
1

Test Oracle Strategies for Model-based Testing
Nan Li, Member, IEEE, and Jeff Offutt, Member, IEEE

Abstract—Testers use model-based testing to design abstract tests from models of the system’s behavior. Testers instantiate the
abstract tests into concrete tests with test input values and test oracles that check the results. Given the same test inputs, more
elaborate test oracles have the potential to reveal more failures, but may also be more costly. This research investigates the ability for
test oracles to reveal failures. We define ten new test oracle strategies that vary in amount and frequency of program state checked.
We empirically compared them with two baseline test oracle strategies. The paper presents several main findings. (1) Test oracles
must check more than runtime exceptions because checking exceptions alone is not effective at revealing failures. (2) Test oracles do
not need to check the entire output state because checking partial states reveals nearly as many failures as checking entire states. (3)
Test oracles do not need to check program states multiple times because checking states less frequently is as effective as checking
states more frequently. In general, when state machine diagrams are used to generate tests, checking state invariants is a reasonably
effective low cost approach to creating test oracles.

Index Terms—Test Oracle, RIPR Model, Test Oracle Strategy, Test Automation, Subsumption, Model-Based Testing

F

1 INTRODUCTION

A Primary goal of software testing is to reveal failures
by running tests. Whether tests can reveal failures

depends on two key factors: test inputs and test oracles. In
our context, test inputs consist of method calls to a system
under test (SUT) and necessary input values. A test oracle
determines whether a test passes. An example of a test
oracle is an assertion in JUnit tests.

When tests are executed, a fault may be triggered to
produce an error state, which then propagates to an external
failure. This is known as the Reachability, Infection, and
Propagation (RIP) model [12], [33], [34], [35]. But even
if a fault propagates to a failure, it is only useful if the
failing part of the output state is revealed to the tester.
With manual testing, it can be assumed that all failures
are revealed, but when automated, the test may not check
the part of the output that is erroneous. Therefore, this
paper extends the traditional RIP model to the Reachability,
Infection, Propagation, and Revealability (RIPR) model. The
RIPR model is discussed in detail in Section 2.2. This paper
introduces a precise definition for the term test oracle strategy
(abbreviated as OS) in Section 2.3. The informal usages of
“oracle strategy” and “ test oracle strategy” from previous
papers (for example, reference [8]) were not sufficient for
our work. The theory behind test oracle strategies is the
more program states are checked, the more faults an OS
is likely to reveal [8], [40], [43], [45].

When this paper talks about checking program state,
or checking outputs, it uses the term in a broad sense. At
the system testing level, outputs include everything that
is sent to the screen, written to a file or database, or sent
as messages to a separate program or hardware device. At
the unit testing level, outputs include return values, method
parameters whose values can be changed, and objects and

• N. Li is with the research and development division at Medidata solutions,
New York, NY, USA. E-mail: nli@mdsol.com. Most of this work was done
while the first author was at George Mason University.

• J. Offutt is a Professor of Software Engineering at George Mason Univer-
sity, Fairfax, VA, USA. E-mail: offutt@gmu.edu.

variables that are shared among the method under test and
other parts of the program.

In model-based testing (MBT), a model (for example, a
UML state machine diagram) partially specifies behaviors
of a system [36]. Abstract tests are generated to cover test
requirements imposed by a coverage criterion. For example,
edge coverage requires all transitions in a UML state ma-
chine diagram to be covered. Thus, an abstract test may
look like: “transition 1, state invariant 1, ..., transition n,
state invariant n.” Note that the number of transitions could
be different from the number of state invariants. These
abstract tests need to be converted into concrete tests. State
invariants in abstract tests are checked at that point in the
corresponding concrete test. Properties of models such as
state invariants in a state machine diagram can be used for
OSes1. If test oracle data, including expected test values,
is very well specified by some specification language and
additional information used to transform abstract test oracle
data to executable code has been provided, the concrete test
oracles can be generated automatically. Such test oracles are
called specified test oracles [5] because the specification of a
system is used as a source to generate test oracles, including
expected values. Although the new concepts in this paper
are independent of testing context, the experimental studies
in Section 5 are in the context of model-based testing.

As pointed out by Barr et al. [5], automated test oracles
are often not available. For model-based testing, automatic
transformation from abstract tests to concrete tests requires
that a model be very well specified using additional in-
formation. The information may include specification lan-
guages such as the object constraint language (OCL) [15]
and other additional diagrams and mapping tables to map
abstract information to executable code. Unfortunately, such
detailed and precise requirements are often not available
in practice. Thus, most practitioners cannot use automated
test input and oracle generation. This is particularly true
when agile processes are used because requirements are

1. “OSes” is the plural of OS.

2

changed often and software is released frequently. This
makes it hard for testers to maintain consistency among
the models. Therefore, this research assumes testers must
provide expected values manually for test oracles.

An OS must address observability. Observability is how
easy it is to see a program’s internal state variables and
outputs [1], [14]. If an OS checks more program states (for
example, more member variables of objects, more objects,
or more frequently), the observability of the program states
is increased, and more failures may be revealed. However,
writing test oracles can be costly when testers provide
expected values manually. Model-based testing can use state
invariants from state machine diagrams as test oracles. This
paper starts with that premise and asks the following ques-
tions. Is checking only the state invariants good enough?
Should testers also check more of the program state, such
as class variables? What is the cost (in terms of writing test
oracles) and benefit (in terms of finding faults) of checking
more of the program state?

We defined six OSes in our previous conference paper
[23], and define four additional OSes in this paper. In this
research, we compared all ten OSes with two baseline OSes
in the context of model-based testing. These OSes will
be defined in Section 4.2. We evaluated the effectiveness
and cost of the OSes based on the same test inputs. Six
open source projects, six example programs, four other web
applications, and one large industrial web services program
with UML state machine diagrams were used. Test inputs
were generated using a model-based testing tool, the Struc-
tured Test Automation Language Framework (STALE) [20],
[21], [24], to satisfy edge coverage (EC), which covers all
transitions, and edge-pair coverage (EPC), which covers all
pairs of transition [1]. EC and EPC are defined in Section 2.1.
Then by generating test oracle data for all OSes, we designed
24 sets of tests for each program (2 coverage criteria * 12
OSes). Then we ran the tests against faulty versions of the
programs.

This paper extends our previous work [23] in five sig-
nificant ways. First, this paper extends the venerable RIP
model to RIPR [1], [33], [35] in Section 2.2. Second, this
paper provides a precise definition for test oracle strategy
in Section 2.3. Third, this paper formally defines subsumption
among test oracle strategies in Section 2.4. Fourth, in Section
4.2, this paper defines four additional novel OSes that check
program states less frequently and empirically compares
them with the OSes that were used in the previous paper.
Fifth, this paper significantly extends the empirical evalu-
ation, including the use of a large industrial web services
program in Section 5.

This provides five recommendations for using OSes in
model-based testing. First, just checking runtime exceptions
misses many faults and wastes much of the testing effort.
Second, with the same test inputs, OSes that check more
program states were not always more effective at revealing
failures than OSes that check fewer program states. Third,
OSes that check program states multiple times were not
always more effective than OSes that check the same pro-
gram states once. Fourth, with the same OSes, a test set
that satisfies a stronger coverage criterion (EPC) was not
more effective at revealing failures than tests from a weaker
coverage criterion (EC). Whether a stronger coverage crite-

rion can reveal more faults than a weaker coverage criterion
depends on the model and the coverage criteria used. In
this paper we say a criterion is stronger if it subsumes a
weaker criterion. Fifth, if state machine diagrams are used
to generate tests, checking state invariants is a reasonably
effective low cost approach. To achieve higher effectiveness,
testers can check outputs and parameter objects.

This paper is organized as follows. Section 2 introduces
some fundamental testing concepts, and new theory related
to the test oracle problem. Section 3 discusses related work,
focusing on empirical studies about the test oracle problem.
Section 4 presents all twelve OSes and how tests were
created. Section 5 presents the experimental design, subjects,
procedure, results, discussions, and possible threats to va-
lidity. Finally, Section 6 presents conclusions and discusses
future work.

2 DEFINITIONS AND FOUNDATIONS FOR THE TEST
ORACLE THEORIES

This research has three general types of foundations. Section
2.2 introduces the RIPR model to show how a fault can be
revealed by writing high quality test oracles. Section 2.3
then presents the key properties of test oracle strategies,
and Section 2.4 defines the subsumption relationship for
test oracle strategies. Before discussing the new concepts
in Sections 2.2, 2.3, and 2.4, Section 2.1 introduces several
fundamental software testing terms used in this research.

2.1 Fundamental Testing Definitions
Terms used in this paper come from standard textbooks
such as Ammann and Offutt [1] and Young and Pezzè [38].
Some definitions are slightly adapted to fit in the context of
this paper.
Definition 1 (Test Inputs). The inputs necessary to complete

some execution of the system under test (SUT).

In our context, test inputs are sequences of method calls
to the SUT, including all necessary objects, parameters, and
resources.
Definition 2 (Expected Results). The results that will be

produced when executing the test inputs if the program
satisfies its intended behavior.

Definition 3 (Test Oracle). A test oracle provides expected
results for some program states as specified by the test
oracle strategy (formally defined later in Section 2.3).
The test oracle determines whether a test passes by
comparing expected with actual results.

Test oracles usually consists of assertions that compare
expected results with actual results.
Definition 4 (Test). A test consists of test inputs and test

oracles.

Definition 5 (Fault). A fault is a static defect in the software.

Definition 6 (Failure). A failure is an external, incorrect
behavior with respect to the requirements or other de-
scription of the expected behavior.

When a test executes, a statement that has a fault may be
reached. Under the right circumstances, a test that reaches

3

the fault may cause a software failure that testers could
observe. This is discussed further in Section 2.2.
Definition 7 (Unit Testing). Unit testing assesses software

by designing and executing tests for methods in classes.

Definition 8 (System Testing). System testing assesses soft-
ware by designing and executing tests that capture the
system behaviors.

In industry, developers often write unit tests and testers
write system tests. In addition, the distinction among inte-
gration testing, system testing, and user acceptance testing
often blurs.
Definition 9 (Test Requirements (TRs)). Test Requirements

(TRs) are specific elements of software artifacts that must
be satisfied or covered.

Exhaustively enumerating all test inputs is effective at
finding failures, but is prohibitively expensive. As a com-
promise, tests can be created to satisfy a coverage criterion. A
coverage criterion is a rule or a set of rules that are applied
to software artifacts (source code, models, etc.) to create a
set of test requirements that have to be covered by tests [1].
Test requirements guide testers to design effective tests just
as functional requirements guide developers to design effec-
tive software. Coverage criteria also give testers a “stopping
point” at which testing can be considered complete. For
example, given the test criterion “cover every node,” a
specific test requirement would be “cover the initial node.”
This research uses graph coverage criteria to generate tests.
First we define a graph.

A graph G is [1]:

• a set N of nodes, where N 6= ∅
• a set N0 of initial nodes, where N0 ⊆ N and N0 6= ∅
• a set Nf of final nodes, where Nf ⊆ N and Nf 6= ∅
• a set E of edges, where E is a subset of N ×N

For a graph to be useful in testing, it must have at least
one initial and final node, but may have more than one
initial and final nodes.

Edge coverage requires each edge to be covered by at
least one test. The formal definition of edge coverage is:
Definition 10 (Edge Coverage (EC)). The set of test require-

ments TR contains each edge, in G.

Definition 11 (Edge-adequate Tests). A test set is edge-
adequate if at least one test in the set covers every edge
in the graph.

When defined on individual methods represented by
their control flow graphs, node coverage corresponds to the
familiar statement coverage and edge coverage corresponds
to branch coverage. Less well known is edge-pair coverage,
which requires that each pair of edges be covered. If the
length of a path is defined as the number of edges in the
path, edge-pair coverage is defined precisely as:
Definition 12 (Edge-Pair Coverage (EPC)). TRs contains

each reachable path of length up to 2 in G.

For example, consider the partial graph in Figure 1. EC
would have five test requirements on this graph, to cover
edges [1, 4], [2, 4], [3, 4], [4, 5], and [4, 6]. EPC would have six
test requirements, to cover subpaths [1, 4, 5], [1, 4, 6], [2, 4, 5],

[2, 4, 6], [3, 4, 5], and [3, 4, 6]. Following the definition strict-
ly, EPC would also include the five edges, but it is customary
to omit edges for EPC if they appear in one of the edge-pairs.

Fig. 1. Example of Edge-Pair Coverage

The test requirements for edge-pair coverage are sub-
paths of length 0, 1, or 2. The “length up to 2” is included
to ensure that edge-pair coverage subsumes edge coverage
(paths of length one) and node coverage (paths of length
zero). That is, if a graph only has one edge or a node with
no edges (as is common in, for example, getter and setter
methods), tests would need to cover the edge (or node) to
satisfy EPC.
Definition 13 (Edge-Pair (EP)-adequate Tests). Edge-Pair

(EP)-adequate tests cover all TRs of edge-pair coverage.

The empirical portion of this research uses mutation
analysis to place faults into software. A mutant is a slight
syntax change to the original program. A mutation operator is
a rule or a set of rules that specifies how to generate mutants.
If a test causes a mutated program (mutant) to produce
different results from the original program, this mutant is
said to be killed. If a mutant cannot be killed by any test,
it behaves identically to the original program and is thus
called equivalent. The mutation score is the ratio of mutants
that are killed over the killable mutants (non-equivalent
mutants), which serves as a measure of the effectiveness of
a test set.
Definition 14 (Mutation-adequate Tests). Mutation-

adequate tests kill all non-equivalent mutants.

2.2 The RIPR Model
The distinction between fault and failure, particularly in
the context of mutation, led to the development of the
reachability, infection, and propagation model in the 1980s.
The RIP model was independently developed by Morell
and Offutt in their dissertations [33], [35] and published as
Propagation, Infection, and Execution [34], and Reachability,
Necessity, and Sufficiency [12]. Current literature combines
the terms as Reachability, Infection, and Propagation [1].

At that time, tests were almost invariably run by hand
and testers examined the results manually. It was a reason-
able assumption that if an error propagated to the output,
the tester would notice and mark the run as failing. In
modern times, however, test automation has negated this
assumption. An automated test must include an explicit
comparison of outputs with expected results; called checking,
or the oracle. Because it is often impractical and unnecessary
to check all outputs, automated tests typically check certain
specific parts of the output state. However, if the oracle does
not check the particular portion of the state that contains an
erroneous value, the oracle will not see the failure. That is,
the test oracle must also reveal the failure.

4

Fig. 2. The Reachability, Infection, Propagation, and Revealability Model

Figure 2 illustrates how test oracles are used to reveal
faults by observing the program state. The program state dur-
ing execution is the current value of all program variables
and the current statement being executed. To detect a fault, a
test has to reach the location of the fault. This is illustrated in
Figure 2 where the Test reaches the Fault. The execution of
the statements in the faulty location must cause an incorrect
internal program state, that is, the state must be infected, as
illustrated by the arrow from Fault to Incorrect Program
State in Figure 2. For example, a for loop (int i = 0; i < 4;
i++) is supposed to be executed four times. If a developer
makes a mistake and uses ≤ instead of <, the for loop is
executed one more time. Thus, the program state for the
faulty version is different from the correct version and is
incorrect. However, testers do not look for failing behavior
by inspecting internal program states. The incorrect internal
program state then must propagate to an Incorrect Final
State (failure). Figure 2 illustrates this on the right. The
large circle represents the complete output state of the
program. The erroneous portion of the state is shown as
a smaller circle, Incorrect Final State (failure). Testers use
a test oracle strategy write test oracles such as assertions to
observe the final program state. This is shown in Figure 2
as Observed Final Program State. Failures are only revealed
if the Observed Final Program State includes part of the
Incorrect Final State. Since test oracles are almost always
written by humans, testers need guidance for devising an
OS that will maximize the chance of writing them such
that an incorrect portion of the final state, if it exists, can
be observed by the test oracle.

