1. Suppose the complex valued function f is continuously differentiable in the real sense with respect to (x, y) in a neighborhood U of $0 \in \mathbb{C}$, where $z = x + iy$.

 a) State the Cauchy-Riemann equations for f at a point $(x, y) \in U$.

 b) Show in detail that f has a complex derivative at 0 (i.e., $\lim_{z \to 0} \frac{f(z) - f(0)}{z}$ exists) if and only if f satisfies the Cauchy-Riemann equations at 0.

 c) Show that $f(z) = z^2 \overline{z}$ has a complex derivative at 0 but is not holomorphic in any neighborhood of 0.

2. Suppose f is a bounded holomorphic function on the open unit disc D. Show that

\[
(1 - |z|) |f'(z)| \leq \sup_{z \in D} |f(z)|
\]

for all $z \in D$.

3. a) Show that the function $u(x, y) = \log(x^2 + y^2)$ is harmonic on $\mathbb{C} - \{0\}$.

 b) Find a holomorphic function h on $G = \{z : \text{Re } z > 0\}$ so that $u = \text{Re } h$ on G.

 c) Determine the imaginary part of h on G.

 d) Is u the real part of a holomorphic function on $\mathbb{C} - \{0\}$? Justify your answer.

4. a) State Rouché’s Theorem.

 b) Determine the number of zeroes of the polynomial

 \[
p(z) = z^7 - z^5 + 6z^3 - 2z + 1
\]

 inside the annulus $\{z : 1 < |z| < 2\}$.

5. a) State the Residue Theorem.

 b) Suppose $0 < a < 1$. Prove that

 \[
 \int_{0}^{\infty} \frac{x^{-a}}{1 + x} \, dx = \frac{\pi}{\sin(\pi a)}
 \]

6. Find the Laurent series of the function

 \[
f(z) = \frac{1}{(z + 1)(z - 2)}
\]

 on the annulus $\{z : 1 < |z - 1| < 2\}$.

1
7. Let f be holomorphic on \mathbb{C} and suppose P is a polynomial in z, so that for some constant M one has

$$|f(z)| \leq M |P(z)| \quad \text{for all} \quad z \in \mathbb{C}. $$

Show that there exists a constant C so that $f(z) = CP(z)$ for all $z \in \mathbb{C}$.

8. Let $\{f_n : n = 1, 2, 3, \ldots\}$ be a uniformly bounded sequence of holomorphic functions on D. Suppose there exists a point $a \in D$, so that $\lim_{n \to \infty} f_n^{(k)}(a) = 0$ for each $k = 0, 1, 2, \ldots$ $(f_n^{(k)}$ is the kth derivative of f_n). Show that $f_n \to 0$ uniformly on each compact subset of D.