
focusengineering Internet software

0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 2 5

computer systems. The software that pow-
ers Web applications is distributed, is imple-
mented in multiple languages and styles, in-
corporates much reuse and third-party
components, is built with cutting edge tech-
nologies, and must interface with users,
other Web sites, and databases.

Although the word “heterogeneous” is
often used for Web software, it applies in so
many ways that the synonymous term “di-
verse” is more general and familiar, and
probably more appropriate. The software
components are often distributed geograph-
ically both during development and deploy-
ment (diverse distribution), and communi-
cate in numerous distinct and sometimes
novel ways (diverse communication). Web
applications consist of diverse components
including traditional and nontraditional
software, interpreted scripting languages,
plain HTML files, mixtures of HTML and

programs, databases, graphical images, and
complex user interfaces.

As such, engineering an effective Web site
requires large teams of people with very di-
verse skills and backgrounds. These teams
include programmers, graphics designers,
usability engineers, information layout spe-
cialists, data communications and network
experts and data base administrators. This
diversity has led to the notion of Web site
engineering.1

The tremendous reach of Web applica-
tions into all areas of communication and
commerce makes this one of the largest and
most important parts of the software indus-
try. Yet a recent National Research Council
study2 found that the current base of science
and technology is inadequate for building
systems to control critical software infra-
structure. The President’s commission on
critical infrastructure protection reached

Quality Attributes of Web
Software Applications

Jeff Offutt, George Mason University

Web applications
have very high
requirements for
numerous quality
attributes. This
article discusses
some of the
technological
challenges of building
today’s complex
Web software
applications, their
unique quality
requirements, and
how to achieve them.

T
he World Wide Web was originally designed to present informa-
tion to Web surfers using simple sites that consisted primarily of
hyperlinked text documents. Modern Web applications run large-
scale software applications for e-commerce, information distribu-

tion, entertainment, collaborative working, surveys, and numerous other ac-
tivities. They run on distributed hardware platforms and heterogeneous

this same conclusion in the President’s In-
formation Technology Advisory Committee
report.3 This inadequacy is particularly se-
vere in the novel, high-risk area of Web ap-
plication software. Although Web software
development uses cutting-edge, diverse tech-
nologies, little is known about how to en-
sure quality attributes such as Web applica-
tion reliability.

Unique aspects of Web application
software

Several factors inherent to Web develop-
ment contribute to the quality problem. De-
velopers build Web-based software systems
by integrating numerous diverse components
from disparate sources, including custom-
built special-purpose applications, cus-
tomized off-the-shelf software components,
and third-party products. In such an environ-
ment, systems designers choose from poten-
tially numerous components, and they need
information about the various components’
suitability to make informed decisions about
the software’s required quality attributes.

Much of the new complexity found with
Web-based applications also results from
how the different software components are
integrated. Not only is the source unavail-
able for most of the components, the exe-
cutables might be hosted on computers at
remote, even competing organizations. To
ensure high quality for Web systems com-
posed of very loosely coupled components,
we need novel techniques to achieve and
evaluate these components’ connections.

Finally, Web-based software offers the
significant advantage of allowing data to be
transferred among completely different types
of software components that reside and exe-
cute on different computers. However, using
multiple programming languages and build-
ing complex business applications compli-
cates the flows of data through the various
Web software pieces. When combined with
the requirements to keep data persistent
through user sessions, persistent across ses-
sions, and shared among sessions, the list of
abilities unique to Web software begins to
get very long.

Thus, software developers and managers
working on Web software have encountered
many new challenges. Although it is obvi-
ous that we struggle to keep up with the
technology, less obvious is our difficulty in

understanding just how Web software de-
velopment is different, and how to adapt ex-
isting processes and procedures to this new
type of software.

