\textbf{COMPLEX ANALYSIS Preliminary Exam}

Jan. 2015

\(\mathbb{D} \) denotes the open unit disc \(\{ z \in \mathbb{C} : |z| < 1 \} \), \(\overline{\mathbb{D}} \) denotes the closed unit disc \(\{ z \in \mathbb{C} : |z| \leq 1 \} \), and \(\partial \mathbb{D} \) denotes the unit circle \(\{ z \in \mathbb{C} : |z| = 1 \} \).

Make sure to show all your work!

1a) Let \(f : \Omega \rightarrow \mathbb{C} \) where \(\Omega \subseteq \mathbb{C} \) is open. State the definition of \(f \) being complex differentiable at a point \(z_0 \in \Omega \), and state the definition of \(f \) being holomorphic at \(z_0 \in \Omega \).

b) Let \(f : \mathbb{C} \rightarrow \mathbb{C} \) be given by \(f(z) = (\pi)^2 \). For what values of \(z_0 \) is \(f \) complex differentiable at \(z_0 \)? For what values of \(z_0 \) is \(f \) holomorphic at \(z_0 \)?

2) Find the number of roots (counting multiplicity) that \(f(z) = z^7 + z^5 - 8z^3 + 2z + 1 \) has between the circles \(\{ z \in \mathbb{C} : |z| = 1 \} \) and \(\{ z \in \mathbb{C} : |z| = 2 \} \).

3) Use the Residue theorem to show that \(\int_{-\infty}^{\infty} \frac{e^{\frac{1}{4}x}}{1 + e^x} \, dx = \pi \sqrt{2} \). \textit{Hint:} use a rectangular contour with bottom edge on the line \(\{ z \in \mathbb{C} : \text{Im}z = 0 \} \) and upper edge on the line \(\{ z \in \mathbb{C} : \text{Im}z = 2\pi \} \).

4) Let \(f \) be holomorphic on open set containing \(\overline{\mathbb{D}} \). Use the maximum modulus principle to prove that there exists \(z_0 \in \partial \mathbb{D} \) such that

\[\left| \frac{1}{z_0} - f(z_0) \right| \geq 1. \]

5) Find the Laurent series or \(f(z) = \frac{1}{(z-1)(z-2)} \) inside the region \(1 < |z-3| < 2. \)
6) Prove Hurwitz’s theorem: Let Ω be open and connected and let $\{f_k\}$ be a sequence of holomorphic functions on Ω that converges normally to f on Ω. If f is non constant on Ω and has a zero of order n at z_0, then for large k, f_k has precisely n zeros (counting multiplicity) in a small neighborhood of z_0. *hint:* Argument principle!

7) Let f be a holomorphic function on an open connected subset Ω of \mathbb{C} and assume that f is not identically zero on Ω. If $\mathcal{Z} = \{z \in \Omega : f^{(n)}(z) = 0 \text{ for all } n = 0, 1, 2, \ldots\}$ then prove (without using the identity principle) that $\mathcal{Z} = \emptyset$.

8) Let $f : \mathbb{D} \to \mathbb{D}$ with $f(z_0) = c_0$ for $z_0, c_0 \in \mathbb{D}$. Using the Schwarz lemma, prove that

$$\left| \frac{f(z) - c_0}{1 - c_0 f(z)} \right| \leq \left| \frac{z - z_0}{1 - z_0 \bar{z}} \right|$$

for all $z \in \mathbb{D}$.