
Testing Web Services by XML Perturbation∗

Wuzhi Xu, Jeff Offutt and Juan Luo
Info. & Software Engineering, George Mason University

Fairfax, VA 22030-4444 USA
wxu2@gmu.edu, offutt@ise.gmu.edu & jluo2@gmu.edu

Abstract

The eXtensible Markup Language (XML) is widely used
to transmit data across the Internet. XML schemas are used
to define the syntax of XML messages. XML-based applica-
tions can receive messages from arbitrary applications, as
long as they follow the protocol defined by the schema. A
receiving application must eithervalidate XML messages,
processthe data in the XML message without validation,
or modify the XML message to ensure that it conforms to
the XML schema. A problem for developers is how well the
application performs the validation, data processing, and,
when necessary, transformation. This paper describes and
gives examples of a method to generate tests for XML-based
communication by modifying and then instantiating XML
schemas. The modified schemas are based on precisely de-
fined schema primitive perturbation operators.

Keywords: Software testing, web services, XML

1. Introduction

HTML is intended to transmit and display electronic
documents, whereas XML is intended to transmit and dis-
play data. XML allows users to define their own tags and
use DTDs or schemas to specify grammars that define the
syntax. Applications can then use the grammars to validate
the syntax of XML messages. This does not, of course,
ensure that the values in the XML are correct or that the
software that uses the XML messages is correct. One com-
mon use of XML is in web services.Web servicesare soft-
ware programs that operate independently to offerservices
over the Internet to other software programs, including web
applications and web services. Web services usually use
“peer-to-peer communication” as opposed to client-server

∗This work was supported in part by the U.S. National Air and Space
Administration, GSFC, under contract grant 220873 to Indus Corporation,
subcontracted to George Mason University. The first author acknowledges
support by Avaya Research Labs. The second author is a part-time faculty
researcher at the National Institute of Standards and Technology.

communication, that is, data is transmitted between two es-
sentially independent software entities. This allows a kind
of dynamic integration, where services are found dynami-
cally during execution. Web services use XML for specifi-
cations, configuration, and communication protocols. Web
services use XML to describe and transmit data.

This paper focuses on the use of XML to transmit data,
and introduces new methods to generate tests from existing
XML messages. The method depends on an XML schema
to describe the data format. We are also developing algo-
rithms toinfer a schema for cases where no schema exists.

Some applications and web services do not validate
XML messages against an XML schema, and sometimes
no schema exists, so validation is not possible. If an appli-
cation validates an XML message and it does not conform
to the schema, the application has options. It can reject the
XML message, modify the XML message to conform to
the schema, or process the portions of the message that are
correct and ignore the rest. To evaluate the application, we
need to know how well the application validates the XML
messages, how well it processes the data without validating,
or how effectively it transforms the messages to conform to
the schema. This paper proposes a method to evaluate how
effectively web services perform these tasks by using ex-
isting XML messages and schema to produce and transmit
invalid data.

The method in this paper definesschema perturbation
operatorsthat are used to modify XML schema. First a
formal model for XML messages and schema is developed.
This model is used to algorithmically process XML mes-
sages. Perturbation operators are defined on this model,
which are used to generate test inputs for the web services
and applications that use the XML messages. This tech-
nique has been applied to two web service applications to
evaluate its ability to find software faults.

2. Background

This section provides an overview of web services,
XML, XML schemas, and some of the early attempts to test

web services.

2.1. Web Services and XML Schemas

One difficulty that research scientists have in this area
is that there are several contradictory and imprecise defi-
nitions for web services [17]. As a working definition for
our research, we define aweb serviceto be an Internet-
based, modular application that uses the Simple Object Ac-
cess Protocol (SOAP) for communication and transfers data
in XML through the Internet.

SOAP allows web services to be described, advertised,
discovered and invoked through the Internet. TheExtensi-
ble Markup Language (XML)[26] is used to transmit mes-
sages and data. TheUniversal Description, Discovery and
Integration (UDDI)specification is used to maintain direc-
tories of information about web services. TheWeb Services
Description Language (WSDL)is used to describe how to
access web services and what operations they can perform.
SOAP helps software transmit and receive XML messages
over the Internet.

Like HTML, XML uses tags, which are textual descrip-
tions of data enclosed in angle brackets (’<’ and ’>’). Un-
like HTML, XML follows strict SGML syntax. XML mes-
sages must bewell-formed, that is, have a single document
element with other elements properly nested under it, and
every tag must have a corresponding closing tag. XML
messages can be constrained by grammar definitions. The
grammars can be defined in either Document Type Defini-
tions (DTD) or the more recent XML schema [27], which
provides stronger data typing features. Programmers can
validateXML messages against their grammars.

2.2 Testing Web Services

One way to describe web services is that the components
are wrapped with SOAP interfaces so they can exchange
XML-based messages. This description is simple and rea-
sonably accurate, but it masks some of the complexities. To
consider their complexities, we need to consider how tradi-
tional programs become web services. Aoyama describes
three evolutionary ways [3]. In each, web services are of-
ten used to publish traditional software on the Internet or
to integrate subsystems within an organization. Web ser-
vices are more widely distributed than traditional software.
The fundamental objective of using web services today is
the same as that of distributed computing technologies 20
years ago: to allow applications to work cooperatively with
other applications over a common network [10]. However,
these three methods of software evolution highlights some
differences between web services and traditional software.

