Let \(a, b, \) and \(c \) be the lengths of the sides of a triangle and let \(\alpha, \beta, \) and \(\gamma \) be the magnitudes of the angles opposite these sides, respectively.

If \(\alpha, \beta, \) and \(\gamma \) form a geometric sequence with common ratio 2, prove that

\[
\frac{1}{a} = \frac{1}{b} + \frac{1}{c}.
\]

Solution:

Since \(\beta = 2\alpha, \gamma = 2\beta = 4\alpha, \) and \(\alpha + \beta + \gamma = \pi, \) it follows that \(7\alpha = \pi \) and therefore \(\alpha = \frac{\pi}{7}, \beta = \frac{2\pi}{7}, \gamma = \frac{4\pi}{7}. \)

Let, now, \(R \) be the circumradius of the triangle. Then, from the Law of Sines, we have that

\[
\frac{1}{b} + \frac{1}{c} = \frac{1}{2R} \cdot \frac{1}{2R} + \frac{1}{2R} \cdot \frac{1}{2R} \cdot \sin \left(\frac{\pi - 3\pi}{7} \right) = \frac{1}{2R} \cdot \frac{1}{2R} \cdot \sin \frac{\pi}{7} \cdot \sin \frac{4\pi}{7} = \frac{1}{2R} \cdot \frac{1}{2R} \cdot \frac{1}{2R} \cdot \frac{1}{2R} \cdot \sin \frac{\pi}{7} \cdot \sin \frac{4\pi}{7} = \frac{1}{a}.
\]

©Ivana Alexandrova