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Abstract

Mutation analysis is a powerful technique for as-
sessing and improving the quality of test data used
to unit test software. Unfortunately, current au-
tomated mutation analysis systems su�er from se-
vere performance problems. This paper presents a
new method for performing mutation analysis that
uses program schemata to encode all mutants for
a program into one metaprogram, which is subse-
quently compiled and run at speeds substantially
higher than achieved by previous interpretive sys-
tems. Preliminary performance improvements of
over 300% are reported. This method has the addi-
tional advantages of being easier to implement than
interpretive systems, being simpler to port across
a wide range of hardware and software platforms,
and using the same compiler and run-time support
system that is used during development and/or de-
ployment.
Keywords: Fault-based testing, mutation anal-

ysis, program schemata, software testing.

1 Introduction

Programs1 are tested by executing them against
test inputs and examining the resulting outputs
for errors. The intent of this testing process is to

increase our con�dence in the correctness of the
tested code. However, when testing is poorly con-
ducted, in an ad-hoc manner, our con�dence may
be misplaced. Poorly selected test data that does
not adequately exercise a program must be deemed
\low quality". Systematic testing techniques estab-
lish test data adequacy criteria that seek to mea-
sure the quality of the test data used to exercise
a given program. One powerful testing technique
that uses an adequacy criterion is mutation test-
ing [11, 13, 14]. In mutation testing, the test set
is analyzed to determine a quality measure called
the mutation adequacy score ; this process is called
mutation analysis.

Unfortunately, the conventional method of per-
formingmutation analysis, which requires interpret-
ing many slightly di�ering versions of the same pro-
gram, has signi�cant problems. Automated mu-
tation analysis systems based on the conventional
method are slow, laborious to build, and usually
unable to completely emulate the intended oper-
ational environment of the software being tested.
The principle reason conventional mutation anal-
ysis systems are slow is because they are interpre-
tive. As one study noted, \current implementations
of mutation tools are unacceptably slow and are
only suitable for testing relatively small programs"
[16]. Thus, while conventional systems have proved
useful for experimentation with mutation testing,
the widespread practical use of mutation analysis
has been stymied by the enormous computational

1We use the word program to denote the software under
test, which may be a complete programor some smaller unit,
such as a procedure.



requirements of these conventional systems. Con-
ventional, interpretive systems are also laborious to
build. To test software written in a speci�c lan-
guage, interpreter-based systems must incorporate
ALL the compilation characteristics and run-time
semantics of that language. For certain languages,
such as Ada, this is a formidable undertaking. Since
dialectical di�erences often exist, the degree of com-
pliance to language standards becomes a problem.
Also, subtle changes in program behavior may occur
since the program under test is no longer running
in its intended operational environment.

This paper presents a new method of perform-
ing mutation analysis that does not su�er from
these problems. Rather than mutating an inter-
mediate form of the program that then must be
interpreted, our Mutant Schema Generation (MSG)
method enables us to encode all mutations into
one source-level program. This program is then
compiled (once) with the same compiler used dur-
ing development and is executed in the same op-
erational environment at compiled-program speeds.
Since mutation systems based on mutant schemata
do not need to provide run-time semantics and en-
vironment, they are signi�cantly less complex and
easier to build than interpretive systems, as well as
more portable.

In section 2 we provide some background on mu-
tation testing. We introduce our Mutant Schema
Generation (MSG) method in section 3 and present
experimental results in section 4. Related work is
reviewed in section 5 and conclusions are presented
in section 6.

2 Mutation Testing

Background

Mutation analysis is a white-box testing technique
that is based on the notion that the quality of a
test set is related to the ability of that test set to
di�erentiate the program being tested from a set
of marginally di�erent, and presumably incorrect,
alternate programs. We say that a test case di�er-
entiates two programs if it causes the two programs
to produce di�erent outputs.

The process of performing mutation analysis on
some test set T , relative to a given program P , be-
gins by running P against every test case in T . If
the program computes an incorrect result, the test
set has ful�lled its obligation and the programmust
be changed. (Determining the correctness of these
results is the \Oracle" problem [24], which is com-

mon to all testing techniques and will not be dis-
cussed further.)
Assuming P computes correct results for every

test case in T , a set of alternate programs is pro-
duced. Each alternate program, Pi, known as a
mutant of P , is formed by modifying a single state-
ment of P according to some prede�ned modi�ca-
tion rule. Such modi�cation rules, G, are called
mutagenic operators or mutagens2. The syntactic
change itself is called the mutation. The original
program plus the mutant programs are collectively
known as the program neighborhood, N , of P [7].
Each mutant is run against the test cases in T .

