1. Let K be a field, L a field extension of K. An element α in L is algebraic over K if α is the root of some monic polynomial with coefficients in K.

Show that if α and β in L are algebraic over K, then $\alpha\beta$ is algebraic over K.

2. Let w be a primitive cube root of unity. Let $R = \mathbb{Z}[w]$. Let $\lambda = 1 - w$. Show that $R/\lambda R \cong \mathbb{Z}/3\mathbb{Z}$.

3. Let G be the group of 2×2 invertible matrices of determinant 1 with coefficients in the field of 3 elements.

(a) Show that G has order 24.

(b) Find the number of 3-Sylow subgroups of G.

4. Let G be a finite p-group, p prime, V a finite dimensional vector space over the field \mathbb{F}_p of p elements. Suppose G acts linearly on V (i.e. there is a homomorphism from G into the group $GL(V)$ of invertible linear transformations from V to V). Prove that G has a non-zero fixed point: that is, there is some $\alpha \neq 0$ in V so that $\sigma(\alpha) = \alpha$ for all σ in G.

5. Let L/K be a Galois extension of fields with Galois group G. Let $L = K[\alpha]$. Define $tr(\alpha) = \sum_{\sigma \in G} \sigma(\alpha)$. Let $T_\alpha : L \to L$ be the K-linear transformation defined by $T_\alpha(\beta) = \alpha\beta$. Show that $tr(\alpha)$ is the trace of the linear transformation T_α.

6. Prove that for any prime p, there are at least four isomorphism classes of groups of order p^3.
7. A \(\mathbb{Z} \)-module \(M \) is flat if for any short exact sequence \(0 \to A \to B \to C \to 0 \) of \(\mathbb{Z} \)-modules, the sequence \(0 \to M \otimes A \to M \otimes B \to M \otimes C \to 0 \) is exact.

(a) State and prove a criterion for flatness as follows: \(M \) is flat if and only if for any homomorphism \(f : E \to F \) of \(\mathbb{Z} \)-modules, if \(t \) is injective, then \(M \otimes f \) is injective.

(b) Give an example of a non-flat \(\mathbb{Z} \)-module.

8. Let \(K \) be a field, \(M \) a \(K \)-vector space. Let \(M^* = \text{Hom}_R(M, K) \). Show that the canonical map \(M \to M^{**} \) is surjective if and only if \(M \) is finite dimensional.