Moreover, the ways the technologies are used make test-
ing web services different from testing other distributed

software. Companies use web services to reduce the cost
of integrating heterogeneous subsystems across the organi-
zations [3, 7]. Web services can be considered to bemore
heterogeneous than web applications. Web applications of-
ten use more than one programming language, but differ-
ent components of webservicesalso use different operating
systems and different server containers [30].

Another difference is based on the fact that web ser-
vices do not have user interfaces [11]. This makes test-
ing harder by reducing thecontrollability [6] of web ser-
vices but simultaneously makes it easier by forcing the in-
puts to be structured (with XML and SOAP). To be able to
find, request, and receive “services” automatically and dy-
namically, they use a dynamic and loosely coupled Service-
Oriented Architecture (SOA) [10]. That is, web services
featuredynamic integration. This is different from earlier
distributed computing architectures that linked applications
together with static connections.

Several papers [2, 5, 12, 19, 23] have been published
about testing web applications. Some existing testing tech-
niques that are used to test software components are being
extended to web services. Also, some existing testing tech-
niques for distributed applications are used to test web ser-
vices. A few papers [7, 11] have presented testing tech-
niques for web services, but the dynamic discovery and in-
vocation capabilities of web services bring up many testing
issues that have not yet been addressed. Three main as-
pects of web services must be tested: (1) the discovery of
web services, (2) the data format exchanged, and (3) the re-
quest/response mechanisms. Bloomberg suggests four abil-
ities that must be tested in web services [7]: SOAP mes-
sages; WSDL files; the publish, find, and bind capabilities
of an SOA; and services consumer and producer emulation.

In addition, there are several papers about modeling the
composition of web services and model checking on the
composed web services. Bultan, Fu et al. [8, 14] create
a model for web services to describe composite web ser-
vices, focusing on an the messages in web services. Fi-
nite state machines are used to represent web services that
have a sequence of messages, as observed through conver-
sations. This model consists of multiple peers that commu-
nicate with asynchronous messaging. Based on the formal
model and an FSM implementation, they study the relation-
ship of global behavior of composite web services and lo-
cal behaviors of the individual web services in the position.
Also based on this model, model checking is used to check
the global behavior of composited web services.

The testing method in this paper focuses on peer-to-peer
communication, not on compositions of web services. The
currently available testing techniques [7] for peer-to-peer
communication focus on testing SOAP messages, testing
WSDL files, and emulating consumer and producer emu-
lation. Most web services testing tools that test SOAP mes-

sages focus on testing RPC communications, and do not
include general XML data communications. The research
presented in this paper uses data perturbation to test the in-
tegration of software components that rely onboth kinds of
communications.

3. XML Data Model

To generate test data from XML, a formal model for
XML is needed. Representing the structure of an XML
schema is relatively straightforward, because the XML lan-
guage is inherently structured, but it is not as easy to repre-
sent the constraints. Several other researchers have created
formal models of XML [4, 13, 22], but none represent repre-
sentation constraints, which are important to our research.
Our model is based heavily on these previous models and
a preliminary version was discussed in a workshop paper
[20].

An XML schema can be modeled as a tree. We denote
the XML treeT = (N, D, X, E, nr), where:
• N is a finite set of elements and attribute nodes.
• D is a finite set of built-in and derived data types.
• X is a finite set of constraints (integrity and represen-

tation).
• E is a finite set of edges. An edge can be expressed as

e (p, x, c), wherex ∈ X, p ∈ (N∪{nr}), andc ∈ (N∪D)
• nr is the root node.
The integrity and representation constraints inX are as

defined in the XML Schema Recommendation 1 [28]. All
built-in data types defined in XML Schema Recommenda-
tion 2 [29] are included inD. We need to identify all con-
straints and the built-in and derived data types to use this
model. The model is in the form of a treeT . If T ′ is a
subtree ofT , it can be expressed asT ′ ⊂ T . T ′ can also
be expressed as an edge,e (n, x, T ′), wheren ∈ N and
x ∈ X. In this model, any path that begins at the root node
will eventually end at a data type in the setD. This prin-
ciple can be expressed as a formula in CTL [15]: given a
treeT = (N, D, X, E, nr), AG(n → AF (d)) must be
satisfied, wheren ∈ N andd ∈ D. Consider the simplified
XML schema for books shown in Example 1.

Example 1 : Simplified XML Schema for Books
<xs:element name="books">

<xs:complexType>
<xs:sequence>

<xs:element name="book" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="ISBN" type="xs:string"/>
<xs:element name="price" type="priceType"/>
<xs:element name="year" type="xs:int"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>

<xs:simpleType name="priceType">
<xs:restriction base="xs:decimal">

<xs:fractionDigits value="2"/>
<xs:maxInclusive value="1000.00"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

The book XML schema is represented by the modelT =
(N, D, X, E, nr), where:

• nr = books

• N = {book, ISBN, price, year}
• D = {string, decimal, int}
• X = {maxOccurs =“unbounded”,

maxInclusive =“1000.00”,
fractionDigits =“2”}

• E = {e1 (ns, x1, book), e2 (book, x2, ISBN),
e3 (book, x3, price), e4 (book, x4, year),
e5 (ISBN, x5, string), e6 (price, x6, decimal),
e7 (year, x7, int)}, where x1 =
(maxOccurs =“unbounded”), x2,3,4,5,6 = φ,
x7 = (maxInclusive =“1000.00” ∧
fractionDigits =“2”)

The XML schema for books includes one integrity
constraint (maxOccurs=“unbounded”) and two repre-
sentation constraints (maxInclusive=“1000.00”and frac-
tionDigits=“2”). Three elements can be defined (ISBN,
price and year). The data structure can be expressed in a
tree with seven edges, as shown in Figure 1.