2.3 Designing Test Oracle Strategies
When testing beyond the unit level, the output state is
too large to observe completely. Thus, testers must decide
what parts of the program state to evaluate to determine

if the test passes or fails. At the system level, this may
be outputs to a screen, a database, or messages sent to
other systems. This can be such a complicated problem
that some practitioners simply take the cheapest possible
solution: does the program terminate or not? This is called
the null test oracle strategy (NOS) [40] and is used by some
testers. Integration testing may need to evaluate states from
objects spread throughout the program, as well as data sent
to external destinations such as screens, files, databases, and
sensors. Therefore, it is difficult for testers to know which
states should be evaluated and when to check the states.

This research considers two dimensions when designing
test oracle strategies (OSes): which internal state variables
and outputs to check (precision) and how often to check the
states (frequency). Briand et al. defined the precision of a test
oracle strategy as the degree to which internal state variables
and outputs are checked by the OS [8]. This paper refines
the precision of a test oracle strategy to be how many output
values and internal state variables are checked by the OS.
The more internal state variables and outputs a test oracle
strategy checks, the more precise the test oracle strategy is. A
test oracle strategy (OS) is more expensive if more variables
are checked (more precise) or the variables are checked more
frequently (more frequent). States can be checked after each
method call or each transition (more than one method call
can be included in a transition) or testers can just check the
states once per test or test suite.

The definitions of precision and frequency lead to several
questions that are important for test engineers. Which vari-
ables should testers check? Should the member variables
of all objects be checked? Should the return values of all
method calls be checked? The OSes used in this paper
are differentiated by precision and frequency, as defined in
Section 4.2.

We conclude this section with a formal definition of test
oracle strategy (OS), adding precision to previous uses of
the term:
Definition 15 (Test Oracle Strategy (OS)). A test oracle

strategy (OS) is a rule or a set of rules, defined by
a precision P and a frequency F , that specify which
program states to check. P defines a set of internal state
variables V and outputs O to be checked by each oracle.
F defines how often to check the variables and outputs
specified by P .

2.4 Subsumption

This paper defines the subsumption relationship for test
oracle strategies (OSes). The goal of defining this term is
to help testers better understand how much of the program
state OSes check. A subsumption hierarchy among OSes can
help decide which OS to use when writing test oracles. A
formal definition of subsumption is given below.
Definition 16 (Subsumption). A test oracle strategy OSA

subsumes another test oracle strategy OSB if OSA checks
all of the program states that OSB checks.

Both the precision and frequency properties of OSes
have to be considered. If OSA is more precise but checks
program states less frequently than OSB , OSA may not
subsume OSB . For example, assume that OSA checks all

5

return values and member variables once and OSB checks
all return values of all method calls after every method call.
OSA is more precise than OSB but has lower frequency.
Because they check different program states, OSA does
not subsume OSB . As another example, if OSA checks all
internal state variables and outputs after every method call
and OSB checks all internal state variables and outputs at
the end of a test, we can say thatOSA has the same precision
but higher frequency than OSB . When we apply these two
OSes to a test suite, the program states checked by OSB are
always examined by OSA, thus, OSA subsumes OSB .

3 RELATED WORK

The related work section has two subsections. Section 3.1
discusses related work about test oracle theories and test
oracle strategies, as well as empirical studies on the effec-
tiveness and cost-benefit tradeoff among OSes. Section 3.2
compares this research with previous studies that evaluated
OSes empirically in similar ways to our evaluation.

3.1 Test Oracles

The test oracle problem was first defined by Howden [18].
Hierons et al. suggested using formal specifications to devel-
op oracles [17]. Our research targets engineers who use finite
state machines that are defined operationally, as opposed to
using denotational formal specifications. Barr et al. summa-
rized the test oracle problem in a survey in four broad cat-
egories: specified oracles, derived oracles, implicit oracles,
and no test oracle [5]. Specified oracles get oracle information
from specifications such as models and contracts. When
specifications are not available, oracles (derived oracles) can
be derived from other artifacts such as documents. Implicit
oracles do not require domain knowledge or specifications.
They can be used for all programs. One example is abnormal
termination (exception). No test oracle happens when testers
do not have any artifacts for writing test oracles. In this
research, NOS is an implicit test oracle strategy (defined in
Section 2.3) and other OSes are derived from specifications.

Regarding test oracle theories, Staats et al. [44] studied
how test oracles affect the propagation estimate metric of
testability. The propagation estimate measures failure prob-
abilities, that is, how likely an error state created by an
infection is to propagate to an output, that is, fail. Our paper
directly extended the widely known RIP model to the RIPR
model to illustrate that not only must an erroneous value
propagate to an output, the test oracle must also reveal that
failure to the tester. Revealability is a crucial aspect of test
oracles that has not been previously considered. If the test
oracle does not reveal a failure, all the work of designing
and running the test is lost.

Barr et al. [6] created a repository of scientific publica-
tions on the test oracle problem. Even with this resource,
we were only able to find a few papers that studied the
test oracle problem empirically. Briand et al. [8] compared
the very precise OS with the state invariant OS (SIOS) based
on the statecharts. They studied four classes from three
programs, each with less than 500 lines of code. The very
precise OS checks all the class attributes and outputs after
each operation and is considered to be the most accurate

verification possible. In contrast, SIOS only checks the in-
variants of states reached after each transition. They found
that the very precise OS is more effective at revealing faults
than SIOS. They also found that the cost of the very precise
OS is higher than SIOS in terms of the number of test cases,
the CPU execution time, and the lines of code. Briand et
al. calculated cost-effectiveness using their definitions of
effectiveness (number of faults found) and cost (number of
tests, CPU execution time, lines of code). With a weaker
coverage criterion (round-trip path coverage [7]), using the
very precise OS was found to be more cost-effective. With a
stronger coverage criterion (disjunct coverage [8]), using the
state invariant OS was found to be more cost-effective. We
also use the faults found to measure effectiveness. However,
we use the number of assertions created by hand as a more
accurate reflection of cost. The machine cost of running
assertions that have more checks is orders of magnitude
less than the human cost of creating additional checks. Our
measurement is described in detail in Section 5.1.

Xie and Memon [45] considered precision and frequency
when designing OSes for GUIs. They found that the vari-
ations of the two factors affected the fault-detection ability
and cost of test cases. They proposed six OSes that check
a widget, a window, and all windows after every event
and after the last event of a test. They found that more
precise OSes detected more faults than less precise OSes.
They also found that an OS with higher frequency (checking
after every event) detected more faults than an OS with
lower frequency (checking only after the last event of a
test). Xie and Memon defined effectiveness as the number
of faults found and the cost as the number of comparisons
that oracles perform. Given the same precision, two OSes
with lower frequency had better cost-effectiveness and one
OS with higher frequency had better cost-effectiveness.

Staats et al. [43] found that an OS that checks outputs and
internal state variables can reveal more defects than an OS
that only checks the outputs. They also concluded that the
number of variables checked by the maximum OS is bigger
than that checked by the output-only OS and only a small
portion of the added internal state variables contributes to
improving fault-detection ability. To evaluate how internal
state variables affect the fault-detection ability, some less
precise OSes were compared. A less precise OS checks outputs
and some internal state variables but not all. In their experi-
ment, internal variables were chosen randomly for these less
precise OSes. Therefore, which internal variables contribute
to improving the effectiveness is unclear.

Shrestha and Rutherford [40] empirically compared NOS
and the pre and post-condition OS (PPCOS) using the Java
Modeling Language [9]. They found that the latter can reveal
more failures than the former. They suggested that test
engineers should move beyond NOS and use more precise
OSes.

The test oracle comparator problem for web applications
is how to determine automatically if a web application
gets correct outputs given a test case and expected results.
Sprenkle et al. [41] developed a suite of 22 automated
oracle comparators to check HTML documents, contents,
and tags. They found that the best comparator depends on
applications’ behaviors and the faults.

Yu et al. [46] studied the effectiveness of the output-only

6

OS and six other OSes that check internal state variables to
detect special faults that appear in six concurrent programs.
They found that these six more precise OSes detected more
faults than the output-only OS.

3.2 Similar Studies
This paper presents a comprehensive experiment to study
the effectiveness and cost of OSes and gives guidelines
about which OS should be used. A comparison between this
paper and the others is shown in Table 1. The first column
shows the metrics and the other columns represent others’
work.

Shrestha and Rutherford [40] used nine small programs,
with the biggest having 263 statements. Others studied six
programs or fewer. This paper used 17 programs with lines
of code (LOC) ranging from 52 to 15,910. The total LOC
of the 17 programs is 47,742 while both Shrestha et al.
and Briand et al. used fewer than 2,000 LOC. The subjects
of this research include general libraries, GUIs, and web
applications. In contrast, Xie and Memon only studied GUIs
and Sprenkle et al. studied web applications. Staats et al.
worked on synchronous reactive systems [16], which do
not have OO classes. Because Staats et al. used a non-OO
language, they measured their LOC in terms of number of
blocks (#blocks), not number of statements (#statements), as
reported in Staats et al. [42]

This research considers twelve OSes: NOS, SIOS, and ten
more precise OSes, which is more comprehensive than the
other studies. We also studied which internal state variables
contribute to the effectiveness of the OSes. This research also
studied the frequency of checking program states, which
only Xie and Memon studied before. Twelve OSes that
have different precision values were used in our experiment
while both Shrestha et al. and Briand et al. studied two OSes.

Staats et al. [42] and Mateo and Usaola [32] proposed
similar approaches that use mutation analysis to select
which program states to check automatically. But this ap-
proach could be even more costly because users have to
apply mutation analysis before providing test oracle data.
Thus, this approach needs further study. Fraser and Zeller
[13] also used mutation testing to derive test inputs and test
oracles but they did not study the effectiveness or cost of
OSes.

4 TEST INPUTS AND ORACLE GENERATION

This section presents how tests were generated at the system
level and defines the ten new and two baseline OSes that
were applied to the tests.

4.1 Test Input Generation
This research evaluated different OSes with the same tests.
The tests were generated from UML state machine diagrams
of 17 Java programs using the structured test automation
language framework (STALE) [21], [24]. STALE reads UML
state machine diagrams and transforms them into general
graphs. Given a graph coverage criterion, STALE can gener-
ate abstract test paths to satisfy the coverage criterion. The
abstract tests are composed of transitions and constraints
(based on state invariants). To transform the abstract tests

to concrete tests, testers use the structured test automation
language [24] to provide mappings. A mapping is a data
structure that describes how to translate test inputs from
model elements (transitions and state invariants in this
research) to the implementation. Each model element from
a diagram can have more than one mapping because testers
need to provide as many mappings as possible to satisfy all
the state invariants for a specific coverage criterion. Each
mapping for an element only needs to be written once.
When an element appears again in an abstract test, an
appropriate mapping is selected automatically to satisfy the
necessary state invariants. The concrete code of a mapping
for a transition is a sequence of method calls.

The concrete test code for state invariants can be trans-
formed to JUnit assertions, allowing each assertion to be
evaluated at run-time. If an assertion evaluates to false, it
means the state invariant is not satisfied by the concrete test
sequences of the currently used mapping for a transition
between this state and a preceding state. Therefore, the
concrete test code of another mapping for the transition will
be used and the state invariant is re-evaluated. This process
continues until the state invariant is satisfied. If no existing
mappings can satisfy a state invariant, STALE reports errors
and asks the tester to provide more mappings.

Since the concrete test code of state invariants can be
evaluated as JUnit assertions, the assertions can be used
directly as test oracles. This is called the state invariant oracle
strategy (SIOS). Additionally, testers can use STALE to write
more assertions to check other internal state variables such
as class variables and parameter objects. For instance, if
the executable test code of a transition has a method call:
“boolean sign = classObjectA.doActionB();”, testers can write
assertions to evaluate the return value of the method call
and classObjectA’s class member variables by providing the
expected test values.

STALE uses a prefix-graph based solution [22] to reduce
the number of tests as well as the number of times tran-
sitions appear in the tests. Barr et al. called this a type of
quantitative human oracle cost reduction [5]. The quantitative
human oracle cost reduction reduces the effort of generating
test oracles by decreasing the size of test cases or test suites.

Fig. 3. Part of a State Machine Diagram of the Vending Machine Ex-
ample. Constraint1 applies to State1, Constraint2 applies to State2, and
Constraint3 applies to State3.

We use an example of a vending machine program to
show how to use STALE to generate tests and add test

7

TABLE 1
A comparison of empirical test oracle research papers. (LOC is Lines of Code, NOS is the Null Oracle Strategy, PPCOS is the Pre and

Post-Condition Oracle Strategy, and SIOS is the State Invariant Oracle Strategy.)

Metric This research Briand
et al.
[8]

Xie
and
Mem-
on
[45]

Staats et al.
[43]

Shrestha
and
Ruther-
ford
[40]

Sprenkle
et al. [41]

Yu et al.
[46]

Where published submitted TSE TOSEM ICSE ICST ISSRE ISSRE
Number of 17 2 5 4 9 4 6
programs
Total LOC 47,742 1,552 25,767 14,039 1,049 39,793 7,877
Types of subjects General, GUI, We-

b Application, and
Web Service

General GUI Non-OO General Web Concurrent

NOS used Yes No No No Yes No No
PPCOS or SIOS Yes Yes No No Yes No No
used
Less precise OSes Yes No Yes Yes No Yes Yes
used
Internal state vari-
ables are used

Yes No Yes Internal state
variables
picked
randomly

No Yes Yes

Frequency of check-
ing program states

Yes No Yes No No No No

The number of OSes
used

12 2 6 3 2 22 7

oracle data. The vending machine has been simplified as
follows: customers insert coins to purchase chocolates; only
dimes, quarters, and dollars are accepted; and the price for
all chocolates is 90 cents. Figure 3 shows part of a UML
state machine diagram for the vending machine–three states
and their transitions. The figure also shows three invariants
in boxes above the state diagram, defined as constraints.
Each constraint applies to a particular state. The invariant
credit = 0 applies to State1, 0 < credit < 90 applies
to State2, and credit ≥ 90 applies to State3. Part of the
implementation of class VendingMachine is in Figure 4.

1: public class VendingMachine
2: {
3: private int credit; // Current credit in the machine.

...
4: // Constructor: vending machine starts empty.
5: public VendingMachine() {}

6: // A coin is given to the vendingMachine.
7: // Must be a dime, quarter or dollar.
8: public void coin (int coin) {}

9: // Get the current credit value.
10: public int getCredit () {}

...
11: }

Fig. 4. Class VendingMachine (partial)

STALE reads the state machine diagram and generates
abstract tests. If testers choose edge coverage, then the

three test requirements “State1, coin, State2,” “State2, coin,
State3,” and “State1, coin, State3” need to be covered by
the abstract tests. Testers need to provide mappings so the
abstract tests can become executable code. To satisfy state
invariants Constraint1, Constraint2, and Constraint3, we may
have to provide multiple mappings for the transition coin.
The concrete test code of one mapping can be “vm.coin(10);”,
which inserts a dime into the vending machine. Method
call “vm.coin(10);” uses the method on line 8 in Figure 4.
vm is an object of class VendingMachine and is defined in
another mapping. STALE provides a mechanism to let other
mappings use this object. To satisfy the state invariants in
State2 and State3, we provide another mapping whose test
code is “vm.coin(100);” , which inserts a dollar. Similarly,
“vm.coin(100);” uses the method on line 8 in Figure 4.

