
Better Predicate Testing

Gary Kaminski
Software Engineering

George Mason University
Fairfax VA, USA

gkaminsk@gmu.edu

Paul Ammann
Software Engineering

George Mason University
Fairfax VA, USA

pammann@gmu.edu

Jeff Offutt
Software Engineering

George Mason University
Fairfax VA, USA

offutt@gmu.edu

ABSTRACT
Mutation testing is widely recognized as being extremely
powerful, but is considered difficult to automate enough for
practical use. This paper theoretically addresses two pos-
sible reasons for this: the generation of redundant mutants
and the lack of integration of mutation analysis with other
test criteria. By addressing these two issues, this paper
brings an important mutation operator, relational-operator-
replacement (ROR), closer to practical use. First, we de-
velop fault hierarchies for the six relational operators, each
of which generates seven mutants per clause. These hierar-
chies show that, for any given clause, only three mutants are
necessary. This theoretical result can be integrated easily
into mutation analysis tools, thereby eliminating generation
of 57% of the ROR mutants. Second, we show how to bring
the power of the ROR operator to the widely used Multiple
Condition-Decision Coverage (MCDC) test criterion. This
theoretical result includes an algorithm to transform any
MCDC-adequate test set into a test set that also satisfies
RORG, a new version of ROR appropriate for the MCDC
context. The transformation does not use traditional muta-
tion analysis, so can easily be integrated into existing MCDC
tools and processes.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Verification

Keywords
Logic testing, Mutation

1. INTRODUCTION
The ability for mutation testing [7, 8] to help testers de-

sign high quality tests has always depended directly on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0592-1/11/05 ...$10.00.

mutation operators. In program-based mutation testing, a
mutation operator is a rule that specifies changes to syntac-
tic elements in a program. A well designed set of operators
can result in very powerful testing, but a poorly designed
set can result in ineffective tests. Mutation operators have
been designed for several programming languages, including
COBOL [10], Fortran 77 [8, 19], C [6], Ada [25], and Java
[18, 22]. Jia and Harman recently surveyed mutation anal-
ysis for programs and other software engineering artifacts
[12]. The statement-level operators have been fairly stable
since the Mothra project [19], with the most important sug-
gestion for change being from the selective operator study
[23], where it was found that using five Mothra mutation
operators would yield tests that killed most other mutants.

However, users of mutation have observed that mutation
creates many test requirements (that is, mutants) relative
to the number of tests needed when compared to other test
criteria. For example, Li et al. found that mutation yielded
fewer tests than the edge-pair, all-uses and prime path cri-
teria, even though it had far more test requirements [21].
The only reasonable conclusion from this result is that the
mutants somehow “overlap” in the tests needed to kill them,
and probably in their ability to find faults. In other words,
some mutants appear to be redundant.

The development of fault detection hierarchies, most no-
tably the DNF fault hierarchy of Lau and Yu [20], offers
a way to deal with the problem of redundant mutants. A
fault hierarchy describes a dominance relation among fault
classes. If a test set detects faults in a given class in the
hierarchy, those tests are also guaranteed to detect faults in
classes that class dominates. From the mutation analysis
perspective, this means that if a fault hierarchy is built for
a set of mutants, there is no need to generate mutants that
are dominated by other mutants.

A closely related approach to increasing the effectiveness
of each mutant is the notion of a subsuming Higher-Order-
Mutant (HOM) [11]. A subsuming HOM is built by combin-
ing several mutations in such a way that the combined mu-
tant (the HOM) subsumes all of its constituent mutants. A
key property of a subsuming HOM is that a test that kills the
HOM is also guaranteed to kill the subsumed mutants, and
hence these mutants do not need to be generated. Kaminski
and Ammann put both of these ideas together in the context
of mutation analysis of logic expressions in disjunctive nor-
mal form (DNF) [13]. They showed that not only are many
redundant mutants generated for logic expressions, worse,
these mutants miss many faults in the Lau and Yu fault
hierarchy. They further showed how to automatically con-

struct a small number of subsuming HOMs that guarantee
detection of the entire Lau and Yu fault hierarchy–and, by
subsumption, all mutants generated by a typical mutation
analysis tool on the boolean structure of logic expressions.

