Complex Analysis Prelim. (Jan. 2009)

In the following, \(\mathbb{D} \) stands for the open unit disk, \(\mathbb{C} \) stands for the complex plane.

Part 1. Do all of the following problems.

1. Show that a complex polynomial of degree \(n > 0 \) has precisely \(n \) zeros in the complex plane.

2. a) Find all solutions of the equation \(z^6 + 1 = 0 \).

 b) Let \(g(z) = z^2 \pi \). Find all points where \(g \) is complex differentiable.

3. Find an explicit conformal map from the region \(G = \mathbb{D} \setminus \{ 0 \leq x < 1 \} \) onto the unit disc \(\mathbb{D} \).

4. (a) State and prove the Liouville’s Theorem.

 (b) Let \(V \) be the set of entire functions \(f \) such that \(|f(z)| \leq C|z|^5 \) for some constant \(C \) (depending probably on \(f \)), determine what type of functions are in \(V \) and find the dimension of \(V \).

5. Use residue theory to compute

\[
\int_{-\pi}^{\pi} \frac{d\theta}{1 + \sin^2 \theta}.
\]
Part 2. Do at least two of the following problems.

6. Let \(f(z) = u(z) + iv(z) \) be holomorphic in a neighborhood of the closed unit disc \(\mathbb{D} \), where \(u \) and \(v \) are the real and, respectively, the imaginary part of \(f \). Prove the Schwarz formula:

\[
f(z) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{i\theta}) \frac{e^{i\theta} + z}{e^{i\theta} - z} d\theta + iv(0), \quad |z| < 1.
\]

7. Find all entire functions \(f \) such that \(|f(z)| = 1 \) when \(|z| = 1 \).

8. Give as simple as possible a (product) formula for an entire function \(F \) which has a zero of order 1 at each point \(c_n = \sqrt{n}, \ n = 1, 2, 3, \ldots \) and no other zero in \(\mathbb{C} \).

9. Find an “explicit” series expansion for a meromorphic function \(f \) on \(\mathbb{C} \) which has a simple pole with residue \(n \) at each positive integer \(n = 1, 2, 3, \ldots \), and is holomorphic at all other points. Be sure to prove all relevant convergence statements.

10. Let \(V = \{ f \in \mathcal{O}(\mathbb{D}) : f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ with } |a_n| \leq n^2 \text{ for all } n \} \). Prove that there exists \(h \in V \), such that \(|f'(1/2)| \leq |h'(1/2)| \) for all \(f \in V \).