Organometallic Carboxylate Resists for EUV with High Sensitivity

An honors thesis presented to the
College of Nanoscale Science and Engineering,
University at Albany, State University of New York
In partial fulfillment of the requirements
For graduation with Honors in Nanoscale Science
and
graduation from The Honors College

James Passarelli
Research Mentor: Robert Brainard, Ph.D.

May, 2015
Abstract

We have developed organometallic carboxylate compounds \([R_nM(O_2CR')_2]\) capable of acting as negative-tone EUV resists. Overall, the best and fastest resists contain antimony, are pentavalent and the carboxylate group contains a polymerizable olefin (e.g. acrylate, methacrylate or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of molecules of the type \(R_nM(O_2CR')_2\) where we have studied seven \(R\) groups, four main group metals (M), and three polymerizable carboxylate groups (\(O_2CR'\)). We found that the greatest predictor of sensitivity of the \(R_nSb(O_2CR')_2\) resists is their level of polymerizable olefins. We mathematically define the polymerizable olefin loading (POL) as the ratio of the number of olefins vs. the number of non-hydrogen atoms. Linear and log plots of \(E_{\text{max}}\) vs. POL for a variety of molecules of the type \(R_nSb(O_2CR')_2\) lend insight into the behavior of these resists.
Acknowledgments

I would like to thank my thesis advisor Robert Brainard for his tremendous support over the past three years. I would also like to acknowledge my co-authors on this work Michael Murphy, Ryan Del Re, Miriam Sortland, Levi Dousharm, Roberto Fallica, Yasin Ekinci, Mark Neisser, Daniel A. Freedman and Robert L. Brainard.

Our team would like to thank Sematech for financial support of this work. We also thank DuPont for supplying us with ESCAP polymer and King Industries for supplying us with a thermal acid generator for organic underlayers. We would also like to thank Michaela Vockenhuber for providing assistance at Paul Scherrer Institut. Finally, we would like to thank Patrick Naulleau at the Lawrence Berkeley National Laboratory for providing us with SuMMIT Lithography Image Analysis software. Part of this work was performed at Swiss Light Source, Switzerland.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>6</td>
</tr>
<tr>
<td>Conclusions</td>
<td>19</td>
</tr>
<tr>
<td>Experimental</td>
<td>20</td>
</tr>
</tbody>
</table>
1 Introduction

As the microelectronics industry follows Moore’s law, the requirements for photoresists continue to increase. With 16-nm gate-lengths in production, technology capable of supporting the 10-nm lithography node must be developed today. Extreme ultraviolet (EUV, 13.5 nm) lithography is thought to be the next imaging technology for fabricating microelectronic devices, but there are still many obstacles that must be overcome. The traditional, chemically-amplified photoresist systems, which have been successful in lithography since the 1980’s are encountering hurdles that are proving difficult to overcome: poor photon absorption in thin-films, moderate etch selectivity and limited gains in resolution.

Recently, two novel resist systems have been developed based on metal-oxide thin films. Researchers at Inpria Co., have printed 8-nm dense lines with a dose of 200 mJ/cm² using metal-oxide resists. Christopher Ober’s group at Cornell demonstrated 36 nm dense line patterning with a dose of 12 mJ/cm² using a resist composed of hafnium oxide nano-particles. This pioneering work has demonstrated the great potential of inorganic systems as photoresists.

Here, we present a new design for EUV resists based on organometallic carboxylates of main-group elements. This work is a subset of our group’s larger program, Molecular Organometallic Resists for EUV (MORE). The MORE approach utilizes high EUV optical density metals to increase the photon absorbance of thin resist films. James Thackeray in his 2011 SPIE plenary presentation stated that the target absorption for EUV resist films is 50%. To print 10-nm lines with an aspect ratio of 2:1, film thickness must be around 20 nm. Polyhydroxystyrene at this thickness will stop only ~10% of the light (T ~ 0.90). Loading organic polymers with fluorine will have limited impact. Teflon, which likely contains the most
fluorine of any organic polymer, only stops ~30% of the light in a film of 20 nm (T ~ 0.70). A continuous, 20-nm film of HfO₂, on the other hand, will stop ~50% of the EUV light.