This paper considers the relational operators that com-
monly appear in boolean expressions. In terms of muta-
tion analysis, this means considering the relational operator
replacement (ROR) operator. Our first contribution is to
develop fault hierarchies for the mutants generated by the
ROR operator. These hierarchies show that of the seven mu-
tants generated by a single application of an ROR operator,
only three are necessary.

The second contribution is to increase the strength of the
logic coverage test criterion of Multiple Condition-Decision
Coverage (MCDC) [5]. Logic coverage criteria such as MCDC
and ACC [5, 2] test predicates at the clause level. That is,
in a predicate p = a ∧ b ∨ c, logic criteria test the individ-
ual clauses (a, b, c). Mutation analysis, however, uses the
ROR operator to test at a lower level of abstraction, in-
side the clauses. Thus, if a ≡ (x > y), b ≡ (m <= n),
and c ≡ (d == e), ROR tests whether the relations inside
the clauses are formulated correctly. This paper defines a
stronger version of MCDC that leverages the ROR fault hi-
erarchies to integrate the power of the ROR mutation oper-
ator into the logic criteria. This result includes an algorithm
that augments an MCDC-adequate test set to also be ade-
quate with respect to RORG, a variant of ROR appropriate
for integration with MCDC.

MCDC, which is equivalent to Active Clause Coverage
(ACC) [2, 1], is required by the US Federal Aviation Ad-
ministration to test safety critical systems [26], and comes
in several slightly varying versions [4]. As it turns out,
any ROR-adequate test set is guaranteed also to satisfy the
weakest version of MCDC [1]. However, the converse is not
true; an MCDC-adequate test set does not necessarily sat-
isfy ROR coverage. Intuitively, this is because of the differ-
ence in the previous paragraph; MCDC treats predicates as
boolean functions and ignores relational operators in these
expressions. For applications where faults in relational op-
erators are a concern, including ROR can clearly lead to
stronger tests.

The organization of this paper is as follows. Section 2
describes background in mutation operators, logic mutation
operators, and recent results in logic testing. Section 3 ex-
plores the relationship between the ROR mutation operator
and logic criteria and section 4 presents a new ROR fault
hierarchy. Section 5 presents a new version of the ROR op-
erator that is just as effective but that produces less than
half the number of mutants. Section 6 presents modified
versions of MCDC that are more effective and only slightly
more expensive in terms of tests required. Section 7 offers
conclusions and recommendations for future automation.

2. BACKGROUND
The classic definition of the ROR operator is from the

1991 detailed description of the Mothra mutation system
[19]: Each occurrence of a relational operator (<, >, ≤, ≥,
=, ∕=) is replaced by each other operator and the expression
is replaced by True and False. Most mutation systems (in-
cluding muJava [22]) since Mothra have implemented these
operators following these definitions.

The literature contains several test coverage criteria that
focus on the logical structure of predicates. This literature

assumes that a predicate is assembled from boolean valued
clauses via the standard boolean operators, typically in-
cluding not (¬), and (∧), and or (∨). Significantly, from
the perspective of this paper, the internal structure of the
clauses is ignored. The most powerful logic coverage crite-
ria is combinatorial coverage, which requires every possible
assignment of truth values to clauses. In a predicate with n
clauses, combinatorial coverage requires 2n tests.

Other logic coverage criteria ask for some subset of the
possible 2n tests defined by combinatorial coverage. Clause
coverage requires each clause to take on the values true and
false, and can be satisfied with just two tests. Predicate
coverage requires the predicate as a whole to take on the
values true and false, and can be also be satisfied with just
two tests. Clause coverage and predicate coverage are both
fairly weak, and neither subsumes the other.

Modified Condition Decision Coverage (MCDC) [5], which
is equivalent to Active Clause Coverage (ACC) [1], is widely
perceived as a powerful test coverage technique, and is used
in the certification of safety critical systems [26]. The idea
behind MCDC is that each clause should be tested to be
both true and false under circumstances where the clause
“matters,” where this is interpreted to mean that chang-
ing the value of the clause necessarily changes the value of
the predicate. Note that MCDC test requirements come in
pairs–one requirement for the clause true and one for the
clause false. MCDC comes in various forms depending on
whether each test pair faces additional constraints beyond
what is mentioned above, but the details of these forms are
independent of the contributions of this paper.

