Graph the function

\[y = |2x - 1| + |3 - x| + |x + 2| \]

and solve the inequality

\[y < 2 - x. \]

Solution:

Since \(2x - 1 = 0 \) for \(x = \frac{1}{2} \), \(3 - x = 0 \) for \(x = 3 \), and \(x + 2 = 0 \) for \(x = -2 \), we consider the following four cases:

Case 1: \(x \in (-\infty, -2] \)

Then \(|2x - 1| = 1 - 2x \), \(|3 - x| = 3 - x \), and \(|x + 2| = -x - 2 \) and

\[y = 1 - 2x + 3 - x - 2 = -4x + 2. \]

Case 2: \(x \in \left[-2, \frac{1}{2}\right] \)

Then \(|2x - 1| = 1 - 2x \), \(|3 - x| = 3 - x \), and \(|x + 2| = x + 2 \) and

\[y = 1 - 2x + 3 - x + x + 2 = -2x + 6. \]

Case 3: \(x \in \left[\frac{1}{2}, 3\right] \)

Then \(|2x - 1| = 2x - 1 \), \(|3 - x| = 3 - x \), and \(|x + 2| = x + 2 \) and

\[y = 2x - 1 + 3 - x + x + 2 = 2x + 4. \]

Case 4: \(x \in [3, \infty) \)

Then \(|2x - 1| = 2x - 1 \), \(|3 - x| = x - 3 \), and \(|x + 2| = x + 2 \) and

\[y = 2x - 1 + x - 3 + x + 2 = 4x - 2. \]
In summary,

\[y = \begin{cases}
2 - 4x, & \text{for } x \leq -2 \\
6 - 2x, & \text{for } -2 \leq x \leq \frac{1}{2} \\
2x + 4, & \text{for } \frac{1}{2} \leq x \leq 3 \\
4x - 2, & \text{for } 3 < x
\end{cases} \]

Graphing, now, \(y \) and \(y_1 := x - 2 \) in the same coordinate system, we see that the graph of \(y_1 \) lies strictly below the graph of \(y \) and thus the inequality \(y < y_1 \) has no solutions.