If for some test case in T a mutant produces a re-
sult di�erent than that of the original program, we
say that test case has \killed" the mutant indicating
that the test case is able to detect the faults repre-
sented by the mutant. Once killed, these dead mu-
tants are not run against any additional test cases.
Some mutants, although syntactically di�erent,

are functionally identical to the original program.
We call these equivalent mutants. Although some
progress has been made in automatically identifying
which mutants are equivalent [4, 18], this remains a
time-consumingmanual task. Since no test case can
kill these equivalent mutants, they must be removed
from consideration in assessing test data quality.
The ratio of dead mutants to the remaining un-

di�erentiated live mutants is an indicator of test set
quality. In mutation analysis, the measure used to
express test set quality is the mutation adequacy
score, or MS. It is the percentage of potentially kil-
lable mutants that actually have been killed by T ,
or

MSG(P; T ) =
#Dead

#Mutants�#Equivalent
� 100%

where #Mutants is the total number of mutants in
the program neighborhood. We subscript the mu-
tation adequacy score MS by the set of mutagens
G to re
ect their in
uence on the number and type
of mutants produced. In practice, however, a stan-
dard set of mutagens is used and it is common for
this subscript to be omitted.
The major computational cost of mutation anal-

ysis is incurred when running the mutant programs
against the test cases. The number of mutants gen-
erated for a program is roughly proportional to the
number of data references times the number of data

2The terminology varies; they are also sometimes called
mutant operators, mutation operators, mutation transforma-

tions, and mutation rules [25]. Acree [1] uses the term mu-

tagenic operator; in biology, a mutagenic substance or factor
is simply called a mutagen.



objects [9], which is typically a large number. For
example, 385 mutants get generated for the proce-
dure Newton shown in Figure 1.

1 PROCEDURE Newton(Number:REAL; VAR Sqrt:REAL);

2 (* Find square root using Newton's method. *)

3 VAR

4 NewGuess, Delta, Epsilon : REAL;

5 BEGIN

6 Epsilon := 0.001;

7 NewGuess := (Number / 2.0) + 1.0;

8 Sqrt := 0.0;

9 Delta := NewGuess - Sqrt;

10 WHILE Delta > Epsilon DO

11 Sqrt := NewGuess;

12 NewGuess := (Sqrt+(Number/Sqrt))/2.0;

13 Delta := NewGuess - Sqrt;

14 IF Delta < 0.0 THEN

15 Delta := -Delta;

16 END;

17 END; (* END WHILE *)

18 END Newton;

Figure 1: Newton square root procedure

3 The MSG Method
Our approach to mutation analysis is based on pro-
gram schemata. A program schema is a template.
A partially interpreted program schema, as de�ned
by Baruch and Katz [5], syntactically resembles a
program, but contains free identi�ers, called ab-
stract entities, in place of some program variables,
datatype identi�ers, constants, and program state-
ments. A schema is created via a process of ab-
straction. A schema can be instantiated to form a
complete program by providing appropriate substi-
tutions for the abstract entities.
We have devised a new form of partially inter-

preted program schema, the mutant schema [23].
Mutant schemata are used to represent program
neighborhoods. A mutant schema has two com-
ponents, a metamutant and a metaprocedure set,
both of which are represented by syntactically valid
(i.e., compilable) constructs. The use of mutant
schemata signi�cantly speeds up mutation analysis.

