Find the domain of the function

\[y = \frac{1}{\sin x - \frac{1}{2}}, \]

i.e., the set of real numbers \(x \) for which the function is defined.

Solution:
For this function to be defined, we have to have that the denominator is not zero, i.e.,

\[\sin x \neq \frac{1}{2} \]

This is achieved if and only if

\[x \neq \frac{\pi}{6} + k \cdot 2\pi \]

and

\[x \neq \frac{5\pi}{6} + k \cdot 2\pi, \]

for all \(k \in \mathbb{Z} \).

Thus we have that the domain of the function \(y \) is given by

\[\text{Domain} (y) = \left\{ x : x \neq \frac{\pi}{6} + k \cdot 2\pi, x \neq \frac{5\pi}{6} + k \cdot 2\pi \text{ for all } k \in \mathbb{Z} \right\}. \]

©Ivana Alexandrova