Suppose that data (x_1, \ldots, x_k) follow a multinomial distribution with parameters $(\theta_1, \ldots, \theta_k)$. Suppose that $\theta = (\theta_1, \ldots, \theta_k)$ has a Dirichlet prior distribution (i.e. the natural conjugate prior for the multinomial). Let $\alpha = \theta_1/(\theta_1 + \theta_2)$. Find the marginal posterior distribution for α and show that this distribution is identical to the posterior distribution for α obtained by treating x_1 as an observation from the binomial distribution with probability α and sample size $x_1 + x_2$, ignoring the data x_3, \ldots, x_k.

1