Testers also provide mappings for the state invariants
to evaluate if they are satisfied. For instance, test code
“vm.getCredit() ≥ 90;” is used to evaluate if Constraint3 is
satisfied. If a state invariant is not satisfied by one mapping,
another mapping is selected. If no mappings can satisfy this
state invariant, STALE asks testers to enter more mappings.
Testers can also provide more test oracle data to check other
fields of the class.

In addition to the state invariants, testers can also check
other fields of class VendingMachine. STALE provides a
mechanism for testers to enter test oracle data for different
test oracle strategies. When a mapping is used in a test,
the corresponding test oracle has to be inserted after the test
code of the mapping. The location where a mapping appears
inside tests depends on the coverage criteria, constraints,

8

test inputs, and test generation algorithms. Thus testers
cannot write fixed expected values in test oracles. If the
test code of a mapping for transition “coin” is vm.coin(10);,
an assertion after this transition (such as “assertEquals(10,
vm.getCredit());”) could return false since the credit before
adding the dime may not be 0 in a preceding state. There-
fore, to automate test oracle generation, the test code of ele-
ment mappings has to be changed. The call “vm.getCredit();”
uses the method on line 10 in Figure 4. The mapping coinTen
adds a statement “credit = vm.getCredit();” to get the value
of credit before inserting a dime into the vending machine.
Note that variable credit needs to be declared in the test
initialization to avoid duplicate variable definitions. Then
the test oracle code for the mapping coinTen can check
whether the assertion returns true: “assertEquals(credit +
10, vm.getCredit());”.

4.2 Test Oracle Strategies

Two OSes were used as baselines in the experiments. NOS
only checks for uncaught runtime exceptions or abnormal
termination, as implicitly provided by Java runtime systems
[40]. In our experience, most faults do not cause runtime ex-
ceptions, so this OS sounds trivial to academic researchers.
However, in our experience, both consulting and teaching
part-time industrial students, NOS is often used in industry.

The second baseline OS was SIOS, which checks the state
invariants from the state machine diagrams. After testers
use STALE to provide proper test mappings from abstract
model elements to concrete test code, all state invariants in
the state machine diagram should be satisfied. Since all the
state invariants can be transformed to executable code using
the provided mappings, these state invariants can be added
to the tests as assertions automatically. SIOS is more precise
than NOS and thus subsumes NOS.

As stated in the introduction, this research considers
two dimensions when designing OSes: precision (how many
internal state variables and outputs to check), and frequency
(how often to check states). Regarding the frequency, testers
can write test oracles that check states after each method
call, after each transition, or they can check states only
once at the end of the test. The checks are automated, that
is, each test includes explicit comparisons of actual values
from the state with expected values that are unique to the
test and based on requirements, specifications, or domain
knowledge of the software’s intended behavior. We use the
JUnit test framework, which is very widely used in industry,
although any test automation framework could be used.
Note that frequency does not apply to NOS since no explicit
assertions are included in NOS. SIOS checks state invariants
after each transition. In terms of precision, this research
defines four elements of the program state to check:

1) State invariants: Check the state invariants in the
model.

2) Object members: The mappings for transitions define
methods on specific objects that must be called to
trigger that transition. These objects contain mem-
ber variables. These object members are checked.

3) Return values: Check return values of each method
invoked in a transition.

4) Parameter members: Check member variables of ob-
jects that are passed as parameters in a method call.

In OO software, a deep comparison compares the values
of every member of two objects recursively until primitive
variables are found. This research used deep comparisons.
For the vending machine example in Figures 3 and 4,
constraints 1, 2, and 3 are state invariants. vm is a Vend-
ingMachine object member. The actual credit returned by
“vm.getCredit();” (line 10 in Figure 4) is a return value. The
parameter coin of the method coin (line 8 in Figure 4) is a
parameter member. In executable tests, testers need to write
assertions in STALE to verify these four elements associated
with the transitions and constraints.

We propose ten new OSes beyond SIOS and NOS. Each
new OS satisfies all the state invariants in a model and
explicitly writes the satisfied state invariants as assertions.
Thus, they explicitly subsume SIOS, and by transitivity,
NOS. A test is based on a sequence of transitions through
the model, and each transition represents one or more
method calls that have the potential to modify the four
program state elements listed above. The strategies check
different elements of the program state, generally increasing
precision as the numbers get larger from OS1 through OS5.
The first five, OS1 through OS5, have higher frequency, that
is, they check state after each transition. Paralleling these
strategies are five that have the same precision, but only
check state once. We call these OT1 through OT5 for ”One
Time checking.” For convenience in writing, we sometimes
refer to all twelve collectively as oracle strategies, or OSes.

The definitions of the five high frequency OSes refer
to different combinations of the four elements of the state
listed above. Each OS is defined with the precision P and
frequency F . The OS strategies check values after each
transition.

OS1: Check object members: P is defined to check all
object members in transitions. F is defined to
check them immediately after each transition is
executed.

OS2: Check return values: P is defined to check all
return values in transitions. F is defined to check
them immediately after each transition is execut-
ed.

OS3: Check object members and return values: P is
defined to check all object members and return
values in transitions. F is defined to check them
immediately after each transition is executed.

OS4: Check parameter members and return values: P
is defined to check all parameter members and
return values in transitions. F is defined to check
the them immediately after each transition is
executed.

OS5: Check object members, parameter members, and
return values: P is defined to check all object
members, parameter members, and return values in
transitions. F is defined to check them immedi-
ately after each transition is executed.

For each OSi2, OTi has the same precision (checks the
same elements of the state) but with a lower frequency (only

2. OSi refers to one of the five specific OSes (OS1, OS2, OS3, OS4,
OS5), and OTi refers to one of the five specific OTs.

9

one check per test). The practical difference between the
OS strategies and the OT strategies is that the OS strategies
check the values after each transition and the OT strategies
check after the last transition. Note that the OT strategies
check all the values from all the transitions, not just the
last transition, even if they perform all checks after the
last transition. Additionally, they can only check objects and
variables whose scope is still active after the last transition.

OT1: P is defined to check all object members in all
transitions in the test; F is defined to check
the object members defined in P after the last
transition is executed

OT2: P is defined to check all return values in all
transitions in the test; F is defined to check the
return values defined in P after the last transition
is executed

OT3: P is defined to check all object members and
return values in all transitions in the test; F is
defined to check the object members and return
values defined in P after the last transition is
executed

OT4: P is defined to check all parameter members and
return values in all transitions in the test; F
is defined to check the parameter members and
return values defined in P after the last transition
is executed

OT5: P is defined to check all object members, parameter
members, and return values in all transitions in
the test; F is defined to check the object members,
parameter members, and return values defined in
P after the last transition is executed

All the OSi and OTi strategies subsume NOS and SIOS.
The five OSi strategies and OT5 were defined in our
previous paper [23]. The other OTi strategies are new to
this paper.

Although OS5 is the most precise test oracle strategy in
our study, it would be possible to design an even more pre-
cise strategy. For example, an oracle could check logs, files,
or other offline storage locations. Test oracle strategies OT1,
OT2, OT3, OT4, and OT5 mimic a common programmer
habit of writing assertions at the end of tests. The difference
is that programmers often only write a few ad-hoc asser-
tions, while OT1, OT2, OT3, OT4, and OT5 systematically
check various outputs and internal state variables after the
last transition. We wanted to see if each OT can be as good
as the corresponding OS in terms of revealing failures.

Checking all object members, return values, and param-
eter members that appear in all the transitions at the end of
tests could cause the OTis to check different program states
from the OSis. For instance, if OS2 checks a return value
Object a after the system initialization in a test (a has an
initial value during the system initialization), then OS2 does
not check a in the rest of the tests because a is not used as a
return value in other transitions. However, a’s state could be
changed if a is used as a parameter or makes method calls.
Therefore, OT2 can check different program states (check
a after the last transition) that would not be checked by
OS2 (check a only after the first transition). Moreover, no
matter when a’s status is changed, OS5 is able to monitor
the change since OS5 checks object members, return values

and parameter members for every transition. Thus, OS5
subsumes OTi, where 1 ≤ i ≤ 5. So OTi is as precise as
OSi but may detect faults that cannot be revealed by OSi,
where 1 ≤ i ≤ 4.

Fig. 5. Subsumption Relationships among Test Oracle Strategies. Sub-
sumption is transitive, thus, OS5 subsumes OS2, OS1, SIOS, and NOS
by transitivity.

Figure 5 shows the subsumption relationships among
the OSes and OTs. An arrow from one strategy to another
indicates that the former strategy subsumes the latter. The
OS subsumption relationships are transitive. Thus, if OS5
subsumes OS3 and OS3 subsumes OS1, then OS5 subsumes
OS1. Because OS5 subsumes SIOS and OT5 subsumes SIOS
based on transitivity, we do not show arrows from OS5 to
SIOS and from OT5 to SIOS.

5 EXPERIMENTS

The experiments address four research questions:

RQ1: With the same test inputs and frequencies, does
a more precise OS reveal more faults than a less
precise OS?

RQ2: With the same test inputs, does a higher fre-
quency, that is, checking program states multiple
times, reveal more faults than checking the same
program states once?

RQ3: With the same OS, do tests that satisfy a stronger
coverage criterion reveal more faults than tests
that satisfy a weaker coverage criterion?

RQ4: Which OS should be recommended when con-
sidering both effectiveness and cost?

10

Other researchers [8], [40], [43], [45] have studied RQ1,
finding that more precise OSes are more effective than
less precise OSes at revealing faults. However, they used
different test coverage criteria and OSes on different types
of programs, as discussed in Section 3.

RQ2 was evaluated by Xie and Memon [45] for GUIs,
who found that checking variables after each event (events
in GUI testing represent user actions such as button clicks)
can detect more faults than checking the same variables
once after the last event of the test. However, their study
only monitored states of GUIs. Our research checked more
outputs and internal state variables of different kinds of
programs.

Briand et al. [8] found that with the very precise test or-
acle strategy, a stronger coverage criterion (disjunct coverage
[8]) found the same faults as a weaker criterion (round-trip
path coverage [7]) for one class, but not the other three. This
is related to our RQ3. Our experiment used two different
coverage criteria and 17 programs.

A very effective OS may be too costly for practical
use. Thus, RQ4 considers the cost-effectiveness of the OSes,
which to our knowledge has not been studied before. The
rest of this section presents the experimental design, sub-
jects, procedure, results, discussions, and threats to validity.

5.1 Experimental Design

The experiments compared the ten new strategies (OS1,
OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4, and OT5) with the
two baseline OSes, NOS and SIOS. All OSes were applied to
edge-adequate and EP-adequate tests. Then the tests were
run against faulty versions of the programs. The faults
revealed and the cost of using the OSes were recorded.

Andrews et al. [3] found that synthetic faults generated
using mutation testing can be used as faults in experi-
ments to predict the real fault detection ability of tests.
This research used synthetic faults generated with mutation
testing. Because programs have different numbers of faults,
to compare the effectiveness of the tests in the same scale,
we used proportions of faults (mutation scores) detected by
the tests to measure the effectiveness of the tests for each
program. Furthermore, if tests have the same test inputs
but different OSes, the mutation score of each set of tests
can reflect the relative effectiveness of each OS. A higher
mutation score indicates the OS is more effective. If one OS
subsumes another OS, the subsuming OS is expected to be
at least as effective at revealing failures than the subsumed
OS. Thus, OS1, OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4,
and OT5 were expected to reveal the same or more faults
than NOS and SIOS.

The experiments used muJava [30], [31], a mutation anal-
ysis tool for Java, to generate synthetic faults. Each mutant
is the result of only one application of a single mutation
operator to the original program. Users can use muJava
to generate mutants, run tests against mutants, and view
mutants. The latest version of muJava supports JUnit tests
and all features of Java 1.6. So the JUnit tests that STALE
generated were used in muJava directly. Mutants were
generated by using the 15 selective method-level mutation
operators of muJava [29].

All OSes were applied with the same sets of edge-
adequate and EP-adequate tests. In the experimental pro-
cess, the test oracle generation and execution had three
kinds of cost. First, testers entered test oracle data (asser-
tions) by hand. Second, STALE generated tests based on the
provided test oracle data. Thus, the concrete tests include
the test oracles. The assertions provided in the first step may
appear multiple times in the concrete tests. When EC or EPC
is applied, every transition of a UML state machine diagram
is part of the test requirements. STALE uses the prefix-graph
based algorithm to generate a set of test paths to cover
the test requirements. Each test path may have multiple
distinct transitions and the distinct transitions may appear
in different test paths. By using STALE, testers need to pro-
vide mappings for each distinct transition only once, even
though each transition may appear multiple times in the
test paths. STALE selects appropriate mappings to satisfy
state invariants in the state machine diagram. Then STALE
converts the test paths to executable concrete tests based on
the selected mappings. Likewise, testers use STALE to write
distinct assertions for each mapping of distinct transitions.
Since OS1, OS2, OS3, OS4, and OS5 check the program states
after each transition, distinct assertions may appear multiple
times in the concrete tests, along with the selected mapping
of distinct transitions. Third, as part of tests, assertions must
be executed.

The first step was manual and the second and third
were automated. In our study, the execution time of test
oracles was tiny, indeed, almost impossible to measure. Not
only was it many orders of magnitude less than human
effort, it was orders of magnitude less than the rest of the
test execution. Even if run thousands of times, few test
oracles would significantly impact the execution time. (An
exception would be a very complex test oracle.) Thus, the
cost of an OS is primarily the cost of creating test oracle
data (assertions) by hand. Although human cost is far more
difficult to measure than execution cost (as previous studies
did), we elected to measure human cost so as to increase the
value of the results.

To make this research study practical, we assumed that
the cost of writing each assertion was constant. While there
would be some variability, the differences would be rela-
tively slight and average out over all assertions. The cost of
creating a test oracle was the sum of the costs of creating
each assertion in the oracle.

We gave both state invariants and normal assertions the
same weight for four reasons. First, writing an assertion
needs testers to understand the program. Thus, writing any
assertion takes the same amount of time for understanding
the program. Second, this research required testers to write
test oracles for each transition. This step required test oracles
to be generated automatically no matter where transitions
appear in tests. Thus, testers have to change the test code of
the transitions, as shown in Section 4.1. Our experience told
us that the first two steps took the most time for creating an
assertion.

Third, designing state invariants is only part of design-
ing a state machine diagram and the diagram was mainly
used for generating tests. Moreover, a group of assertions
(state invariants in different states) was created within the
diagram. Thus, the time to create each state invariant only

11

takes a fraction of the total time to generate tests. Fourth,
when designing normal assertions, testers may have to
spend extra time to look for assertions. For instance, when
checking member variables of a class, if a member variable
is also an object, testers have to check its member variables,
and so on until all member variables are primitive. There-
fore, the cost of each assertion was treated equally and we
used the number of distinct assertions as an approximation
for the cost. Since many tests include the same assertion, the
total number of assertions may be much greater than the
number of distinct assertions, yet we only have to design
each distinct assertion once.

