1. Suppose \(X_1, \ldots, X_{200} \) form a random sample from a distribution which is uniform on \((0, 1)\). Let \(Y_1, \ldots, Y_{200} \) be the order statistics of this random sample. Find the distribution function of \(Y_1 \), and use this to find the probability density function of \(Y_1 \). Then find the expected value of \(Y_1 \).

2. Let \(X_1, \ldots, X_n \) represent a random sample from a distribution with probability density function
\[
f(x; \theta) = \begin{cases}
\theta x^{\theta-1} & \text{if } 0 < x < 1 \\
0 & \text{otherwise}
\end{cases}
\]
where \(\theta > 0 \) is a parameter. Find the maximum likelihood estimator of \(\theta \).

3. There is an experiment with 4 distinct outcomes \(A, B, C, \) and \(D \). You wish to test the hypothesis \(H_0 : P(A) = 0.50, P(B) = 0.30, P(C) = 0.15, P(D) = 0.05 \) against all other hypotheses. You perform this experiment 1000 times. In doing so, you find that \(A \) occurs 453 times, \(B \) occurs 320 times, \(C \) occurs 142 times, and \(D \) occurs the remaining times. Carefully describe a test which determines whether you may reject \(H_0 \) at the approximate 1 percent significance level. This test needs a value from a commonly available table; since you don’t have the table, describe where to find this value and how you would use it.

4. Let \(X \) be a standard normal distribution. What kind of distribution does \(X^2 \) have? Prove your answer.
5. a. Is the sum of the observations of a random sample of size \(n \) from a Poisson distribution with parameter \(\theta > 0 \) a sufficient statistic for \(\theta \)? Justify.

b. Consider the maximum of the observations of a random sample of size \(n > 1 \) from a distribution with probability distribution function

\[
f(x; \theta) = \begin{cases}
 e^{-(x-\theta)} & \text{if } x > \theta \\
 0 & \text{otherwise}
\end{cases}
\]

with real parameter \(\theta \). Is this maximum a sufficient statistic for \(\theta \)? Justify.

6. You have a random sample of size \(n \) from a normal distribution with unknown mean \(\theta \) and variance 100. You want to find \(n \) large enough so that the length of the confidence interval (from left endpoint to right endpoint) is at most 0.196. Find such a value of \(n \) so that \(n \) is as small as possible. If you instead were willing to have a confidence interval with twice this length, what would you need to do to \(n \)? (Note: All confidence intervals in this problem are 95 percent confidence intervals.)