

Integration testing of object-oriented
components using finite
state machines

Leonard Gallagher1, Jeff Offutt2 and Anthony Cincotta1

1Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg MD 20899-8970 USA,
lgallagher@nist.gov or tony.cincotta@nist.gov
2Information and Software Engineering, George Mason University, Fairfax VA 22032-4400 USA, offutt@ise.gmu.edu

SUMMARY
In object-oriented terms, one of the goals of integration testing is to ensure that messages from objects in one class or
component are sent and received in the proper order and have the intended effect on the state of the objects that receive
the messages. This research extends an existing single-class testing technique to integration testing of multiple classes.
The single-class technique models the behavior of a single class as a finite state machine, transforms the representation
into a data flow graph that explicitly identifies the definitions and uses of each state variable of the class, and then applies
conventional data flow testing to produce test case specifications that can be used to test the class. This paper extends
those ideas to inter-class testing by developing flow graphs, finding paths between pairs of definitions and uses,
detecting some infeasible paths, and automatically generating tests for an arbitrary number of classes and components. It
introduces flexible representations for message sending and receiving among objects and allows concurrency among any
or all classes and components. Data flow graphs are stored in a relational database, and database queries are used to
gather def-use information. This approach is conceptually simple, mathematically precise, quite powerful, and general
enough to be used for traditional data flow analysis. This testing approach relies on finite state machines, database
modeling and processing techniques, and algorithms for analysis and traversal of directed graphs. The paper presents
empirical results of the approach applied to an automotive system.

KEY WORDS: Software integration testing, data flow testing, data modeling, finite state machines, object-oriented

This work was prepared by United States Government employees as part of their official duties
and is, therefore, a work of the U.S. Government and not subject to copyright.

1 Introduction

Testing of object-oriented software is complicated by the fact that software being tested is often constructed from a
combination of previously written, off-the-shelf components with some new components developed to satisfy new
requirements. The previously written components are often “sealed” so that source code is not available, yet objects in
the new components will interoperate via messages with objects in the existing components. Software conformance
testing is the act of determining whether or not a software product conforms to a functional specification, where the
functional specification is a set of rules that the product must satisfy. One goal of this paper is to provide conformance-
testing techniques for the integration of new product components into a complete software system.

Each component is assumed to be object-oriented, that is, it is implemented with objects that have state and behavior.
In this paper, a class is the basic unit of semantic abstraction, a component is a closely related collection of classes, and a
system is a collection of components designed to solve a problem. Each component is assumed to be a separate
executable, thereby allowing asynchronous behavior. An object is an instance of a class. Each object has state and
behavior, where state is determined by the values of variables defined in the class, and behavior is determined by
methods (functions or procedures) defined in the class that operate on one or more objects to read and modify their state
variables. The behavior of an object when acted upon by a method can be modeled as the effect the method has on the
variables of that object (the state), together with the messages it sends to other objects. Variables declared by the class
that have one instance for each object are called instance variables, and variables that are shared among all objects of the
class (static in Java) are class variables. The results in this paper are independent of programming language, and this
paper uses a mix of Java and C++ terminology.

 -2-

If a finite state machine represents the states and transitions of a class, then the behavior of an object can be captured
as a set of transition rules for each method. Thus finite state machines are often used for class specifications in object-
oriented analysis and design [8, 10, 34, 45]. The behavior of a component is specified by the behavior of its constituent
classes. The public interface to a component is a list of public classes, which are accessed through the public methods in
those classes. A state transition specification for a class is the set of state transition rules for each method of the class.
The state of an object is determined by the values of its instance and class variables, which are collectively called state
variables. Given a state transition specification for each class in a software system, the goal of this research is to
construct test specifications that are used to construct an executable test suite to determine if an implementation of a
software system conforms to its functional specification.

This paper uses definitions from Booch [5] and Rumbaugh et al. [44] to characterize an object as something that has
state, behavior and identity. Also, an object’s class is characterized in terms of the states, events and transitions of a finite
state machine. A graph model of the software is used as a basis for generating test specifications. Hong et al. [24]
developed a class-level flow graph to represent control and data flow within a single class. This research uses their ideas
as a basis for integration testing of multiple interacting classes. The state transition specification is stored in a database,
which is then used as a basis for creating a component flow graph, which includes control and data flow information. The
methodology described here defines test criteria on this graph and generates test specifications to satisfy the criteria.

The paper describes a process that begins with state transition specifications for each class in an object-oriented
software system, defines the transitions that are relevant to a specific component of that system, and then translates the
relevant transitions into a component flow graph with nodes and edges labeled for control, and variable definitions and
uses. Test criteria are defined on this graph, and sets of paths are selected that constitute test specifications to satisfy the
criteria. Executable tests are then constructed from the test specifications.

