1. Let $s = (12)(34)(56789)$ be an element of the symmetric group S_9. Describe the centralizer $C_{S_9}(s)$ and compute its order.

2. Show that there is no simple group of order 24.

3. Let $K = \mathbb{Q}(i, \sqrt{2}, \sqrt{3})$. Compute a basis for K as a vector space over \mathbb{Q} and describe the Galois group of K over \mathbb{Q}.

4. Let L be the splitting field of $x^4 - 7$ over \mathbb{Q}, the rationals. What is its Galois group? Describe all fields intermediate between L and \mathbb{Q}, and determine which of them are normal over \mathbb{Q}.

5. Let $f(T) \in \mathbb{Q}[T]$ be an irreducible polynomial of prime degree $p \geq 3$ with all but two roots in \mathbb{R} (the reals). Show that the Galois group of $f(T)$ over \mathbb{Q} is isomorphic to S_p.

6. Let G be a finite subgroup of the multiplicative group F^* of nonzero elements in a field F. Show that G is cyclic.

7. Let $f: U \to V$ and $g: V \to U$ be homomorphisms of vector spaces over a field K such that $fg = \text{id}_V$. Show that $U = \text{Ker}(f) \oplus \text{Im}(g)$.

8. Let A be a matrix with entries in \mathbb{Q} whose characteristic polynomial is $(x+1)^3(x+2)^4$ and whose minimal polynomial is $(x+1)^2(x+2)^2$. Find
 (a) all possible sequences of (polynomial) invariant factors of A;
 (b) all possible rational canonical forms of A;
 (c) all possible Jordan normal forms of A.

9. Given is a fixed prime $p \geq 2$. Construct a non-abelian group of order p^3.