A different approach to logic coverage bases it on fault
detection power with respect to the Lau and Yu fault hi-
erarchy [20]. The most powerful of the these techniques
is MUMCUT [3], which is guaranteed to detect the entire
hierarchy. MUMCUT generally only applies to predicates
written in Disjunctive Normal Form (DNF), although exten-
sions to more general forms have been explored [27]. MUM-
CUT generates many unnecessary tests; various refinements
of MUMCUT have addressed this shortcoming [9, 14, 15,
16].

3. ROR AND LOGIC CRITERIA
This section proves that logic coverage criteria do not sub-

sume ROR mutation testing. For convenience, we use the
term ROR mutation to mean mutation using just the ROR
operator. The strongest logic coverage criterion is combi-
natorial coverage, which requires that a predicate be tested
with all combinations of truth values. Consider the two-
clause predicate a < b ∨ c < d. Combinatorial coverage
requires the tests TT, TF, FT, FF. The following assign-
ments to a, b, c, and d satisfy combinatorial coverage:

a=1, b=2, c=1, d=2 (TT)
a=1, b=2, c=2, d=1 (TF)
a=2, b=1, c=1, d=2 (FT)
a=2, b=1, c=2, d=1 (FF)

However, none of these four tests detects either of the
two ROR mutants where < is replaced by <=. To detect
the mutant where a < b is changed to a <= b, a and b
must have the same value. Thus, combinatorial coverage
does not subsume ROR mutation. Combinatorial coverage
is the strongest logic criterion and subsumes all others, thus
no logic coverage criterion can subsume ROR mutation. In-
tuitively, the logic coverage criteria treat each clause as a

unit, as a boolean variable, ignoring any structure inside
the clause such as the relational operators. The ROR oper-
ator, on the other hand, explicitly requires tests to evaluate
whether the correct relational operator was used. That is,
logic criteria test the clause level, whereas the ROR operator
tests the relational level, a more detailed level of abstraction.

4. A NEW ROR FAULT HIERARCHY
Mutation is widely considered to be expensive, but “ex-

pense” can be measured in several ways. Li et al. [21] found
that although mutation creates more test requirements (that
is, mutants) than other test criteria, it does not need more
tests. The obvious implication from that result is that many
mutants are unnecessary or redundant. The selective opera-
tor study [23] reduced the number of mutants by an order of
magnitude, but mutation systems such as muJava [22] still
generate more mutants than are necessary. (Li et al.’s study
used the muJava selective set of mutation operators.)

This section analyzes the ROR mutation operator on a
case by case basis. For each relational operator, the con-
ditions under which mutants created by that operator will
be killed are derived. These are called detection conditions.
From that, a hierarchy of mutants is formed. The table in
figure 1 shows the detection conditions for each mutant of
the < operator. When a < b is mutated to False, the detec-
tion condition is a < b and the value for a < b must be True.
Likewise, if the mutant is a <= b, the detection condition is
a == b and the value must be False.

This leads to the mutant class hierarchy for < in figure
1. The arrows imply a dominance in the sense of Lau and
Yu [20]. If a test kills the mutant where < is replaced by
False, that test is guaranteed to also kill the mutants where
< is replaced by == and >, and by transitivity, the mutant
where < is replaced by >=.

Mutant Detection Value of
condition a < b

< replaced by F a < b T
< replaced by <= a == b F
< replaced by ! = a > b F
< replaced by == a <= b T or F
< replaced by > a ! = b T or F
< replaced by T a >= b F
< replaced by >= T T or F

Figure 1: Mutants, Detection Conditions, and Class
Hierarchy for <

Figures 2 through 6 show the detection conditions and
mutant hierarchies for the other relational operators. These
results hold for all programming and specification languages
that use relational operators as defined in standard mathe-
matics.