In this work we describe a set of organometallic carboxylate MORE resists that have displayed excellent sensitivities. These resists are of the general form RₙM(O₂CR’)₂ where M is the main-group metal antimony, tin, tellurium or bismuth, and the carboxylate group is capable of undergoing free radical polymerization (acrylate, methacrylate or styrene carboxylate). In this work we explore the systematic variations of the metal (M), the aliphatic or aromatic R group, and the polymerizable carboxylate group (O₂CR’).

2 Results and Discussion

In designing this resist platform, we sought an EUV free radical photoresist. In this way, one initiation event could lead to multiple solubility-changing polymerization events and yield a negative-tone resist with good sensitivity. Our first attempt at a free radical MORE resist was tri(styrene)antimony (Figure 1A). This molecule can undergo free radical polymerization when heated at 100 °C and the result is a cross-linked and insoluble network. When we evaluated tri(styrene)antimony for its EUV sensitivity we found that it was relatively insensitive. The Eₘₐₓ, or dose to maximum thickness after development, was 30 mJ/cm². We attribute this insensitivity to the relatively high bond dissociation energy of a Ph-H bond, which is often proportional to the organometallic bond strength.

While pursuing tri(styrene)antimony, we were concurrently working on antimony organometallic carboxylate molecules like tri(phenyl)antimony diacetate (Figure 1B). This molecule, which does not contain a polymerizable group, demonstrated improved sensitivities over tri(styrene)antimony (Eₘₐₓ = 21 mJ/cm²). We attribute the improvement in sensitivity to the
comparatively low bond dissociation energy of carboxylate-peroxides12 which is often proportional to organometallic bond strength.10,11 Excellent sensitivities ($E_{\text{max}} < 2 \text{ mJ/cm}^2$) were achieved through the combination of these two previous structural features. Our first molecule of this new class was triphenylantimony diacrylate (JP-20, Figure 1C). This molecule contains both a polymerizable olefin as well as a relatively weak antimony-carboxylate bond.

Tri(phenyl)antimony diacrylate (JP-20) has demonstrated remarkable sensitivity characteristics of $E_{\text{size}} = 5.6 \text{ mJ/cm}^2$ for 35 nm L/S features (Figure 2). Pattern modulation is also shown down to 16 nm although pattern collapse occurs at these resolutions. This resist has also passed witness plate-based outgassing tests (accumulating 0.98 nm) and has excellent shelf-life (no change to NMR of resist in solution for six weeks).

We propose that the sensitivity achieved by this resist is due to the free-radical polymerization of olefins in the exposed regions. We have tested this hypothesis by comparing the sensitivity of triphenylantimony diacrylate (JP-20) to triphenylantimony diacetate (JP-18) as shown in Figure 3. The sensitivity of the polymerizable acrylate is more than an order of magnitude greater than the non-polymerizable acetate group. Dissolution selectivity and contrast are also improved for the acrylate group. This evidence supports a free radical polymerization mechanism and we are attempting to confirm such a mechanism through spectroscopic means.

Our work details a systematic study of resists of the general form $R_nM(O_2CR')_2$ where the carboxylate group is capable of undergoing free radical polymerization. This is done in three studies (1) metal composition (2) carboxylate composition – O_2CR' and (3) R composition.
Figure 1. System design of antimony organometallic carboxylate resist platform - JP-20. High sensitivity is achieved through the integration of two resist architectures - one that contains a polymerizable olefin and one which contains a bond that is more readily cleaved by EUV photons.

Figure 2. Lithographic performance of JP-20 a representative molecule of this resist platform. High sensitivity at moderate resolutions is demonstrated. Ultimate resolution is limited by pattern collapse.
Figure 3. Comparison of MORE resists JP-18 and JP-20. These two resists are comprised of the same metal in the same oxidation state with largely the same chemical substituents. Slight modification between these resists results in dramatic improvement in photo-response.

