1. Show that $u = e^x(x \cos y - y \sin y)$ is harmonic in the complex plane in 2 ways:
 A. From the definition of harmonic.
 B. By exhibiting an entire function f such that $u = Re f$.

2. A. State Schwarz’s Lemma.
 B. State the Riemann Mapping Theorem.
 C. Prove uniqueness in the Riemann Mapping Theorem.

3. Let a and b be real numbers with $a > b > 1$.
 A. Show that b^z can be defined as an entire function such that $b^0 = 1$.
 C. Let n be a positive integer. Show that the equation $b^z = a z^n$ has n solutions in $|z| < 1$.

4. Let $C_\mathcal{E} = \{ \mathcal{E} e^{i\theta} : 0 \leq \theta \leq \pi \}$ denote the semicircle traversed clockwise.
 A. Calculate $\int_{C_\mathcal{E}} \frac{1}{z} \, dz$.
 B. Determine $\lim_{\mathcal{E} \to 0} \int_{C_\mathcal{E}} \frac{1}{z(z^2 + 1)} \, dz$.
 C. Show that $\lim_{\mathcal{E} \to 0} \int_{C_\mathcal{E}} \frac{e^{iz}}{z(z^2 + 1)} \, dz = -\pi i \left[\text{Consider } e^{iz} - 1. \right]$

5. Map the region bounded by the circles $|z| = 1$ and $|z + 1| = 2$ conformally onto the open unit disk.

6. A. Determine the region of convergence of the series

 $$1 + \frac{2z}{1+z} + \frac{3z^2}{(1+z)^2} + \ldots + \frac{(n+1)z^n}{(1+z)^n} + \ldots$$

 B. By summing the series show that the series actually represents a polynomial in its region of a convergence.
7. Let Ω be a bounded domain. Let \(F \) be the family of functions which are analytic in Ω and map Ω into itself.

 A. Show that \(F \) has locally bounded derivatives.

 B. Is \(F \) closed in the topology of uniform convergence on compact subsets of Ω?

 Justify your answer.

8. Let \(I = \int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 + 1)} \, dx \).

 A. Explain why \(I \) is absolutely convergent.

 B. Incorporate the semicircle and the result from Problem 4 in a contour integration argument to evaluate \(I \).