The use of a database to store definition/use information makes it convenient to provide additional information to the
tester. In traditional data flow testing [14], the tester is provided with pairs of definitions and uses of variables (def-use
pairs), and the tester attempts to find tests to cover those DU-pairs by supplying tests through an instrumented program.
These tests are sometimes random, arbitrary, automatically generated, or generated by humans with well-defined goals.
Traditional data flow testing works for individual functions because the number of possible tests is fairly small, but is
likely to run into trouble during inter-class testing because the number of possible tests is much larger. Thus it is
necessary to provide the tester with more information. The database representation helps provide more information;
instead of simply identifying def-use pairs, the tester is given full paths between the definitions and uses (DU-paths). In
traditional code-based data flow testing, storing the complete path predicates for anything more than a tiny (20 to 50
LOC) function is impractical, and this has been a factor in the lack of widespread adoption of the technique. Using the
database allows efficient management of these potentially large predicates.

The attributes and constraints of classes and methods are modeled as attributes and constraints of tables in a
relational database. In this manner, mathematical specifications over the class properties can be translated to database
operations. Sections 3 through 6 describe the process of representing state transition specifications in a database,
determining relevant transitions in the state machine, generating a component flow graph, and determining test
specifications. Section 7 presents empirical results from applying this technique to an automotive system that includes the
cruise control, engine, brakes, gas, throttle, ignition, transmission, wheels and displays.

2 Background

Much of testing has been based on data and control flow through programs [14, 40]. In such testing, graphs are defined in
which nodes are formed from basic blocks, which are maximal sequences of straight-line statements with the property
that if the first statement is executed, then all the statements will be executed. In a control flow graph, edges are formed
from the branching statements of the program. A definition (def) of a memory location x is a node in which x is given a
value, and a use is a node in which that value is accessed, either through the same name or a different name via aliasing.
An edge is formed from nodes in which a memory location is defined to nodes in which the memory location is used and
there is a def-clear control subpath from the def to the use. A def-clear subpath for a location x is a control subpath that
does not contain a definition of x. A DU-pair is a definition and a use of the same location such that there is a def-clear
subpath from the def to the use. A DU-path is a def-clear subpath from a specific definition to a use.

Data flow testing criteria [14, 21, 32] require tests that execute from data definitions to data uses under various
conditions. Most research papers in data flow analysis have derived graphs directly from the code, called traditional data
flow analysis here. This paper uses a form of data flow analysis that is defined on finite state machines that are derived
from the behavior of classes; thus the data flow might not be directly reflected in the implementation.

Harrold and Rothermel describe an approach that applies traditional data-flow analysis to classes [22]. That approach
emphasizes three levels of testing: (1) intra-method testing, in which tests are constructed for individual methods; (2)

 -3-

inter-method testing, in which multiple methods within a class are tested in concert; and (3) intra-class testing in which
tests are constructed for a single class, usually as sequences of calls to methods within the class. Integration testing
attempts to test interactions among different classes; thus this paper introduces the term inter-class testing, in which more
than one class is tested at the same time. To perform these analyses, Harrold and Rothermel represent a class as a Class
Control Flow Graph (CCFG), which contains information that can be used during testing.

Most research in object-oriented testing has been at the intra-class level. This includes work by Hong et al. [24],
Parrish et al. [43], Turner and Robson [45], Doong and Frankl [13] and Chen et al. [6]. Intra-class testing strategies focus
on one class at a time, so do not look for problems that exist in the interfaces between classes, or in inheritance and
polymorphism among classes. In their TACCLE methodology [7], Chen et al. define class semantics algebraically as
axioms and construct test cases as paths through a state-transition diagram with path selection based on attributely non-
equivalent ground terms. They extend this methodology to multiple classes by defining inter-class semantics in terms of
contracts. The contract notion increases complexity substantially and is difficult to re-use when other components are
added to the system.

Inter-class testing work has been done by Jin and Offutt [28], who defined coupling-based testing, which requires
tests to be found that cover code-level control and data couplings between methods in different classes. Alexander and
Offutt [2, 3] have extended these ideas to cover couplings formed from inheritance and polymorphism. Chen and Kao [8]
describe an approach to testing object-oriented programs called Object Flow Testing, in which testing is guided by data
definitions and uses in pairs of methods that are called by the same caller, and in which testing should cover all possible
type bindings in the presence of polymorphism. Kung et al. [29] address object-oriented testing of inheritance,
aggregation and association relationships among multiple classes in C++ source code by automatically generating an
object-relation diagram and finding a test in order to minimize the effort to construct test stubs.

Some related work has been done on the subject of testing web software. Kung et al. [30, 31, 35] have carried out
some initial work in this area. They have developed a model to represent web sites as a graph, and provide preliminary
definitions for developing tests based on the graph in terms of web page traversals. They define intra-object testing,
where test paths are selected for the variables that have def-use chains within an object, inter-object testing, where test
paths are selected for variables that have def-use chains across objects, and inter-client testing, where tests are derived
from a reachability graph related to the data interactions among clients.

This paper extends the intra-class data flow work by Hong et al. [24] to the inter-class level, thus providing full
integration level testing. This paper does not explicitly deal with inheritance and polymorphism.