Economic changes
We evaluate software by measuring the

quality of attributes such as reliability, us-
ability, and maintainability, yet academics
often fail to acknowledge that the basic eco-
nomics behind software production has a
strong impact on the development process.
Although the field of software engineering
has spent years developing processes and
technologies to improve software quality at-
tributes, most software companies have had
little financial motivation to improve their
software’s quality. Software contractors re-
ceive payment regardless of the delivered
software’s quality and, in fact, are often
given additional resources to correct prob-
lems of their own making. So-called “shrink
wrap” vendors are driven almost entirely by
time-to-market; it is often more lucrative to
deliver poor-quality products sooner than
high-quality products later. They can deliver
bug fixes as new “releases” that are sold to
generate more revenue for the company. For
most application types, commercial devel-
opers have traditionally had little motiva-
tion to produce high-quality software.

Web-based software, however, raises new
economic issues. When I recently surveyed a
number of Web software development man-
agers and practitioners, I found that compa-
nies that operate through the Web depend
on customers using and, most importantly,
returning to their sites. Thus, unlike many
software contractors, Web application devel-
opers only see a return on their investment if
their Web sites satisfy customers’ needs. And
unlike many software vendors, if a new com-
pany puts up a competitive site of higher
quality, customers will almost immediately
shift their business to the new site once they
discover it. Thus, instead of “sooner but
worse,” it is often advantageous to be “later
and better.” Despite discussions of “sticky
Web sites” and development of mechanisms
to encourage users to return,4 thus far the
only mechanism that brings repeat users to
Web sites has been high quality. This will
likely remain true for the foreseeable future.

In software development, a process
driver is a factor that strongly influences the

Instead of
“sooner but

worse,”
it is often

advantageous
to be “later
and better.”

2 6 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

process used to develop the software. Thus,
if software must have very high reliability,
the development process must be adapted to
ensure that the software works well. When
I surveyed the important quality process
drivers for traditional software, developers
always gave a single answer that stands far
above the rest: time-to-market. But when I
recently made the same survey of Web soft-
ware development managers and practition-
ers, they claim that time-to-market, al-
though still important, is no longer the
dominant process driver. They see the three
most important quality criteria for Web ap-
plication success (and thus, the underlying
software) as

1. reliability,
2. usability, and
3. security.

Additional important criteria include

4. availability,
5. scalability,
6. maintainability, and
7. time-to-market.

Of course, this is hardly a complete list of
important or even relevant quality attrib-
utes, but it provides a solid basis for discus-
sion. Certainly speed of execution is also
important, but network factors influence
this more than software does, and other im-
portant quality attributes such as customer
service, product quality, price, and delivery
stem from human and organizational rather
than software factors. That said, the quality
attributes I just listed track closely with
those cited in other books and articles,1, 5-8

suggesting wide agreement that successful
Web software development depends on sat-
isfying these quality attributes.

Reliability
Extensive research literature and a collec-

tion of commercial tools have been devoted
to testing, ensuring, assuring, and measur-
ing software reliability. Safety-critical soft-
ware applications such as telecommunica-
tions, aerospace, and medical devices
demand highly reliable software, but al-
though many researchers are reluctant to
admit it, most software currently produced
does not need to be highly reliable. I have

been teaching software testing in various
forms for 15 years yet have always felt like
I was selling something that nobody wants.

Many businesses’ commercial success de-
pends on Web software, however—if the
software does not work reliably, the busi-
nesses will not succeed. The user base for
Web software is very large and expects Web
applications to work as reliably as if they
were going to the grocery store or calling to
order from a catalog. Moreover, if a Web ap-
plication does not work well, the users do
not have to drive further to reach another
store; they can simply point their browser to
a different URL. Web sites that depend on
unreliable software will lose customers, and
the businesses could lose much money. Com-
panies that want to do business over the
Web must spend resources to ensure high re-
liability. Indeed, they cannot afford not to.

