STUDENT PRESENTER
Guidelines for Preparing Your Abstract

Preparing Your Abstract

The format for the 200-word abstract includes: 1 inch margins, keyed in 12 point font (Times New Roman). Abstracts must be adequate in length but not exceed these specifications. The header preceding the abstract body must include:

- Title of the research (bolded and properly capitalized)
- Authors’ Name(s)
- High School, High School City, High School State
- Name of Teacher/Mentor/Sponsor and his/her Affiliation. Precede the individual's name with a title (i.e., Teacher, Mentor, Sponsor)
- Include one line of space between the heading and the abstract body

Please carefully proofread your submission. Abstracts will not be retyped or edited.

The abstract should accurately convey the essential nature of the research conducted and the most significant conclusions reached. A further purpose of the abstract is to attract the interest and curiosity of the non-specialist reader and thus encourage exchange, discussion, and elaboration between various authors and between authors and readers.

Content

- What you did, how you did it, what it means, why you did it and what you found.
- Citing of experimentation completed by submission date (anticipated experimentation or results should not be included).
- Diagrams, if used, must be drawn in black ink.
- Reference to a specific procedure should be restricted to a description of the process employed.
- State results, conclusions or findings clearly and concisely.
- Credit any financial sponsorship at the end of the abstract: “Research supported by …”

*Important:* (72) Hours following your sub-regional symposium you must email your abstract (Word .doc) and your research paper as a PDF document (including all 3 hand-written certifications as the last 3 pages) to Marissa Tanner (mtanner@albany.edu)
Abstract Sample

The following sample abstract is typed in a Microsoft Word, in TIMES NEW ROMAN – 12 point with one inch margins. The body of the abstract should be justified.

Genetic Transformation of Sweet Potato
Jane Einstein
Anywhere High School, Howell, NY 12227
Teacher: Mrs. Georgiana Spallanza / Mentor(s): Mr. Joseph Pascale, Albany Medical College

Sweet potato is considered the sixth most important food crop in the world and has high nutritional value for humans. However, pests, diseases and environmental factors prevent the crop from reaching its maximum agricultural potential. Improvement of the sweet potato is highly limited by conventional breeding methods. Recombinant DNA technology offers a means for manipulation of the sweet potato genome to integrate valuable traits. Critical parameters of the electroporation (voltage of current and digestion of cell wall) and particle bombardment (helium pressure and gold particle distribution) were examined for efficient DNA transfer. Electroporation resulted in less damage and higher recovery of tissue after DNA delivery compared to particle bombardment. Transformed cells were identified with two marker genes: Beta-glucoronidase (GUS) and Green Florescent Protein (GFP). Cells expressing GFP were easily identified due to uniform protein distribution, and allow the monitoring of the cell development pattern, unlike cells expressing the GUS gene. Using the optimized conditions derived from the present study, sweet potato can be genetically improved for increased crop productivity and nutritional value.