4. Schema Perturbation Operators

Our next goal is to perturb the XML schemas to create
invalid messages. We define a collection of schema per-
turbation operators to affect the modifications1. Some re-
search has already been carried out on XML transforma-
tion [18, 24] to support analysis and maintenance of XML
messages. XML transformation include data document and
XML schema changes, and change primitives for XML
transformation are either data changes or schema changes
[24]. For testing, this research focuses on XML schema

1There is some disagreement over whether this is a variation of muta-
tion testing or not. Mutation is customarily applied to programs, not data,
and usually not used to generate tests directly. The distinction depends
on whether mutation is defined to apply to programs or to general struc-
tures that are derived from grammars. For now, we choose to use different
terminology.

ISBN

book

price
 year

e

1

e

2

e

3

e

4

e

5

e

6

e

7

books

int
double
string

Root node

Nodes in N

Datatypes in D

Edges in E

Figure 1. Tree representation of the book XML
schema.

changes to produceinvalid XML messages, and differen-
tiates from previous research that created valid XML mes-
sages by using the term “perturbation” instead of “change.”
The formal model for XML schemas defines three elements
in the tree: nodes, datatypes, and edges. The schema per-
turbation operators systematically modify these three ele-
ments. They do not perturb the root node, but can operate
on trees by inserting nodes and edges into and deleting them
from trees. Each perturbation operation needs a location,
and some operators need an operand. The perturbation op-
erators are formally defined with a signature, precondition,
and postcondition. In the signatures, variables that will be
inserted into the tree or perturbed are denoted with a sin-
gle quote (’). The four perturbation primitive operators are
defined as follows:

1) insertN (e, e′p, e′c, n′)
Action: A new noden′ is inserted between two nodes con-
nected with the edgee. The original edgee is removed from
the tree and two new edgese′p ande′c are inserted. Edgee′p
connectsn′ with the parent node, ande′c connectsn′ with
the child node.
Precondition: In T , ∃ e (np, x, nc) ∈ E ∧ nc ∈ N ∧ n′ ∈
N
Postcondition: In T ′, E′ = (E \ {e (np, x, nc)}) ∪
{e′p (np, xp, n′), e′c (n′, xc, nc)} ∧ N ′ = N ∧ D′ =
D ∧X ′ = (X \ {x}) ∪ {xp, xc}

2) deleteN (n)
Action: Delete a noden from the tree; also deleting the
edge between the noden and the parent nodenp. The edges
betweenn and any child nodesnc are moved up to become
the edges between the parent nodenp and the child nodes

nc, and the constraints on the edges are unperturbed.
Precondition: In T , ∀ ep (np, xp, n), ec (n, xc, nc) ∈ E
∧ np, nc, n ∈ N
Postcondition: In T ′, E′ = (E \ {ep (np, xp, n),
ec (n, xc, nc)})∪ {e′ (np, xc, nc)} ∧N ′=N \ {n} ∧D′=D
∧ X ′=X \ {xp}

3) insertND (np, e′p, n′, e′c, d′)
Action: Insert a new noden′ that connects its datatyped′

with the edgee′c below the nodenp. The edge betweennp

andn′ is e′p.
Precondition: In T , k ∃ (e (np, x, d) ∈ E ∧ d ∈ D)
Postcondition: In T ′, E′ = E ∪ {e′p (np, x

′
p, n

′),
e′c (n′, x′c, d

′)} ∧ N ′ = N ∪ {n′} ∧X ′ = X ∪ {x′p, x′c} ∧
D′ = D

4) deleteND (n)
Action: Delete a noden with its datatype.
Precondition: In T , ∃ ec (n, xc, d), ep (np, xp, n) ∈ E
∧ d ∈ D ∧ n ∈ N
Postcondition: In T ′, E′ = E \ {ec (n, xc, d),
ep (np, xp, n)} ∧ N ′ = N \ {n} ∧ D′ = D ∧ X ′ = X \
{xp, xc}

For convenience, we define three additional non-
primitive operators that can be derived from the four pertur-
bation primitive operators. Two insert a subtree and delete a
subtree. One changes the edge between a node and its data
type.