Mutant Detection Value of
condition a > b

> replaced by F a > b T
> replaced by >= a == b F
> replaced by ! = a < b F
> replaced by == a >= b T or F
> replaced by < a ! = b T or F
> replaced by T a <= b F
> replaced by <= T T or F

Figure 2: Mutants, Detection Conditions, and Class
Hierarchy for >

Mutant Detection Value of
condition a <= b

<= replaced by T a > b F
<= replaced by < a == b T
<= replaced by == a < b T
<= replaced by ! = a >= b T or F
<= replaced by >= a ! = b T or F
<= replaced by F a <= b T
<= replaced by > T T or F

Figure 3: Mutants, Detection Conditions, and Class
Hierarchy for <=

For all six relational operators, we can immediately see
that tests that detect three of the ROR mutants are guar-
anteed to detect all seven ROR mutants. Conversely, if there
is no arrow in a hierarchy from one mutant to another, a test
that detects the first mutant is guaranteed not to detect the
other. For example, consider figure 1. A test that detects
the mutant where < is replaced with <= will never detect
the mutant where < is replaced with >. Also any test that
detects a mutant at the top level of a hierarchy is guaran-
teed not to detect either of the other two mutants at the
top level of the hierarchy. For example, again consider figure
1. A test that detects the mutant where < is replaced with
! = will never detect the mutant where < is replaced with
False.

Detecting all ROR mutants guarantees clause coverage.
Both T and F appear at least once among the top three
rows in the “Value of a relop b” column in each table, which
achieves clause coverage.

Mutant Detection Value of
condition a >= b

>= replaced by T a < b F
>= replaced by > a == b T
>= replaced by == a > b T
>= replaced by ! = a <= b T or F
>= replaced by <= a ! = b T or F
>= replaced by F a >= b T
>= replaced by < T T or F

Figure 4: Mutants, Detection Conditions, and Class
Hierarchy for >=

Mutant Detection Value of
condition a == b

== replaced by F a == b T
== replaced by <= a < b F
== replaced by >= a > b F
== replaced by < a <= b T or F
== replaced by > a >= b T or F
== replaced by T a ! = b F
== replaced by ! = T T or F

Figure 5: Mutants, Detection Conditions, and Class
Hierarchy for ==

5. A CHEAPER ROR OPERATOR
The detection conditions and mutant hierarchies in sec-

tion 4 lead to an immediate result. The classic definition of
the ROR operator [19] should be reformulated to only cre-
ate the three mutants on top of the mutant hierarchy for the
relational operator being mutated. Specifically, if the oper-
ator is <, only <=, ! =, and False should be created; if the
operator is >, only >=, ! =, and False should be created;
if the operator is <=, only <, ==, and True should be cre-
ated; if the operator is >=, only >, ==, and True should
be created; if the operator is ==, only <=, >=, and False
should be created; and if the operator is ! =, only <, >,
and True should be created. This is an immediate savings
of four mutants for each relational operator.

6. STRONGER LOGIC CRITERIA
As described in section 3, logic coverage criteria such as

MCDC, ACC, and MUMCUT [3] (an extremely powerful

Mutant Detection Value of
condition a ! = b

! = replaced by T a == b F
! = replaced by < a > b T
! = replaced by > a < b T
! = replaced by <= a >= b T or F
! = replaced by >= a <= b T or F
! = replaced by F a ! = b T
! = replaced by == T T or F

Figure 6: Mutants, Detection Conditions, and Class
Hierarchy for ! =

coverage criterion for boolean expressions in Disjunctive Nor-
mal Form) do not test inside the clauses at the relational
operator level. This section introduces a modification of the
MCDC criterion to include the additional tests required by
the ROR mutation operator to test relational expressions.
The general approach works for all logic criteria; we illus-
trate it with MCDC because of its wide use in the aerospace
industry through FAA requirements [26].

MCDC coverage of a predicate with N clauses requires at
least N + 1 and no more than 2N tests. Making an MCDC
test set ROR-adequate adds at most N additional tests.