Usability
Web application users have grown to ex-

pect easy Web transactions—as simple as
buying a product at a store. Although much
wisdom exists on how to develop usable
software and Web sites (Jakob Nielsen’s
text9 being a classic example), many Web
sites still do not meet most customers’ us-
ability expectations. This, coupled with the
fact that customers exhibit little site loyalty,
means unusable Web sites will not be
used—customers will switch to more usable
Web sites as soon as they come online.

Security
We have all heard about Web sites being

cracked and private customer information
distributed or held for ransom. This is only
one example of the many potential security
flaws in Web software applications. When
the Web functioned primarily to distribute
online brochures, security breaches had rel-
atively small consequences. Today, however,
the breach of a company’s Web site can
cause significant revenue losses, large repair
costs, legal consequences, and loss of credi-
bility with customers. Web software appli-
cations must therefore handle customer
data and other electronic information as se-
curely as possible. Software security is one
of the fastest growing research areas in com-
puter science, but Web software developers
currently face a huge shortfall in both avail-
able knowledge and skilled personnel.

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 2 7

Companies that
want to do

business over
the Web must

spend resources
to ensure high

reliability.

Availability

In our grandparents’ time, if a shopkeeper
in a small town wanted to take a lunch break,
he would simply put a sign on the front door
that said “back at 1:00.” Although today’s
customers expect to be able to shop during
lunchtime, we do not expect stores to be open
after midnight or on holidays. But that only
works for “brick-and-mortar” stores. When
customers can visit our stores online, 2:00
a.m. in North America is the middle of the af-
ternoon in Asia, and national or religious hol-
idays fall on different days in different coun-
tries. On the Web, customers not only expect
availability 24 hours a day, seven days a
week, they expect the Web site to be opera-
tional every day of the year—“24/7/365.”
Even a 10-minute downtime can be damag-
ing; I recently purchased $50 worth of books
online but switched companies because the
first Web site gave a “missing file” error mes-
sage. Ten minutes later, that Web site was op-
erational again but had lost my sale. Al-
though this was only one sale, many
customers would never come back.

Availability means more than just being
up and running 24/7/365; the Web software
must also be accessible to diverse browsers.
In the seemingly never-ending browser wars
of the past few years, some software vendors
actively sought to make sure their software
would not work under competitors’
browsers. By using features only available
for one browser or on one platform, Web
software developers become “foot soldiers”
in the browser wars, sometimes unwittingly.
As an example, one major Web site at my or-
ganization uses “shockwave-flash,” which is
only compatible with MS IE and Netscape
under Windows. Thus, the many Unix and
Netscape users in my building cannot view
their own Web site. To be available in this
sense, Web sites must adapt their presenta-
tions to work with all browsers, which re-
quires significantly more knowledge and ef-
fort on developers’ part.

Scalability
A recent television advertisement showed

a small group of young men and women
nervously launching their Web site. The cel-
ebration started when the site got its first
hit, but their faces quickly turned gray when
the number of hits went into the thousands,
then millions. As with a small corner store,

as few as three or four people can create a
commercial Web site but, unfortunately (or
fortunately for the profit margin), virtually
an unlimited number of customers can visit
the Web site. We must therefore engineer
Web software applications to be able to
grow quickly in terms of both how many
users they can service and how many serv-
ices they can offer.

The need for scalability has driven many
technology innovations of the past few
years. The industry has developed new soft-
ware languages, design strategies, and com-
munication and data transfer protocols in
large part to allow Web sites to grow as
needed. Scalability also directly influences
other attributes. Any programming teacher
knows that any design will work for small
classroom exercises, but large software ap-
plications require discipline and creativity.
Likewise, as Web sites grow, small software
weaknesses that had no initial noticeable ef-
fects can lead to failures (reliability prob-
lems), usability problems, and security
breaches. Designing and building Web soft-
ware applications that scale well represents
one of today’s most interesting and impor-
tant software development challenges.