2.1 Effect of Metal Nuclei on the Sensitivity of PhₙM(Acrylate)₂.

All MORE photoresists contain at least one metal atom with high EUV optical density. The goal of this study is to compare the sensitivity of resists containing antimony, tin, tellurium or bismuth. Molecules of the type PhₙM(Acrylate)₂ were synthesized, coated and evaluated for contrast-curve performance (Figure 4). The relative sensitivities are: antimony produces the fastest resist, then bismuth = tin, and tellurium is the slowest. This sensitivity trend cannot be explained by optical density differences since tin and tellurium are about the same and darkest, then antimony, followed by bismuth. The sensitivity of these resists is, therefore, not merely due to their ability to stop photons, but also due to other factors that will be explored in this paper.
Figure 4. Comparison of $\text{Ph}_3\text{M}(\text{Acrylate})_2$ where $\text{M} = \text{antimony, bismuth, tin or tellurium}$. Antimony is the most sensitive.

2.2 *Effect of the Polymerizable Carboxylate Group of Ph$_3$Sb(O$_2$CR’)$_2$ on Sensitivity.*

Three typical monomers for free radical polymerization are acrylate, methacrylate and styrene. In order to test the effect of these polymerizable carboxylate groups on sensitivity, we synthesized molecules of the general form $\text{Ph}_3\text{Sb(O}_2\text{CR’})_2$ where the carboxylate was acrylate, methacrylate or styrenecarboxylate. These three molecules were also compared to $\text{Ph}_3\text{Sb(OAc)}_2$ which does not contain a polymerizable group (Figure 5).

The acrylate variant is more sensitive than methacrylate, which is more sensitive than styrenecarboxylate. These three polymerizable carboxylates all exhibited higher sensitivity than $\text{Ph}_3\text{Sb(OAc)}_2$. This sensitivity trend seems to scale with the molecular weight of the carboxylate group. A possible explanation for this is given in section 2.4.
Lithographic evaluation of the three polymerizable carboxylates is shown in Figure 6. Notice that the dose for Acrylate (JP-20) and Methacrylate (JP-21) derivatives are similar whereas the styrenecarboxylate (JP-30) is about three times worse. Resolution and overall imaging characteristics for JP-30 are significantly improved over JP-20 and the dose is still respectable.

Figure 5. Comparison of the sensitivity of Ph₃Sb(O₂CR')₂ where the carboxylate is acrylate, methacrylate, styrenecarboxylate or acetate. Acrylate shows the best sensitivity of the four carboxylates evaluated.

Figure 6. Lithographic evaluation of three antimony organometallic carboxylates of the form Ph₃Sb(O₂CR')₂. High sensitivity at moderate resolution was demonstrated by JP-20 and good resolution at moderate sensitivity was demonstrated by JP-30.
2.3 Effect of the R Group of $R_2Sb(O_2CR')_2$ on Sensitivity.

The last and most extensive of the three molecular studies examines the effect of the hydrocarbon group on resist performance (Figure 7). Notice that these resists are characterized by excellent sensitivity. Several resists are capable of patterning below 30 nm dense lines although pattern collapse occurs at these smaller dimensions.

In analysis of the lithographic results of this diverse resist set, we have observed trends in SEM stability as well as several unexpected phenomena. These are detailed below in sections 2.3.1 and 2.3.2, respectively.

![Figure 7](image.png)

Figure 7. Lithographic summary of six resists with five different R compositions. All resists attain good sensitivity. Pattern collapse is the current limit to high-resolution imaging.
2.3.1 Effect of the R Group of $R_3Sb(O_2CR')_2$ on Sensitivity – SEM Stability Trends

The first antimony organometallic carboxylate molecule of interest, JP-20, displayed poor characteristics while being imaged in a SEM. Patterns could only be visualized when exposed to the SEM’s electron beam for short periods. The phenomena, which we call “SEM Instability” is displayed in Figure 8. Notice that pattern modulation is observed in the first scan while no pattern modulation is observed in the second. Our current understanding of this phenomenon is that the resist material either ablates or melts due to electron beam energy.

While studying the effect of R and O_2CR' groups on resist performance, we observed that higher molecular weight groups yield improvements in SEM stability. Higher molecular weight R and O_2CR' groups should have lower volatility than the R and O_2CR' groups of JP-20. A qualitative ordering of the SEM stability of four antimony organometallic carboxylates show that SEM stability increases with increasing molecular weight of the R and O_2CR' groups (Figure 9).