1) insertT (n, e′, T a)
Action: Insert a new treeT a below noden. A new edgee′

connectsn to the root node ofT a.
Precondition: For T , n ∈ N ∧ T a =
(Na, Da, Xa, Ea, na

r)
Postcondition: In T ′, E′ = E ∪ {e′ (n, x′, na

r)} ∪ Ea ∧
N ′=N ∪ Na ∧ X ′=X ∪ {x′} ∪ Xa ∧ D′=D ∪ Da

2) deleteT (e)
Action: Delete a subtree from the tree, starting from the
edgee. The parent node ofe must have at least one other
child node.
Precondition: For T , ∃ e (np, x, nc), e2 (np, x, nc2) ∈
E ∧ nc, nc2 ∈ N
Postcondition: In T ′, ∃ T d (Nd, Dd, Xd, Ed, nd

r) ⊂ T
∧ nd

r = nc ∧ N ′ = N \ Nd ∧ X ′ = X \ Xd ∧ D′ = D ∧
E′ = E \ (Ed ∪ {e})

3) changeE (e, e′)
Action: Change the edgee to e′. e′ is still between the same
pair of nodes, but the constraints one are perturbed. The al-
lowable constraints for elements, attributes, and each data
type are as defined in XML Schema Recommendation 2.
Precondition: In T , e (np, x, nc) ∈ E

Postcondition: In T ′, E′ = (E \ {e (np, x, nc)}) ∪
{e′ (np, x′, nc)} ∧ N ′ = N ∧ D′ = D ∧ X ′ = (X \
{x}) ∪ {x′}

These six operators are used to develop test criteria in
Section 5.

5. Test Coverage Criteria

This section defines test coverage criteria based on the
XML data model and perturbation operators. The criteria
use the structure and constraints defined by the schemas,
and model specific mistakes that can occur in the XML in
terms of the perturbation operators in the previous section.
Two criteria, delete coverage and insert coverage, modify
the structure of an XML schema. Another criterion, con-
straint coverage, uses the changeE() operator to modify the
constraint values.

Two operations are involved in perturbation operators:
insert (insertND() andinsertN()) and delete (deleteN()
anddeleteND()). The intent is to mimic likely user errors
by creating XML schemas that differ only slightly from the
original XML schemas. Delete coverage makes all possible
delete operations on a tree by using the two delete pertur-
bation operators. All nodes that do not define a data type
are modified by the primitivedeleteN(). All nodes that
are defined by a data type are modified by the primitive
deleteND(). Formally, the delete coverage criterion is:

Delete Coverage (DC): Given a tree T =
(N, D, X, E, nr), the set of test require-
ments (TR) includes two sets of operations:
{deleteN (n1), ..., deleteN (nj)}, wheren1, ..., nj

is the list of nodes that satisfy∀ ep (np, xp, n),
ec (n, xc, nc) ∈ E ∧ np, nc, n ∈ N ,
and {deleteND (n1), ..., deleteND (nj)}, where
n1, ..., nj is the list of nodes that satisfy∃
ec (n, xc, d), ep (np, xp, n) ∈ E ∧ d ∈ D ∧ n
∈ N .
Insert coverage is based on delete coverage by adding

insertions after deletions. For eachdeleteN() operation
applied during delete coverage,insertN() operates on all
edges that connect two nodes, using the deleted node as in-
put. For eachdeleteND() operation applied during delete
coverage,insertND() operates on all nodes that do not de-
fine a data type, using the deleted node and data type as the
inputs. Formally, the insert coverage criterion is:

Insert Coverage (IC): Given a tree T =
(N, D, X, E, nr), {T ′ = (N ′, D′, X ′, E′, nr)}
is the set of trees after delete operations
{∑ deleteN(n),

∑
deleteND(n)} are applied

during delete coverage, where fordeleteN(), n
must satisfy∀ ep (np, xp, n), ec (n, xc, nc) ∈ E ∧
np, nc, n ∈ N and fordeleteND(), n must satisfy
∃ ec (n, xc, d), ep (np, xp, n) ∈ E ∧ d ∈D ∧ n ∈
N .

The set of test requirements (TR) includes two sets of
operations:{∑ insertN (e, e′p, e′c, n)}, wheree ∈
E′, e′p = (n′p, xp, n), ec = (n, xc, n′c), andn′p and
n′c must satisfy the precondition of theinsertN()
operation onT ′. Also, TR includes another set
{∑ insertND (np, e′p, n′, e′c, d′)}, wherenp ∈
N ′, ec = (n, xc, d), ep = (np, xp, n), d′ = d, and
np must satisfy the precondition of theinsertND()
operation onT ′.

Constraints implement business rules in XML schema.
In Section 3, for example, the business rule that the max-
imum price of a book is $1000 is realized as a represen-
tation constraint in the XML schema for books. The con-
straint coverage criterion covers all constraints in theX set.
It uses the perturbation operatorchangeE() to modify the
constraint values. The facets in constraints are not modified.
Formally, the constraint coverage criterion is:

Constraint Coverage (CC): Given a treeT =
(N, D, X, E, nr), the set of test re-
quirements (TR) includes one set of operations:
{changeE (ei, e′i), ..., changeE (ej , e′j)}, where
ei, ..., ej are all the edges that satisfye : (np, x, nc)
∈ E ∧ x 6= φ.
The three coverage criteria are illustrated with the

XML schema for books. The delete operation set is:
{deleteN(book), deleteND(ISBN), deleteND(price),
deleteND(year)}. The trees created by applying the
delete operations are shown in Figure 2. Figure 2.a is
the tree after the deleteN (book) operation is applied,
and Figure 2.b is the tree after deleteND (year) is ap-
plied. Two other delete operations, deleteND (ISBN)
and deleteND (price), are similar to deleteND (year).
For operation deleteN (book), the insert operation set
is {insertN(e2, e1, e2, book), insertN(e3, e1, e3, book),
insertN(e4, e1, e4, book)}. For operation deleteND
(year), the insert operation set is{insertND(book,
e4, year, e7, int), insertND(books, e4, year, e7, int)}.
But the insertND(book, e4, year, e7, int) results in the
original XML schema, so is not used. Two other delete op-
erations, deleteND (ISBN) and deleteND (price), are simi-
lar to the deleteND (year). The XML schema for the books
has two constraints in theX set. The constraint coverage
is the operation set:{changeE(e1, e

′
1), changeE(e6, e

′
6),

changeE(e6, e
′′
6)}.

