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Abstract

Temporal correctness is crucial for real-time systems. Few methods exist to test
temporal correctness and most methods used in practice are ad-hoc. A problem
with testing real-time applications is the response-time dependency on the exe-
cution order of concurrent tasks. Execution order in turn depends on execution
environment properties such as scheduling protocols, use of mutual exclusive re-
sources as well as the point in time when stimuli is injected. Model based mutation
testing has previously been proposed to determine the execution orders that need
to be verified to increase confidence in timeliness. An effective way to automatically
generate such test cases for dynamic real-time systems is still needed. This paper
presents a method using heuristic-driven simulation to generate test cases.
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1 Introduction

Current real-time systems must be both flexible and timely. There is a desire
to increase the number of services that real-time systems offer while using
few, standardized hardware components. This can increase system complex-
ity and introduce sources of temporal non-determinism (for example, caches
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and pipelines) that make it hard to predict the execution behavior of tasks
[26]. Faults in such predictions may result in software timeliness violations
and costly accidents. Thus we need methods to detect violation of timing
constraints for computer architectures for which we cannot rely on accurate
off-line assumptions. Timeliness is the ability for software to meet time con-
straints. For example, a time constraint for a flight monitoring system can be
that once landing permission is requested, a response must be provided within
30 seconds [28].

When designing real-time systems, software behavior is modelled by pe-
riodic and sporadic tasks that compete for system resources (for example,
processor-time, memory and semaphores). The response times of these tasks
depend on the order in which they are scheduled to execute. Periodic tasks are
activated with fixed inter-arrival times, thus all the points in time when such
tasks are activated are known. Sporadic tasks are activated dynamically, but
assumptions about their activation patterns, such as minimum inter-arrival
times, are used in analysis. Each real-time task typically has a deadline. Tasks
may also have an offset, which denotes the time before a task of that type is
activated.

Testing methods must be adapted to address timeliness because it is diffi-
cult to characterize a critical sequence of inputs without considering the effect
on the set of active tasks and real-time protocols. However, existing testing
techniques seldom use information about real-time design in test case gener-
ation, nor do they predict what execution orders may reveal faults in off-line
assumptions (see section 5 for an overview of related work).

In the real-time community, timeliness is traditionally analyzed and main-
tained using scheduling analysis techniques or regulated online through ad-
mission control and contingency schemes [34]. However, these techniques use
assumptions about the tasks and activation patterns that must be correct
for timeliness to be maintained. Further, doing full schedulability analysis
of non-trivial system models is complicated and requires specific rules to be
followed by the run-time system. In contrast, testing of timeliness is general
in the sense that it applies to all system architectures and can be used, as
a complement, to gain confidence in assumptions by systematically sampling
among the execution orders that can lead to missed deadlines. However, only
some of the possible execution orders typically reveal timeliness violations in
the presence of timing faults.

Mutation-based testing of timeliness is inspired by a model based method
for automatic test case generation presented by Ammann, Black and Majurski
[2]. The main idea behind the method is to systematically “guess” what faults
a system contains and then evaluate what the effect of such faults could be in
a model of the system. Once faults with bad consequences are identified, test
cases are constructed that try to reveal those faults in the system implemen-
tation.

Model-checking has previously been used to analyze models of real-time
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systems for generating test cases for testing of timeliness [22]. A problem in
this context is that analysis of the dynamic real-time systems models often
becomes so computationally complex that the previously presented model-
checking approach does not work. In particular, this happens in models of
event-triggered systems where the timing of different sporadic interrupts can
influence the execution order of tasks [31].

This paper investigates whether application-specific heuristics and simula-
tion can be used as an alternative for analyzing such models.

Consequently, this paper proposes a method where a mutated specification
model that captures possible execution behaviors is mapped to a simulator.
The simulator is then iteratively executed using a genetic algorithm to find
input sequences that reveal the potential failures in the mutated model. The
method is demonstrated in two experiments. The first experiment compares
the method with the model-checking based approach to gain basic confidence
in its reliability. The method is also evaluated using a larger, more dynamic
system specification for which the model-checking based approach fails. The
experiments indicate that the simulation-based method remain effective for
the dynamic specification model and that the heuristic functions presented
enhance the performance.