![Figure 8. SEM Instability of JP-20. Pattern modulation is displayed during the first scan of the electron beam. Pattern modulation is not observed during the second scan. We propose that the resist material is ablated due to electron beam energy or the pattern is melted.](image)
Figure 9. SEM Stability of antimony organometallic carboxylate molecules appears to improve with increases in molecular weight of the R and $O_{2}CR'$ groups. There is a tradeoff with sensitivity.

2.3.2 Effect of Hydrocarbon (R) Identity on Sensitivity – Unexpected Results for $R = \text{Cyclohexyl}$ or Styrene.

$R = \text{Cyclohexyl}$. Figure 10 shows a direct comparison of phenyl and cyclohexyl on the lithographic performance of $R_{3}\text{Sb}(O_{2}CR')_{2}$ resists. Note that tricyclohexylantimony diacrylate (JP-38) shows lithographic performance similar to that of JP-20. This was surprising because of the potential differences in R-Sb bond characteristics for these two molecules. The similarities between these two molecules occur in the composition of the carboxylate group and that both R groups are six-carbon cycles. This may point to the role of the R group.

$R = \text{Styrene}$. In order to increase the density of polymerizable olefins in the resist films, we studied R groups with polymerizable olefins such as styrene (Figure 11). We synthesized tristyreneantimony diacrylate (LD-1). After exposure and development of LD-1 using our standard developer (Hexane 30s), little change was observed in the unexposed region. After very aggressive development, material still remained in the unexposed region. Both development conditions readily clear the unexposed regions of an unexposed wafer. As a result, it appears
that a change in solubility occurs in the unexposed regions of LD-1 as a result of the exposure process. Our current hypothesis is that (1) polymerization extended beyond the exposed regions into the unexposed regions and/or (2) the resist is so sensitive that a solubility switch was produced by flare in the exposure chamber. If correct, this phenomena likely results from the high density of polymerizable olefins in a film of LD-1. In this way, once a polymerization event is initiated, it may propagate on a macroscopic length scale before termination. The two unanticipated results given in this section are explored in more detail in section 2.4.

Figure 10. Lithographic results of R = cyclohexyl. Notice that this molecule displays very similar sensitivity and lithographic results as JP-20.
Figure 11. Tristyreneantimony diacrylate (LD-1) has a high density of polymerizable olefins. A solubility shift occurs in the unexposed regions of an exposed wafer. This may be evidence of uncontrolled polymerization propagating to unexposed regions.

2.4 Interpretation of Results

The antimony organometallic carboxylate resists demonstrate a considerable departure from traditional polymeric resists. Traditional chemically amplified resists obtain good sensitivity through acid-catalyzed reactions. We propose that antimony organometallic carboxylate resists achieve good sensitivity through the inclusion of polymerizable olefins. In this way, one initiation event may result in the polymerization of multiple olefins and thus multiple solubility changing events (Figure 12). Given the revolutionary nature of this resist system, we must investigate the sensitivity mechanisms in order to understand the capabilities of the system and better target synthesis of new molecules.

In section 2.3.2, we detailed two surprising results. The first is that triphenylantimony diacrylate (JP-20), and tricyclohexylantimony diacrylate (JP-38) display similar lithographic performance despite the antimony-aromatic bond of JP-20 and the antimony-aliphatic bond of JP-38. What is similar between these two molecules is the ratio of the number of polymerizable olefins to the space filling R groups. The second surprising result was observed for tristyreneantimony diacrylate (LD-1) which has a high density of polymerizable olefins as compared to space filling R groups. This resist demonstrated uncontrolled characteristic where
full film thickness was observed in the unexposed region after standard development conditions ($E_{\text{max}} \sim 0 \text{ mJ/cm}^2$).

From these two surprising results, we can develop the hypothesis that the greatest contributor to the sensitivity of molecules of the type $R_n\text{Sb(O}_2\text{CR')}_2$ is the ratio of polymerizable olefins to space filling R groups. In order to further explore our sensitivity hypothesis, we have defined a hypothetical model for the condensed phase polymerization of $R_n\text{M(O}_2\text{CR')}_2$ (Figure 13). The R groups in this model act as space filling substituents that cannot be superimposed on other R groups. In order for the propagation of polymerization to occur, the reaction spheres of two polymerizable olefins must overlap. Our hypothesis states that the larger the ratio of polymerizable olefins to space filling R groups, the larger the turnover number of a given resist. Larger turnover number should lead to greater sensitivity because more molecules are reacted per initiation event, and because higher molecular weight molecules have lower solubility.