Maintainability
One novel aspect of Web-based software

systems is the frequency of new releases, or
the update rate. Traditional software in-
volves marketing, sales, and shipping or
even personal installation at customers’
sites. Because this process is expensive, soft-
ware manufacturers usually collect mainte-
nance modifications over time and distrib-
ute them to customers simultaneously. For a
software product released today, developers
will start collecting a list of necessary
changes. For a simple change, (say, chang-
ing a button’s label), the modification might
be made immediately. But the delay in re-
leases means that customers won’t get more
complex (and likely important) modifica-
tions for months, perhaps years.

Web-based software, however, gives cus-
tomers immediate access to maintenance
updates—both small changes (such as
changing the label on a button) and critical
upgrades can be installed immediately. In-
stead of maintenance cycles of months or
years, Web sites can have maintenance cy-
cles of days or even hours. Although other

Designing and
building Web

software
applications

that scale well
represents one
of today’s most
interesting and

important
software

development
challenges.

2 8 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

software applications have high mainte-
nance requirements, and some research has
focused on “on-the-fly” maintenance10 for
specialized applications, frequent mainte-
nance has never before been necessary for
such a quantity of commercial software.

Another ramification of the increased up-
date rate has to do with compatibility. Users
do not always upgrade their software;
hence, software vendors must ensure com-
patibility between new and old versions.
Companies can control the distribution of
Web software to eliminate that need,
though Web applications must still be able
to run correctly on several Web browsers
and multiple versions of each browser.

Another possible consequence of the
rapid update rate is that developers may not
feel the same need to fix faults before re-
lease—they can always be fixed later. I have
seen no data to indicate this is happening.

Time-to-market
This has always been a key business

driver and remains important for Web soft-
ware, but it now shares the spotlight with
other quality attributes. Most of the soft-
ware industry continues to give priority to
first to market. Given the other factors dis-
cussed here, however, the requirement for
patience can and must impact the process
and management of Web software projects.

Software researchers, practitioners, and
educators have discussed these criteria for
years, but no type of application has had to
satisfy all of these quality attributes at the
same time. Web software components are
coupling more loosely than any previous
software applications. In fact, these criteria
have until recently been important to only a
small fraction of the software industry. They
are now essential to the bottom line of a large
and fast growing part of the industry, but we
do not yet have the knowledge to satisfy or
measure these criteria for the new technolo-
gies used in Web software applications.

Technology changes
The commercial use of the Internet and

Web has grown explosively in the past five
years. In that time, the Internet has evolved
from primarily being a communications
medium (email, files, newsgroups, and chat
rooms) to a vehicle for distributing infor-
mation to a full-fledged market channel for

e-commerce. Web sites that once simply dis-
played information for visitors have become
interactive, highly functional systems that
let many types of businesses interact with
many types of users.

These changes have had an enormous im-
pact on software engineering. As the use of
the Internet and Web has grown, the amount,
type, and quality of software necessary for
powering Web sites has also grown. Just a
few years ago, Web sites were primarily com-
posed of static HTML files, so-called “soft
brochures,” usually created by a single Web-
master who used HTML, JavaScript, and
simple CGI scripts to present information
and obtain data from visitors with forms.

Figure 1 illustrates the early Web, a typi-
cal client-server configuration in which the
client is a Web browser that people use to
visit Web sites that reside on different com-
puters, the servers, and a software package
called a Web server sends the HTML files to
the client. HTML files contain JavaScripts,
which are small pieces of code that are in-
terpreted on the client. HTML forms gener-
ate data that are sent back to the server to
be processed by CGI programs.

This very simple model of operation can
support relatively small Web sites. It uses
small-scale software, offers very little secu-
rity, usually cannot support much traffic,
and offers limited functionality. This was
called a two-tier system because two sepa-
rate computers were involved.