The number of operations defined on an XML schema is
bounded as follows. In delete coverage, given a treeT =
(N, D, X, E, nr), there exist two setsNn ⊂ N andNd ⊂
N , where for eachn ∈ Nn, there must existec(n, xc, nc)
∈ E ∧ nc ∈ N , and for eachn ∈ Nd, there must exist
ec(n, xc, d) ∈ E ∧ d ∈ D. So, the number of operations in
delete coverage is(|Nn| − 1) + |Nd|.

Insert coverage is based on delete coverage, so the num-
ber of insert operations based on the deleteN operator is

ISBN
 price
 year

e

2

e

3

e

4

e

5

e

6

e

7

books

int
double
string

ISBN

book

price

e

1

e

2

e

3

e

5

e

6

books

double
string

(a) deleteN (book)
 (b) deleteND (year)

Figure 2. The perturbed trees as a result of the delete operations.

(|N | − 2) × (|Nn| − 1). The number of insert operation
based on the deleteND operator is|Nn|×|Nd|. So, the total
number of insert operations is(|N | − 2) × (|Nn| − 1) +
|Nn| × |Nd|.

Finally, the number of operations in constraint coverage
is |X|.

Consider the book schema example. It contains two
nodes that do not have data types, books and book, so
|Nn| = 2. Three nodes are defined with data types, ISBN,
price, and year, so|Nd| = 3. The number of XML
schemas created in delete coverage is(2 − 1) + 3 = 4.
The number of XML schemas created in insert coverage is
(5−2)×(2−1)+2×3 = 9. The number of XML schemas
created in constraint coverage is3, for a total of 16.

6. Generating Test Cases

When validating software components that communicate
via XML messages, a test case is an XML message. The
approach in this paper generates tests from perturbed XML
schemas. The most difficult part of generating the tests is
finding values to satisfy the constraints. Constraints are de-
fined between pairs of nodes and between nodes and data
types. Constraints between nodes describe integrity rela-
tionships between nodes and so are calledintegrity con-
straints. XML Schema Recommendation 2 identifies five
types of constraints, “unique,” “maxOccurs,” “minOccurs,”
“nillable,” and “use.” Constraints between nodes and data
types express formats that the data values must conform
to, so are calledrepresentation constraints. In fact, these
representation constraints are the facet constraints defined
in XML Schema Recommendation 2. Both types of con-
straints are classified asboundary constraintsand non-

Boundary Constraints Non-boundary
Constraints

maxOccurs, minOccurs, enumeration, use
length, maxExclusive, fractionDigits,
maxInclusive, maxLength, pattern, nillable,
minExclusive, minInclusive, whiteSpace, unique
minLength, totalDigits

Table 1. Classification of the constraints.

boundary constraints. Table 1 lists the boundary and non-
boundary constraints.

Different strategies are used to generate tests from
boundary and non-boundary constraints. For each bound-
ary constraint, aboundary valueis defined and generated.
For example, the books schema has the boundary con-
straint “maxInclusive = 1000.00” for the elementprice.
The boundary value is the maximum number allowed for
that constraint,1000. For each non-boundary constraint,
an arbitrary (random) value that conforms to the constraint
is generated. Consider the constraint “fractionDigits = 2”.
The test case might be349.99. If one edge has two con-
straints, two separate tests are generated. If an edge has no
constraint, an arbitrary value is generated. There are two
kinds of edges without constraints, an edge between a node
and a data type, and an edge between two nodes. For an
edge between a node and a data type, the arbitrary value
must conform to the data type. For an edge between a node
and a data type, the arbitrary value is just one child node
instance generated.

Different combinations of data in an XML message can
yield different results. Therefore, multiple XML messages

need to be generated for the same XML schema. Our strat-
egy focuses on the constraints. One XML message is gen-
erated for each constraint based on whether this constraint
is a boundary constraint, and arbitrary values are gener-
ated for other constraints. Therefore, given a modified tree
T = (N, D, X, E, nr), there are|X| test cases if some con-
straints exist, otherwise there is only one test case.

Although the goal of this process is to generate invalid
XML messages, some valid messages can be generated.
Valid XML messages are not considered useful tests, and
can introduce “false positives.” That is, if a valid XML
message is created and the software produces a valid re-
sponse, the tester may believe that a failure occurred in the
software. These tests are currently identified by hand, but
we hope to find ways to automatically identify valid XML
messages before executing them.

Consider the books schema. The constraint setX has
three constraints on two different edges, so three tests are
created. These tests are shown as simplified XML messages
in Example 2.