3.1 Mutation Analysis Using Mutant

Schemata

The essence of this new method lies in the cre-
ation of a specially parameterized program called
the metamutant. Derived from the program under
test P , the metamutant is compiled using the same

standard compiler used to compile P and runs at
compiled-speeds. While running, the metamutant
functions as any of the alternate programs found in
N , the program neighborhood of P .
To explain how a metamutant represents the

functionality of a collection of mutants, we must
take a closer look at mutation analysis. Recall that
for a program P , each mutant of P is formed as a
result of a single modi�cation to some statement in
P . Thus, each mutant of Newton di�ers from the
original by only one mutated statement. The way
in which these statements are altered is dictated
by the set G of mutagens (modi�cation rules) used.
The discussion below uses the mutagenic operators
de�ned for the IMSCU system [19]; these rules are
typical of those in current use [2, 15].
Consider the arithmetic operator replacement

(AOR) rule, which states that each occurrence of an
arithmetic operator is replaced by each of the other
possible arithmetic operators. Each operator is also
replaced by special operators LEFTOP and RIGHTOP,
where LEFTOP returns the left operand (the right
is ignored) and RIGHTOP returns the right operand.
Applying this rule to the assignment statement of
line 9 of Newton

Delta := NewGuess - Sqrt;

yields the following six mutations:

Delta := NewGuess + Sqrt;

Delta := NewGuess * Sqrt;

Delta := NewGuess / Sqrt;

Delta := NewGuess MOD Sqrt;

Delta := NewGuess .LEFTOP. Sqrt;

Delta := NewGuess .RIGHTOP. Sqrt;

These mutations can be \generically" represented
as

Delta := NewGuess ArithOp Sqrt;

where ArithOp is a metaoperator abstract entity.
The generic representation above can be recast as

a syntactically valid statement

Delta := AOrr (NewGuess, Sqrt, 62);

where the AOrr function performs one arithmetic
operation. (The third argument, \62" in this ex-
ample, is used to identify the location, or change
point, in the program where this function is in-
voked.) AOrr is an example of a metaprocedure,
a function that corresponds to an abstract entity in
the schema. A statement that has been changed to
re
ect such a generic form is said to have been meta-
mutated. A metamutation is a syntactically valid
change that embodies other changes.



9 Original=> Delta := NewGuess - Sqrt;
--------- -----------------------------------
[Mutagens] / [Mutations]
----- -----------------------------------
[ABS] Delta := ABS(NewGuess) - Sqrt;
[ABS] Delta := NEGABS(NewGuess) - Sqrt;
[ABS] Delta := ZPUSH(NewGuess) - Sqrt;
[ABS] Delta := NewGuess - ABS(Sqrt);
[ABS] Delta := NewGuess - NEGABS(Sqrt);
[ABS] Delta := NewGuess - ZPUSH(Sqrt);
[ABS] Delta := ABS((NewGuess - Sqrt));
[ABS] Delta := NEGABS((NewGuess - Sqrt));
[ABS] Delta := ZPUSH((NewGuess - Sqrt));
[AOR] Delta := NewGuess + Sqrt;
[AOR] Delta := NewGuess * Sqrt;
[AOR] Delta := NewGuess / Sqrt;
[AOR] Delta := NewGuess MOD Sqrt;
[AOR] Delta := NewGuess .LEFTOP. Sqrt;
[AOR] Delta := NewGuess .RIGHTOP. Sqrt;
[CSR] Delta := 0.001 - Sqrt;
[CSR] Delta := 2 - Sqrt;
[CSR] Delta := 1.0 - Sqrt;
[CSR] Delta := 0 - Sqrt;
[CSR] Delta := NewGuess - 0.001;
[CSR] Delta := NewGuess - 2;
[CSR] Delta := NewGuess - 1.0;
[CSR] Delta := NewGuess - 0;
[SVR] Number := NewGuess - Sqrt;
[SVR] Sqrt := NewGuess - Sqrt;
[SVR] NewGuess := NewGuess - Sqrt;
[SVR] Epsilon := NewGuess - Sqrt;
[SVR] Delta := Number - Sqrt;
[SVR] Delta := Sqrt - Sqrt;
[SVR] Delta := Delta - Sqrt;
[SVR] Delta := Epsilon - Sqrt;
[SVR] Delta := NewGuess - Number;
[SVR] Delta := NewGuess - NewGuess;
[SVR] Delta := NewGuess - Delta;
[SVR] Delta := NewGuess - Epsilon;
[UOI] Delta := -NewGuess - Sqrt;
[UOI] Delta := ++(NewGuess) - Sqrt;
[UOI] Delta := --(NewGuess) - Sqrt;
[UOI] Delta := NewGuess - -Sqrt;
[UOI] Delta := NewGuess - ++(Sqrt);
[UOI] Delta := NewGuess - --(Sqrt);
[UOI] Delta := -(NewGuess - Sqrt);
[UOI] Delta := ++((NewGuess - Sqrt));
[UOI] Delta := --((NewGuess - Sqrt));

