Ph.D. Preliminary Examination in Algebra

June 9, 2000

1. Let X be any set, F any field, and F^X the set of maps from X to F. F^X is endowed with the structure of a vector space over F using “pointwise” addition and multiplication by scalars. Prove that a finite sequence f_1, f_2, \ldots, f_n of elements of F^X is linearly independent if and only if there is a finite sequence of elements x_1, x_2, \ldots, x_n in X for which the $n \times n$ determinant $\det (f_i(x_j))$ is non-zero.

2. Find a complete set of representatives for the isomorphism classes of finite abelian groups of order 1001.

3. Let K be the splitting field over the field \mathbb{Q} of rational numbers of the polynomial
 \[f(x) = x^5 - x^4 + x^3 - x^2 + x - 1. \]
 (a) What are the possible values for the minimum degree among the irreducible factors of a polynomial of degree 5?
 (b) Write f as the product of factors irreducible over \mathbb{R}.
 (c) Write f as the product of factors irreducible over \mathbb{Q}.
 (d) What is the degree of K over \mathbb{Q}?
 (e) What is the Galois group of K over \mathbb{Q}?

4. Show that if two square matrices of the same finite size over a field are similar in a larger field then they must be similar in the original field.

5. Let F be a field, and let A be the quotient ring
 \[A = F[t, x, y, z]/(tz - xy)F[t, x, y, z] \]
 where t, x, y, z are independent transcendentals over F.
 (a) Show that A has no zero divisors.
 (b) Explain briefly why A is Noetherian.
 (c) Is A a unique factorization domain? (Either prove that it is or exhibit an example of something that does not factor uniquely according to the usual criteria for such uniqueness.)

6. Let E be a finite extension of a field F.
 (a) Outline an argument for showing that if F is a finite field, then E is a cyclic Galois extension of F.
 (b) Provide an example where F is a field of characteristic 5 and E is an extension of F of degree 5 that is not a Galois extension of F.
 (c) For any given field K explain how to obtain an extension F of K and a finite extension E of F for which E is a Galois extension of F with Galois group isomorphic to the symmetric group S_n (consisting of the permutations of n objects).

7. Let \mathbb{F}_3 denote the field of 3 elements.
 (a) What is the cardinality of 2-dimensional Cartesian space $\mathbb{F}_3 \times \mathbb{F}_3$ over \mathbb{F}_3?
 (b) Let N denote cardinality of the group $GL_2(\mathbb{F}_3)$ of linear automorphisms of $\mathbb{F}_3 \times \mathbb{F}_3$.
 Compute N.
 (c) Observe that the multiplicative group \mathbb{F}_3^* is the unique group of order 2 and furthermore that:
 i. Multiplication by invertible scalars gives rise to a homomorphism ϕ from \mathbb{F}_3^* to $GL_2(\mathbb{F}_3)$.
 ii. The determinant gives rise to a homomorphism ψ from $GL_2(\mathbb{F}_3)$ to \mathbb{F}_3^*
 Explain why the kernel of ψ and the cokernel of ϕ both have the same cardinality.
 (d) Is the kernel of ψ isomorphic to the cokernel of ϕ?

8. Prove over any commutative ring (with 1) that two isomorphic free modules of finite rank must have the same rank.