Example 2 : Books Test Cases as Simplified XML Messages

<books>
<!- - test case 1 for maxOccurs - ->

<book>
<ISBN>0-201-74095-8<ISBN/>
<price>37.50<price/>
<year>2002<year/>

</book>
<!- - omit other elements - ->

</books>

<books>
<!- - test case 2 for maxInclusive - ->

<book>
<ISBN>0-201-74095-8<ISBN/>
<price>1000.00<price/>
<year>2002<year/>

</book>
</books>

<books>
<!- - test case 3 for fractionDigits - ->

<book>
<ISBN>0-201-74095-8<ISBN/>
<price>349.99<price/>
<year>2002<year/>

</book>
</books>

7. Empirical Evaluation I: MARS

This paper contains results from two case studies. Re-
sults from a small web service, the Mars Robot Communi-
cation System (MARS), are presented in this section. This

small application was developed by the first author, who
also carried out the testing process. To avoid bias, the sec-
ond empirical study used an an open source web service
application. Results from this application are in the follow-
ing section. We used the TCPMonitor in the Apache Axis
[25] to monitor the messages transferred between web ser-
vices, manually generated the perturbed XML schema and
XML messages, and resent the new messages through the
TCPMonitor. Except for the use of TCPMonitor, the testing
was done by hand.

As was discussed at the recent Workshop on Testing,
Analysis and Verification of Web Services [21], it is very
difficult to find web services that researchers can experi-
ment with. Many of those that exist are very small and use
little communication [16]. Thus, our study uses a collection
of web services developed specifically for this research. The
Mars Robot Communication System (MRCS) supports a
scientific mission to Mars by carrying geological and mete-
orological data from Mars to a space station in orbit around
Earth, then to a ground control system that stores the data
in a database and provides access to scientists. MRCS has
three separate major components: A robot on Mars, the
space station, and ground control in Houston. The ground
control system is a 3-tier web application that includes the
web server, an application server, and a database server. All
communications between the three components and among
the servers in the ground control system are in XML under
SOAP.

A SOAP envelope contains a SOAP body and a header.
The body can contain a fault section. If a web serviceA
sends a request to another serviceB, andB cannot process
the data in the request,B sends a message back with a fault
section to tellA that its request was invalid.

We define anabnormal responseto occur in two situ-
ations. First, ifB cannot process the data and returns a
message with a fault section, that is an abnormal response.
Second, ifB has a runtime exception and returns no mes-
sage, that is an abnormal response. Anormal response is
whenB returns an XML message wrapped in SOAP with
no fault section. Our previous paper [20] presented valid
tests; the tests developed in this research are invalid tests,
thus the correct response from the web services should be
abnormal responses on all tests.

Four schemas were defined for MRCS, so our study did
not need to create virtual schema. The test results are shown
in Table 2. 63 perturbed schemas were generated, and re-
sulted in 232 invalid XML messages (valid XML messages
were eliminated by hand during creation). The 42 normal
responses in Table 2 represent errors that the tests found in
the web service behavior.

DC IC CC Original Total
XML Schemas 23 25 11 4 63
XML Messages 64 103 53 12 232

Abnormal response64 125 11 0 190
Normal response 0 0 42 12 42

Table 2. The results from test case generation.

8. Empirical Evaluation II: SCMSA

The Supply Chain Management Sample Application
(SCMSA) is a sample application defined by the Web Ser-
vices Interoperability Organization (WS-I) [1, 9]. WS-I’s
goal is to help developers create and deploy interoperable
web services. SCMSA models a retailer that offers con-
sumer electronic goods to consumers. This is a typical B2C
model. To fulfill orders, the retailer has to manage stock
levels in warehouses (warehouseA, warehouseB, and ware-
houseC). When an item in stock falls below a certain thresh-
old, the retailer must restock items from the relevant manu-
facturers’ inventory (manufacturerA, manufacturerB, man-
ufacturerC). Retailer, Logging, warehouseA, warehouseB,
warehouseC, manufacturerA, manufacturerB, and manufac-
turerC are published as eight separate web services. The
application use cases defined in the Supply Chain Manage-
ment Use Case Model [1]. Technical design and implemen-
tation details are documented in the Supply Chain Manage-
ment Architecture document [9]. These specifications and
design were implemented by the first author.

The XML schema for SCMSA were analyzed, faults
were seeded by hand into the implementation, and tests
were generated and run against the faults.

8.1. SCMSA Schema Analysis

SCMSA defines seven XML schema.

1. configuration.xsd : This schema defines the
types needed to describe the header common to all ser-
vices.

2. manufacturerSN.xsd : Shipment Notification
schema for manufacturer system.

3. manufacturerPO.xsd : Purchase Order schema
for manufacturer system.

4. retailerOrder.xsd : Definition of PartsOrder
types for Retailer component.

5. retailerCatalog.xsd : Catalog schema for re-
tailer component.

Schema #Nn #Nd # X DC IC CC
retailer 4 11 9 14 83 9
warehouse 3 4 3 6 22 3
manufacturer 3 6 3 8 32 3

Table 3. Information about the formal model
of the schemas.

Schema DC IC CC
retailer 129 710 90
warehouse 15 48 6
manufacturer 14 48 3

Table 4. The number of XML messages for the
three coverage criteria.

6. warehouse.xsd : The schema for the warehouse
component.

7. catalog.xsd : Schema for Catalog web service.