The cost-effectiveness of an OS is the ratio of the pro-
portion of faults detected by the OS over the number of
assertions. The assertions were provided by hand to check
the internal state variables and outputs. A bigger cost-
effectiveness is better. The cost-effectiveness ratio can be
interpreted as: how many more faults can be detected by
adding additional assertions?

This cost-effectiveness ratio was applied to SIOS, OS1,
OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4, and OT5, but not
to NOS. NOS is a special case. Since there are no assertions,
there is no cost by our measure. However, the cost measure
does not include the cost of designing and generating tests.
This is so that we can compare OSes strictly on the basis of
their oracles, without regard to the test generation cost. A
disadvantage of this approach is that NOS, in effect, means
the testers only use tests that are likely to result in a runtime
exception. All other tests are useless, even if they result
in a failure. Thus we do not consider NOS in our cost-
effectiveness ratio.

Cost-effectiveness =
ProportionOfFaultsDetected

#DistinctAssertionsCreated
(1)

To better specify how to measure the goals of the exper-
iments, three groups of hypotheses are extracted from the
first three research questions. The first group of hypotheses
(HypothesesA) compares all pairs of OSes, OSA and OSB ,
where OSB is more precise than OSA but with the same
frequency. (Frequency does not apply to NOS and SIOS, so
they are not compared on the basis of frequency.) However,
we compared NOS and SIOS since they are baseline OSes
and other OSes are more precise. These hypotheses focus ex-
clusively on the precision, so we do not compare OSes with
different frequencies. The null and alternative hypotheses
are listed below.

Null hypothesis (H0):
There is no difference between the proportion
of failures revealed by OSA and OSB with the
same test inputs and frequencies (if applicable).

Alternative hypothesis (H1):
The proportion of failures revealed by OSB is
greater than OSA with the same test inputs and
frequencies (if applicable).

The test oracle strategy pairs that were applied to
HypothesesA are: {NOS, SIOS}, {SIOS, OS1}, {SIOS, OS3},
{SIOS, OS5}, {OS1, OS3}, {OS3, OS5}, {OS1, OS5}, {OS2,
OS5}, {OS4, OS5}, {SIOS, OS2}, {SIOS, OS4}, {OS2, OS3},
{OS2, OS4}, {SIOS, OT1}, {SIOS, OT3}, {SIOS, OT5}, {OT1,

OT3}, {OT3, OT5}, {OT1, OT5}, {OT2, OT5}, {OT4, OT5},
{SIOS, OT2}, {SIOS, OT4}, {OT2, OT3}, and {OT2, OT4}
for both edge coverage (EC) and edge-pair coverage (EPC).
This research did not compare NOS with other OSes (OS1,
OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4, and OT5) because
NOS was expected to be much less effective than other OSes.
The comparison between the effectiveness of NOS and other
OSes is shown in Section 5.4.

RQ2 asks if an OS with higher frequency is more effective
at revealing failures than another OS that has the same
precision but lower frequency. OTi checks the same object
members, return values, and parameter members that OSi
checks. For each i, 1 ≤ i ≤ 5, OSi checks after each
transition and OTi only checks once after the last transition.
Thus, the second group of hypotheses (HypothesesB) for
RQ2 were:

Null hypothesis (H0):
There is no difference between the proportion of
failures revealed by OTi and OSi with the same
test inputs, where 1 ≤ i ≤ 5.

Alternative hypothesis (H1):
The proportion of failures revealed by OSi is
greater than OTi with the same test inputs,
where 1 ≤ i ≤ 5.

The test oracle strategy pairs that were applied to
HypothesesB are: {OT1, OS1}, {OT2, OS2}, {OT3, OS3},
{OT4, OS4}, and {OT5, OS5}. The third group of hypotheses
(HypothesesC) for RQ3 took two test coverage criteria CCA

and CCB into consideration (CCB subsumes CCA).

Null hypothesis (H0):
There is no difference between the proportion of
failures revealed by criterion CCA and CCB if
both use the same test oracle strategy.

Alternative hypothesis (H1):
The proportion of failures revealed by criterion
CCB is greater than CCA if both use the same
test oracle strategy.

HypothesesC were applied to edge-adequate and EP-
adequate tests for each of the twelve OSes used in this
research.

5.2 Experimental Subjects

We evaluated 17 Java programs, creating UML statecharts
by hand, and using STALE to generate tests. The experiment
involved multiple manual steps, which limited our ability to
use large subjects. In actual practice, the UML models would
be already available, or at least generated by the developers.
With our less than perfect knowledge of the software, this
task was extremely time consuming. For similar reasons,
previous experiments on test oracles have also focused on
small subjects, as shown in Table 1.

Based on our experience, testers often need a lot of time
to understand requirements and acquire domain knowledge
for the software under test. A large project may take years
for dozens or hundreds of software engineers to develop.
Thus, it would take many months for us to generate mean-
ingful tests for large and complex projects. To add additional
realism to the experiment, the first author applied STALE to

12

a product that he has been working on at his project; that is,
he already understood the requirements.

Six of the 17 programs (Calculator3, Snake4, TicTacToe5,
CrossLexic6, Jmines7, and DynamicParser8) are open source
projects from SourceForge. Six are from textbooks: Vend-
ingMachine [1], ATM [11], Tree [4], BlackJack [19], Triangle
[39], and Poly [27]. Four others are part of the coverage web
application for Ammann and Offutt’s book [2]. The last, Roc,
is a real-world product from Medidata. Roc is a service that
wraps the Elastic MapReduce (EMR) of Amazon Web Services
(AWS). EMR is a web service that processes large amounts
of data efficiently using Hadoop9. Since Roc is a proprietary
Medidata project, we cannot provide a link to its code base.

All programs are in Java and we generated the UML
state machine diagrams by hand for all the program except
for Roc. The UML state machine diagram for Roc already
existed; created by the engineers.

To reduce the threat to validity by having subjects that
are overly similar, we chose subjects that had a variety of
purposes, type of deployment, and size. Calculator, Snake,
CrossLexic, Jmines, BlackJack, and DynamicParse are GUIs.
GraphCoverage, DFCoverage, LogicCoverage, and MinM-
CCoverage are web applications. Roc is a web service.
TicTacToe is a command-line program. The other five pro-
grams are software components that do not have explicit
user interfaces. The programs were intentionally chosen
to vary in size. As shown in Table 2, the lines of code
(LOC) varied from 52 to 15,910, measured by a line counter,
Cloc version 1.6.2 [10]10. Strengths of this study are the
precision of measurement and the realism of the process.
To achieve these goals, quite a bit of work had to be carried
out by hand, including deriving state machine diagrams,
measurements, and creating the mappings. These tasks are
needed in an experimental context, but either would not be
necessary in a practical setting or would be spread across the
entire development process. In our context, it would have
taken many months for programs with tens of thousands
of lines of code, although as shown in Table 1, the size of
programs in this study compares favorably with previous
similar studies.

At the right abstraction level, we were able to generate
UML state machine diagrams to cover important behaviors
of complex systems. For example, Roc has a service and
a client. The service contains the logic to process user
requests such as starting an EMR cluster and users use the
client to send requests to the server. At the user acceptance
testing level, we focus on testing the system from the user’s
perspective. We generated a UML state machine diagram to
cover all important user actions provided by the client. The
diagram did not need to cover the logic in the server. We
tested the server at the unit testing and component testing
levels, which are out of the scope of this paper.

3. http://jcalcadvance.sourceforge.net/
4. http://sourceforge.net/projects/javasnakebattle/
5. http://sourceforge.net/projects/tttnsd/
6. http://crosslexic.sourceforge.net/
7. http://jmines.sourceforge.net/
8. http://dynamic-parser.sourceforge.net/
9. Apache Hadoop processes large data sets over clusters of comput-

ers using Hadoop Distributed File System (HDFS).
10. The total LOC includes configuration files and scripts.

First, we generated test inputs to satisfy both EC and
EPC on the state diagram. Then we entered test oracle data
for our ten OSes. NOS did not need test oracle data, and
the state invariant test oracle data were provided by STALE
while generating test inputs. Finally, the twelve OSes were
applied to the two sets of tests that satisfied EC and EPC,
resulting in 24 sets of tests for each program.

Table 2 shows properties of the programs and tests. The
column LOC shows the lines of code for each program. The
columns E and EP give the number of test requirements
for edge and edge-pair coverage. The columns Tests show
the number of tests for edge-adequate and EP-adequate
tests. The columns Trans represent the number of transitions
that appeared in the tests and the columns SI provide the
number of appearances of state invariants that were satisfied
and also used as test oracles. We counted the number of test
oracle assertions that have state invariants when all the tests
passed.The columns Distinct Trans and Distinct SI represent
the number of distinct mappings of transitions and state
invariants provided by hand. (Recall that we only count
each assertion once for the purposes of cost, even though
they appear in the tests many times.)

As stated in Section 4.1, users need to provide mappings
for transitions and state invariants so that abstract tests can
be transformed to concrete tests. Since transitions and state
invariants appear many times, the numbers of the columns
Trans and SI are far more than those of the columns Distinct
Trans and Distinct SI. By comparing the columns Distinct
Trans for EC and EPC, we see that we only needed to pro-
vide more mappings for EPC than EC for three programs.
That is, the mappings required to satisfy state invariants for
EC also satisfy most of the state invariants for EPC. Because
of this, the results did not show much difference between
EC and EPC.

5.3 Experimental Procedure
The experiment was carried out in the following steps:

1) We created a UML state machine diagram for each
program. Since the designs were not available, this
was done by hand by the first author (except for
Roc).

2) STALE read the state machine diagram, recognized
all identifiable elements in the diagram, and gener-
ated abstract tests to satisfy EC and EPC. This step
was completely automated by our tool.

3) We used STALE to create abstract-to-concrete map-
pings for each element in the finite state machines,
as described in Section 4.1. This step requires sig-
nificant domain knowledge of the software, and is
well known to be difficult to automate with informal
specifications. Even with formal specifications, these
mapping values can only be partially automatically
generated. This step is normally the most human-
intensive portion of model-based testing. The pri-
mary strength of the language TAL [24] is in re-
ducing the labor associated with creating mappings.
Test inputs were created first to satisfy EC, then
augmented to satisfy EPC.

4) Using the mappings, STALE automatically generat-
ed concrete edge-adequate and EP-adequate tests.

13

TABLE 2
Experimental Subjects

Programs LOC E EP
Properties of the Tests

Edge Edge-Pair
Tests Trans SI Distinct

Trans
Distinct
SI

Tests Trans SI Distinct
Trans

Distinct
SI

ATM 463 12 19 5 18 22 6 6 6 30 39 6 6
BlackJack 403 20 34 8 27 27 11 3 9 51 51 11 3
Calculator 2,919 76 403 14 167 167 11 9 39 893 893 11 9
CorssLexic 654 51 162 26 113 209 11 7 63 404 756 11 7
DFGraphCoverage 4,512 42 201 8 49 78 10 7 45 390 643 10 7
DynamicParser 1,269 65 213 20 116 408 13 15 26 385 1,233 14 15
GraphCoverage 4,480 59 187 16 122 207 14 11 23 359 605 14 11
JMines 9,486 28 91 9 60 6 7 1 22 201 21 7 1
LogicCoverage 1,808 62 259 30 115 94 12 8 94 561 483 12 8
MMCoverage 3,252 107 318 78 273 228 20 16 142 699 570 20 16
Poly 129 21 64 5 32 57 11 6 12 129 237 18 6
Roc 15,910 30 62 13 63 88 13 11 26 155 206 13 11
Snake 1,382 45 107 7 70 120 10 8 8 194 341 10 8
TicTacToe 665 12 20 5 24 7 6 3 7 46 16 6 3
Tree 234 24 74 6 35 48 6 3 8 99 146 6 3
Triangle 124 31 156 6 36 36 7 5 27 271 271 7 5
VendingMachine 52 26 61 7 44 88 6 6 9 105 210 7 6
Total 47,742 711 2,431 263 1,364 1,890 174 125 566 4,972 6,721 183 125

5) We used STALE to enter expected results for the
OSes. 24 tests were generated for each pair of com-
bination for the two coverage criteria and twelve
OSes.

6) We used muJava to generate faults for each pro-
gram, then identified and removed equivalent mu-
tants by hand.

7) We ran each set of tests against the faults for each
program. The number of faults detected and the
number of times the internal state variables and out-
puts are checked for each set of tests were recorded.

8) We calculated and analyzed the cost-effectiveness of
each OS.

We needed each test set to have the same input values
across all test oracle strategies. If the values differed, that
would introduce a possible confounding variable. Our goal
of the study was to compare the test oracle strategy, so to
a large extent, the quality of the test set is irrelevant. The
main consideration is that the tests caused enough faults to
propagate to failure to measure differences among the OSes
in revealability.

As is usual with empirical fault studies, tests were only
run against faults that appeared in methods called when the
tests were run on the original program.

5.4 Experimental Results

The results are divided into four parts. Section 5.4.1 presents
the effectiveness of the OSes in terms of revealing fail-
ures. Section 5.4.2 analyzes the RQs statistically based on
the effectiveness of the OSes. Section 5.4.3 presents result-
s on the costs of the OSes. Section 5.4.4 presents cost-
effectiveness results. For readers who want more detail, all

of the experimental subjects and results are available online
at https://cs.gmu.edu/∼nli1/TSE TestOracle.

5.4.1 Effectiveness of Test Oracle Strategies

Tables 3 and 4 show the number of faults and failures
revealed by each OS for each program with both the EC
and EPC test sets. Table 3 contains the data for the higher
frequency strategies (OSes) and Table 4 contains the data
for the lower frequency strategies (OTs). Both Tables 3 and
4 show the total numbers of faults in each program and
the number of faults that were revealed as failures. The
largest subject, Roc, has only 95 faults because we only
generated faults for the methods the tests used. Since the
tests used only client actions, we did not generate faults
for the logic on the server code. Columns NOS and SIOS
are the same in both tables. Tables 5 and 6 have similar
columns. They show the number of faults that are revealed
as failures by each OS divided by the number of faults in
each program, producing proportions of failures revealed
by each OS for each program. The total number of the faults
(“# Faults,” that is, non-equivalent mutants) is 9,722. So a
total of 96,714,456 tests were executed (((12 OSes * 263 edge-
adequate tests) + (12 OSes * 566 EP-adequate tests)) * 9,722).

Note that OT1 revealed more failures than OS1 for the
subjects “TicTacToe” and “Triangle,” and OT3 revealed more
failures than OS3 for the subject “TicTacToe.” As discussed
in Section 4.2, OTi can check different program states from
OSi, where 1 ≤ i ≤ 4. Thus, OTi can sometimes reveal
more failures than OSi. Tables 5 and 6 show that NOS
revealed far fewer failures than the other OSes on average,
indicating NOS is much less effective at revealing faults.
Since with the same frequency and test inputs, a more
precise OS checks more program states than a less precise

14

OS, we expected the more precise OS to reveal more faults,
and checking outputs and internal state variables more
frequently can reveal more failures than checking the same
program states less frequently. However, Tables 5 and 6
show that the proportions of the faults detected by OS1,
OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4, and OT5 were
very close, and 3% to 8% higher than that of SIOS. Figure 6
presents the averages of the proportions of faults detected
by each OS with EC and EPC. These numbers are derived
from Tables 5 and 6.

Fig. 6. Effectiveness of Test Oracle Strategies. Effectiveness is the
average of the proportions of faults detected by each OS with EC and
EPC.