Our proposed sensitivity hypothesis suggests that the sensitivity of these resists should scale with polymerizable olefin loading (POL). A semi-log plot of E_{max} vs. POL is shown for multiple resist materials (Figure 14). There is a linear relationship between Log E_{max} vs. POL where as POL increases the E_{max} decreases (resist becomes more sensitive). On a linear scale the trend approaches the X axis at a POL of approximately 9%. This approach corresponds to a POL at which E_{max} is approaching 0 mJ/cm². This sensitivity is consistent with the uncontrolled characteristics of molecules like LD-1 (POL = 14%).

Further investigation is underway in this area. Understanding of this mechanism should allow better targeting of molecules to improve the lithographic performance of these systems.
Figure 12. Proposed mechanism of antimony organometallic carboxylate resist system. We propose that good sensitivity is achieved through one photochemical homolysis event leading to a cascade of subsequent solubility changing polymerization reactions.

Figure 13. Proposed model for condensed phase polymerization of antimony organometallic carboxylate resists.
Figure 14. Plot of E_{max} vs. Polymerizable Olefin Loading (POL). A linear trend is demonstrated between \(\log E_{\text{max}} \) vs. POL for multiple antimony organometallic carboxylates.

3 Conclusions

A novel resist system based on organometallic carboxylate molecules with polymerizable olefin substituents has been developed. This system has demonstrated exceptional sensitivity printing 35 nm dense lines with 5.6 mJ/cm2. We have studied over 35 molecules of the general form $R_nM(O_2CR')_2$ exhibiting variations in M, R and O_2CR'. By comparing molecules of the type $\text{Ph}_nM(\text{acrylate})_2$ where $M = \text{antimony, bismuth, tin or tellurium}$, we found that antimony is the most sensitive and tellurium is the least. By comparing molecules of the type $\text{Ph}_3\text{Sb}(O_2\text{CR'})_2$ where the carboxylate is acrylate, methacrylate, styrenecarboxylate or acetate, we found that polymerizable substituents are more sensitive than non-polymerizable substituents and that

\[
\text{POL} = \frac{\# \text{ of Polymerizable Olefins}}{\# \text{ of Atoms (Excluding Hydrogen)}} \times 100\%
\]

POL: Polymerizable Olefin Loading
sensitivity decreases with increasing carboxylate size. By comparing the sensitivities of molecules of the type $R_3Sb(O_2CR')_2$ we have developed the hypothesis that the size of the space filling R groups as compared to the number of polymerizable olefins contributes most greatly to the sensitivity. We have defined a Polymerizable Olefin Loading (POL), which mathematically relates the number of polymerizable olefins to the size of the R groups. We have observed that $\log E_{\text{max}}$ vs. POL is a linear relationship in which higher POL’s lead to more sensitive resists. Our current works aim to (1) spectroscopically confirm the polymerization of olefins upon exposure to EUV and (2) measure the turnover number of resists as a function of POL.

4 Experimental Methods

General. All reactions were carried out under a nitrogen atmosphere. The reagent 4-chlorostyrene was purchased from Alfa Aesar. All other reagents were purchased from Sigma Aldrich. All reagents were used as received unless otherwise specified.

Instruments. Nuclear Magnetic Resonance (NMR) spectra were obtained using a Bruker 400 spectrometer. All chemical shifts are reported as parts per million (ppm) relative to TMS.

General Resist Formulation and Imaging. Resist formulations were made by dissolving solids in 1,2-dichloroethane at 1.5wt% solids and filtering through a 0.2 µm PTFE filter. Formulations were then spincoast onto 4-inch silicon wafers, coated with a crosslinked polymeric film (75% hydroxyethyl methacrylate / 25% methyl methacrylate copolymers). Resist films were then exposed with 13.5-nm radiation and developed using conditions given by Table 2. Two exposure tools were used for this study: the Berkeley direct contrast tool (DCT) and the Paul-Scherrer Institut EUV interferometer.
4.1 Synthesis of Intermediates

Antimony (V) intermediates are of the form \((R_3\text{Sb}X_2)\) where \(R\) = aromatic or aliphatic hydrocarbon and \(X\) = halide. Intermediates were synthesized using three different pathways. These pathways are outlined below.

