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PREFACE

Introduction to Software Testing
Edition 2

Ammann & Offutt

Much has changed in the field of testing in the eight years since the first edition was published. High-
quality testing is now more common in industry. Test automation is now ubiquitous, and almost assumed
in large segments of the industry. Agile processes and test-driven development are now widely known and
used. Many more colleges offer courses on software testing, both at the undergraduate and graduate levels.
The ACM curriculum guidelines for software engineering include software testing in several places, including
as a strongly recommended course [1].

The second edition of Introduction to Software Testing incorporates new features and material, yet retains
the structure, philosophy, and online resources that have been so popular among the hundreds of teachers
who have used the book.

What is new about the second edition?
The first thing any instructor has to do when presented with a new edition of a book is analyze what

must be changed in the course. Since we have been in that situation many times, we want to make it as easy
as possible for our audience. We start with a chapter-to-chapter mapping.

First Edition Second Edition Topic
Part I: Foundations

Chapter 01 Why do we test software? (motivation)
Chapter 02 Model-driven test design (abstraction)

Chapter 1 Chapter 03 Test automation (JUnit)
Chapter 04 Putting testing first (TDD)
Chapter 05 Criteria-based test design (criteria)

Part II: Coverage Criteria
Chapter 2 Chapter 07 Graph coverage
Chapter 3 Chapter 08 Logic coverage
Chapter 4 Chapter 09 Syntax-based testing
Chapter 5 Chapter 06 Input space partitioning

Part III: Testing in Practice
Chapter 10 Managing the test process
Chapter 11 Writing test plans

Chapter 6 Chapter 12 Implementing tests
Chapter 13 Regression testing for evolving software
Chapter 14 Writing effective test oracles

Chapter 7 N/A Technologies
Chapter 8 N/A Tools
Chapter 9 N/A Challenges

The most obvious, and largest change, is that the introductory chapter 1 from the first edition has
been expanded into five separate chapters. This is a significant expansion that we believe makes the book
much better. The new part 1 grew out of our lectures. After the first edition came out, we started adding
more foundational material to our testing courses. These new ideas were eventually reorganized into five
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new chapters. The new chapter 011 has much of the material from the first edition chapter 1, including
motivation and basic definitions. It closes with a discussion of the cost of late testing, taken from the 2002
RTI report that is cited in every software testing research proposal. After completing the first edition, we
realized that the key novel feature of the book, viewing test design as an abstract activity that is independent
of the software artifact being used to design the tests, implied a completely different process. This led to
chapter 02, which suggests how test criteria can fit into practice. Through our consulting, we have helped
software companies modify their test processes to incorporate this model.

A flaw with the first edition was that it did not mention JUnit or other test automation frameworks. In
2016, JUnit is used very widely in industry, and is commonly used in CS1 and CS2 classes for automated
grading. Chapter 03 rectifies this oversight by discussing test automation in general, the concepts that make
test automation difficult, and explicitly teaches JUnit. Although the book is largely technology-neutral,
having a consistent test framework throughout the book helps with examples and exercises. In our classes,
we usually require tests to be automated and often ask students to try other “*-Unit” frameworks such as
HttpUnit as homework exercises. We believe that test organizations cannot be ready to apply test criteria
successfully before they have automated their tests.

Chapter 04 goes to the natural next step of test-driven development. Although TDD is a different take on
testing than the rest of the book, it’s an exciting topic for test educators and researchers precisely because it
puts testing front and center—the tests become the requirements. Finally, chapter 05 introduces the concept
of test criteria in an abstract way. The jelly bean example (which our students love, especially when we
share), is still there, as are concepts such as subsumption.