Since we only need to perturb the request mes-
sages, we only consider the three request XML schema
retailer-req.xsd , manufacturer-req.xsd ,
andwarehouse-req.xsd , which are derived from the
original seven schemas. The three criteria delete coverage
(DC), insert coverage (IC), and Constraint Coverage (CC)
were applied to the three XML schema. Table 3 summa-
rizes some information about these schema. In the table,
#Nn is the number of the nodes that have child nodes,
#Nd is the number of the nodes that have no child nodes
and has an associated data type, and #X is the number of
constraints. The columns DC, IC and CC give the number
of XML schemas generated by each coverage criterion.

The number of XML messages (that is, tests) depends
on the number of constraints. We only generate XML mes-
sages for boundary constraints. The number of XML mes-
sages generated for each of the three coverage criteria are
listed in Table 4. The schema analysis and test creation was
by the first author. Table 4 only shows invalid XML mes-
sages; valid XML messages were eliminated by hand during
creation.

8.2. Seeded Faults

Our testing strategy is designed to test server-side com-
ponents. Web services are often “peer-to-peer,” so there is
no default server-side. This study makes the simplifying as-
sumption that certain components are server-side, in partic-
ular, the retailer, warehouse, and manufacturer components.

In reality, the retailer might be the client of the warehouse,
but this part of their organization is not critical to this study.
Twenty-one faults were inserted by hand by the third author
and distributed among the five Java classes. The faults were
not derived from a fault model (none seems to exist for web
services), so they were based on intuition. We did not in-
sert faults into the back-end beans or database connection
program.

8.3. Experimental Results

Our tests detected seven of the 21 faults. All seven faults
were detected by the constraint coverage (CC) tests, and
none by the DC or IC tests. A detailed analysis of the faults
revealed four reasons why some faults were not found by
the tests.

1. Six faults were such that they either could not be found
by external inputs (that is, XML), or could not be
found in the current configuration of the web service.
Most were related to initializations of objects and the
scope of object declarations. Thus, these faults could
only be found during unit testing and are out of scope
of the techniques in this paper.

2. Five faults only affected the back-end of the web ser-
vice, not the service response. They caused erroneous
information to be written to a log file. At least one test
caused each of these faults to result in a failure, how-
ever, our test process is such that only the web service
response was evaluated, thus we had no way to detect
these failures and they are considered to be not found.
This is a common issue with testing web applications
and web services and is discussed below.

3. One fault depends on inputs that are defined in the
backend database. Our tests only include the XML
messages, so this fault is out of scope of this type of
testing. Another test strategy is needed to find this type
of fault.

4. Two faults could have been found, but causing them
to result in a failure required using specific input val-
ues that we did not happen to create. We are currently
investigating ways to detect more of these faults.

All tests generated for DC and IC were refused at the
beginning of the processing. That is, the software was ro-
bust enough to recognize them as being invalid. It should
not be surprising that a well built web service would catch
this kind of relatively simple mistake. It remains to be seen
whether other web services will do so well. However, the
software did not do as well in conforming to the semantic
constraints. Again, this is not surprising, because these are
harder to analyze.

9. Conclusions and Future Work

This paper has introduced a novel test method for XML-
based communication. A formal model for XML schema is
defined and a method to create virtual schema when XML
schemas do not exist is presented. Based on this formal
model, perturbation operators are designed. The operators
are used to modify virtual or real schema to satisfy de-
fined test coverage criteria. Test cases, as XML messages,
are generated to satisfy the perturbed XML schema. The
method was applied as a case study to two web services.

As case studies, there is no expectation of external valid-
ity of the results. That will require further experimentation.
A threat to internal validity is that the first author performed
all steps in generating and executing tests. An additional
scientist was used in the project specifically to seed faults
into the SCMSA web service to avoid the bias of having the
same person generate tests and create faults.

Our most important future work on this project is to auto-
mate the generation and execution of tests. We are actively
working on a tool to do this.

The empirical results suggest several avenues for fu-
ture research. One problem with testing web applications
and web services is that ofobservability, as defined by
Binder [6]. Specifically, when web services change files
and databases on the server, it is very difficult to observe
incorrect outputs. With web services, we often do not have
direct access to the data stores on the server. As of now, we
are not aware of any proposed solutions to this problem.

A related problem is that ofcontrollability [6]. When
web services use data from the backend server, these values
cannot be supplied (or controlled) by external testers. Thus,
evaluating behavior with regard to those inputs is a respon-
sibility of the developers during unit and module testing.

The results also bring up questions about the perturba-
tion operators designed for this research. Delete Coverage
(DC) and Insert Coverage (IC) were ineffective. We cannot
yet be sure whether this is because they are inherently not
useful or if the software we evaluated was particularly good
at screening invalid inputs. We are continuing to evaluate
these perturbation operators, as well as design new pertur-
bation operators that can detect additional faults.

References

[1] S. Anderson, M. Chapman, M. Goodner, P. Mackinaw, and
R. Rekasius. Supply chain management use case model.
online WS-I specification document, 2003. http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2003-
04/SCMUseCases1.0-BdAD.pdf, last access August
2005.

[2] A. Andrews, J. Offutt, and R. Alexander. Testing Web ap-
plications by modeling with FSMs.Software and Systems
Modeling, 4(3), August 2005.

[3] M. Aoyama, S. Weerawarana, H. Maruyama, C. Szyper-
ski, K. Sullivan, and D. Lea. Web services engineering:
Promises and challenges. InProceedings of the 24th Inter-
national Conference on Software Engineering, pages 647–
648, Orlando, Florida, May 2002.

