Let \(C \) be the set of complex numbers and let \(D = \{ z \in C : |z| < 1 \} \).

1. Let \(U : D \to D \) be harmonic and \(f : D \to D \) be analytic. Prove or disprove the following:
 (1) \(f \circ U \) is harmonic.
 (2) \(U \circ f \) is harmonic.

2. Show that there exists an unbounded analytic function \(f \) on \(D \) such that
 \[
 \int_D |f'(z)|^2 \, dA(z) < +\infty,
 \]
 where \(dA \) is area measure on \(D \).

3. Suppose \(f \) is analytic in \(D - \{0\} \) and unbounded near \(z = 0 \). If the function \(|z|^{\sqrt{2}} f(z) \) is bounded at \(z = 0 \), show that
 \[
 \lim_{z \to 0} |z|^{\sqrt{2}} f(z) = 0 \quad \text{and} \quad \lim_{z \to 0} |z|^{\sqrt{2}/2} f(z) = \infty.
 \]

4. Let \(X \) be the space of analytic functions \(f \) in \(D \) such that
 \[
 \|f\| = \sup_{z \in D} (1 - |z|^2)|f(z)| < +\infty.
 \]
 If \(\{f_n\} \) is a sequence of functions in \(X \) such that \(\|f_n - f_m\| \to 0 \) as \(n, m \to +\infty \), show that there exists a function \(f \in X \) such that \(\|f_n - f\| \to 0 \) as \(n \to +\infty \).

5. Let \(f \) be analytic in \(D \). Show that
 \[
 \sup_{z \in D} (1 - |z|^2)|f'(z)| \leq \sup_{z \in D} |f(z)|.
 \]

6. Suppose \(f \) is analytic in \(D \). For \(z \in D \) and \(0 < r < 1 - |z| \) let \(B(z, r) = \{ w \in D : |z - w| < r \} \). Show that
 \[
 |f(z)|^\pi \leq \frac{1}{\pi r^2} \int_{B(z, r)} |f(w)|^\pi \, dA(w),
 \]
 where \(dA \) is area measure on \(D \).

7. Evaluate the integral
 \[
 I = \int_{|z|=\pi} \frac{\sin z}{z \cos z} \, dz.
 \]

8. Suppose \(\{a_n\} \) is a sequence in \(D - \{0\} \) with \(\sum (1 - |a_n|) < +\infty \). Show that
 \[
 \prod_{n=1}^{\infty} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a_n}z}
 \]
 converges (uniformly on compact sets) to an analytic function in \(D \).