The inputs to mutation-based testing of timeliness is a specification of a
real-time system and a testing criterion. The testing criterion specifies what
mutation operators to use, and thus, determines the level of thoroughness of
testing and what kind of test cases will be produced. A mutant generator
applies the mutation operators to the specification and sends the mutated
specifications to an execution order analyzer that determines if and how the
mutation can lead to a timeliness failure. We call a mutated specification
model that contains a fault that can lead to a timeliness failure a malignant
mutant. If analysis reveals a timeliness violation in a mutated model, the
mutant is marked as killed. Traces from the killed mutants are fed into a test
case generation filter that extract an activation pattern that has the ability to
detect faults similar to the malignant mutant in the actual system under test.
It is also possible to automatically extract the execution orders of tasks that
can lead to a deadline violation when the input stimuli is injected. During
test case execution, test inputs are injected in the real-time system according
to the activation pattern.

Problems associated with controllability and observability when testing
flexible real-time systems are out of scope of this paper. Prefix-based and
non-deterministic test execution techniques [15,33,21] are complementary to
our approach.

2 System Model and Testing Criteria

This paper uses a subset of Timed Automata with Tasks (TAT) [24,11] to
define the assumptions about the system under test and as a source for model
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based test case generation. Timed Automata (TA) [1] have been used to
model many different aspects of real-time systems. A TA is a finite state
machine extended with a collection of real-valued clocks. Each transition
can have a guard, an action and a number of clock resets. A guard is a
condition on clocks and variables, such as a time constraint. An action can
do calculations and assign values to variables. The clocks increase uniformly
from zero until they are individually reset in a transition. When a clock is
reset, it is instantaneously set to zero and then starts to increase at the same
rate as the other clocks (we assume synchronized clocks).

Within TAT models, TA is used to specify the activation pattern of tasks,
that is, the order and points in time different task executions is requested.
Further, TAT extends the TA notation with a set of real-time tasks P, which
need to be scheduled to perform computations in response to an activation.
Elements in P express information about tasks as quadruples (c, d, SEM,
PREC), where c is the assumed execution time of the task, d is the relative
deadline, and SEM and PREC are defined in the following paragraphs. Shared
resources are modeled by a set of system-wide semaphores, R, where each
semaphore s∈R can be locked and unlocked by tasks at fixed time points in
their execution. The set SEM contain tuples of the form (s, t1, t2) where
t1 and t2 are the lock and unlock times of semaphore s∈R. These times are
expressed relative the task’s start time. Precedence constraints are relations
between pairs of tasks A and B stating that an instance of a task A must have
executed to completion between the execution of two consecutive instances of
task B (otherwise, the second instance of task B is blocked). Hence, PREC
is a subset of P that specifies what other tasks must precede this task.

We call a task’s behavior, including the points in its execution where differ-
ent resources are locked and unlocked, the tasks’ execution pattern. In TAT,
task execution patterns are fixed. This may appear unrealistic, especially if
the input data to a task may vary. In this step we assume that the execu-
tion pattern for a task is associated with a particular (typical or worst case)
equivalence class of input data. After a critical activation pattern is found,
the target system can be tested several times using different task inputs in
that sequence, stressing it to reveal faulty behavior.

2.1 Mutation Operators

A test criterion defines test requirements that must be satisfied when testing
software. An example of a test criterion is “execute all statements once”.
A test coverage measure expresses how thoroughly tests have satisfied a test
criterion, usually in terms of how many test requirements are satisfied. A
mutation-based test criterion is defined by a set of mutation operators.

Hence, progress of testing can be expressed in terms of mutants killed
during test case generation. For example, if a set of test cases derived from
killing all malignant “(∆ = 3) execution time mutants” has been run on the

4



Nilsson, Offutt and Mellin

target system, then 100 percent coverage has been reached for that testing
criterion. Mutation operators mimic possible faults that can lead to timeliness
failures. Our previous work identified and presented formal definitions of seven
types of faults or deviations from assumptions that can lead to timeliness
failures [22], whereas this paper describe the operators informally and classifies
them with respect to the maximum number of mutants created.

2.1.1 Task property mutations O(n)

The following operators create 2n mutants, where n is the number of tasks.
Execution time operators increase the modelled worst case execution time of
a task by a constant time ∆ or decrease the best case execution time with
the same amount. This mutation represents a situation where the assumption
of a task’s execution times, used for analysis, does not correspond with the
execution times that is possible in the implementation. Minimum inter-arrival
time operators decrease or increase the assumed inter-arrival time between
requests for task execution by a constant time ∆. This reflects a change in
the system’s environment that causes requests to come more or less frequently
than expected. Such recurring environment requests can also be assumed to
have fixed offsets to each other. Pattern offset operators change the offset
between two activation patterns by a constant ∆ time units.