Pathway 1 – Synthesis of Intermediate 1 (Ph3SbCl2):

![Diagram of Intermediate 1]

To a solution of triphenylantimony (3.5 g, 10 mmol) in 200 mL of hexane, sulfuryl chloride (1.5 g, 11 mmol) was added dropwise. A constant flow of nitrogen was kept through the reaction vessel to remove SO₂ gas. After addition of sulfuryl chloride was complete, the reaction was allowed to stir for 30 minutes. The resulting white precipitate was collected by filtration and washed with 100 mL hexane and dried on vacuum. SbPh3Cl2: \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 8.32 – 8.08 (m, 6H), 7.72 – 7.38 (m, 9H).

Pathway 2 – Synthesis of Intermediate 2-3:

![Diagram of Intermediates 2 and 3]

Synthetic Path:

```
1) (Cyclohexyl)MgCl
\[\text{SbCl}_3\] \[\text{Br}_2\] \[\rightarrow\] (Cyclohexyl)SbBr₂
```

21
Synthesis of Intermediate 2 - Tricyclohexylantimony dibromide: To a stirring solution of antimony trichloride (2.3 g, 10 mmol) in 50 mL of anhydrous Et2O at 0 °C, 2M cyclohexylmagnesium chloride (16.5 mL, 33 mmol) was added dropwise over the course of 30 minutes. The reaction was allowed to warm to room temperature and stir for an additional 2 hours. The reaction vessel was then cooled to 0 °C. Bromine (1.6 g, 10 mmol) was then added dropwise to the stirring suspension over the course of 30 minutes. After the addition of bromine, methanol (50 mL) was used to quench the reaction while the flask was maintained at 0 °C. The resulting slurry was dried and extracted three times using ethyl acetate. Combined extracts were filtered through Celite and reduced in volume. The concentrated extracts were crystalized overnight at -10 °C. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 3.32 (tt, \(J = 12.7, 3.6\) Hz, 1H), 3.22 (tt, \(J = 12.7, 3.6\) Hz, 2H), 2.18 – 2.08 (m, 6H), 2.08 – 1.91 (m, 6H), 1.86 – 1.72 (m, 6H), 1.69 – 1.46 (m, 3H), 1.46 – 1.17 (m, 9H).

Synthesis of Intermediates 3 - Tri-isopropenylantimony dibromide: Intermediate 3 was synthesized in the same manner as intermediate 2 except isopropenylmagnesium bromide was substituted for cyclohexylmagnesium chloride. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 5.71 (d, \(J = 47.3\) Hz, 6H), 2.43 (s, 9H).

Pathway 3 – Synthesis of Intermediate 4-7:

Intergates 4 - 7:

Synthesis of Intermediates 4 - 7: These molecules were synthesized from the corresponding aromatic Grignard and antimony trichloride in a similar fashion to intermediates 2-3. The
substituted-triphenylantimony was collected and purified by crystallization. The substituted-triphenylantimony was then oxidized by 1 equivalent of either elemental bromine or iodine to form intermediates 4 - 7.

Tri-3-methoxyphenylantimony dibromide (4). 1H NMR (400 MHz, Chloroform-d) δ 7.33 – 7.17 (m, 3H), 7.05 – 6.93 (m, 6H), 6.88 – 6.80 (m, 3H), 3.70 (s, 9H).

Tri-styreneantimony diiodide (5). 1H NMR (400 MHz, Chloroform-d) δ 8.13 – 7.85 (m, 6H), 7.73 – 7.36 (m, 6H), 6.73 (dd, J = 17.6, 10.9 Hz, 3H), 5.83 (d, J = 17.6 Hz, 3H), 5.39 (d, J = 10.9 Hz, 3H).

Tri-4-propylantimony diiodide (6). 1H NMR (400 MHz, Chloroform-d) δ 8.27 – 7.80 (m, 6H), 7.52 – 7.15 (m, 6H), 2.63 (t, J = 7.7 Hz, 6H), 1.67 (h, J = 7.4 Hz, 6H), 0.97 (t, J = 7.3 Hz, 9H).