Mutation operators and logic coverage criteria have a the-
oretical difference that affects this construction. MCDC is
considered to be a semantic coverage criterion [17], whereas
mutation is considered to be syntactic. Semantic criteria
generate test requirements independently of how the pred-
icates are written, whereas syntactic criteria do not. For
example, if the same clause appears twice in a predicate
(p = a∨ (b∧ a)), semantic criteria like MCDC and ACC are
not affected; when a value for a is chosen, the same value
is used for all occurrences of a. Mutation, on the other
hand, will mutate each occurrence of a independently. If
a = a1 > a2, this means we would have 14 mutants rather
than 7, and possibly need to have the first occurrence of a
have one value, and the second occurrence a different value
to kill a mutant.

To successfully integrate a syntactic criterion like ROR
mutation with the semantic criterion of MCDC, we need
to make certain adaptions. Our approach is to use the
concept of a higher-order-mutation operator (HOM) [11],
which is a mutation operator that defines more than one
change. Our HOM, the Relational Operator Replacement
Global (RORG), is defined as follows. Consider a boolean
expression p with n boolean clauses c1, c2, ..., cn. Each
boolean clause ci appears at least once and may appear
more than once in p. For each boolean clause ci that uses
a relational operator, ci = a1 relop a2, RORG replaces ev-
ery occurrence of ci with one of the ROR mutations. This
means RORG is essentially a semantic, rather than a syn-
tactic, mutation operator. For example, given the predicate
p = a1 > a2 ∨ (b1 == b2 ∧ a1 > a2), two RORG mu-

tants are: p = a1 >= a2 ∨ (b1 == b2 ∧ a1 >= a2) and
p = a1 ! = a2 ∨ (b1 == b2 ∧ a1 ! = a2).

With the RORG adaptation of ROR, we can develop an
algorithm that adds RORG-adequacy to an MCDC test set.
The idea behind the algorithm is quite simple. We identify
tests that satisfy MCDC with respect to each boolean clause
c. The MCDC requirements on these tests are that c take
on the values True and False under conditions where c
determines the value of predicate p. We then note that the
top three rows of every table in section 4 have the same
three detection conditions, <, ==, and >. MCDC by itself
requires two tests for each clause (True and False). So at
least two of these will have been satisfied by a test where
c determines the value of p. First, the algorithm identifies
whether one of the three detection conditions is not satisfied
by the MCDC tests, and which. Then it adds a test to
satisfy the third. This process is shown in pseudo-code form
in algorithm 1.

Algorithm 1 Algorithm to Make MCDC Test Set RORG-
Adequate

Require: Predicate p and a test set T that satisfies MCDC
(ACC) with respect to p

Ensure: A test set that still satisfies MCDC (ACC), but is
now also RORG-adequate

1: // It does not matter which version of ACC is satisfied
2: // (GACC, CACC, or RACC), or whether masking or
3: // non-masking MCDC is used.
4: for each clause c in p do
5: if c contains a relational operator relop then
6: Identify Tc, the tests for which c determines p
7: // Clause c determines predicate p if changing
8: // the value of c, while leaving all other
9: // clauses unchanged, changes the value of p [1].

10: // Tc will have at least two tests and possibly more.
11: // c will have the value True for at least one test
12: // and False for at least one test.
13: Assume c = c1 relop c2
14: // We need three tests, c1 < c2, c1 == c2, and
15: // c1 > c2, and are assured of having at least two.
16: for each test ti in Tc do
17: isCovered[‘<’] = isCovered[‘==’] =

isCovered[‘>’] = False
18: for each relop in {<, ==, >} do
19: if c1 relop c2 is True for ti then
20: isCovered[‘relop’] = True
21: end if (c1 relop c2 is True)
22: end for (each relop)
23: end for (each test)
24: for each relop in {<, ==, >} do
25: if isCovered[‘relop’] == False then
26: Construct a new test by modifying an arbitrary

test in Tc. Leave all other variables alone, but
change the values for the variables in c so that
c1 relop c2 is True

27: end if (isCovered[] == False)
28: end for (each relop)
29: end if (c contains a relop)
30: end for (each clause)

Algorithm Proof Sketch: The algorithm makes two
claims about the resulting test set. The first is that it satis-
fies MCDC. Since the input test set satisfies MCDC, and no

tests are removed from this set, it is clear that the output
still satisfies MCDC.