5.4.2 Statistical Comparison of OSes in the RQs
To analyze the RQs statistically, we used Qqplots [26] to
determine that the proportions of failures revealed by the
OSes for both EC and EPC were not normally distributed.
Figure 7 shows one Qqplot for the effectiveness of the EC
tests for NOS. We do not show the others because they all
look similar. Because these data deviate from a straight line,
the proportions of faults detected by the OSes for EC and
EPC were not normally distributed.

Fig. 7. Qqplot for NOS on Edge Coverage. The deviation from the
straight line indicates the proportions of failures revealed were not
normally distributed.

To get statistical evidence of the effectiveness difference
between a less precise OS and a more precise OS with the
same frequency and test inputs, we used the one-tailed
Wilcoxon signed-rank test (statistical significance level α =
0.05) [28] to compare the paired proportions of the faults

detected by two different OSes for both EC and EPC. We
used the one-tailed Wilcoxon signed-rank test because the
compared data were paired and came from the same tests
(EC or EPC tests). For instance, SIOS for EC was compared
with OS1 for EC. This is a non-parametric test to assess
whether two population means differ when data are not
normally distributed. This test first finds the absolute differ-
ence for each pair and gets the number of the pairs that are
different, N. Then this test ranks the pairs and calculates
the test statistic W. If N is greater than 9, the sampling
distribution of W is a reasonably close approximation of
the normal distribution and the one-tail probability p can
be calculated. According to Lowry [28], if N is less than
or equal to 9, but greater than 4, the calculated W value is
compared to a Wcritical from the separate table of critical
values of W.

For HypothesesA, the OS pairs {NOS, SIOS}, {SIOS,
OS1}, {SIOS, OS3}, {SIOS, OS5}, {OS1, OS3}, {OS3, OS5},
{OS1, OS5}, {OS2, OS5}, {OS4, OS5}, {SIOS, OS2}, {SIOS,
OS4}, {OS2, OS3}, {OS2, OS4}, {SIOS, OT1}, {SIOS, OT3},
{SIOS, OT5}, {OT1, OT3}, {OT3, OT5}, {OT1, OT5}, {OT2,
OT5}, {OT4, OT5}, {SIOS, OT2}, {SIOS, OT4}, {OT2, OT3},
and {OT2, OT4} were compared for EC and EPC using
the Wilcoxon signed rank test. Table 7 shows the detailed
results, with p-values and effect sizes, for HypothesesA. We
got p-values from 0.0003 - 0.0018 for {NOS, SIOS}, {SIOS,
OS1}, {SIOS, OS3}, {SIOS, OS5}, {OS2, OS5}, {SIOS, OT1},
{SIOS, OT3}, {SIOS, OT5}, {OT2, OT5}, {OT4, OT5}, and
{OT2, OT3} for both EC and EPC as well as {OS2, OS3}
and {OS4, OS5} for EC because the N values of these pairs
were greater than 9. So we can reject H0. For these pairs, the
effectiveness of a more precise OS is significantly greater
than that of a less precise OS. Pairs {SIOS, OS2}, {SIOS,
OS4}, {SIOS, OT4} and {OT1, OT5} for EC and EPC as well
as {SIOS, OT2} for EC and {OS2, OS3} and {OS4, OS5} for
EPC had N less than 10 but greater than 4, thus, the table
of Wcritical values was used. Because |W | > Wcritical, we
concluded that the differences between the OSes in these
pairs were not due to chance.

The N values for {OS1, OS5} for EC and EPC as well as
{SIOS, OT2} for EPC were less than 10 but greater than 4.
Because the calculated |W | ≤ Wcritical, we concluded that
there were no significant differences between these pairs.
For pairs {OS1, OS3}, {OS3, OS5}, {OS2, OS4}, {OT1, OT3},
{OT3, OT5}, and {OT2, OT4} for EC and EPC, the N values
of OSes were less than five, so we could not perform the
Wilcoxon signed-rank test. This also implied that there was
no significant difference between these pairs.

Some OS pairs had inconsistent results for EC and EPC.
For pair {SIOS, OT2}, the EC tests showed that OT2 is more
effective than SIOS using the Wilcoxon signed-rank test but
the EPC tests showed that OT2 is as effective as SIOS.

In summary, for HypothesesA, we reject H0 for the
pairs {NOS, SIOS}, {SIOS, OS1}, {SIOS, OS3}, {SIOS, OS5},
{OS2, OS5}, {OS4, OS5}, {OS2, OS3}, {SIOS, OT1}, {SIOS,
OT3}, {SIOS, OT5}, {OT2, OT5}, {OT4, OT5}, {OT2, OT3},
{SIOS, OS2}, {SIOS, OS4}, {SIOS, OT4} and {OT1, OT5}
for both EC and EPC. In addition, we reject H0 for the pair
{SIOS, OT2} for EC only. Table 7 shows the rejected pairs in
bold. If a pair is rejected for both EC and EPC, the pair is in
bold. If a pair is rejected for either EC or EPC, but not both,

15

TABLE 3
Numbers of Faults Found by Test Oracle Strategies, Part 1

Programs #Faults
Faults Found by Test Oracle Strategies

Edge Edge-Pair
NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5

ATM 257 49 76 182 172 182 201 206 53 81 184 175 184 201 206
BlackJack 56 15 19 22 19 22 19 22 15 19 22 19 22 19 22
Calculator 494 94 205 228 205 228 205 228 205 228 246 223 246 223 246
CrossLexic 470 176 206 209 209 209 209 209 182 211 214 214 214 214 214
DFGraph
Coverage

683 274 274 415 274 415 274 415 274 274 415 274 415 274 415

Dynamic
Parser

3,378 1,723 2,300 2,300 2,300 2,300 2,300 2,300 1,724 2,301 2,301 2,301 2,301 2,301 2,301

Graph
Coverage

385 187 210 301 210 301 210 301 187 210 301 210 301 210 301

JMines 263 66 66 79 66 79 66 79 202 202 205 202 205 202 205
Logic
Coverage

436 218 375 381 375 381 375 381 217 375 381 375 381 375 381

MM Cov-
erage

845 143 251 262 251 262 251 262 143 251 262 251 262 251 262

Poly 259 128 249 250 250 250 250 250 131 250 250 250 250 250 250
Roc 95 21 26 26 30 30 41 41 21 26 26 30 30 41 41
Snake 572 164 225 421 400 421 400 421 216 226 422 401 422 401 422
TicTacToe 1,045 56 464 464 486 486 509 509 56 507 507 507 507 523 523
Tree 113 24 60 70 64 70 64 70 33 67 70 70 70 70 70
Triangle 263 4 128 140 166 168 166 168 4 128 140 171 172 171 172
Vending
Machine

108 0 65 75 90 90 90 90 0 66 77 91 91 91 91

Total 9,722 3,342 5,199 5,825 5,567 5,894 5,630 5,952 3,577 5,417 6,023 5,764 6,073 5,817 6,122

TABLE 4
Numbers of Faults Found by Test Oracle Strategies, Part 2

Programs #Faults
Faults Found by Test Oracle Strategies

Edge Edge-Pair
NOS SIOS OT1 OT2 OT3 OT4 OT5 NOS SIOS OT1 OT2 OT3 OT4 OT5

ATM 257 49 76 175 171 178 198 206 53 81 177 173 180 201 206
BlackJack 56 15 19 21 19 21 19 22 15 19 21 19 21 19 22
Calculator 494 94 224 205 224 205 224 240 119 223 240 223 240 223 240
CrossLexic 470 176 206 209 206 209 206 209 182 211 214 211 214 211 214
DFGraph
Coverage

683 274 274 415 274 415 274 415 274 274 415 274 415 274 415

Dynamic
Parser

3,378 1,723 2,300 2,300 2,300 2,300 2,300 2,300 1,724 2,301 2,301 2,301 2,301 2,301 2,301

Graph
Coverage

385 187 210 275 210 275 210 275 187 210 275 210 275 210 275

JMines 263 66 66 68 66 68 66 68 202 202 204 202 204 202 204
Logic
Coverage

436 218 375 381 375 381 375 381 217 375 381 375 381 375 381

MM Cov-
erage

845 143 251 260 251 260 251 260 143 251 260 251 260 251 260

Poly 259 128 249 249 249 249 249 249 131 250 250 250 250 250 250
Roc 95 21 26 26 30 30 41 41 21 26 26 30 30 41 41
Snake 572 164 225 286 225 286 225 286 216 226 286 226 286 226 286
TicTacToe 1,045 56 464 489 486 489 512 512 56 507 510 508 510 527 527
Tree 113 24 60 70 64 70 64 70 33 67 70 70 70 70 70
Triangle 263 4 128 150 148 158 148 158 4 128 158 154 166 154 166
Vending
Machine

108 0 65 65 83 83 83 83 0 66 66 84 84 84 84

Total 9,722 3,342 5,199 5,663 5,362 5,696 5,426 5,759 3,577 5,417 5,854 5,561 5,887 5,619 5,942

16

TABLE 5
Effectiveness of Test Oracle Strategies, Part 1

Programs #Faults
Proportions of Faults Detected by Test Oracle Strategies

Edge Edge-Pair
NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5

ATM 257 0.19 0.30 0.71 0.67 0.71 0.78 0.80 0.21 0.32 0.72 0.68 0.72 0.78 0.80
BlackJack 56 0.27 0.34 0.39 0.34 0.39 0.34 0.39 0.27 0.34 0.39 0.34 0.39 0.34 0.39
Calculator 494 0.19 0.41 0.46 0.41 0.46 0.41 0.46 0.24 0.45 0.50 0.45 0.50 0.45 0.50
CorssLexic 470 0.37 0.44 0.44 0.44 0.44 0.44 0.44 0.39 0.45 0.46 0.46 0.46 0.46 0.46
DFGraph
Coverage

683 0.40 0.40 0.61 0.40 0.61 0.40 0.61 0.40 0.40 0.61 0.40 0.61 0.40 0.61

Dynamic
Parser

3,378 0.51 0.68 0.68 0.68 0.68 0.68 0.68 0.51 0.68 0.68 0.68 0.68 0.68 0.68

Graph
Coverage

385 0.49 0.55 0.78 0.55 0.78 0.55 0.78 0.49 0.55 0.78 0.55 0.78 0.55 0.78

JMines 263 0.25 0.25 0.30 0.25 0.30 0.25 0.30 0.77 0.77 0.78 0.77 0.78 0.77 0.78
Logic
Coverage

436 0.50 0.86 0.87 0.86 0.87 0.86 0.87 0.50 0.86 0.87 0.86 0.87 0.86 0.87

MM Cov-
erage

845 0.17 0.30 0.31 0.30 0.31 0.30 0.31 0.17 0.30 0.31 0.30 0.31 0.30 0.31

Poly 259 0.49 0.96 0.97 0.97 0.97 0.97 0.97 0.51 0.97 0.97 0.97 0.97 0.97 0.97
Roc 95 0.22 0.27 0.27 0.32 0.32 0.43 0.43 0.22 0.27 0.27 0.32 0.32 0.43 0.43
Snake 572 0.29 0.39 0.74 0.70 0.74 0.70 0.74 0.38 0.40 0.74 0.70 0.74 0.70 0.74
TicTacToe 1,045 0.05 0.44 0.44 0.47 0.47 0.49 0.49 0.05 0.49 0.49 0.49 0.49 0.50 0.50
Tree 113 0.21 0.53 0.62 0.57 0.62 0.57 0.62 0.29 0.59 0.62 0.62 0.62 0.62 0.62
Triangle 263 0.02 0.49 0.53 0.63 0.64 0.63 0.64 0.02 0.49 0.53 0.65 0.65 0.65 0.65
Vending
Machine

108 0.00 0.60 0.69 0.83 0.83 0.83 0.83 0.00 0.61 0.71 0.84 0.84 0.84 0.84

Average 9,722 0.34 0.53 0.60 0.57 0.61 0.58 0.61 0.37 0.56 0.62 0.59 0.62 0.60 0.63

only the rejected coverage column is in bold.
In addition to the p-values, W values, and Wcritical

values, Table 7 also reports the effect sizes for each pair
when the number of differences is greater then 9. The effect
size r is computed by the z-ratio Z over the square root of
Ntotal, where Ntotal is the total number of all samples. In
this experiment, Ntotal = 34. Because the Wilcoxon signed
rank test cannot calculate Z values when N ≤ 9, we were
not able to compute the effect sizes for the pairs whose
N ≤ 9. The thresholds for small effect, medium effect, and
large effect are 0.1, 0.3, and 0.5, respectively. Therefore, all
pairs whose N > 9 have large effect sizes.

Although Tables 5 and 6 show that a more precise OS
can detect a higher average proportion of faults than a less
precise OS, the results of the Wilcoxon signed-rank test
showed that the proportion of faults detected by a more
precise OS might not be significantly different from that of a
less precise OS (such as {OS1, OS5}). Therefore, the answer
to RQ1 is: for any two OSes that have different precision,
the more precise OS is not necessarily more effective than
the less precise OS, with the same frequency and test inputs.

We also used the Wilcoxon signed rank test for
HypothesesB to decide if the frequency of checking vari-
ables impacts the effectiveness of OSes for five pairs {OT1,
OS1}, {OT2, OS2}, {OT3, OS3}, {OT4, OS4}, and {OT5,
OS5} for EC and EPC. The results in Table 8 showed that
we can reject H0 for four pairs: {OT1, OS1}, {OT3, OS3},
{OT5, OS5} for EC and {OT3, OS3} for EPC. We were not

able to reject H0 for four other pairs: {OT4, OS4} for EC
and {OT1, OS1}, {OT2, OS2}, and {OT5, OS5} for EPC.
The numbers of different pairs of {OT2, OSs} for EC and
{OT4, OS4} for EPC were less than 5, thus the Wilcoxon
signed rank test could not be applied to these two pairs. In
Table 8, we mark the rejected pairs in bold, similar to Table
7. From Tables 5 and 6, the difference between the average
proportions of faults detected by OTi and OSi (1 ≤ i ≤ 5)
for both EC and EPC is very small. Therefore, the answer
to RQ2 is: checking program states multiple times was not
always significantly more effective than checking the same
program states once.

