Preliminary Examination in Algebra
August 2009

(1) Determine the number of \(p \)-Sylow subgroups in the symmetric group \(S_p \), where \(p \) is a prime.

(2) Find all similarity classes of matrices in \(M_7(\mathbb{R}) \) with the minimal polynomial \((x-1)(x^2+1)^2\). For each class write its rational canonical form.

(3) Show that there is no simple group of order \(pqr \), where \(p < q < r \) are prime.

(4) Show that \(A \in M_n(k) \), \(k \) is a field, is similar to \(A^T \) (the transpose of \(A \)).

(5) Let \(B \in M_n(\mathbb{Q}) \) such that \(B^5 = 1 \) and no eigenvalue of \(B \) is equal to 1. Show that \(n \) is divisible by 4.

(6) Let \(F \) be a field of characteristic zero. Suppose that \(K/F \) is finite Galois extension with Galois group \(G \). Prove that if \(a \in K \) and \(g(a) - a \in F \) for all \(g \in G \), then \(a \in F \).

(7) Let \(K \) be the splitting field over \(\mathbb{Q} \), in \(\mathbb{C} \), of \(x^4 - 2 \). Determine the Galois group \(Gal(K/\mathbb{Q}) \) and the subfields of \(K \). For each subfield \(F \) of \(K \), give field generators over \(\mathbb{Q} \).