The second claim is that the output test set kills every
RORG mutant. We prove this via weak mutation analysis,
which is arguably the only generally applicable approach in
the context of MCDC. Weak mutation analysis requires in-
fection of the subsequent state to kill a mutant. Offutt and
Lee [24] found that infection in the context of a mutated
predicate is best defined as the final value of the predicate
being incorrect. Thus, for each RORG mutant there must
be at least one test that causes the predicate to evaluate to
the wrong value. Inspection of the detection conditions in
figures 1 through 6 shows that to kill all ROR mutants, the
relation between c1 and c2 in c = c1 relop c2 must have all
the three possible values, namely: c1 < c2, c1 == c2, and
c1 > c2. For these detection conditions to cause predicate p
to evaluate to a different result, it is necessary that c deter-
mines p. Tests in Tc satisfy the constraint that c determines
p by construction. In addition, any new test (possibly) gen-
erated by the algorithm for clause c necessarily also satisfies
the constraint that c determines p. The algorithm forces the
three possible relations between c1 and c2 for tests where c
determines p. Hence RORG is satisfied. □

Note that the resulting test set does not necessarily satisfy
ROR. The reason is that if we consider each clause c syntac-
tically as it appears in the predicate, there is no guarantee
that the original MCDC test set has any tests in the set Tc.
However, for RORG, each Tc is guaranteed to always be at
least of size 2, and, further, to satisfy predicate coverage.
Complexity is on the order of the product of the number of
tests and the number of clauses. If the test set is specifi-
cally optimized for MCDC, the size of the test set is linear
in the number of clauses. Hence, in this case, the algorithm
is quadratic in the number of clauses.

Example: Consider the predicate p = a ∧ b ∨ c, where
a = (a1 < a2), b = (b1 ≤ b2), and c = (c1 == c2).

The following test set satisfies the most restrictive MCDC
coverage criterion (RACC): T = {t1, t2, t3, t4} =
{TTF, TFT, TFF, FTF}. These tests are refined to have
the value assignments:

t1: a1 = 5, a2 = 6, b1 = 10, b2 = 11, c1 = 21, c2 = 22
t2: a1 = 5, a2 = 6, b1 = 11, b2 = 10, c1 = 21, c2 = 21
t3: a1 = 5, a2 = 6, b1 = 11, b2 = 10, c1 = 21, c2 = 22
t4: a1 = 6, a2 = 5, b1 = 10, b2 = 11, c1 = 21, c2 = 22

We first consider clause a from line 4 in algorithm 1. The
set Ta of tests where a determines p is {t1, t4}. Test t1
satisfies a1 < a2 and t4 satisfies a1 > a2, so the algorithm
adds a new test (in line 26) to satisfy a1 == a2. Any test for
which a determines p will do, so the algorithm starts with
t1, and modifies the values for a1 and a2 to be a1 = 5 and
a2 = 5.

For clause b, the set Tb of tests where b determines p is
{t1, t3}. Test t1 satisfies b1 < b2 and t3 satisfies b1 > b2,
so the algorithm adds a new test (in line 26) to satisfy b1
== b2. Any test for which b determines p will do, so the
algorithm starts with t1, and modifies the values for b1 and
b2 to be b1 = 10 and b2 = 10.

Finally, for clause c, the set Tc of tests where c determines
p is {t2, t3}. Test t2 satisfies c1 == c2 and t3 satisfies c1 <
c2, so the algorithm adds a new test (in line 26) to satisfy
c1 > c2. Any test for which c determines p will do, so the
algorithm starts with t2, and modifies the values for c1 and
c2 to be c1 = 22 and c2 = 21.

The resulting MCDC/RORG-adequate test set is shown
in table 1. The last three tests marked “New” are added by
the algorithm. The original tests they were derived from are
included in parentheses, and the modified values are shown
in bold. The additional detection conditions that were cov-
ered are shown in the last three columns.