2.1.2 Resource locking mutations O(nrl)

These mutation operators increase or decrease the time when a particular
resource is locked by ∆ time units. The lock time operator changes the point
in time resources are locked and the unlock time operator changes the time
resources are unlocked relative the start time of the task. The hold time shift
operator changes both the lock and unlock times. Since mutants are created
for each pair of tasks and resource protected critical sections, the maximum
number of mutants is 2n ∗ r ∗ l, where r is the number of resources and l
is the maximum number of times a resource is needed by a particular task
throughout its execution.

2.1.3 Precedence mutations O(n2)

For each pair of tasks, if a precedence constraint exists between the pair, then
it is removed. If there is no precedence constraint, a new constraint is added.
A task cannot be constrained to precede itself, so the number of mutants that
can be created is n2 − n.

3 Automated Test Generation using Genetic Algorithms

The previously presented method based on model-checking [22] is safe for
analyzing mutated TAT models in the sense that vulnerabilities are guaranteed
to be revealed if they exist. However, for some systems the state space becomes
too large for model-checking to be effective. In particular, the computational
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complexity (both time and memory) grows when triggering events are allowed
to occur at many different points in time.

In dynamic real-time systems, there are many sporadic tasks, making
model-checking impractical. For these systems, we propose an approach where
a simulation of each mutant model is iteratively run and evaluated using ge-
netic algorithms with application specific heuristics. By using a simulation-
based method instead of model-checking for execution order analysis, the com-
binatorial explosion of full state exploration is avoided. Further, we conjecture
that it is easier to modify a system simulation than a model-checker, to cor-
respond to the architecture of the system under test.

When simulation is used for mutation analysis, the model task set must
be mapped to task entities in a real-time simulator. The activation pattern
of periodic tasks is known and can be included in the static configuration
of the simulator. The activation pattern for sporadic tasks should be varied
for each iteration of simulation to find the execution orders that can lead to
timeliness failures. Consequently, a necessary input to the simulation of a
particular TAT model is an activation pattern for the sporadic tasks. The
relevant output from the simulation is an execution order trace where the
sporadic requests have been injected according to the activation pattern. A
desirable output from a testing perspective is an execution order trace that
leads to a timeliness failure in the mutant.

By treating test case generation from the TAT model as a optimization
problem, different heuristic methods can be applied to find a trace leading to
a missed deadline. This paper focuses on genetic algorithms, since they are
highly configurable and cope well with optimization problems that contain
local optima [18].

Genetic algorithms operate by iteratively refining a set of solutions to
an optimization problem through random changes and by combining features
from existing solutions. In this context the solutions are called individuals and
the set of individuals is called the population. Each individual has a genome
that represents its unique features in a standardized format. Common formats
for genomes are bit-strings and arrays of real values. Consequently, users of
a genetic algorithm must supply a problem specific mapping function from
a genome in any of the standard formats to a particular candidate solution
for the problem. It has been argued that the mapping is important for the
success of the genetic algorithm. For example, it is desirable that all possible
genomes represent a valid solution [18].

The role of the fitness function in genetic algorithms is to evaluate the op-
timality or fitness of a particular individual. The individuals with the highest
fitness in a population have a higher probability of being selected as input to
cross-over functions and of being copied to the next generation.

Cross-over functions are applied on the selected individuals to create new
individuals with higher fitnesses in the next generation. This means either
combining properties from several individuals, or modifying a single individual
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     OFFSET
y <= OFS(i)+T(i,1)

     RELEASE
        Task i
y <= MIAT(i)+T(i,j)y == OFS(i)+T(i,1)

y := 0

y == MIAT(i)+T(i,j)
y := 0

Fig. 1. Annotated TAT template

according to heuristics. Traditionally, a function applied on a single individual
is called a “mutation” but to avoid ambiguity ∗ we use the term cross-over
functions for all functions that use information from individuals to create
genomes for the next generation.

There are generic cross-over functions that operate on arbitrary genomes
expressed in the standard formats. For example, a cross-over function can
exchange two sub-strings in a binary string genome or increase some random
real value in an array. However, depending on the encoding of genomes, the
standard cross-over functions may be more or less successful in enhancing in-
dividuals. Using knowledge of the problem domain and the mapping function
it is possible to customize cross-over functions in a way that increases the
probability of creating individuals with high fitness. On the other hand, some
cross-over functions must remain stochastic to prevent the search from get-
ting stuck in local optima. A genetic algorithm search typically continues for
a predetermined number of generations, or until an individual with a fitness
value over some set bound has been found.