Tables 5 and 6 show that the edge-adequate tests reveal
almost the same number of failures as the EP-adequate tests
with the same OS. We used the one-tailed Mann-Whitney
test (statistical significance level α = 0.05) [28] to look for
statistical evidence that EPC is more effective than EC. We
used the Mann-Whitney test because the comparison was
between two independent tests, EC and EPC, with the same
OS. We applied each OS to the edge-adequate and EP-
adequate tests for each program and then compared the
proportions of the faults detected by the two paired sets
of tests that have the same OS. Table 9 reports the detailed
results. Because the U values are between the lower and
upper limits and p− values are much greater than p (0.05).
we cannot reject H0 for HypothesesC . Therefore, no pairs
are marked in bold. The effect sizes are computed using the
same formula above. Since all the effect sizes are less than

17

TABLE 6
Effectiveness of Test Oracle Strategies, Part 2

Programs #Faults
Proportions of Faults Detected by Test Oracle Strategies

Edge Edge-Pair
NOS SIOS OT1 OT2 OT3 OT4 OT5 NOS SIOS OT1 OT2 OT3 OT4 OT5

ATM 257 0.19 0.30 0.68 0.67 0.69 0.77 0.80 0.21 0.32 0.69 0.67 0.70 0.78 0.80
BlackJack 56 0.27 0.34 0.38 0.34 0.38 0.34 0.39 0.27 0.34 0.38 0.34 0.38 0.34 0.39
Calculator 494 0.19 0.41 0.45 0.41 0.45 0.41 0.45 0.24 0.45 0.49 0.45 0.49 0.45 0.49
CorssLexic 470 0.37 0.44 0.44 0.44 0.44 0.44 0.44 0.39 0.45 0.46 0.45 0.46 0.45 0.46
DFGraph
Coverage

683 0.40 0.40 0.61 0.40 0.61 0.40 0.61 0.40 0.40 0.61 0.40 0.61 0.40 0.61

Dynamic
Parser

3,378 0.51 0.68 0.68 0.68 0.68 0.68 0.68 0.51 0.68 0.68 0.68 0.68 0.68 0.68

Graph
Coverage

385 0.49 0.55 0.71 0.55 0.71 0.55 0.71 0.49 0.55 0.71 0.55 0.71 0.55 0.71

JMines 263 0.25 0.25 0.26 0.25 0.26 0.25 0.26 0.77 0.77 0.78 0.77 0.78 0.77 0.78
Logic
Coverage

436 0.50 0.86 0.87 0.86 0.87 0.86 0.87 0.50 0.86 0.87 0.86 0.87 0.86 0.87

MM Cov-
erage

845 0.17 0.30 0.31 0.30 0.31 0.30 0.31 0.17 0.30 0.31 0.30 0.31 0.30 0.31

Poly 259 0.49 0.96 0.96 0.96 0.96 0.96 0.96 0.51 0.97 0.97 0.97 0.97 0.97 0.97
Roc 95 0.22 0.27 0.27 0.32 0.32 0.43 0.43 0.22 0.27 0.27 0.32 0.32 0.43 0.43
Snake 572 0.29 0.39 0.50 0.39 0.50 0.39 0.50 0.38 0.40 0.50 0.40 0.50 0.40 0.50
TicTacToe 1,045 0.05 0.44 0.47 0.47 0.47 0.49 0.49 0.05 0.49 0.49 0.49 0.49 0.50 0.50
Tree 113 0.21 0.53 0.62 0.57 0.62 0.57 0.62 0.29 0.59 0.62 0.62 0.62 0.62 0.62
Triangle 263 0.02 0.49 0.57 0.56 0.60 0.56 0.60 0.02 0.49 0.60 0.59 0.63 0.59 0.63
Vending
Machine

108 0.00 0.60 0.60 0.77 0.77 0.77 0.77 0.00 0.61 0.61 0.78 0.78 0.78 0.78

Average 9,722 0.34 0.53 0.58 0.55 0.59 0.56 0.59 0.37 0.56 0.60 0.57 0.61 0.58 0.61

0.20, all pairs have small effect sizes. Therefore, the answer
to RQ3: is that the stronger coverage criterion (EPC) was
not found to be more effective than the weaker criterion
(EC) with the same OS.

5.4.3 Costs of Test Oracle Strategies

Table 10 shows how many distinct assertions were created
by hand. Because eachOTi uses the same number of distinct
assertions as OSi, where 1 ≤ i ≤ 5, we put the costs
of both OSi and OTi in the same table. Since with the
same frequency, a more precise OS checks more outputs and
internal state variables than a less precise OS, more distinct
assertions were created for the more precise OSes. Thus, the
cost of OS5 was greater than any other OSi and the cost of
OT5 was greater than OT1 through OT4. Figure 8 shows the
costs of each OS. The numbers are derived from Table 10.
This figure also shows the number of distinct assertions on
each column since the differences between EC and EPC are
very small.

Since testers need to write test oracles for all outputs
and internal state variables that appear in all transitions
for each OT test oracle strategy, testers have to analyze the
effects of each transition by the end of each test. For the
experimental subjects, we had to analyze each transition and
write the same test oracles as for OSi, 1 ≤ i ≤ 5, because
each distinct transition produced different program states
by the end of the tests. Thus, the cost of OTi is equivalent
to that of OSi. Furthermore, OS1, OS3, OS5, OT1, OT3,

Fig. 8. Costs of Test Oracle Strategies. The numbers are derived from
Table 10.

and OT5 required similar numbers of distinct assertions but
have far more assertions than OS2, OS4, OT2, and OT4. This
was because object members checked by OS1, OS3, OS5,
OT1, OT3, and OT5 produced lots of assertions since we
checked the member variables of objects recursively (a deep
comparison). For the same OS, the EP-adequate tests did not
have many more distinct assertions than the edge-adequate
tests. This was because we did not need to create many more
mappings to satisfy EPC than the mappings created for EC,
as discussed in Section 5.2.

For completeness, Tables 11 and 12 show the total num-
bers of assertions used for each OS. As stated in Section
5.1, we use the number of distinct assertions for cost, not
the numbers in Tables 11 and 12. As before, Table 11

18

TABLE 7
Experimental Results for HypothesesA. Compares all pairs of OSes in terms of precision, with frequency held constant.

HypothesesA Pairs Edge Edge-Pair
p-values / W values Effect Sizes p-values / W values Effect Sizes

{NOS, SIOS} 0.0003 0.58 0.0003 0.58
{SIOS, OS1} 0.0008 0.54 0.0008 0.54
{SIOS, OS3} 0.0003 0.58 0.0005 0.56
{SIOS, OS5} 0.0003 0.58 0.0003 0.58
{OS1, OS3} N = 4 N/A N = 3 N/A
{OS3, OS5} N = 3 N/A N = 3 N/A
{OS1, OS5} |W | = 15 ≤Wcritical = 15 N/A |W | = 15 ≤Wcritical = 15 N/A
{OS2, OS5} 0.0008 2 0.0018 0.50
{OS4, OS5} 0.0018 0.50 |W | = 45 > Wcritical = 29 N/A
{SIOS, OS2} |W | = 36 > Wcritical = 26 N/A |W | = 28 > Wcritical = 22 N/A
{SIOS, OS4} |W | = 36 > Wcritical = 26 N/A |W | = 36 > Wcritical = 26 N/A
{OS2, OS3} 0.0018 0.50 |W | = 45 > Wcritical = 29 N/A
{OS2, OS4} N = 3 N/A N = 3 N/A
{SIOS, OT1} 0.0012 0.52 0.0012 0.52
{SIOS, OT3} 0.0005 0.56 0.0005 0.56
{SIOS, OT5} 0.0005 0.56 0.0003 0.58
{OT1, OT3} N = 4 N/A N = 4 N/A
{OT3, OT5} N = 4 N/A N = 4 N/A
{OT1, OT5} |W | = 21 > Wcritical = 17 N/A |W | = 21 > Wcritical = 17 N/A
{OT2, OT5} 0.0008 0.54 0.0008 0.54
{OT4, OT5} 0.0018 0.50 0.0018 0.50
{SIOS, OT2} |W | = 21 > Wcritical = 17 N/A |W | = 15 ≤Wcritical = 15 N/A
{SIOS, OT4} |W | = 21 > Wcritical = 17 N/A |W | = 21 > Wcritical = 17 N/A
{OT2, OT3} 0.0018 0.50 0.0018 0.50
{OT2, OT4} N = 3 N/A N = 3 N/A

TABLE 8
Experimental Results for HypothesesB Compares all pairs of OSes in terms of frequency, with precision held constant.

HypothesesB Pairs Edge Edge-Pair
p-values / W values Effect Sizes p-values / W values Effect Sizes

{OT1, OS1} 0.0969 0.28 |W | = 19 ≤Wcritical = 24 N/A
{OT2, OS2} N = 4 N/A |W | = 15 ≤Wcritical = 15 N/A
{OT3, OS3} |W | = 45 > Wcritical = 29 N/A |W | = 28 > Wcritical = 22 N/A
{OT4, OS4} |W | = 15 ≤Wcritical = 15 N/A N = 4 N/A
{OT5, OS5} |W | = 28 > Wcritical = 22 N/A |W | = 15 ≤Wcritical = 15 N/A

TABLE 9
Experimental Results for HypothesesC . Compares pairs of test coverage criteria with the OS held constant.

HypothesesC Pairs Lower Upper Uvalue p− value Z − value Effect Sizes
Limit Limit r − value

{NOS (EC), NOS (EPC)} 96 193 123 0.2358 -0.72 0.12
{SIOS (EC), SIOS (EPC)} 96 193 120.5 0.2090 -0.81 0.14
{OS1 (EC), OS1 (EPC)} 96 193 126 0.2676 -0.62 0.11
{OS2 (EC), OS2 (EPC)} 96 193 126 0.2676 -0.62 0.11
{OS3 (EC), OS3 (EPC)} 96 193 127 0.2776 -0.59 0.10
{OS4 (EC), OS4 (EPC)} 96 193 127 0.2776 -0.59 0.10
{OS5 (EC), OS5 (EPC)} 96 193 129 0.2981 -0.53 0.09
{OT1 (EC), OT1 (EPC)} 96 193 124 0.2451 -0.69 0.12
{OT2 (EC), OT2 (EPC)} 96 193 124 0.2451 -0.69 0.12
{OT3 (EC), OT3 (EPC)} 96 193 122 0.2236 -0.76 0.13
{OT4 (EC), OT4 (EPC)} 96 193 122 0.2236 -0.76 0.13
{OT5 (EC), OT5 (EPC)} 96 193 124 0.2451 -0.69 0.12

19

shows the number of assertions for the high frequency test
oracle strategies (OS1-OS5), plus NOS and SIOS, and Table
12 shows the number of assertions for the low frequency
strategies (OT1-OT5) as well as NOS and SIOS.

Fig. 9. Averages of Cost-effectiveness. Based on formula 1 over all
programs.

Fig. 10. Averages of Cost-effectiveness Below 0.02. This figure expands
six entries from Figure 9 to show them on a larger scale.

5.4.4 Cost-Effectiveness of Test Oracle Strategies
Figure 9 gives the average cost-effectiveness from formula 1
over all the programs for EC and EPC. The figure shows
that the strategies that check “all object members” (the
odd numbered OSes and OTs) are simply not cost-effective.
Checking all object members is clearly expensive, and the
data show that they do not reveal significantly more failures.
The other strategies are shown on a different scale in Figure
10 to better see their differences. Figure 9 shows that SIOS
is the most cost-effective, followed by OS2, OT2, OS4, and
OT4. The details about the cost-effectiveness of OSes for
EC and EPC are shown in Tables 13 and 14. As stated in
Section 5.1, the cost-effectiveness of NOS is not considered.
Since we only measure the number of assertions generated,
and NOS needs no assertions, its cost-effectiveness would be
incomparable. We omit the cost of generating tests because
it is a constant across all OSes. However, because of NOS’s
extremely low effectiveness, its cost really should include
the cost of generating the two-thirds of the failure-causing
tests that are wasted by not checking their results at all.
More discussion is in Section 5.5.

5.5 Discussion and Recommendations
This section discusses the experimental results from five as-
pects. Section 5.5.1 compares the subsumption relationship
among OSes from theoretical and empirical perspectives.

Section 5.5.2 generally discusses the effectiveness of OSes
based on the experimental results. Sections 5.5.3 and 5.5.4
discusses RQ2 and RQ3. Section 5.5.5 presents general guid-
ance for selecting OSes.

5.5.1 Comparing Theoretical and Empirical Results for OS
Subsumption Relationships

We found statistical evidence that the more precise OS was
more effective in terms of the proportion of failures revealed
than the less precise OS for several pairs, with the same
test inputs and frequencies. According the definition of OS,
more precise OSes subsume less precise OSes. Figures 11
and 12 show the empirical results of these subsumption
relationships among the OSes that have different precision
but the same frequency. An arrow from strategy OSA to
OSB indicates that our data showed that OSA is more
effective that OSB . For example, Figure 11 shows that OS3
is more effective than OS2, which is more effective than
SIOS. All strategies are more effective than NOS. Figure
11 shows the more effective relationships among just the OS
strategies, plus SIOS and NOS. Figure 12 shows the more
effective relationships among the OT strategies, plus SIOS
and NOS.

Figure 5 gave the theoretical subsumption relationships
among different OSes and OTs. In theory, OS5 subsumes
OS3, which subsumes OS1. OS4 subsumes OS2. OT5 sub-
sumes OT3, which subsumes OT1. OT4 subsumes OT2,
which subsumes SIOS. By comparing Figure 5 to Figure 11
and 12, however, statistical analysis shows that an OSA that
subsumes another OSB in theory is not necessarily more
effective than OSB in practice. Generally, this demonstrates
that although subsumption indicates a theoretical differ-
ence, subsumption does not always lead to a difference in
practice. While it is probably safe, on average, to assume
that if OSA subsumes OSB , OSA will be at least as effective
as OSB , OSA is not necessarily more effective. It is possible
that if the difference in precision between two OSes is small,
there will be little or no difference in the effectiveness of the
OSes.

Note that in Figures 11 and 12, we did not use transitivity
for most OS pairs. We explicitly ran the tests among all the
pairs except the comparisons between NOS and the other
OSes. For an effective relationship like OS5-OS2-SIOS-NOS
in Figure 11, we ran tests on the pairs {NOS, SIOS}, {SIOS,
OS2}, {SIOS, OS5}, and {OS2, OS5}. In the experiments,
we did not compare NOS with other OSes because NOS is
much less effective than, and incomparable with, the others.
Moreover, we can use transitivity to determine that NOS
is statistically different from the other OSes. For the first
group of hypotheses, we used the one-tailed (not two-tailed)
Wilcoxon signed-rank test. This means that for each subject,
the values forOSi (1≤ i≤ 5) are greater than or equal to the
values for SIOS, and the values for SIOS are greater than or
equal to the values for NOS. If OSi (1 ≤ i ≤ 5) is statistically
different from SIOS and SIOS is statistically different from
NOS, OSi (1 ≤ i ≤ 5) is statistically different from NOS
because the differences between the values for OSi (1 ≤ i ≤
5) and those for NOS are even greater than the differences
between the values for OSi (1 ≤ i ≤ 5) and those for SIOS.