Table 1: Example of expanding MCDC tests to be
RORG adequate
Test Value a1 a2 b1 b2 c1 c2 a b c
t1 TTF 5 6 10 11 21 22 < <
t2 TFT 5 6 11 10 21 21 ==
t3 TFF 5 6 10 11 21 22 > <
t4 FTF 6 5 10 11 21 22 >

New (t1) 5 5 10 11 21 22 ==
New (t1) 5 6 10 10 21 22 ==
New (t2) 5 6 11 10 22 21 >

7. CONCLUSIONS AND RECOMMENDA-
TIONS

This paper presents two theoretical results, a way to re-
duce the number of mutants generated for the ROR operator
by eliminating redundancy among mutants, and a way to
strengthen logic criteria such as MCDC by using the ROR
mutation operator to increase precision.

The first result can be used to improve future mutation
tools by reducing the number of mutants generated. The
traditional ROR operator creates seven mutants for each
relational operator, of which four are provably redundant.
We believe it is likely that existing mutation systems pro-
duce lots of similarly redundant mutants, and similar anal-
ysis could greatly reduce the number of mutants created by
future mutation systems. In mutation testing, each mutant
represents a test requirement, so reducing the number of mu-
tants created can have a major impact on the automation
of mutation testing.

The second result can be used to strengthen logic test
criteria. Logic testing criteria have traditionally only looked
at the clause level, treating each clause as a simple boolean
variable. Part of the power of mutation stems from the fact
that it looks inside clauses, and tries to determine whether a
clause such as a > b is correctly formulated. By adding one
more test for each clause, and using the redundancy proofs
for the ROR operator, this paper shows how logic criteria
can be extended to gain this power. The algorithm in section
6 shows how this technique can easily be incorporated into
an automated test tool.

This result is particularly significant for the MCDC cri-
terion [5], because it is mandated for certain safety-critical
software components on aircrafts and air traffic controllers
by the US Federal Aviation Administration [26]. The simple
extension to MCDC presented in this paper has the abil-
ity to strengthen testing of this crucial software, potentially
making air travel safer. Although the algorithm is definitive
in terms of adding RORG-adequacy to an MCDC-adequate
test set, empirical studies are needed to determine how much
augmenting MCDC test sets with RORG-adequacy improves
fault detection. The algorithm can also be used in the au-
tomation of testing virtually any kind of control software,
much of which makes heavy use of logical predicates and
much of which is safety critical.

8. REFERENCES
[1] P. Ammann and J. Offutt. Introduction to Software

Testing. Cambridge University Press, Cambridge, UK,
2008. ISBN 0-52188-038-1.

[2] P. Ammann, J. Offutt, and H. Huang. Coverage
criteria for logical expressions. In Proceedings of the
14th International Symposium on Software Reliability
Engineering, pages 99–107, Denver, CO, November
2003. IEEE Computer Society Press.

[3] T. Y. Chen, M. F. Lau, and Y. T. Yu. MUMCUT: A
fault-based strategy for testing boolean specifications.
In APSEC ’99: Proceedings of the Sixth Asia Pacific
Software Engineering Conference, pages 606–613,
Takamatsu, Japan, 1999. IEEE Computer Society
Press.

[4] J. Chilenski and L. A. Richey. Definition for a
masking form of modified condition decision coverage
(MCDC). Technical report, Boeing, Seattle, WA,
1997. http://www.boeing.com/nosearch/mcdc/.

[5] J. J. Chilenski and S. P. Miller. Applicability of
modified condition/decision coverage to software
testing. Software Engineering Journal, 9(5):193–200,
September 1994.

[6] M. E. Delamaro and J. C. Maldonado. Proteum-A
tool for the assessment of test adequacy for C
programs. In Proceedings of the Conference on
Performability in Computing Systems (PCS 96), pages
79–95, New Brunswick, NJ, July 1996.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, April
1978.

[8] R. A. DeMillo and J. Offutt. Constraint-based
automatic test data generation. IEEE Transactions on
Software Engineering, 17(9):900–910, September 1991.

