Ph.D. Prelim in Complex Analysis

January 18, 1994

1. Let \(f \) be analytic in the unit disk \(D \). Use Cauchy’s integral formula to establish the power series representation of \(f \) in \(D \). Obtain both an integral formula and a derivative formula for the \(n \)-th coefficient.

2. Let \(\Omega \) be a region and let \(\mathcal{F} = \{ f : f \text{ is analytic in } \Omega \text{ and } |f(z)| \leq 1, \forall z \in \Omega \} \). Fix \(z_0 \in \Omega \) and show that \(\exists g \in \mathcal{F} \) such that \(\text{Re } g'(z_0) \geq \text{Re } f'(z_0), \forall f \in \mathcal{F} \).

3. Let \(f \) be analytic and nonconstant in a region \(\Omega \) with \(\mu = \text{Re } f \) and \(v = \text{Im } f \).

 (a) Show that \(|f'(z)|^2 = u_x^2 + u_y^2 = v_x^2 + v_y^2 \).

 (b) Determine all real numbers \(a \) and \(b \) such that \(au^2 + bv^2 \) is harmonic in \(\Omega \).

4. Let \(\Omega = \{ z : |z - i| < 1 \} \) and \(H = \{ z : \text{Im } z > 0 \} \). Map \(H \setminus \overline{\Omega} \) conformally onto \(\Omega \).

5. If \(p \) is a polynomial, prove that the series \(\sum_{n=0}^{\infty} p(n)z^n \) defines a rational function.

 HINT: Note that any linear combination of rational functions is a rational function.

6. (a) Let \(f \) be analytic in the unit disk \(D \) with \(\lim_{|z| \to 1^-} f(z) = 0 \).

 Prove \(f \equiv 0 \).

 (b) Let \(g \) be analytic in \(D \). Prove that the statement \(\lim_{|z| \to 1^-} g(z) = \infty \) is impossible.

7. Let \(f \) be meromorphic in \(\mathbb{C} \) and bounded outside of some circle. Determine the form of \(f \) as completely as possible.

8. Let \(\Gamma = \{ z : |z| = 1 \} \).

 (a) Show that the mapping \(z \mapsto (z + 1)^2 \) takes \(\Gamma \) onto the cardioid \(r = 2(1 + \cos \theta) \). Sketch this cardioid.

 (b) Let \(g(w) = \int_{\Gamma} \frac{z(z+1)}{z^2 + 2z - w} \, dz \) (\(\Gamma \) traversed once counterclockwise). Use the result of part (a) to sketch a domain containing \(0 \) on which \(g \) is analytic.

 (c) Determine \(g(0) \) and \(g'(0) \).