Tri-napthylantimony dibromide (7). 1H NMR (400 MHz, Chloroform-d) δ 8.65 (s, 3H), 8.19 (dd, J = 8.6, 1.7 Hz, 3H), 8.07 – 7.83 (m, 9H), 7.71 – 7.50 (m, 6H).

4.2 *Synthesis of Carboxylate Substituted R$_3$Sb(O$_2$CR’)$_2$*

Molecules of the type R$_3$SbX$_2$ where X = chloride, bromide, or iodide were reacted with carboxylate salts to form the desired R$_3$Sb(O$_2$CR’)$_2$ product. Synthetic procedures for JP-20 are given below.

![synthesis](https://via.placeholder.com/150)

Synthesis of JP-20 - Ph$_3$Sb$_2$O$_2$CR’$_2$ (O$_2$CR’ = Acrylate): A suspension of 1 (3.8 g, 9 mmol) and potassium acrylate (4 g, 36 mmol) in 300 mL of dichloromethane was stirred under nitrogen for 16 hours. The reaction mixture was filtered through Celite and the residual solid washed with 100 mL of dichloromethane. The filtrate and washings were collected and dichloromethane evaporated. The resulting solid was dried on vacuum. 1H NMR (400 MHz, Chloroform-d) δ 8.12

23
Conversion of intermediates 2-7 to the desired \(\text{Ph}_3\text{SbO}_2\text{CR}’_2 \) followed the same synthetic procedures for conversion of intermediate 1 to JP-20. In these cases, the appropriate carboxylate salt (potassium acrylate, potassium methacrylate or potassium styrenecarboxylate) is utilized in conjunction with the appropriate \(\text{R}_3\text{SbX}_2 \). If an oil was obtained after removal of dichloromethane, the residue was then crystalized overnight from ethyl acetate at -10 °C. NMR data are presented below.

Tri-phenylantimony diacetate (JP-18). \(^1\)H NMR (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 8.25 – 7.81 (m, 6H), 7.60 – 7.36 (m, 9H), 1.80 (s, 6H).

Tri-phenylantimony dimethacrylate (JP-21). \(^1\)H NMR (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 8.06 – 7.91 (m, 6H), 7.49 – 7.35 (m, 9H), 5.88 (s, 2H), 5.31 (s, 2H), 1.73 (s, 6H).

Tri-3-methoxyphenylantimony dimethacrylate (JP-25). \(^1\)H NMR (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 7.65 – 7.56 (m, 3H), 7.56 – 7.48 (m, 3H), 7.35 (t, \(J = 8.0 \) Hz, 3H), 7.08 – 6.91 (m, 3H), 5.98 – 5.86 (m, 2H), 5.35 (s, 2H), 3.78 (s, 9H), 1.78 (s, 6H).

Tri-phenylantimony distyrenecarboxylate (JP-30). \(^1\)H NMR (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 8.14 – 8.04 (m, 6H), 7.86 (d, \(J = 8.2 \) Hz, 4H), 7.51 – 7.40 (m, 9H), 7.33 (d, \(J = 8.1 \) Hz, 4H), 6.67 (dd, \(J = 17.6, 10.9 \) Hz, 2H), 5.75 (d, \(J = 17.6 \) Hz, 2H), 5.26 (d, 2H).

Tri-isopropenylantimony distyrenecarboxylate (JP-33). \(^1\)H NMR (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 7.93 (d, 4H), 7.40 (d, 4H), 6.72 (dd, \(J = 17.6, 10.9 \) Hz, 2H), 5.89 – 5.67 (m, 8H), 5.31 (d, 2H), 2.38 (s, 9H).

Tri-cyclohexylantimony diacrylate (JP-38). \(^1\)H NMR (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 6.21 (dd, \(J = 17.3, 2.2 \) Hz, 2H), 6.08 (dd, 2H), 5.66 (dd, \(J = 9.9, 2.2 \) Hz, 2H), 3.10 (tt, \(J = 12.7, 3.3 \) Hz, 3H), 2.19 – 2.04 (m, 6H), 1.99 – 1.82 (m, 6H), 1.82 – 1.65 (m, 6H), 1.65 – 1.46 (m, 3H), 1.39 – 1.14 (m, 9H).