The Web’s function and structure have
changed drastically, particularly in the past 24
months, yet most software engineering re-
searchers, educators, and practitioners have
not yet grasped how fully this change affects
engineering principles and processes. Web

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 2 9

Browser
HTML
forms

Helpers
Audio
Video

Client side Server side

Gif images

Internet
HTTP server

CGI programs

Database Files

Figure 1. First-gener-
ation Web sites fol-
lowed a client-server
model that suffices to
support simple page
viewing and limited
traffic but did not
scale well.

sites are now fully functional software sys-
tems that provide business-to-customer e-
commerce, business-to-business e-commerce,
and many services to many users. Instead of
referring to visitors to Web sites, we now re-
fer to users, implying much interaction. In-
stead of Webmasters, large Web sites must
employ Web managers leading diverse teams
of IT professionals that include programmers,
database administrators, network administra-
tors, usability engineers, graphics designers,
security experts, marketers, and others. This
team uses diverse technologies including sev-
eral varieties of Java (Java, Servlets, Enter-
prise JavaBeans, applets, and Java Server
Pages), HTML, JavaScript, XML, UML, and
many others. The growing use of third-party
software components and middleware repre-
sents one of the biggest changes.

The technology has changed because the
old two-tier model did not support the high
quality requirements of Web software applica-
tions. It fails on security, being prone to crack-
ers who only need to go through one layer of
security on a computer that is, by definition,
open to the world to provide access to all data
files. It fails on scalability and maintainability
because as Web sites grow, a two-tier model
cannot effectively separate presentation from
business logic, and the applications thus be-
come cumbersome and hard to modify. It fails
on reliability: whereas previous Web software
generations relied on CGI programs, usually
written in Perl, many developers have found
that large complex Perl programs can be hard
to program correctly, understand, or modify.
Finally, it fails on availability because hosting
a site on one Web server imposes a bottleneck:
any server problems will hinder user access to
the Web site.

Figure 2 illustrates current Web site soft-
ware. Instead of a simple client-server model,
the configuration has expanded first to a

three-tier model and now more generally to
an “N-tier” model. Clients still use a browser
to visit Web sites, which are hosted and de-
livered by Web servers. But to increase qual-
ity attributes such as security, reliability,
availability, and scalability, as well as func-
tionality, most of the software has been
moved to a separate computer—the applica-
tion server. Indeed, on large Web sites, a col-
lection of application servers typically oper-
ates in parallel, and the application servers
interact with one or more database servers
that may run a commercial database.

The client-server interaction, as before, uses
the Internet, but middleware—software that
handles communication, data translation and
process distribution—often connects the Web
and application servers, and the application
and database servers. New Web software lan-
guages such as Java are easier to modify and
program correctly and permit more extensive
reuse, features that enhance maintainability,
reliability, and scalability. The N-tier model
also permits additional security layers between
potential crackers and the data and applica-
tion business logic. The ability to separate
presentation (typically on the Web server tier)
from the business logic (on the application
server tier) makes Web software easier to
maintain and to expand in terms of customers
serviced and services offered. Distributed com-
puting, particularly for the application servers,
allows the Web application to tolerate failures
and handle more customers, and allows devel-
opers to simplify the software design.

Newer design models11,12 have extended
these goals even further. Java Server Pages
(JSPs) and Enterprise JavaBeans (EJBs) let de-
velopers separate presentation from logic,
which helps make software more maintain-
able. To further subdivide the work, develop-
ers can create a software dispatcher that ac-
cepts requests on the Web server tier, then

3 0 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

Client Web server Application servers

Network

Database server

Middleware Middleware

Figure 2. Modern
Web sites generally
follow an N-tier
model that, by sepa-
rating presentation
from business logic,
supports much
greater application
complexity, higher
traffic, and stronger
site security.

forwards the request to an appropriate hard-
ware/software component on the application
tier. Such design strategies lead to more reli-
able software and more scalable Web sites.

Of course the technology keeps chang-
ing, with the latest major addition to the
technology being Microsoft’s .NET. As of
this writing, it is too early to say what type
of affect .NET will have, although it does
not seem to provide additional abilities be-
yond what is already available.

Clearly, modern Web sites’ increased func-
tionality creates a need for increasingly com-
plex software, system integration and design
strategies, and development processes. This
leads to two exciting conclusions.