Figure 2: Newton line 9 and its mutations

All mutations produced from applying standard
mutagens can be represented by metamutations.
Figure 2 shows all the mutations of line 9 that result
from applying the complete set of IMSCU mutagens.
The following statement

dr :=

PUTr(OIr(AOrr(OIr(GETr(45),14),OIr(GETr(46),15),3),16),62);

embodies all of these alternatives.
When generating the metamutant of P , a list of

mutant descriptors, D, is produced. This list details
the alternate operations to be used at each change
point in the program. Using this list, the metamu-
tant is dynamically instantiated to function as any
of the mutants of P . A \driver" or \harness" in-
vokes the metamutant and directs which mutants
are to be instantiated. The driver takes care of

such administrative matters as managing test case
input and output, handling exceptions, comparing
mutant output to the original program output, and
recording results. The driver also computes and
reports statistics about the current status of the
mutants, primarily the mutation score. A common
driver is used for all metamutants.

Metaprocedures are syntactically valid represen-
tations of the abstract entities found in mutant
schemata. They can be categorized as either meta-
operators or metaoperands. Metaoperator proce-
dures perform one of a class of alternate opera-
tions. Each metaoperator is implemented using a
case structure. At run-time, a global parameter se-
lects which alternate operation to perform. This
parameter's value is set based on information con-
tained in the mutant descriptor list D. The AOrr

routine is an example of a metaoperator procedure;
a (simpli�ed) version of the AOrr function is given
in Figure 3.

PROCEDURE AOrr

(LeftOp,RightOp:REAL; ChangePt:INTEGER):REAL;

BEGIN

CASE Variant(ChangePt) OF

aoADD: RETURN LeftOp + RightOp;

| aoSUB: RETURN LeftOp - RightOp;

| aoMULT: RETURN LeftOp * RightOp;

| aoDIV: RETURN LeftOp / RightOp;

| aoMOD: RETURN LeftOp MOD RightOp;

| aoRIGHT: RETURN RightOp;

| aoLEFT: RETURN LeftOp;

ELSE

Error( "AOrr CASE out of range" );

RETURN 0.0;

END;

END AOrr;

Figure 3: Simpli�ed version of Arithemetic
Operation function.

Creating metaoperator procedures is a straight-
forward but tedious task. Many metaoperator pro-
cedures are identical in form and di�er only in the
type declarations of their formal parameters and re-
turn value. The nature and number of metaopera-
tor procedures needed is a function of

1. G, the set of mutagens,
2. L, the language of P ,

and sometimes
3. P , the program.

Metaoperators that depend only on G and L are
said to be intrinsic. In languages that do not sup-
port user-de�ned types, such as Fortran, all meta-
operators are intrinsic and can be generated once,
independent of any particular program, and placed
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in a static metaprocedure library. Metaoperators
that depend on G, L, and P are said to be P-
derived. Only strongly-typed languages, such as
Modula-2 or Ada, that allow programs with user-
de�ned types have P -derived metaoperators. For
these languages the intrinsic metaprocedure library
must be augmented by the P -derived metaoperator
routines generated using information from P , the
speci�c program being tested.

Metaoperand procedures reference one of a set of
program variables. The actual variable referenced
is determined at run-time via a parameter similar
to that of the metaoperator procedures. The meta-
operand procedures are unique to each program P

and must be generated anew for each program. Al-
though the implementation details for metaoperand
procedures is in
uenced by the available features in
L, such as scope rules, type checking rules, avail-
ability of pointers, and nesting rules, in most cases
a scheme using arrays can be used.

A conceptual model of applying the MSG method
is given in Figure 4. Working backwards (i.e.,
from right to left), the mutation adequacy score
MSG(P; T ) is obtained as a result of executing the
mutants Pi against the test set T . The mutants Pi
are obtained by using the list of mutant descriptors
D to repeatedly instantiate the metamutantM . M
and D are formed as a result of substantiating (i.e.,
imparting material form to) the program neighbor-
hood N . The program neighborhood is obtained by
applying the mutagens G to the program P .