To summarize, three types of functions need to be defined to apply genetic
algorithms to a specific search problem: (i) a genome mapping function, (ii)
heuristic cross-over functions, and (iii) a fitness function. The following sub-
sections suggest such functions for mutation-based test case generation from
a dynamic real-time system model.

3.1 Genome Mapping Function

For the test case generation problem the only thing that varies between simula-
tions of the same mutant TAT model is the activation pattern of non-periodic
tasks, thus, it is sufficient that a genome can be mapped to such an activa-
tion pattern. Each activation pattern deterministically results in a particular
execution order trace in the simulation. The execution order traces are the
individuals for this search problem.

Figure 1 contains an annotated TAT-automata for describing activation
patterns of sporadic tasks. In the general case, activation patterns can be
expressed by any timed automata, but this paper focuses on sporadic task
templates, since such tasks are common in real-time system models. The tem-
plate has two parameters that are constant for each mutant. The parameter

∗ The mutations used for mutation testing operate directly on the structure of the model
instead of on the timed sequence of inputs driving the traversal of the model.
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OFS supplies the assumed offset, that is, the minimum delay before any in-
stance of this task is assumed to be requested. MIAT supplies the assumed
minimum inter-arrival time between instances of the sporadic task.

An array of real values T(i,1..m) defines the duration of the variable delay
interval between consecutive requests of a sporadic task i. Here m is the
maximum number of activations that can occur during the simulation.

By combining the arrays for n sporadic tasks in the mutant task set P
we get a matrix T(1..n,1..m) of real values, where each row corresponds to an
activation pattern of a sporadic task. The matrix T can be used as a genome
representation of all valid activation patterns for the mutant.

3.2 Heuristic Cross-over Functions

For testing of timeliness, there are intuitive heuristics of what kind of acti-
vation patterns are likely to stress a mutant. For example, it seems possible
that releasing many different types of sporadic requests in a burst-like fash-
ion is more likely to reveal timeliness violations than an even distribution of
activations.

Several concepts need to be introduced to simplify our definitions of heuris-
tic cross-over functions. We use critical task instance to denote the task in-
stance with the least slack in an execution order trace. A critical interval
([cibeg, ciend]) is the interval between the activation time and response time of
a critical task instance. An idle point is a point in time where no real-time task
executes or is queued for immediate execution on the processor. The loading
interval ([libeg, liend]) is the interval between the latest idle point and the acti-
vation time of the critical task instance. The variable M is a TAT model that
contains n sporadic tasks controlled by automata templates such as in figure 1.
A genome matrix of size n ∗m is denoted by the variable T . The integer vari-
able i is used to index over the rows in a genome matrix T . The rows in such
matrices correspond to sporadic tasks, hence it is bounded by 1 and n. The
integer variable j is used to index over the columns in genome matrices and
is bounded by 1 and m. The variable ε is used to denote a small positive real
number. The expression [abeg, aend] v [bbeg, bend] means that the left hand inter-
val [abeg, aend] is a sub-interval of the right hand interval [bbeg, bend]. Formally,
this can be expressed ([abeg, aend] v [bbeg, bend]) ⇐⇒ (abeg ≥ bbeg∧aend ≤ bend).
Further, a delay interval matrix D (see definition 3.1), derived from T and M ,
is used to define the the cross-over functions in the following subsections.

Definition 3.1 : Delay interval matrix D
A matrix of size n ∗ m that contains the variable delay intervals for each

sporadic task activation in T such that: D(i,j) = [epat(i , j ), epat(i , j ) + T(i,j)],
where epat(i , j ) is the earliest possible arrival time of the j’th instance of
sporadic task i given a TAT model M and a genome matrix T .
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3.2.1 Focus critical interval

This cross-over function analyzes the logs from the simulation to find the
critical interval. A sporadic task is chosen arbitrarily and changed to increase
the probability that it executes within the critical interval.

Definition 3.2 : Focus critical interval left
For an arbitrary index i, let j be the largest index such that D(i,j) v [0, cibeg]
then increase T(i,j) with ε time units and decrease T(i,j+1) with ε time units.

Definition 3.3 : Focus critical interval right
For an arbitrary index i, let j be each index such that D(i,j) v [cibeg, ciend],
and modify T so that T(i,j) = 0.

3.2.2 Critical interval move

All sporadic tasks activation patterns are shifted a small random period so
that the sequence of sporadic requests leading up to a critical interval occurs
at some other point relative the static arrival pattern of periodic tasks.

Definition 3.4 : Critical interval move
For every index i such that D(i,1) v [0, cibeg], increase or decrease T(i,1) with ε
time units.