� One of the largest and fastest-growing
software industry segments finds itself
in dire need of the high-end software en-
gineering practices and processes that
researchers and educators have been de-
veloping and teaching for years.

� The new models for Web-based soft-
ware production and deployment re-
quire that we adapt or replace many of
the research solutions available now.

These conclusions imply that we need
significant research progress, significant ed-
ucation, and significant training in diverse
software engineering areas. The software
that drives the Web has become a critical
part of the world’s infrastructure. Although
Web software’s immaturity poses significant
risk to both industry and government, it
also represents an opportunity for software
engineering researchers and educators.

Planning for the future
One more important issue remains: the

lack of engineers skilled in Web software de-
velopment. A recent study from the US Na-
tional Research Council found that the cur-
rent base of science and technology is
inadequate for building systems to control
critical software infrastructure.2 Much of
Web software is built from existing systems
and involves complicated analysis to effec-
tively compose and integrate these compo-
nents into systems. Yet the combination of a
shortage of skilled IT engineers and the large
number of IT jobs means companies often re-
sort to hiring engineers who have less skills
and education than desired. As a small exam-

ple, US universities graduate approximately
25,000 bachelors in computer science every
year, but industry recently estimated that it
needs more than 200,000 IT professionals.2

Even with the current economic down-
turn, the university output is not enough. If
universities could double the production of
computer scientists, we still could not put a
dent in the need. (Most economists and busi-
ness leaders currently believe last year’s many
layoffs and bankruptcies in the e-commerce
sector resulted from temporary problems,
and expect significant growth in the near fu-
ture. I optimistically accept this prognosis; if
it is wrong, then this article will be irrelevant
anyway.) We can only meet this need by

� retraining experienced engineers to
work with the new technology

� applying knowledge and technology to
increase efficiency, thereby reducing the
number of engineers needed and

� finding ways to let people with less edu-
cation and skills contribute

We are already seeing some progress in all
three of these directions:

� Training classes and university courses
in Web software engineering technolo-
gies are increasing and experiencing
very high enrollment. The Web software
engineering courses at George Mason
University are over-subscribed every se-
mester, with some students being non-
degree professionals seeking to improve
their marketability.

� New textbooks, tools, languages, and
standards are emerging to make Web
software engineering knowledge more ac-
cessible and easier to learn, use, and de-
ploy. For example, several XML innova-
tions in the past year have made it a more
useful and accessible language, while new
development tools and refinements in the
standards for JSPs and EJBs allow more
software to be created with less effort.

� Automated technologies have recently
allowed nonprogrammers to contribute
more to Web software development.
When HTML was first introduced, an
HTML writer needed to fully know the
language and be proficient with a text
editor to create Web pages. Recent tools
provide point-and-click ability to create

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 3 1

Although Web
software’s
immaturity

poses significant
risk to both
industry and

government, it
also represents
an opportunity
for software
engineering
researchers

and educators.

Web pages that can even be enhanced
with dynamic HTML and JavaScripts
while requiring very little knowledge of
HTML and programming.

Achieving the high quality requirements of
Web software represents a difficult challenge.
Although other segments of the software in-
dustry have already mastered some of these,
such as the need for reliability in telecommu-
nications and network routing, aerospace,
and medical devices, they have typically done
so by hiring the very best developers on the
market, using lots of resources (time, devel-
opers, and testing), or relying on old, stable
software and technologies.

Unfortunately, these solutions will not
work for Web applications. There are sim-
ply not enough of the “best developers” to
implement all of the Web software needed
today, and few but the largest companies
can afford to invest extra resources in the
form of time, developers, and testing. Fi-
nally, it should be obvious that old, stable
software technologies will not suffice as a
base for the Web—it relies on the latest cut-
ting-edge software technology. Although the
use of new technology involves some risk, it
allows us to achieve otherwise unattainable
levels of scalability and maintainability.