3.2 Generating Metamutants

We are currently developing a complete system to
perform mutation testing using mutant schemata.
This section gives some details of the system.

The process of generating the metamutant of a
program P begins with the construction of a deco-
rated abstract syntax tree. In an abstract syntax
tree (AST) each non-leaf node represents an op-
erator and the children of the node represent the
operands [3]. A decorated tree has attributes, such
as type information, attached to the nodes. In our
system, an attribute grammar is used to direct both
the parsing of the program and the AST construc-

tion. The resulting AST is decorated with type in-
formation by using the symbol table developed dur-
ing the parsing of the program and semantic rules
speci�ed by the attribute grammar. Figure 5 shows
a statement and its corresponding AST.

Mutagens are expressed as tree transformation
procedures. The mutagens G are applied to the
decorated abstract syntax tree. Using the location,
type information, and contents of a node and its
children, the AST is transformed by replacing node
contents with metaprocedure calls. Leaf nodes are
replaced by metaoperands and interior nodes are re-
placed by metaoperators. Each metaprocedure in-
vocation site is a change point and is identi�ed by
a change point number. Some mutagens cause the
structure of the tree to be altered. For example, to
accommodate unary operator insertion mutations,
the AST is augmented by creating new nodes at cer-
tain arcs. Such nodes are represented by hexagons
in the rewritten AST on the right hand side of Fig-
ure 6. By traversing this revised AST, the informa-
tion needed to generate a metamutant program is
obtained.

4 Experimental Results

As a preliminary step to implementing a full MSG
system, we wished to establish empirically that this
approach yielded faster mutation analysis than an
interpretive approach. We manually generated a
metamutant for the Newton procedure shown in Fig-
ure 1. An abridged listing of this metamutant is
given in Figure 8. We also manually generated a
list of mutant descriptors. Using the IMSCU muta-
gens, 385 mutants were produced. Additionally, a
rudimentary library of metaprocedures and a driver
were developed and implemented to make a working
MSG mutation analysis system.

We compared the speed of the Newton metamu-
tant with that of testing Newton in the Mothra

environment|a conventional, interpretive system
[15]. A Fortran version of Newton was prepared (see
Figure 7) to run under Mothra. Because of slight
di�erences between the IMSCU and Mothra muta-
gens, there were 364 mutants of the Fortran version
of the program.
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PROCEDURE AOrr

C Find a square root using Newton's method.

C

C PROCEDURE Newton ( rNum:REAL; VAR Sqrt:REAL);

C in out

SUBROUTINE Newton(rNum, Sqrt)

C BEGIN

Eps = 0.001

rNew = rNum / 2.0 + 1.0

Sqrt = 0.0

Delta = rNew - Sqrt

C WHILE Delta > Epsilon DO

10 IF ( Delta .GT. Eps ) THEN

Sqrt = rNew

rNew = (Sqrt + rNum/Sqrt) / 2.0

Delta = rNew - Sqrt

IF ( Delta .LE. 0.0 ) THEN

Delta = -Delta

ENDIF

GOTO 10

ENDIF

C END Newton;

RETURN

END

Figure 7: Fortran version of Newton

Using the Unix C-shell built-in time command,
our benchmark comparison revealed that mutation
analysis performed by direct execution of the meta-
mutant was 4.1 times faster than interpretive ex-
ecution. This is a strong indication that MSG can
signi�cantly increase the performance of mutation
testing; we expect even more dramatic improvement
with future systems.

5 Related Work

Because of the large number of mutant programs
that must be generated and run, early designers
of mutation analysis systems considered individu-
ally creating, compiling, linking, and running each
mutant more di�cult, and slower, than using an
interpretive system [6, 8]. It was considered likely
that the cost of compiling large numbers of mutants
would be prohibitive. Of the interpreter-based sys-
tems that have been developed, Mothra is the most
recent and comprehensive [11, 15].

In these conventional, interpreter-based mutation
analysis systems, the source code is translated into
an internal form suitable for interpretive execution
and mutation. For each mutant, a mutant genera-
tor program produces a \patch" that, when applied
to the internal form, creates the desired alternate
program. The translated program plus the collec-
tion of patches represents a program neighborhood.
To run a mutant against a test case, the interpreter
dynamically applies the appropriate patch and in-
terpretively executes the resulting alternate internal
form program.