3.2.3 New interval focus

This cross-over function generates new candidate critical intervals to keep
the optimization from getting stuck in local optima. A new point in time is
chosen by random and all the closest sporadic activations are shifted toward
the selected point in time.

Definition 3.5 New interval focus
Let tnew be an arbitrary instant within the simulation interval. For every index
i, let j be the largest index such that D(i,j) v [0, tnew], and increase T(i,j) with
ε time units. Also decrease T(i,j+1) with ε time units.

3.2.4 Loading interval perturbation

Theoretically, all task activations in the loading interval may influence time-
liness through the state in the system when the activation of a critical task
instance occurs. Changes in the end of the loading interval has a direct effect
on timeliness of the critical task instance. This cross-over function changes
the activation pattern in the end of the loading interval.

Definition 3.6 : Loading interval perturbation
For any index i, let j be the largest index such that D(i,j) v [libeg, liend] and
j > 1, modify T so that T(i,j−1) = ε time units.
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3.3 Fitness Function

Since our genome representation of valid activation patterns is meaningless
without a particular TAT-mutant model we need to run the simulation with
the activation pattern matrix before we can attain any fitness or apply cross-
over functions. Once we have run the simulation we can use the execution
order trace to determine how optimal a particular individual is. A suitable
fitness function for timeliness should measure how close a system is to breaking
a deadline. The slack is the time between the response-time of a task instance
and its deadline. Hence, the minimum slack observed during a simulation
is used to determine fitness. The highest fitness is given to the activation
pattern that results in the simulated execution order with the least minimum
slack. More elaborate fitness functions (for example, using weighting based
on diversity or average response times) will be evaluated for improving the
performance of the genetic algorithm in future work.

4 Test Case Generation Experiments

To evaluate the proposed method, we performed two separate experiments.
The first attempted to establish basic confidence in the method by applying
it on a small system model where we also could use a model-checker to gen-
erate tests. This allows the method to be compared in a baseline experiment
and detect if the genetic algorithm method has problems finding any specific
types of mutants. The second experiment used a larger system model to eval-
uate how simulation-based test case generation handles task sets with a large
fraction of sporadic tasks under dynamic real-time system protocols.

To perform the experiments, we extended the real-time and control co-
simulation tool TrueTime to simulate the execution of TAT models. True-
Time was developed at the department of automatic control at the University
of Lund to support integrated design of controllers and real-time schedulers
[12]. We also configured and extended a genetic algorithm tool-box [14] to
interact with our simulation model. For model-checking experiments we used
the Times tool, developed at Uppsala University [3].

4.1 Baseline Real-time System Experiment

This experiment used a small task set with few sporadic tasks but with a
lot of possible interactions. Static priorities were assigned to the tasks using
the deadline monotonic scheme, that is, the highest priority was given to
the task with the earliest relative deadline. The system used the immediate
ceiling priority protocol to avoid priority inversion [32]. That is, if a task locks
a semaphore then its priority becomes equal to the priority of the highest
priority task that might use that semaphore, and is always scheduled before
lower prioritized tasks.

Table 1 summarize the assumptions of the task set. The first column
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Table 1
Task set of baseline real-time system

ID TAT quadruple I O

A (3,7,{(S1,0,2)},{D}) ≥28 10

B (5,13,{(S1,0,4),(S2,0,5)},{}) ≥30 18

C (7,17,{(S1,2,6),(S2,0,4)},{}) 40 6

D (7,29,{},{}) 20 0

E (3,48,{(S1,0,3),(S2,0,3)},{}) 40 4

(“ID”) gives task identifiers, the second column gives the TAT task quadruple
as described in section 2. For sporadic tasks, the “I” column contains the
minimum inter-arrival time assumptions (marked “MIAT” in the timed au-
tomata template in figure 1). For periodic tasks the “I” column contains the
fixed inter-arrival time. Column “O” denotes the initial offset constant.

Table 2 contains the results from test case generation. Column “µ” contain
the number of mutants generated for each mutation operator. The number of
malignant mutants is listed in column “M” and the number of mutants killed
by model-checking is listed in column “C.” A ∆ value of 1 time unit was used
to generate the mutants. For the genetic algorithm setup, we used a population
of 20 individuals per generation and ran each mutant 100 generations before
terminating (more parameters of the genetic algorithm are available in the
extended version [23]). We used the heuristic cross-over functions described
in section 3.2 as well as three generic cross-over functions that (i) changed a
random value in the genome representation, (ii) created a new random indi-
vidual in the population and (iii) replaced a random value in the genome with
0. Each experiment was re-run eight times, using different random seeds and
random initial populations. The number of mutants that was killed using ge-
netic algorithms in any of the trials is listed in column “K”. Column “A” lists
the average number of malignant mutants killed per experiment, the variance
is given within parentheses. The average number of generations needed to kill
malignant mutants of this type is in column “G.”