Part 2, which is the heart of the book, has changed the least for the second edition. In 2014, Jeff
asked Paul a very simple question: “Why are the four chapters in part 2 in that order?” The answer was
stunned silence, as we realized that we had never asked which order they should appear in. It turns out that
the RIPR model, which is certainly central to software testing, dictates a logical order. Specifically, input
space partitioning does not require reachability, infection, or propagation. Graph coverage criteria require
execution to “get to” some location in the software artifact under test, that is, reachability, but not infection
or propagation. Logic coverage criteria require that a predicate not only be reached, but be exercised in a
particular way to affect the result of the predicate. That is, the predicate must be infected. Finally, syntax
coverage not only requires that a location be reached, and that the program state of the “mutated” version
be different from the original version, but that difference must be visible after execution finishes. That is,
it must propagate. The second edition orders these four concepts based on the RIPR model, where each
chapter now has successively stronger requirements. From a practical perspective, all we did was move the
previous chapter 5 (now chapter 06) in front of the graph chapter (now chapter 07).

Another major structural change is that the second edition does not include chapters 7 through 9 from
the first edition. The first edition material has become dated. Because it is used less than other material
in the book, we decided not to delay this new edition of the book while we tried to find time to write this
material. We plan to include better versions of these chapters in a third edition.

We also made hundreds of changes at a more detailed level. Recent research has found that in addition to
an incorrect value propagating to the output, testing only succeeds if our automated test oracle looks at the
right part of the software output. That is, the test oracle must reveal the failure. Thus, the old RIP model
is now the RIPR model. Several places in the book have discussions that go beyond or into more depth than
is strictly needed. The second edition now includes “meta discussions,” which are ancillary discussions that
can be interesting or insightful to some students, but unnecessarily complicated for others.

The new chapter 06 now has a fully worked out example of deriving an input domain model from a widely
used Java library interface (in section 06.4). Our students have found this helps them understand how to
use the input space partitioning techniques. The first edition included a section on “Representing graphs
algebraically.” Although one of us found this material to be fun, we both found it hard to motivate and
unlikely to be used in practice. It also has some subtle technical flaws. Thus, we removed this section from
the second edition. The new chapter 08 (logic) has a significant structural modification. The DNF criteria

1To help reduce confusion, we developed the convention of using two digits for second edition chapters. Thus, in this preface,
chapter 01 implies the second edition, whereas chapter 1 implies the first.
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(formerly in section 3.6) properly belong at the front of the chapter. Chapter 08 now starts with semantic
logic criteria (ACC and ICC) in 08.1, then proceeds to syntactic logic criteria (DNF) in 08.2. The syntactic
logic criteria have also changed. One was dropped (UTPC), and CUTPNFP has been joined by MUTP and
MNFP. Together, these three criteria comprise MUMCUT.

Throughout the book (especially part 2), we have improved the examples, simplified definitions, and
included more exercises. When the first edition was published we had a partial solution manual, which
somehow took five years to complete. We are proud to say that we learned from that mistake: we made
(and stuck by!) a rule that we couldn’t add an exercise without also adding a solution. The reader might
think of this rule as testing for exercises. We are glad to say that the second edition book website debuts
with a complete solution manual.

The second edition also has many dozens of corrections (starting with the errata list from the first
edition book website), but including many more that we found while preparing the second edition. The
second edition also has a better index. We put together the index for the first edition in about a day, and it
showed. This time we have been indexing as we write, and committed time near the end of the process to
specifically focus on the index. For future book writers, indexing is hard work and not easy to turn over to
a non-author!

What is still the same in the second edition?
The things that have stayed the same are those that were successful in the first edition. The overall

obsevation that test criteria are based on only four types of structures is still the key organizing principle of
the second edition. The second edition is also written from an engineering viewpoint, assuming that users
of the book are engineers who want to produce the highest quality software with the lowest possible cost.
The concepts are well grounded in theory, yet presented in a practical manner. That is, the book tries to
make theory meet practice; the theory is sound according to the research literature, but we also show how
the theory applies in practice.