A number of attempts to overcome the perfor-
mance problem have been made. Some approaches
attempt to limit the number of mutants that must
be run. In selective mutation [21], only a subset of
the possible mutagens are used, resulting in fewer
mutants being created. Preliminary results sug-
gest that selective mutationmay provide almost the
same test coverage as non-selective mutation under
certain conditions. Running only a sample of the
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mutants [22] has also been suggested. Research into
determining what is a statistically appropriate sam-
ple size continues. In extreme cases, however, it is
necessary to run almost all the mutants.
In other approaches, the use of non-standard

computer architectures has been explored. Unfor-
tunately, full utilization of these high performance
computers requires an awareness of their special re-
quirements as well as adaptation of software. Work
has been done to adapt mutation systems to vec-
tor processors [17], to SIMD [16] and hypercube
(MIMD) machines [10, 20]. However, it is the very
fact that these architectures are non-standard that
limits the appeal of these approaches. Not only
are they not available in most development envi-
ronments, but testing software designed for one op-
erational environment (machine, operating system,
compiler, etc.) on another is fraught with risks.
The approaches above do not squarely address

the primary factor that causes conventional sys-
tems to be slow: interpretative execution. Yet as
noted previously, the apparent overhead of compil-
ing many mutant programs outweighs the bene�t of
increased execution speed. Compiler-integrated [12]
program mutation seeks to avoid excessive compila-
tion overhead and yet retain the bene�t of compiled-
speed execution. In this method, the program under
test is compiled by a special compiler. As the com-
pilation process proceeds, the e�ects of mutations
are noted and code patches that represent these mu-
tations are prepared. Execution of a particular mu-
tant requires only that the appropriate code patch

be applied prior to execution. Patching is inexpen-
sive and the mutant executes at compiled-speeds.
Unfortunately, crafting the needed special com-

piler is an expensive undertaking. Modifying an ex-
isting compiler reduces this burden somewhat, but
the task is still technically demanding. Moreover,
for each new computer and operating system envi-
ronment, this task must be repeated.

6 Conclusions
In this paper we have presented a novel way to
perform mutation testing using program schemata.
Mutation analysis systems based on the MSGmethod
will exhibit several advantages over interpretive sys-
tems. The most obvious advantage is that MSG mu-
tation systems are faster than interpreter-based sys-
tems. MSG systems allow mutants to be executed at
compiled speeds, but without having to recompile
or store each mutant separately. Although a large
number of metaprocedure function calls must be
processed, the mutants run as compiled programs
and thus execute at machine language speeds.
In addition to improvements in execution speed,

MSG systems are signi�cantly cheaper to build than
interpretive systems. Much of the implementation
di�culty of a mutation system is in designing an in-
termediate language, building a parser, and build-
ing an interpreter. These problems are exacer-
bated in languages that have dynamic memory fea-
tures, user-de�ned types, and complicated control
features|indeed, much of the reason that Mothra



PROCEDURE Newton ( Number:REAL; VAR Sqrt:REAL );
(* Find a square root using Newton's method. *)
VAR

NewGuess, Delta, Epsilon : REAL; (* don't care *)
dr : REAL; (* Dummy Real -- used for PUTr target *)

BEGIN
(* Initialize local variables to default value of 0 *)
NewGuess := 0.0;
Delta := 0.0;
Epsilon := 0.0;
(* 0 >Epsilon := 0.001; *)

IF SAN(67) THEN
dr := PUTr(CRr(GETr(40),34),59);

END;
(* 1 >NewGuess := (Number / 2.0) + 1.0; *)

IF SAN(68) THEN
dr := PUTr(OIr(AOrr(OIr(AOrr(OIr(GETr(41), 11),
CRr(GETr(42),35),1),12), CRr(GETr(43),36),2),13),60);

END;
(* 2 >Sqrt := 0.0; *)

IF SAN(69) THEN
dr := PUTr(CRr(GETr(44),37),61);

END;
(* 3 >Delta := NewGuess - Sqrt; *)

IF SAN(70) THEN
dr := PUTr(OIr(AOrr(OIr(GETr(45),14),OIr(GETr(46),15),3),16),62);

END;
(* 4 >WHILE Delta > Epsilon DO *)

