Prove that the altitudes of a triangle intersect in one point.

Proof. Let ABC be an arbitrary triangle. Let D be the point of intersection of the altitudes through the vertices A and C.

Then, from the problem from Week 5, we have that

$$\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{CA} \cdot \overrightarrow{BD} = 0.$$

But

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$$ since \overrightarrow{AB} and \overrightarrow{CD} are orthogonal

and

$$\overrightarrow{BC} \cdot \overrightarrow{AD} = 0$$ since \overrightarrow{BC} and \overrightarrow{AD} are orthogonal.

Therefore

$$\overrightarrow{CA} \cdot \overrightarrow{BD} = 0$$

and thus the altitude of the triangle ABC through the vertex B passes through D. □