Tri-styreneantimony bis-diphenylacetate (JP-40). \(^1\)H NMR (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 7.66 (d, 6H), 7.33 (d, 6H), 7.16 – 7.08 (m, 12H), 6.97 – 6.90 (m, 8H), 6.70 (dd, \(J = 17.6, 10.9 \) Hz, 3H), 5.80 (d, \(J = 17.6 \) Hz, 3H), 5.34 (d, \(J = 10.9 \) Hz, 3H), 4.80 (s, 2H).

Tri-napthylantimony diacrylate (JP-42). \(^1\)H NMR (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 8.57 (s, 3H), 8.17 (dd, \(J = 8.6, 1.5 \) Hz, 3H), 7.96 (d, \(J = 8.6 \) Hz, 3H), 7.91 – 7.82 (m, 6H), 7.61 – 7.49 (m, 6H), 6.16 (dd, \(J = 17.3, 1.9 \) Hz, 2H), 5.96 (dd, \(J = 17.2, 10.1 \) Hz, 2H), 5.58 (dd, \(J = 10.2, 1.9 \) Hz, 2H).
Tri-napthylantimony dimethacrylate (JP-43). 1H NMR (400 MHz, Chloroform-d) δ 8.58 (s, 3H), 8.16 (dd, $J = 8.6, 1.4$ Hz, 3H), 7.95 (d, $J = 8.6$ Hz, 3H), 7.90 – 7.82 (m, 6H), 7.58 – 7.46 (m, 6H), 5.95 (s, 2H), 5.32 (s, 2H), 1.75 (s, 6H).

Tri-styreneantimony dipivalate (JP-44). 1H NMR (400 MHz, Chloroform-d) δ 7.88 (d, 6H), 7.44 (d, 6H), 6.69 (dd, $J = 17.6, 10.9$ Hz, 3H), 5.79 (dd, $J = 17.6, 0.8$ Hz, 3H), 5.30 (dd, $J = 10.9, 0.8$ Hz, 3H), 0.95 (s, 18H).

Tri-4-propylphenylantimony diacrylate (JP-45). 1H NMR (400 MHz, Chloroform-d) δ 8.06 – 7.79 (m, 6H), 7.29 – 7.03 (m, 6H), 6.12 (dd, $J = 17.3, 2.0$ Hz, 2H), 5.95 (dd, $J = 17.3, 10.1$ Hz, 2H), 5.57 (dd, $J = 10.2, 2.0$ Hz, 2H), 2.58 (t, 6H), 1.62 (h, 6H), 0.92 (t, $J = 7.3$ Hz, 9H).

Tri-4-propylphenylantimony dimethacrylate (JP-46). 1H NMR (400 MHz, Chloroform-d) δ 7.88 (d, 6H), 7.24 (d, 6H), 5.88 (s, 2H), 5.30 (s, 2H), 2.58 (t, $J = 8.6, 6.8$ Hz, 6H), 1.75 (s, 6H), 1.63 (h, 6H), 0.92 (t, $J = 7.4$ Hz, 9H).

Tri-napthylantimony distyrenecarboxylate (MM-3). 1H NMR (400 MHz, Chloroform-d) δ 8.69 (s, 3H), 8.26 (d, $J = 8.6, 1.1$ Hz, 3H), 7.96 (d, $J = 8.6$ Hz, 3H), 7.91 – 7.80 (m, 10H), 7.64 – 7.44 (m, 6H), 7.32 (d, $J = 8.1$ Hz, 4H), 6.66 (dd, $J = 17.6, 10.9$ Hz, 2H), 5.74 (d, $J = 17.6$ Hz, 2H), 5.35 – 5.17 (m, 2H).

Tri-styreneantimony diacrylate (LD-1). 1H NMR (400 MHz, Chloroform-d) δ 7.97 – 7.88 (m, 6H), 7.55 – 7.42 (m, 6H), 6.69 (dd, $J = 17.6, 10.9$ Hz, 3H), 6.14 (dd, $J = 17.2, 1.9$ Hz, 2H), 5.94 (dd, $J = 17.3, 10.1$ Hz, 2H), 5.79 (dd, $J = 17.6, 0.8$ Hz, 3H), 5.60 (dd, $J = 10.2, 1.9$ Hz, 2H), 5.32 (dd, $J = 10.9, 0.8$ Hz, 3H).
References