20

TABLE 10
Cost of Test Oracle Strategies–Total Number of Distinct Assertions

Programs

Cost of Test Oracle Strategies
Edge Edge-Pair

NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5
OT1 OT2 OT3 OT4 OT5 OT1 OT2 OT3 OT4 OT5

ATM 0 6 49 34 49 50 74 0 6 49 34 49 50 74
BlackJack 0 3 552 3 552 3 552 0 3 552 3 552 0 552
Calculator 0 9 123 9 123 9 123 0 9 123 9 123 9 123
CorssLexic 0 7 127 7 127 7 127 0 7 127 7 127 7 127
DFGraph
Coverage

0 7 163 7 163 7 163 0 7 163 7 163 7 163

Dynamic
Parser

0 15 23 15 23 15 23 0 15 23 15 23 15 23

Graph
Coverage

0 11 156 11 156 11 156 0 11 156 11 156 11 156

JMines 0 1 792 82 792 82 792 0 1 792 82 792 82 792
Logic Cov-
erage

0 8 181 8 181 8 181 0 8 181 8 181 8 181

MM Cov-
erage

0 16 587 16 587 16 587 0 16 584 16 587 16 587

Poly 0 6 12 10 12 10 12 0 6 14 12 14 12 14
Roc 0 22 66 108 152 164 211 0 22 66 108 152 164 211
Snake 0 8 463 8 463 8 463 0 8 463 8 463 8 463
TicTacToe 0 3 33 6 36 60 90 0 3 33 6 36 60 90
Tree 0 3 23 14 34 14 34 0 3 23 14 34 14 34
Triangle 0 5 42 6 51 9 51 0 5 42 6 51 6 51
Vending
Machine

0 6 17 9 17 9 18 0 6 19 9 20 9 21

Total 0 136 3,409 272 3,518 398 3,657 0 136 3,413 274 3,523 400 3,662

TABLE 11
Cost of Test Oracle Strategies–Total Number of All Assertions, Part 1 (OS1-OS5)

Programs
Cost of Test Oracle Strategies

Edge Edge-Pair
NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5

ATM 0 23 156 51 156 83 188 0 40 250 103 250 175 322
BlackJack 0 27 1,313 27 1,313 27 1,313 0 52 2,473 52 2,585 52 2,585
Calculator 0 168 1,908 168 1,908 168 1,908 0 894 10,047 1,313 10,047 1,323 10,047
CorssLexic 0 210 1,304 410 1,304 410 1,304 0 757 4,852 1,261 4,852 1,261 4,852
DFGraph
Coverage

0 79 1,091 167 1,091 167 1,091 0 644 9,016 1,139 9,016 1,139 9,016

Dynamic
Parser

0 409 456 409 456 409 456 0 1,234 1,417 1,234 1,417 1,234 1,417

Graph
Coverage

0 208 1,796 448 1,796 448 1,796 0 606 4,904 951 4,904 951 4,904

JMines 0 42 6,428 805 6,428 805 6,428 0 152 21,553 1,911 21,553 1,911 21,553
Logic
Coverage

0 95 1,471 155 1,471 155 1,471 0 484 7,766 674 7,766 674 7,766

MM Cov-
erage

0 229 4,911 541 5,208 541 5,208 0 571 12,746 1,139 13,226 1,139 13,226

Poly 0 58 81 91 91 91 91 0 238 333 357 357 357 357
Roc 0 133 331 494 694 761 973 0 313 829 1194 1710 1867 2410
Snake 0 121 3,229 450 3,229 450 3,229 0 342 9,128 718 9,128 718 9,128
TicTacToe 0 8 160 16 167 267 437 0 17 236 33 252 609 828
Tree 0 49 209 87 247 87 247 0 147 587 329 769 329 769
Triangle 0 37 310 90 315 90 315 0 272 2,290 538 2,340 538 2,340
Vending
Machine

0 89 156 96 163 96 170 0 211 380 229 398 229 421

Total 0 1,985 25,310 4,505 26,037 5,055 26,625 0 6,974 88,807 13,185 90,570 14,506 91,941

21

TABLE 12
Cost of Test Oracle Strategies–Total Number of All Assertions, Part 2 (OT1-OT5)

Programs
Cost of Test Oracle Strategies

Edge Edge-Pair
NOS SIOS OT1 OT2 OT3 OT4 OT5 NOS SIOS OT1 OT2 OT3 OT4 OT5

ATM 0 23 68 42 69 80 92 0 40 85 56 87 99 119
BlackJack 0 27 475 27 475 27 475 0 52 556 52 556 52 556
Calculator 0 168 322 322 322 322 322 0 894 1,323 1,313 1,323 1,323 1,323
CorssLexic 0 210 420 210 420 210 420 0 757 1,288 757 1,288 757 1,288
DFGraph
Coverage

0 79 262 79 262 79 262 0 644 1,675 644 1,675 644 1,675

Dynamic
Parser

0 409 428 409 428 409 428 0 1,234 1,260 1,234 1,260 1,234 1,260

Graph
Coverage

0 208 423 208 423 208 423 0 606 920 606 920 606 920

JMines 0 42 792 42 792 42 792 0 152 792 42 792 42 1,802
Logic
Coverage

0 95 801 95 801 95 801 0 484 1,870 484 1,870 484 1,870

MM Cov-
erage

0 229 3,188 229 3,188 229 3,188 0 571 4,832 571 4,832 571 4,832

Poly 0 58 63 68 68 68 68 0 238 250 250 250 250 250
Roc 0 133 185 424 476 624 676 0 313 417 969 1073 1478 1578
Snake 0 121 359 121 359 121 359 0 342 595 342 595 342 595
TicTacToe 0 8 80 12 80 80 85 0 17 111 23 112 118 118
Tree 0 49 111 62 111 62 111 0 147 211 194 211 194 211
Triangle 0 37 85 42 85 42 90 0 272 488 295 488 295 511
Vending
Machine

0 89 90 94 94 94 94 0 211 212 219 219 219 219

Total 0 1,985 8,152 2,486 8,453 2,792 8,686 0 6,974 16,885 8,061 17,551 8,708 19,137

Fig. 11. More effective relationships among the high frequency oracle
strategies (OSes). Edges are drawn from more effective strategies to
less effective strategies.

5.5.2 Discussion of the Effectiveness of OSes
In Table 5, only 0.63 of the failure were revealed by the EP-
adequate tests for the most precise OS (OS5). This is a low
score considering that 90% mutation is considered a good
test set [1]. The test inputs were generated to satisfy state
invariants in the state machine diagrams while mutation-
adequate tests usually require more test inputs. This implies
that mutation coverage is generally more effective at reveal-
ing failures than EC and EPC on the model. A previous
paper [25] found that mutation can find more faults than
EPC at the unit testing level. Furthermore, the system tests
generated in this paper could only call methods that are

Fig. 12. More effective relationships among the low frequency oracle
strategies (OTs). Edges are drawn from more effective strategies to less
effective strategies.

mapped to the models at a high level.
Tables 5 and 6 show that NOS was not very good at

revealing failures. If we assume the edge coverage tests
were able to reveal a maximum of 5952 failures (the number
revealed by OS5), then NOS only revealed 3342 out of a
possible 5952 failures, or only 56%. That is, 44% of the
effort of designing and building the tests was wasted! In
our interpretation, this is like buying a dozen eggs at the
grocery but only eating six or seven because we’re too lazy

22

TABLE 13
Cost-effectiveness of Test Oracle Strategies, Part 1

Programs
Cost-effectiveness of Test Oracle Strategies

Edge Edge-Pair
SIOS OS1 OS2 OS3 OS4 OS5 SIOS OS1 OS2 OS3 OS4 OS5

ATM 0.0493 0.0145 0.0197 0.0145 0.0156 0.0108 0.0525 0.0146 0.0200 0.0146 0.0156 0.0108
BlackJack 0.1131 0.0007 0.1131 0.0007 0.1131 0.0007 0.1131 0.0007 0.1131 0.0007 0.1131 0.0007
Calculator 0.0461 0.0038 0.0461 0.0038 0.0461 0.0038 0.0502 0.0040 0.0502 0.0040 0.0502 0.0040
CrossLexic 0.0626 0.0035 0.0635 0.0035 0.0635 0.0035 0.0641 0.0036 0.0650 0.0036 0.0650 0.0036
DFGraph
Coverage

0.0573 0.0037 0.0573 0.0037 0.0573 0.0037 0.0573 0.0037 0.0573 0.0037 0.0573 0.0037

Dynamic
Parser

0.0454 0.0296 0.0454 0.0296 0.0454 0.0296 0.0454 0.0296 0.0454 0.0296 0.0454 0.0296

Graph
Coverage

0.0496 0.0050 0.0496 0.0050 0.0496 0.0050 0.0496 0.0050 0.0496 0.0050 0.0496 0.0050

JMines 0.2510 0.0004 0.2510 0.0004 0.2510 0.0004 0.7681 0.0010 0.7681 0.0010 0.7681 0.0010
Logic Cov-
erage

0.1075 0.0048 0.1075 0.0048 0.1075 0.0048 0.1075 0.0048 0.1075 0.0048 0.1075 0.0048

MM Cov-
erage

0.0186 0.0005 0.0186 0.0005 0.0186 0.0005 0.0186 0.0005 0.0186 0.0005 0.0186 0.0005

Poly 0.1602 0.0804 0.0965 0.0804 0.0965 0.0804 0.1609 0.0689 0.0804 0.0689 0.0804 0.0689
Roc 0.0124 0.0041 0.0029 0.0021 0.0026 0.0020 0.0124 0.0041 0.0029 0.0021 0.0026 0.0020
Snake 0.0492 0.0016 0.0874 0.0016 0.0874 0.0016 0.0494 0.0016 0.0876 0.0016 0.0876 0.0016
TicTacToe 0.1480 0.0135 0.0775 0.0129 0.0081 0.0054 0.1617 0.0147 0.0809 0.0135 0.0083 0.0056
Tree 0.1770 0.0269 0.0405 0.0182 0.0405 0.0182 0.1976 0.0269 0.0442 0.0182 0.0442 0.0182
Triangle 0.0973 0.0127 0.1052 0.0125 0.1052 0.0125 0.0973 0.0127 0.1084 0.0128 0.1084 0.0128
Vending
Machine

0.1003 0.0408 0.0926 0.0490 0.0926 0.0463 0.1019 0.0375 0.0936 0.0421 0.0936 0.0401

Average 0.0909 0.0145 0.0750 0.0143 0.0706 0.0135 0.1240 0.0138 0.1055 0.0133 0.1009 0.0125

to cook the others. Thus, checking runtime exceptions is not
enough.

We also noticed that SIOS can reveal more than 80% of
the failures detected by OS5 but with many fewer asser-
tions. Test inputs were generated to satisfy state invariants,
thus checking the limited number of outputs and internal
state variables used in the state invariants can reveal many
failures. In contrast, checking more program states (as OS5
does) that are not affected by the test inputs is not likely
to reveal more failures. If more program states have to
be checked, checking return values or parameter members
(OS2 and OS4) is more cost-effective, while checking object
members (OS1, OS3, OS5, OT1, OT3, and OT5) is much more
costly but adds little in terms of effectiveness.

5.5.3 Discussion of RQ2

The results show that checking outputs and internal state
variables after each transition was not significantly more
effective than checking the same outputs and internal state
variables once for both EC and EPC. Our belief is that pro-
gram states are changed when execution enters a different
state of a state machine diagram. Therefore, most faults
should be revealed as failures if all outputs and internal
state variables are checked only once, as the OT strategies
do. Checking the same outputs and internal state variables
multiple times did not help much in our study. Therefore,
if testers use a tool such as STALE to generate test oracles
automatically, they should generate test oracles after each

transition to achieve higher effectiveness. However, if testers
write test oracles by hand, they should check outputs and
internal state variables at the end of the automated tests.
This lets them avoid writing redundant test oracles for
transitions that appear multiple times in tests.

5.5.4 Discussion of RQ3

We found statistical evidence that EP-adequate tests were
not significantly more effective than edge-adequate tests
(RQ3). This may be because EPC did not require many
more mappings on the state machine diagrams, even though
EPC had more tests. The models could affect the results.
If a model has lots of nodes that have multiple incoming
and outgoing edges, the edge-pairs could be very different
from edges. Then EPC could result in stronger tests than
EC. Furthermore, if a state machine diagram is designed
with multiple variables, then each state represents multiple
variable states (constraints). EPC abstract tests are usually
more complex than EC abstract tests, and tour the same
states multiple times. Satisfying the constraints (finding
appropriate test values) in complex tests is harder because it
causes more program states, when compared with less com-
plex tests. In this case, EPC may need more mappings than
EC. It should be noted that this result cannot be assumed to
apply to EPC and EC on source code, since this study was
restricted to deriving tests from state machine diagrams,
which tend to be simpler than control flow graphs.

23

TABLE 14
Cost-effectiveness of Test Oracle Strategies, Part 2

Programs
Cost-effectiveness of Test Oracle Strategies

Edge Edge-Pair
SIOS OT1 OT2 OT3 OT4 OT5 SIOS OT1 OT2 OT3 OT4 OT5

ATM 0.0493 0.0139 0.0196 0.0141 0.0154 0.0108 0.0525 0.0141 0.0198 0.0143 0.0156 0.0108
BlackJack 0.1131 0.0007 0.1131 0.0007 0.1131 0.0007 0.1131 0.0007 0.1131 0.0007 0.1131 0.0007
Calculator 0.0461 0.0037 0.0461 0.0037 0.0461 0.0037 0.0502 0.0039 0.0502 0.0039 0.0502 0.0039
CrossLexic 0.0626 0.0035 0.0626 0.0035 0.0626 0.0035 0.0641 0.0036 0.0641 0.0036 0.0641 0.0036
DFGraph
Coverage

0.0573 0.0037 0.0573 0.0037 0.0573 0.0037 0.0573 0.0037 0.0573 0.0037 0.0573 0.0037

Dynamic
Parser

0.0454 0.0296 0.0454 0.0296 0.0454 0.0296 0.0454 0.0296 0.0454 0.0296 0.0454 0.0296

Graph
Coverage

0.0496 0.0046 0.0496 0.0046 0.0496 0.0046 0.0496 0.0046 0.0496 0.0046 0.0496 0.0046

JMines 0.2510 0.0003 0.2510 0.0003 0.2510 0.0003 0.7681 0.0010 0.7681 0.0010 0.7681 0.0010
Logic Cov-
erage

0.1075 0.0048 0.1075 0.0048 0.1075 0.0048 0.1075 0.0048 0.1075 0.0048 0.1075 0.0048

MM Cov-
erage

0.0186 0.0005 0.0186 0.0005 0.0186 0.0005 0.0186 0.0005 0.0186 0.0005 0.0186 0.0005

Poly 0.1602 0.0801 0.0961 0.0801 0.0961 0.0801 0.1609 0.0689 0.0804 0.0689 0.0804 0.0689
Roc 0.0124 0.0041 0.0029 0.0021 0.0026 0.0020 0.0124 0.0041 0.0029 0.0021 0.0026 0.0020
Snake 0.0492 0.0011 0.0492 0.0011 0.0492 0.0011 0.0494 0.0011 0.0494 0.0011 0.0494 0.0011
TicTacToe 0.1480 0.0142 0.0775 0.0130 0.0082 0.0054 0.1617 0.0148 0.0810 0.0136 0.0084 0.0056
Tree 0.1770 0.0269 0.0405 0.0182 0.0405 0.0182 0.1976 0.0269 0.0442 0.0182 0.0442 0.0182
Triangle 0.0973 0.0136 0.0938 0.0118 0.0938 0.0118 0.0973 0.0143 0.0976 0.0124 0.0976 0.0124
Vending
Machine

0.1003 0.0354 0.0854 0.0452 0.0854 0.0427 0.1019 0.0322 0.0864 0.0389 0.0864 0.0370

Average 0.0909 0.0142 0.0715 0.0139 0.0672 0.0132 0.1240 0.0135 0.1021 0.0131 0.0976 0.0123

Briand et al. [8] found similar results for RQ3 when they
compared round-trip path coverage (RT) [7] to disjunct coverage
(DC) [8] with the very precise test oracle strategy. They used
statecharts that have guard constraints while we used state
invariant constraints. The guard constraints can be trans-
formed into disjunctive normal form (conjunctive expressions
combined using the or operator). For RT, testers need to
generate tests to satisfy all guard constraints (each guard
constraint is treated as a whole and only one conjunctive
expression needs to be satisfied). For DC, testers need to
generate additional tests to satisfy all conjuncts in the guard
constraints. Thus, DC is expected to be more effective than
RT when the statecharts have disjunctive guard constraints.
One experiment showed that DC reveals the same failures
as RT for one of the four classes because that class has
no disjunctive guard constraints. In another experiment,
they used the category partition (CP) input-domain based
coverage criterion [37] to generate additional tests. They
found the tests generated by (DC + CP) revealed more
failures than DC and RT for two classes (CP was applied
only to two classes) because using CP generated more test
inputs.