As seen in table 2, both the model-checking (“C”) and simulation-based
(“K”) approaches killed all the malignant mutants. The model-checking ap-
proach not only killed all malignant mutants, it also killed some benign mu-
tants. By comparing execution orders of benign mutants that were killed, we
observed that tasks sometimes inherited ceiling priorities before they started
executing in the traces produced by the model checker. We conjecture that
the model-checker tool implements a different version of the immediate pri-
ority ceiling protocol than originally defined [32]. Since we do not know the
exact semantics and properties of the model-checker’s implementation of the
protocol, we use the original definition. An interesting observation is that all
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Table 2
Results from baseline real-time system experiment

Mutation type µ M C K A G

Execution time 10 6 6 6 5.8 (0.1) 7.6 (207.8)

Lock time 8 1 1 1 1.0 (0) 1.3 (0.2)

Unlock time 11 2 2 2 2.0 (0) 2.2 (3.1)

Hold time shift 14 0 1 0 - -

Precedence 20 14 15 14 14.0 (0) 1.2 (0.8)

Inter-arrival time 10 3 4 3 3.0 (0) 5.7 (53.7)

Pattern offset 10 3 5 3 3.0 (0) 2.5 (8.7)

Total 83 29 33 29 28.8 -

malignant mutants were killed within 10 generations in average (see column
’G’ of table 2). Further, all malignant mutants were killed in seven of the
eight trials.

4.2 Dynamic Real-time System Experiment

In this setup we use the earliest deadline first (EDF) dynamic scheduling
algorithm together with the stack resource protocol (SRP). The EDF protocol
dynamically reassigns priorities of tasks so that the task with the current
earliest deadline gets the highest priority. The SRP protocol is a concurrency
control protocol that limits chains of blocking and prevents deadlocks under
dynamic priority scheduling. This is done by not allowing tasks to start their
execution until they can complete without becoming blocked [4].

This system consist of 12 hard real-time tasks, seven of which are spo-
radic and only five periodic. The system has three shared resources but no
precedence constraints. The complete task characteristics are listed in table
3, using the same notation as in table 1.

For this system it was too time consuming to manually derive the malig-
nant mutants. Further, the model-checker tool used in the first experiment
could not be used for comparison since the reachable state-space became too
large ∗ .

Other, more advanced, model-checking tools could be adopted for analyz-
ing schedulablity of TAT models. However, the mapping from TAT models to
other model-checker representations are not trivial. Further, since the verifier
in the Times tool is an extension of the verifier in the more commonly used

∗ Times model-checker does not currently support the SRP protocol, but even a sporadic
task set of this size without shared resources was refused.
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Table 3
Task set for dynamic real-time system

ID TAT quadruple I O

A (3,20,{(S1,0,2),(S2,0,2)},{}) ≥ 28 10

B (4,24,{(S1,0,3)},{}) ≥ 30 4

C (5,35,{(S2,2,5)},{}) ≥ 38 6

D (6,57,{(S2,0,6),(S3,2,5)},{}) ≥ 48 0

E (5,51,{},{}) ≥ 52 7

F (6,39,{(S3,3,6)},{}) ≥ 44 0

G (3,52,{},{}) ≥ 52 2

H (3,38,{(S3,0,2)},{}) 40 5

I (3,35,{(S1,1,2)},{}) 48 2

J (4,52,{},{}) 60 2

K (2,70,{(S2,0,2)},{}) 80 10

L (3,59,{},{}) 60 12

Uppaal tool [5], we assume that its performance is representative for this kind
of analysis.

Since we could not find an alternative way to efficiently and reliably analyze
mutants, we cannot guarantee that the method killed all malignant mutants.
To increase confidence in the timeliness of the original specification model,
every generated test case was also run on the un-mutated TAT specification.
This test actually revealed a mistake in a model that was assumed to be
timely in another experiment. We ran the genetic algorithm on each mutant
for 200 generations or until a failure was encountered. Each experiment was
performed five times. For each simulation performed during the heuristic
search, a simulation with a random arrival pattern was also performed. This
gives an indication of the relative efficiency of random search of the model (and
random testing of the target system). Further, we ran an genetic algorithm
experiment using only the generic cross-over functions, described in section
4.1, to get an indication of the added performance of our heuristic cross-
over operators. Since every operator generated more mutants for this system
model, we decided to use a subset of mutation operator types (based on the
average number of generations required to kill a mutated model). Table 3
uses the same column notation as table 2, but columns are added to include
the results from random testing (“R”) and non-heuristic genetic algorithms
(“E”). The“∆” column contain the delta sizes used for the different operator
types.
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Table 4
Results from dynamic real-time system experiment