WHILE LAN(OIl(ROrr(OIr(GETr(47),17), OIr(GETr(48),18),8),32),10) DO
(* 5 >Sqrt := NewGuess; *)

IF SAN(71) THEN
dr := PUTr(OIr(GETr(49),19),63);

END;
(* 6 >NewGuess := (Sqrt + (Number / Sqrt)) / 2.0; *)

IF SAN(72) THEN
dr := PUTr(OIr(AOrr(OIr(AOrr(OIr(GETr(50),20),
OIr(AOrr(OIr(GETr(51),21), OIr(GETr(52),22),4),23),5),24),
CRr(GETr(53),38),6),25),64);

END;
(* 7 >Delta := NewGuess - Sqrt; *)

IF SAN(73) THEN
dr :=
PUTr(OIr(AOrr(OIr(GETr(54),26),OIr(GETr(55),27),7),28),65);

END;
(* EWS *) IF SAN(75) THEN
(* 8 >IF Delta < 0.0 THEN *)

IF OIl(ROrr(OIr(GETr(56),29), CRr(GETr(57),39),9),33) THEN
(* 9 >Delta := -Delta; *)

IF SAN(74) THEN
dr := PUTr(OIr(-OIr(GETr(58),30),31),66);

END;
(* 11 *) END;
(* EWS *) END;
(* 12 *) END; (* END WHILE *)
(* EWS *) IF NOT SAN(75) THEN
(* EWS 8*) IF Delta < 0.0 THEN
(* EWS 9*) Delta := -Delta;
(* EWS 11*) END;
(* EWS *) END;

END Newton;

Figure 8: Newton metamutant (abridged)

(Minor initialization code and the GETr and PUTr metaprocedure
routines have been omitted. Original statements are included as comments.)



tests Fortran programs is because Fortran-77 does
not have these features. Since the MSG method
leaves the problems of providing run-time seman-
tics and environment to pre-existing compilers and
run-time libraries, MSG systems are smaller and eas-
ier to build, allowing us to quickly develop mutation
tools for a variety of languages.

MSG systems also provide more realistic testing.
Since the MSG method produces a compilable pro-
gram in the same language as the program being
tested, testing can take place using the same com-
piler and environment that will be used by the pro-
gram under test. Hence the program is tested in the
same operational environment that it will be used
in, and retains all or most of its original operational
behavior.

An important advantage of MSGmutation systems
is their innate portabilty. Because MSG systems op-
erate at the source-level, they can easily be moved
from machine to machine, or compiler to compiler.
For example, a network computer system with dif-
ferent architectures (for example, Sun3s and Sun4s)
could be utilized simply by recompiling the MSG sys-
tem for each di�erent type of machine. This ar-
chitecture independence also makes heterogeneous
distributed computing implementations easier.

Lastly, since the ability to compile and run a
program P is provided by an existing L-language
compiler, it is possible for an MSG system to be
incomplete and yet provide partial functionality.
Although the driver must be substantially com-
plete, not all the metaprocedures need to be writ-
ten nor all the metamutation transformation mech-
anisms de�ned. Unimplemented mutagens result
in P source text passing through to the compiler
unaltered. This is in contrast to an interpreter-
based system where virtually the entire translator
and run-time interpreter must be �nished for pro-
grams to be executed and tested. This characteris-
tic of schema-based systems encourages incremental
implementations and also allows greater freedom to
experiment with the mutagenic operators.

Although much faster than interpretive sys-
tems, MSG systems may be somewhat slower than
compiler-integrated methods. Compiler-integrated
systems are not burdened by metaprocedure func-
tion call overhead, so the execution speed of a mu-
tant is identical with that of a single program that
exhibits the fault of the mutation. We feel that the
portability and ease of constructing an MSG system
far outweighs this execution speed di�erence. Un-
less mutation systems using object code patches are
built into compilers from the start, modifying pre-

existing compilers is unlikely to be practical.
It is interesting to note that the MSG method is

orthogonal to many of the approaches discussed
in section 5. For example, schema-based muta-
tion could be performed in concert with a compiler-
integrated method. Similarly, the mutant sampling
strategy could be used regardless of the underlying
mutation analysis mechanism, and an MSG system
could implement weak mutation. In addition, there
is no reason to believe that MSG systems could not
be successfully adapted to run in a distributed com-
puting environment.
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