Our experimental results for RQ3 indicate that a stronger
coverage criterion (EPC) may not reveal more failures than
a weaker coverage criterion (EC) for model-based testing
(we used state machine diagrams). This is because applying
a stronger coverage criterion to a model will not always
generate more test inputs than a weaker coverage criterion

would. This result is in general agreement with Briand
et al.’s [8] findings. For example, if a statechart has no
disjunctive guard constraints, DC is as effective as RT in
terms of detecting faults even if DC subsumes RT. Therefore,
whether a stronger coverage criterion can reveal more faults
than a weaker coverage criterion depends on the model and
coverage criteria.

5.5.5 General Guidance
Checking program states frequently could require too many
assertions in tests. OT5 needed 8,686 assertions for EC
(19,137 for EPC) and OS5 needed 26,625 (91,941 for EPC),
as shown in Tables 11 and 12. Checking lots of program
states could cause the size of a JUnit test method to exceed
65,536 bytes, resulting in a compiler error. Since testers must
split these methods by hand, this adds an additional hidden
cost to achieve the additional precision.

Figure 9 shows that SIOS was the most cost-effective for
both EC and EPC. Given a time budget, testers can choose
an OS that maximizes the effectiveness. When the time
budget is tight, SIOS may be the only choice. Otherwise,
testers should choose OS2 or OS4 because they are almost
as effective as OS5 but require fewer assertions than OS5.

5.6 Threats to Validity
As in most software engineering studies, we cannot be sure
that the subject programs are representative. The results
may differ with other programs and models. We mitigated

24

that threat by choosing programs that varied by size, appli-
cation, and type. Another threat to external validity is that
we created UML state machine diagrams by hand. If the o-
riginal programmers created the state machines, they might
create different models. Nevertheless, STALE provides a
mechanism to reduce errors from the sate machine diagrams
when generating tests. We used STALE to create mappings
for transitions and constraints in state machine diagrams as
well as the associated test oracles. When concrete tests were
generated, the test oracle assertions for transitions and con-
straints were evaluated automatically. If the expected values
were not equal to the actual values, we checked the cause
of the error. If the error came from the UML diagram, we
corrected the diagram to ensure every constraint specified
in the diagram is satisfied in the concrete tests.

Another threat to external validity is that we generated
tests by using the tool STALE to create mappings by hand.
The results may have been different if we used different
mappings or coverage criteria or different automated tools
(none are available for this test scenario). We also experi-
mented only with model-based testing, although the ideas
about test oracles apply to any type of testing.

One construct validity threat is that we used muJava
to generate synthetic faults. Using real faults or another
mutation tool may yield different results. Another is that we
approximated cost by the number of assertions, a simplifi-
cation that was required to make the experiment practical. If
generating the assertions was partly or completely automat-
ed (currently not possible), that could change this analysis
and our conclusions dramatically. Another internal threat is
that the first author identified equivalent mutants by hand.
Mistakes could have affected the results in small ways.

6 CONCLUSIONS AND FUTURE WORK

This paper makes five contributions to software test oracle
research. First, this paper extends the traditional and fun-
damental RIP model to the RIPR model. This fundamental
result changes a basic concept in testing and is already
being reflected in the second edition of the Introduction to
Software Testing textbook [1] (under production). Second,
the paper introduces a formal definition for test oracle
strategy. Third, we define the concept of subsumption for
OSes. Fourth, it defines ten new test oracle strategies (OSes)
to reveal failures caused by model-based tests. Finally, we
empirically compared these ten new OSes with each other
and with two baseline OSes: the null test oracle strategy
(NOS) and the state invariant strategy (SIOS). Some of the
ten test oracle strategies and the empirical results apply
strictly to model-based testing. The other contributions are
more general and apply to any situation where test automa-
tion and test oracles are used.

The traditional RIP model has been around since the
1980s and has subtly guided testing research and practice.
However, once we started automating our tests in test
automation frameworks, we needed to include automated
checks to verify whether the result of the test was correct (a
test oracle). Since we cannot check the entire output state of
the program, a failure is only revealed to the tester if the test
oracle checks part of the output state that is incorrect. Thus
the RIPR model emphasizes that not only do the tests need

to cause faults to result in failures, the tester must also have
a way to observe those failures.

The ten novel test oracles vary in terms of precision (how
much of the state they observe) and frequency (how often
they observe the state). An important question is how much
of the state, and how frequently, do we need to observe to
reveal as many failures as possible with a reasonable cost.

In our experiment, we generated test inputs to satisfy
two graph coverage test criteria on 17 programs. The criteria
were edge coverage and edge-pair coverage as defined on
UML state machine diagrams. Then the twelve OSes were
applied to the edge-adequate and EP-adequate tests, result-
ing in 24 sets of tests for each program. These tests were run
against 9,722 faults for a total of 96,714,456 executions. We
recorded the effectiveness in terms of faults found and the
cost in terms of creating the test oracles.

The experiment yielded several findings. First, we found
that the practice of simply looking for runtime exceptions
(NOS) is not very effective, thus testers need to check
program states. This is significant because this fairly com-
mon practice is hugely wasteful. So using NOS is not
recommended for most cases. This is not fully reflected in
our cost-effectiveness model, because we did not include
the cost of generating the test itself. A poor OS such as
NOS causes testers to miss failures, and in such an extreme
case, it means that much of the effort of generating tests
is wasted. However, under an extremely tight time budget,
testers can still use NOS since it does not require testers to
check extra program states. Even though it wastes the effort
in generating a third of the tests, the cost of generating the
test oracle is zero. Second, we found that a more precise
OS was not always significantly more effective than a less
precise OS with the same test inputs and frequency. This
could happen if one OS is not much more precise than the
other.

Third, we found that the test oracle strategies with more
frequency (OSi) were not more effective than strategies
that checked with less frequency (OTi). This is good news
to practitioners because checking with more frequency is
more costly. Fourth, we found that the edge-pair coverage
(EPC) tests were not significantly stronger than the edge
coverage (EC) tests because EPC did not have much more
mappings (test inputs) than EC. Because Briand et al. [8]
had similar results, we conclude that whether a stronger
coverage criterion can reveal more faults than a weaker
coverage criterion depends on the model and coverage
criteria, as discussed in Section 5.5.

Finally, we found that the approach of checking the
state invariants from the state machine diagrams (SIOS) was
reasonably effective and relatively inexpensive, thus cost-
effective. If testers need more “bang for the buck,” we found
that checking return values and parameter members (OT2
and OT4) was almost as effective as checking everything
(OT5), but less expensive.

In the future, we hope to seek ways to improve SIOS,
as well as to develop new test oracle strategies. Since an-
swering RQ3 depends on the model and coverage criteria,
we hope to define guidance about which coverage criterion
should be applied if the model satisfies certain conditions
in model-based testing. Using mutation analysis to select
which program states to check also seems promising [32],

25

[42], but could be costly because testers have to run muta-
tion analysis before providing test oracle data.

REFERENCES

[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, Cambridge, UK, 2008.

[2] Paul Ammann, Jeff Offutt, Wuzhi Xu, and Nan Li.
Graph coverage web applications. Online, 2008.
http://cs.gmu.edu:8080/offutt/coverage/GraphCoverage, last
access Jan 2016.

[3] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is
mutation an appropriate tool for testing experiments? In Pro-
ceedings of the 27th International Conference on Software Engineering,
(ICSE 2005), pages 402–411, St. Louis, Missouri, May 2005. IEEE
Computer Society.

[4] Anonymous. Class of tree. Online, 2008.
http://homepage.cs.uiowa.edu/∼sriram/21/fall08/code/tree.java,
last access May 2013.

[5] Earl Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and
Shin Yoo. The oracle problem in software testing: A survey. IEEE
Transactions on Software Engineering, 41(5):507–525, May 2015.

[6] Earl Barr, Mark Harman, Phil McMinn, Muzammil
Shahbaz, and Shin Yoo. Repository of publica-
tions on the test oracle problem. Online, 2015.
http://crestweb.cs.ucl.ac.uk/resources/oracle repository/,
last access July 2015.

[7] Robert V. Binder. Testing Object-Oriented Systems-Models, Patterns,
and Tools. Addison-Wesley Object Technology, 1999.

[8] Lionel C. Briand, Massimiliano Di Penta, and Yvan Labiche.
Assessing and improving state-based class testing: A series of
experiments. IEEE Transaction on Software Engineering, 30(11):770–
793, November 2004.

[9] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik
Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer, 7:212–232, June
2005.

[10] Al Danial. CLOC. Online, 2006. http-
s://github.com/AlDanial/cloc, last access Dec 2015.

[11] Harvey Deitel and Paul Deitel. Java: How to program. Pearson
Education, Inc., 6th edition, 2005.

[12] Richard A. DeMillo and Jeff Offutt. Constraint-based automatic
test data generation. IEEE Transaction on Software Engineering,
17(9):900–910, September 1991.

[13] Gordon Fraser and Andreas Zeller. Mutation-driven generation of
unit tests and oracles. IEEE Transactions on Software Engineering,
38(2):278–292, 2012.

[14] Roy S. Freedman. Testability of software components. IEEE
Transactions on Software Engineering, 17(6):553–564, 1991.

[15] Object Management Group. Object constraint language. Online,
2006. http://www.omg.org/spec/OCL, last access July 2014.

[16] Nicolas Halbwachs. Synchronous programming of reactive sys-
tems - a tutorial and commented bibliography. In Tenth Interna-
tional Conference on Computer-Aided Verification, CAV98, Vancouver
(B.C.), LNCS 1427, pages 1–16. Springer Verlag, 1998.

[17] Hierons, Bogdanov, Bowen, Cleaveland, Derrick, Dick, Gheorghe,
Harman, Kapoor, Krause, Luttgen, Simons, Vilkomir, Woodward,
and Zedan. Using formal specifications to support testing. ACM
Computing Surveys, 41(2), January 2009.

[18] W. E. Howden. Theoretical and empirical studies of program
testing. IEEE Transactions on Software Engineering, 4(4):293–298,
July 1978.

[19] Lewis, Chase, and Coleman. Class of blackjack. Online, 2004.
http://faculty.washington.edu/moishe/javademos/blackjack/,
last access May 2013.

[20] Nan Li. A smart structured test automation language (SSTAL). In
The Ph.D. Symposium of 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST), ICST ’12, pages
471–474, Montreal, Quebec, Canada, April 2012.

[21] Nan Li. The structured test automation language framework.
Online, 2013. http://cs.gmu.edu/∼nli1/stale/, last access August
2014.

[22] Nan Li, Fei Li, and Jeff Offutt. Better algorithms to minimize the
cost of test paths. In Proceedings of the 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, pages
280–289, Montreal, Quebec, Canada, April 2012. IEEE Computer
Society.

[23] Nan Li and Jeff Offutt. An empirical analysis of test oracle
strategies for model-based testing. In Proceedings of the 2014 IEEE
Seventh International Conference on Software Testing, Verification and
Validation, Cleveland, Ohio, USA, April 2014.

[24] Nan Li and Jeff Offutt. A test automation language framework
for behavioral models. In The 11th Workshop on Advances in Model
Based Testing, Graz, Austria, April 2015.

[25] Nan Li, Upsorn Praphamontripong, and Jeff Offutt. An experi-
mental comparison of four unit test criteria: Mutation, edge-pair,
all-uses and prime path coverage. In Fifth Workshop on Mutation
Analysis (Mutation 2009), Denver CO, April 2009.

[26] David Lilja. Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press, New York, NY, USA, 2005.

[27] Barbara Liskov and John Guttag. Program Development in Java:
Abstraction, Specification, and Object-Oriented Design. Addison-
Wesley Professional, 1st edition, 2000.

[28] Richard Lowry. Concepts and Applications of Inferential Statistics.
Cambridge University Press, Cambridge, UK, 2008.

[29] Yu-Seung Ma and Jeff Offutt. Description of method-
level mutation operators for Java. Online, 2005.
http://cs.gmu.edu/∼offutt/mujava/mutopsMethod.pdf, last
access August 2014.

[30] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava : An au-
tomated class mutation system. Wiley’s journal of Software Testing,
Verificaton, and Reliability, 15(2):97–133, June 2005.

[31] Yu-Seung Ma, Jeff Offutt, Yong-Rae Kwon, and Nan Li. muJava
home page. Online, 2013. http://cs.gmu.edu/∼offutt/mujava/,
last access August 2014.

[32] Pedro Reales Mateo and Macario Polo Usaola. BacterioORACLE :
An oracle suggester tool. In Proceedings of the 25th International
Conference on Software Engineering and Knowledge Engineering, SEKE
2013, June 2013.

[33] Larry J. Morell. A Theory of Error-based Testing. PhD thesis,
University of Maryland, College Park, MD, USA, 1984. Technical
report TR-1395.

[34] Larry J. Morell. A theory of error-based testing. IEEE Transactions
on Software Engineering, 16(8):844–857, August 1990.

[35] Jeff Offutt. Automatic Test Data Generation. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, USA, 1988. Technical report
GIT-ICS 88/28.

[36] Jeff Offutt and Aynur Abdurazik. Generating tests from UML
specifications. In Proceedings of the Second IEEE International Con-
ference on the Unified Modeling Language (UML99), pages 416–429,
Fort Collins, CO, October 1999. Springer-Verlag Lecture Notes in
Computer Science Volume 1723.

[37] T. J. Ostrand and M. J. Balcer. The category-partition method for
specifying and generating fuctional tests. Communications of the
ACM, 31(6):676–686, June 1988.

[38] Mauro Pezzè and Michal Young. Software Testing and Analysis:
Process, Principles, and Techniques. Wiley, Hoboken, NJ, 2008.

[39] Mikko Rusma. Class of triangle. Online, 2004.
http://www.cs.du.edu/∼snarayan/sada/teaching/COMP3705/-
FilesFromCD/ Exercises/Lab4 WhiteBox/Triangle.java, last
access May 2013.

[40] Kavir Shrestha and Matthew Rutherford. An empirical evaluation
of assertions as oracles. In Proceedings of the 2011 Fourth IEEE
International Conference on Software Testing, Verification and Valida-
tion, pages 110–119, Berlin, Germany, March 2011. IEEE Computer
Society.

[41] Sara Sprenkle, Lori Pollock, Holly Esquivel, Barbara Hazelwood,
and Stacey Ecott. Automated oracle comparators for testing web
applications. In The 18th IEEE International Symposium on Soft-
ware Reliability Engineering, pages 117–126, Trollhattan, Sweden,
November 2007.

[42] Matt Staats, Gregory Gay, and Mats P. E. Heimdahl. Automated
oracle creation support, or: how I learned to stop worrying about
fault propagation and love mutation testing. In Proceedings of the
2012 International Conference on Software Engineering, ICSE 2012,
pages 870–880, Piscataway, NJ, USA, 2012. IEEE Press.

[43] Matt Staats, Michael W. Whalen, and Mats P. E. Heimdahl. Better
testing through oracle selection. In Proceedings of the 33rd Inter-

26

national Conference on Software Engineering (NIER Track), ICSE ’11,
pages 892–895, Waikiki, Honolulu, HI, USA, May 2011. ACM.

[44] Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl. Pro-
grams, tests, and oracles: The foundations of testing revisited. In
Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE ’11, pages 391–400, New York, NY, USA, 2011. ACM.

[45] Qing Xie and Atif Memon. Designing and comparing automated
test oracles for GUI-based software applications. ACM Transaction
on Software Engineering and Methodology, 16(1), February 2007.

[46] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. An em-
pirical comparison of the fault-detection capabilities of internal
oracles. In The 24th IEEE International Symposium on Software
Reliability Engineering, ISSRE ’13, Pasadena, CA, USA, November
2013.