[9] A. Gargantini and G. Fraser. Generating minimal
fault detecting test suites for boolean expressions. In
AMOST 2010 - 6th Workshop on Advances in Model
Based Testing, pages 37–45, Paris, France, April 2010.

[10] J. M. Hanks. Testing COBOL programs by mutation:
Volume I-introduction to the CMS.1 system, volume
II - CMS.1 system documentation. Technical report
GIT-ICS-80/04, Georgia Institute of Technology,
February 1980.

[11] Y. Jia and M. Harman. Constructing subtle faults
using higher order mutation testing. In 2008 Eighth
IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 249–258,
Beijing, September 2008.

[12] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Trans-
actions of Software Engineering, To appear, 2010. DOI:
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62.

[13] G. Kaminski and P. Ammann. Using a fault hierarchy
to improve the efficiency of DNF logic mutation
testing. In 2nd IEEE International Conference on
Software Testing, Verification and Validation (ICST
2009), pages 386–395, Denver, CO, April 2009.

[14] G. Kaminski and P. Ammann. Using logic criterion
feasibility to reduce test set size while guaranteeing
fault detection. In 2nd IEEE International Conference
on Software Testing, Verification and Validation

(ICST 2009), pages 356–365, Denver, CO, April 2009.

[15] G. Kaminski and P. Ammann. Applications of
optimization to logic testing. In CSTVA 2010 - 2nd
Workshop on Constraints in Software Testing,
Verification and Analysis, pages 331–336, Paris,
France, April 2010.

[16] G. Kaminski and P. Ammann. Reducing logic test set
size while preserving fault detection. Journal of
Software Testing, Verification and Reliability, Wiley,
to appear. Special issue from the 2009 International
Conference on Software Testing, Verification and
Validation.

[17] G. Kaminski, G. Williams, and P. Ammann.
Reconciling perspectives of logic testing for software.
Journal of Software Testing, Verification and
Reliability, Wiley, 18(3):149–188, September 2008.

[18] S. Kim, J. A. Clark, and J. A. McDermid.
Investigating the effectiveness of object-oriented
strategies with the mutation method. In Proceedings
of Mutation 2000: Mutation Testing in the Twentieth
and the Twenty First Centuries, pages 4–100, San
Jose, CA, October 2000. Wiley’s Software Testing,
Verification, and Reliability, December 2001.

[19] K. N. King and J. Offutt. A Fortran language system
for mutation-based software testing. Software-Practice
and Experience, 21(7):685–718, July 1991.

[20] M. F. Lau and Y. T. Yu. An extended fault class
hierarchy for specification-based testing. ACM
Transactions on Software Engineering Methodology,
14(3):247–276, July 2005.

[21] N. Li, U. Praphamontripong, and J. Offutt. An
experimental comparison of four unit test criteria:
Mutation, edge-pair, all-uses and prime path coverage.
In Fifth Workshop on Mutation Analysis (Mutation
2009), Denver CO, April 2009.

[22] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava : An
automated class mutation system. Software Testing,
Verification, and Reliability, Wiley, 15(2):97–133,
June 2005.

[23] J. Offutt, A. Lee, G. Rothermel, R. Untch, and
C. Zapf. An experimental determination of sufficient
mutation operators. ACM Transactions on Software
Engineering Methodology, 5(2):99–118, April 1996.

[24] J. Offutt and S. D. Lee. An empirical evaluation of
weak mutation. IEEE Transactions on Software
Engineering, 20(5):337–344, May 1994.

[25] J. Offutt, J. Payne, and J. M. Voas. Mutation
operators for Ada. Technical report ISSE-TR-96-09,
Department of Information and Software Engineering,
George Mason University, Fairfax VA, March 1996.
http://www.cs.gmu.edu/∼tr admin/.

[26] RTCA-DO-178B. Software considerations in airborne
systems and equipment certification, December 1992.

[27] C. Sun, Y. Dong, R. Lai, K. Y. Sim, and T. Y. Chen.
Analyzing and extending MUMCUT for fault-based
testing of general boolean expressions. In The Sixth
IEEE International Conference on Computer and
Information Technology, pages 184–189, Seoul, Korea,
September 2006.