[4] M. Arenas, W. Fan, and L. Libkin. What’s hard about XML
Schema constraints? InThe International Conference on
Database and Expert Systems Applications (DEXA), pages
269–279, Springer, Heidelberg, 2002.

[5] M. Benedikt, J. Freire, and P. Godefroid. Veriweb: Auto-
matically testing dynamic Web sites. InProceedings of 11th
International World Wide Web Conference (WW W’2002),
Honolulu, HI, May 2002.

[6] B. Binder. Testing Object-oriented Systems. Addison-
Wesley Publishing Company Inc., New York, New York,
2000.

[7] J. Bloomberg. Testing Web services today and tomor-
row. The Rational Edge E-zine for the Rational Commu-
nity, October 2002. http://www-128.ibm.com/developer-
works/rational/library/content/Rational% -Edge/oct02/Web-
TestingTheRationalEdgeOct02.pdf, last access August
2005.

[8] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specifi-
cation: A new approach to design and analysis of e-service
composition. InThe Twelfth International World Wide Web
Conference (WWW2003), Budapest, Hungary, May 20-24
2003.

[9] M. Chapman, M. Goodner, B. Lund, B. Mc-
kee, and R. Rekasius. Supply chain manage-
ment sample application architecture. online WS-
I specification document, 2003. http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2003-
04/SCMArchitecture1.0-BdAD.pdf, last access August
2005.

[10] J. Clabby. Web services explained: Solutions and applica-
tions for the real world. Pearson Education Inc., 2003.

[11] N. Davidson. Web services testing. The Red-
gate software technical papers, 2002. http://www.red-
gate.com/dotnet/more/webservicestesting.htm, last access
August 2005.

[12] S. Elbaum, S. Karre, and G. Rothermel. Improving Web
application testing with user session data. InProceedings of
the 25th International Conference on Software Engineering,
pages 49–59, Portland, Oregon, May 2003. IEEE Computer
Society Press.

[13] W. Fan, G. Kuper, and J. Simeon. A unified constraint model
for XML. In 10th International World Wide Web Conference
(WWW10), pages 179–190, Hong Kong, China, May 2001.

[14] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
Web services. InThe Twelfth International World Wide Web
Conference (WWW2004), New York, New York, May 17-22
2004.

[15] M. R. A. Huth and M. D. Ryan.Logic in Computer Science.
Cambridge University Press, 2000.

[16] IBM. IBM web services. online, 2000.
http://alphaworks.ibm.com/webservices, last access
August 2005.

[17] IBM. Web services: Taking e-business to the
next level. IBM white paper, 2000. http://www-
900.ibm.com/developerWorks/cn/wsdd/download/pdf
/e-businessj.pdf, last access August 2005.

[18] C. Kirkegaard, A. Moller, and M. I. Schwartzbach. Static
analysis of XML transformations in Java.IEEE Transac-
tions on Software Engineering, 30(3):181–192, March 2004.

[19] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass testing of
web applications. In15th International Symposium on Soft-
ware Reliability Engineering, pages 187–197, Saint-Malo,
Bretagne, France, November 2004. IEEE Computer Society
Press.

[20] J. Offutt and W. Xu. Generating test cases for Web serv-
cies using data perturbation. InWorkshop on Testing, Anal-
ysis and Verification of Web Services, pages 41–50, Boston,
Massachusetts, July 2004.

[21] Organizers: T. Bultan and S. Krishnamurthi. Work-
shop on testing, analysis and verification of web
services (TAVWEB 2004). Online, July 2004.
http://www.cs.ucsb.edu/ bultan/tav-web/, last access
August 2004.

[22] F. Reuter and N. Luttenberger. Cardinality constraint au-
tomata: A core technology for efficient XML schema-aware
parsers. InThe Twelfth International World Wide Web Con-
ference (WWW2003), Budapest, Hungary, May 2003.

[23] F. Ricca and P. Tonella. Analysis and testing of web appli-
cations. In23rd International Conference on Software Engi-
neering (ICSE ‘01), pages 25–34, Toronto, CA, May 2001.

[24] H. Su, D. Kramer, L. Chen, K. Claypool, and E. A. Runden-
steiner. Xem: Managing the evolution of XML document.
In Research Issues in Data Engineering, 2001. Proceedings.
Eleventh International Workshop on, pages 103–110, April
2001.

[25] The Axis Development Team. The Apache web services -
Axis web page, 2005. http://ws.apache.org/axis/, last access
August 2005.

[26] W3C. Extensible markup language (XML) 1.0 (sec-
ond edition) – W3C recommendation, October 2000.
http://www.w3.org/XML/.

[27] W3C. XML schema – recommendation, May 2001.
http://www.w3c.org/tr/.

[28] W3C. XML schema part 1: Datatypes. W3C Recommen-
dation, 2001. http://www.w3.org/TR/xmlschema-2/, last ac-
cess April 2004.

[29] W3C. XML schema part 2: Structures. W3C Recommen-
dation, 2001. http://www.w3.org/TR/xmlschema-1/, last ac-
cess April 2004.

[30] J. Williams. The Web services debate: J2EE vs. .NET.E-
services: A cornucopia of digital offerings ushers in the next
Net-based evolution, 46(6):58–63, June 2003.