The book is also written as a text book, with clear explanations, simple but illustrative examples, and
lots of exercises suitable for in-class or out-of-class work. Each chapter ends with bibliographic notes so
that beginning research students can proceed to learning the deeper ideas involved in software testing. The
book website (https://cs.gmu.edu/∼offutt/softwaretest/ ) is rich in materials with solution manuals, listings
of all example programs in the text, high-quality powerpoint slides, and software to help students with graph
coverage, logic coverage, and mutation analysis. Some explanatory videos are also available and we hope
more will follow. The solution manual comes in two flavors. The student solution manual, with solutions to
about half the exercises, is available to everyone. The instructor solution manual has solutions to all exercises
and is only available to those who convince the authors that they are using a book to teach a course.

Using the book in the classroom
The book chapters are built in a modular, component-based manner. Most chapters are independent,

and although they are presented in the order that we use them, inter-chapter dependencies are few and they
could be used in almost any order. Our primary target courses at our university are a fourth-year course
(SWE 437) and a first-year graduate course (SWE 637). Interested readers can search on those courses
(“mason swe 437” or “mason swe 637”) to see our schedules and how we use the book. Both courses are
required; SWE 437 is required in the software engineering concentration in our Applied Computer Science
major, and SWE 637 is required in our MS program in software engineering2. Chapters 01 and 03 can be
used in an early course such as CS2 in two ways. First, to sensitize early students to the importance of
software quality, and second to get them started with test automation (we use JUnit at Mason). A second-
year course in testing could cover all of part 1, chapter 06 from part 2, and all or part of part 3. The
other chapters in part 2 are probably more than what such students need, but input space partitioning is a
very accessible introduction to structured, high-end testing. A common course in north American computer

2Our MS program is practical in nature, not research-oriented. The majority of students are part-time students with five to
ten years of experience in the software industry. SWE 637 begat this book when we realized Beizer’s classic text [2] was out of
print.
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science programs is a third-year course on general software engineering. Part 1 would be very appropriate
for such a course. In 2016 we are introducing an advanced graduate course on software testing, which will
span cutting-edge knowledge and current research. This course will use some of part 3, the material that we
are currently developing for part 4, and selected research papers.

Teaching software testing
Both authors have become students of teaching over the past decade. In the early 2000s, we ran fairly

traditional classrooms. We lectured for most of the available class time, kept organized with extensive
powerpoint slides, required homework assignments to be completed individually, and gave challenging, high-
pressure exams. The powerpoint slides and exercises in the first edition were designed for this model.

However, our teaching has evolved. We replaced our midterm exam with weekly quizzes, given in the
first 15 minutes of class. This distributed a large component of the grade through the semester, relieved
much of the stress of midterms, encouraged the students to keep up on a weekly basis instead of cramming
right before the exam, and helped us identify students who were succeeding or struggling early in the term.

After learning about the “flipped classroom” model, we experimented with recorded lectures, viewed
online, followed by doing the “homework” assignments in class with us available for immediate help. We
found this particularly helpful with the more mathematically sophisticated material such as logic coverage,
and especially beneficial to struggling students. As the educational research evidence against the benefits of
lectures has mounted, we have been moving away from the “sage on a stage” model of talking for two hours
straight. We now often talk for 10 to 20 minutes, then give in-class exercises3 where the students immediately
try to solve problems or answer questions. We confess that this is difficult for us, because we love to talk!
Or, instead of showing an example during our lecture, we introduce the example, let the students work the
next step in small groups, and then share the results. Sometimes our solutions are better, sometimes theirs
are better, and sometimes solutions differ in interesting ways that spur discussion.

There is no doubt that this approach to teaching takes time and cannot acccomodate all of the powerpoint
slides we have developed. We believe that although we cover less material, we uncover more, a perception
consistent with how our students perform on our final exams.

Most of the in-class exercises are done in small groups. We also encourage students to work out-of-
class assignments collaboratively. Not only does evidence show that students learn more when they work
collaboratively (“peer-learning”), they enjoy it more, and it matches the industrial reality. Very few software
engineers work alone.

Of course, you can use this book in your class as you see fit. We offer these insights simple as examples
for things that work for us. We summarize our current philosophy of teaching simply: Less talking, more
teaching.
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