Mutation type ∆ µ R E K A G

Execution time 2 24 0 0 12 9.2 (2.2) 62 (2372)

Unlock time 2 16 0 0 0 - -

Inter-arrival time 6 24 0 0 8 3.8 (1.2) 90 (4150)

Offset time 6 22 0 0 0 - -

Total - 86 0 0 20 13.0 -

As seen in table 4 no malignant unlock time or offset time mutants were
found for this particular system. The average number of generations required
to kill a mutant was higher for this system specification model, which is prob-
ably because the search problem is more difficult than for the more static
system presented in section 4.1. The low number of mutants killed in average
in each trial suggests that fewer execution orders exists that can reveal the
faults in the malignant mutants. A possible explanation for this is that the
genetic algorithm has trouble finding comparable candidates without the it-
erative refinement from the heuristic operators. Hence, it would get stuck in
local optima and prematurely discard partially refined candidates. A possible
remedy to this problem is to redo the search multiple times using a fresh ini-
tial population. This may be acceptable since the approach for searching the
mutant models is fully automated. The comparison with random testing and
a non-heuristic genetic algorithm shows that the heuristic cross-over functions
are vital for the performance of the method.

5 Related work

This section describe existing methods for testing real-time systems. Table 5
lists the authors of related work and classifies the contributions with respect
to three categories. When the same authors have several related publications
addressing different aspects of the same test method, only one is included.

The first category (the column marked “T”) lists if the approaches use
models including time-constraints or address testing system-level timeliness.
The column marked “I” indicate if the related work uses information about
concurrent tasks, use of shared resources and real-time protocols for deciding
relevant inputs. In contrast to our approach very few other methods based on
formal notations include this in their models, probably to avoid state space
explosion. However, if the internal behavior is not modelled, it is generally
impossible to predict the worst case activation pattern for a system that is
implemented using conventional real-time operating systems and task mod-
els. For example, exactly the same activation patterns might give completely
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Table 5
Classification of related work

# Authors T I C

1 Braberman et al. [6]

y

y
y

2 Cheung et al. [8] n

3 Clarke and Lee [9]

n

y
4 Petitjean and Fochal [25]

5 Mandrioli et al. [17]

6 Kirchen and Tripakis [16]

7 Cardell-Oliver and Glover [7]

8 En-Nouaary et al. [10]

n
9 Nielsen and Skou [20]

10 Raymond et al. [29]

11 Watkins et al. [35]

12 Morasca and Pezze [19]

n
y

y

13 Pettersson and Thane[27] n

14 Wegener et al. [36] n n

different behavior depending on the execution time of tasks.

The column denoted “C” lists whether or not the related work propose
testing criteria that are usable together with their method. The testing criteria
we propose are associated with the mutation operator types (see section 3).
Other methods propose testing criteria based on coverage of model structure,
such as sequences of transitions or locations in an automata.

The method by Braberman et al. [6] is the closest related work; they gen-
erate test cases from timed Petri-net design models. Similarly to our method,
a high level notation, SA/SD-RT, is used to specify the behavior of concur-
rent real-time systems. In contrast to our approach, no mutant models are
generated, instead their design specification is translated to a timed Petri-net
notation from which a reachability tree can be derived and covered. Since the
model has a similar level of detail as ours, we suspect that the number of tests
needed to cover the reachability tree increases very quickly with the size of
the system. Cheung et al. [8] presented a framework for testing multimedia
software, including temporal relations between tasks with “fuzzy” deadlines.
In contrast to our approach, the test cases generated are targeted at testing
multi-media applications and their specific properties.