Indeed, technological innovations in just
the past three years have greatly advanced the
field, both in breadth and in depth. And re-
search progresses: New conferences appear al-
most monthly, and traditional conferences fea-
ture more tracks and papers on Web software
issues. Every new PhD student, it seems, wants
to write a thesis on some aspect of Web soft-
ware engineering, and more textbooks and
classes teach Web software application mate-
rial. When George Mason University offered a
graduate course in Web software engineering
in Fall 2000, the class immediately became
popular, with a large waiting list.

W eb software engineering presents
challenging and unique research
problems. We currently lack the

knowledge to create Web software of suffi-
cient complexity or quality and that can be
updated quickly and reliably. Although Web
software engineering has significant differ-
ences from traditional software engineering,
we can adapt much of what we already
know to understanding and resolving these
differences. Not only are we making ex-
traordinary progress, we are also bringing
much research of the past 20 years to
fruition. Indeed, this is an exciting time to
be a software engineer.

Acknowledgments
This work is supported in part by the US National

Science Foundation under grant CCR-98-04111.

References
1. T. A. Powell, Web Site Engineering: Beyond Web Page

Design, Prentice Hall, Upper Saddle River, N.J., 2000.
2. F. B. Schneider, Trust in Cyberspace, National Academy

Press, Washington, D.C., 1999.
3. President’s Information Technology Advisory Commit-

tee, Information Technology Research: Investing in our
Future, Technical Report, National Coordination Office
for Computing, Information, and Communications,
Washington, D.C., 1999; www.ccic.gov/ac/report.

4. D. A. Menascé, Scaling for E-Business: Technologies,
Models, Performance, and Capacity Planning, Prentice
Hall, Upper Saddle River, N.J., 2000.

5. E. Dustin, J. Rashka, and D. McDiarmid, Quality Web
Systems: Performance, Security, and Usability, Addison-
Wesley, Boston, 2001.

6. L. L. Constantine and L.A.D. Lockwood, Software for
Use: A Practical Guide to the Models and Methods of
Usage Centered Design, ACM Press, New York, 2000.

7. S. Murugesan and Y. Deshpande, “Web Engineering: A
New Discipline for Development of Web-Based Sys-
tems,” Web Engineering 2000, Lecture Notes in Com-
puter Science 2016, Springer-Verlag, Berlin, 2001, pp.
3–13.

8. N. Kassem and the Enterprise Team, Designing Enter-
prise Applications with the Java 2 Platform, Enterprise
Edition, Sun Microsystems, Palo Alto, Calif., 2000.

9. J. Nielsen, Designing Web Usability, New Riders Pub-
lishing, Indianapolis, Ind., 2000.

10. M .E. Segal and O. Frieder, “On-the-Fly Program Mod-
ification: Systems for Dynamic Updating,” IEEE Soft-
ware, vol. 10, no. 2, Mar. 1993, pp. 53–65.

11. Wrox Multi Team, Professional Java Server Program-
ming, J2EE edition, Wrox Press, Chicago, 2000.

12. A. Scharl, Evolutionary Web Development, Springer-
Verlag, Berlin, 2000.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

3 2 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

About the Author

Jeff Offutt is an Associate Professor of Information and Software Engineering at George Mason
University. His current research interests include software testing, analysis and testing of Web appli-
cations, object-oriented program analysis, module and integration testing, formal methods, and soft-
ware maintenance. He received a PhD in Computer Science from the Georgia Institute of Technology.
He served as program chair for ICECCS 2001 and is on the editorial boards for IEEE Transactions on
Software Engineering, Journal of Software Testing, Verification and Reliability, and Journal of Soft-
ware and Systems Modeling. He is a member of the ACM and IEEE Computer Society. Contact him at
the Dept. of Information and Software Engineering, Software Engineering Research Lab, George Ma-
son University, Fairfax, VA 22030-4444; ofut@ise.gmu.edu; www.ise.gmu.edu/faculty/ofut.

