1. Let \(f \) be analytic in a nonempty connected open set \(U \). Let \(F \) be a nonconstant entire function. Show that if \(F(f(z)) = 0 \) for all \(z \) in a neighborhood of some \(z_0 \in U \), then \(f \) is constant in \(U \).

2. (a) Find all constants \(c_1 \) and \(c_2 \) so that the functions

\[
f_1(z) = c_1 z \quad \text{and} \quad f_2(z) = \frac{c_2}{z}
\]

define conformal self-maps of the annulus \(\mathcal{A} = \{ z \in \mathbb{C} : a < |z| < b \} \) (0 < \(a < b \) are given constants).

(b) Prove that there are no other conformal self-maps of \(\mathcal{A} \).

3. Evaluate

\[
\int_{\gamma} \frac{1 - \cos z}{(e^z - 1) \sin z} \, dz
\]

where the path \(\gamma \) is the circle \(|z| = e \) traversed once counterclockwise.

4. For \(n \in \mathbb{N} \) show that

\[
\int_{\Delta} \left| \frac{1 - z^n}{1 - z} \right|^2 \, dxdy = \pi \left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \right)
\]

5. Let \(f \) be analytic in \(\Delta \), and let \(f(\Delta) \subseteq \Delta \). Prove that if \(f(0) = 0 \) and \(f(a) = a \) for some \(a \neq 0 \), then \(f(z) = z \).

6. Let \(f \) be analytic in \(\Delta \). Show that

\[
\sup_{z \in \Delta} (1 - |z|^2) \, |f'(z)| \leq \sup_{z \in \Delta} |f(z)|.
\]
7. Let \(f(z) \) be analytic in \(\Delta \). Suppose

\[
\lim_{r \to 1} \int_0^{2\pi} |f(re^{i\theta})| \, d\theta = 0.
\]

Show that \(f \equiv 0 \).

8. Prove that the zero set \(S \) of \(e^z + z \):

\[
S = \{ z \in \mathbb{C} : e^z + z = 0 \}
\]

is nonempty: \(S \neq \emptyset \).

Bonus. Prove that \(S \) is an infinite set.

9. Find \(w = f(z) \) that maps \(\Delta \) conformally onto the strip \(|\text{Im} \, w| < \frac{\pi}{2} \) so that \(f(0) = 0 \) and \(f'(0) > 0 \).