There are several methods for testing timeliness based on different flavors
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of formal models. As mentioned above, these methods typically do not model
the real-time tasks and protocols of the tested system. Further, none of these
methods use mutation based testing techniques (see table 5, rows 3 - 11). For
example, Clarke and Lee [9] proposed a framework for testing time constraints
on the activation patterns of real-time systems. Time constraints are specified
in a constraint graph, and the system under test is specified using process alge-
bra. In contrast to our approach, only constraints on the inputs to the tested
system are considered and the authors mention that it would be very difficult
to test constraints on the outputs since it depends on non-deterministic inter-
nal factors. Petitjean and Fochal [25] present a method where time constraints
are expressed using a clock region graph. A timed automation specification
of the system is then “flattened” to a conventional input output automation
that is used to derive conformance tests for the implementation in each clock
region. A method of how clocks in the target system can be handled when
doing model based conformance testing is presented. Krichen and Tripakis
[16] address limitations in applicability of previous black-box approaches and
suggest a method for conformance testing using non-deterministic and par-
tially observable models. The testing criteria presented is inspired by Hessel
et al. [13] but extended for test case specifications that allow several possible
interactions with the implementation.

Mandrioli et al. [17] suggest a method to test real-time systems based on
specifications of system behavior in temporal logic. The elements of test cases
are timed input-output pairs. These pairs can be combined and shifted in
time to create a large number of partial test cases, the number of such pairs
grows quickly with the size and constraints on the software. In a more re-
cent paper [30], the authors expanded their previous results to incorporate
high-level, structured specification to deal with larger scale, modular soft-
ware. Cardell-Oliver and Glover [7] propose a method for generating tests
from timed automata models to verify sequences of timed action transitions.
This approach uses reachability analysis to determine what transitions to test,
hence, we assume it will suffer from state space explosion for large dynamic
models. Another automata based approach was presented by En-Nouaary et
al. [10]. Their approach exploits a sampling algorithm using grid-automata
and non-deterministic finite-state machines as an intermediate representation
to reduce the test effort. Similarly, Nielsen and Skou [20] use a subclass
of timed automata to specify real-time applications. The main contribution
with their method is a coarse equivalence partitioning of temporal behaviors
over the time constraints in the specification. Raymond et al. [29] presented
a method to generate event sequences for reactive systems. Their approach
models environmental constraints and test requirements as external observers.

In contrast to our approach and the other methods in this category Watkins
et al. [35] does not use a formal model as basis for test case generation. In-
stead genetic algorithms are used to drive the execution of complex systems
that contain time constraints. Data are gathered during execution of the real
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system and visualized for post analysis. Fitness of a test case is calculated
based on its uniqueness and what exceptions are generated by the systems and
test harness during test execution. Similarly with this method, our genetic
algorithm extensions could be used directly on a target system instead on a
model. However, the disadvantages is that no testing criteria could be used
for measuring progress and that the search problem is further elevated by the
internal non-determinism of the system.

There is some related work that does not address system-level testing of
timeliness but is still relevant for testing real-time systems or as complements
to our approach (see table 5, rows 12 - 14). Morasca and Pezze [19] proposed
a method for testing concurrent and real-time systems that uses high-level
Petri-nets for specification and implementation. This method does not ex-
plicitly handle timeliness, nor does it provide testing criteria but it is, to the
authors knowledge, one of the first to model the internal concurrency of the
tested real-time system. Thane [33] proposed a method to derive execution
orders of a real-time system before it is put into operation. It was suggested
that each execution order can be treated as a sequential program where con-
ventional test methods can be applied. After test execution, the test logs
are sorted according to the pre-analyzed execution orders. In a more recent
paper, Pettersson and Thane [27] extended the method by supporting shared
resources. In contrast to our method, this method is developed for real-time
systems where all task activation times are fixed. Wegener et al. has explored
the capabilities of genetic algorithms for testing temporal properties of real-
time tasks [36]. However, the main focus of their work is determining suitable
inputs for producing worst and best-case execution time. This approach is a
valuable complement to our method, since we assume that relevant classes of
input data exists for each real-time task before system-level testing of timeli-
ness starts.

6 Conclusions

This paper has proposed a model based method for generating test cases to
test timeliness by using heuristic driven simulation. A baseline case study
was presented that indicates that the method is efficient and reliable for gen-
erating test cases for small real-time systems that contain shared resources,
precedence constraints and few sporadic tasks. The method was also evalu-
ated for a dynamic system with more advanced real-time protocols and a large
fraction of sporadic tasks. For such systems, no current method of automatic
generation of mutation-based test cases is applicable. As expected, the search
problem is increasingly difficult for the more dynamic system. However, a ge-
netic algorithm using our heuristic cross-over functions shows a significantly
better performance than both random search and a genetic algorithm using
only generic cross-over functions. This approach increases the usefulness of
mutation-based testing of timeliness so that real-time systems of more realistic
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size and type can be tested.

The effectiveness of the generated test cases when executed on a real-time
target system is currently being investigated. Our genome mapping function
should be generalized to support a larger class of TAT automata templates in
future work.
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