Following Rumbaugh et al, the behavior of a class is specified as a finite state machine in terms of states and events
[44]. When an event is received, a transition occurs and the current state, a guard, and the event determine the next state.
A state is represented by a categorization of values of the state variables, i.e., by a predicate that evaluates to true. Note
that state predicates are explicitly allowed to overlap, that is, two states may share the same predicate. In this case, a
target state is determined by all of the properties of a transition, not just the predicate that defines the target state.

A transition is composed of a source state, a target state, an event, a guard, and a sequence of actions. Events are
represented as calls to member functions of the class. A guard is a predicate that must be true for the transition to be
taken; guards are expressed in terms of predicates over state variables (possibly from multiple classes) and input
parameters to the event function. An action is an operation that is performed when the transition occurs; actions are
usually expressed as assignments to class member variables, calls sent to other objects, and values that are returned from
the event method. A sequence of actions is assumed to be a block of code in which all operations are executed if any one
is executed.

Pre-conditions and post-conditions of methods in a class can be derived directly from the transitions. The pre-
condition is a combination of the predicates of the source state and the guard; the post-condition is the predicate of the
target state. Note that the post-condition derived from a transition is not the strongest post-condition. If the tester desired,
state definitions could be more refined, which would allow stronger post-conditions. In turn, stronger post-conditions
would yield larger graphs and more tests, so this becomes a choice of granularity that results in a cost versus potential
benefit tradeoff. Although future experimentation may provide some guidance, it is likely that the wisdom and experience
of both system analysts and test engineers will be needed to make the best choice of granularity.

A class state machine (CSM) for a single class is defined in Definition 2.1. This definition is from Hong’s paper
[24], with the addition of the parameter set P, which will be needed for multiple classes. The CSM is extended to a CSM
for multiple classes in Section 2.2.

Definition 2.1 (CSM): A class state machine of a class C is a tuple (V, F, P, S, T), where

• V is a finite set of instance variables of C.
• F is a finite set of member functions of C.
• P is a finite set of parameters of member functions.

 -4-

• S is a finite set of states, S = {s | s = (pred)} where pred is a predicate on the instance variables in V.
• T is a finite set of transitions, T = {t | t = (source, target, fn, guard, action)} where:

o source, target ∈ S are the states before and after the transition.
o fn ∈ F is a member function that triggers t if the guard predicate evaluates to true.
o guard is a predicate on instance variables in V and parameters of member functions in F.
o action is a sequence of computations on instance variables in V and parameters of member functions in F.

2.1 Single-class example – Engine

As a simple example, consider a class Engine, which has states ON and OFF, instance variables speed and keyOn, and
methods Start(sp) and Stop(). Each state is associated with values of the instance variables as follows:

 OFF: speed = 0 ∧ keyOn = false ON: 0 ≤ speed ≤ 110 ∧ keyOn = true

In the Engine example, the transition from OFF to ON is triggered by the class member function Start(). The guard

for this transition should require the key to be in (keyOn = true), and the action should specify that the speed is set (speed
= sp). The sets of variables, member functions, states, and transitions are defined as follows:

S = {S0, Sf, ON, OFF}
V = {int speed, boolean keyOn}
F = {Engine (), ~Engine (), setKeyOn (boolean in), Start (int sp), Stop (), setSpeed (int sp), int getSpeed ()}
P = {setKeyOn:in, Start: sp, setSpeed: sp }
T = {ti | 1 ≤ i ≤ 9}
 t1 = (S0, OFF, Engine(), true, {speed = 0, keyOn = false})
 t2 = (OFF, OFF, getSpeed(), true, {return speed})
 t3 = (OFF, OFF, setKeyOn(in), true, {keyOn = in})
 t4 = (OFF, ON, Start(sp), keyOn==true ∧ 0 ≤ sp ≤ 110, {speed = sp })
 t5 = (OFF, Sf, ~Engine(), true, { })
 t6 = (ON, ON, getSpeed(), true, {return speed })
 t7 = (ON, ON, setSpeed(sp), 0 ≤ sp ≤ 110, {speed = sp})
 t8 = (ON, OFF, Stop(), true, {speed = 0})
 t9 = (ON, Sf, ~Engine(), true, { })

Engine() and ~Engine() are the class constructors and destructors. The method setKeyOn(in) allows the key to be

inserted into the ignition, and setSpeed(sp) and getSpeed() control the speed of the engine. Start(sp) starts the engine
running at speed sp, and Stop() turns the engine off. The state transition diagram for Engine is shown in Figure 1, with
each transition represented as a labeled and directed arc between two states.

OFF ON
t 1

t 7

t 2 t 3

t 4

t 8
t 9 t 5

t 6

S f

S 0

Figure 1: Class State Machine for Engine

In the class Engine, the engine is turned on (transition t4) by method Start(sp), and can only be turned on if the key is
in the ignition and the initial speed is between 0 and 110 (the guard keyOn==true ∧ 0 ≤ sp ≤ 110). If the guard is true,
then the new speed is set to the parameter given to the Start() method (the action speed = sp). The other transitions are
similar to t4.

2.2 Multi-class example - Automobile

 -5-

Inter-class integration testing addresses interactions among multiple components, so the following example modifies the
Engine class from Section 2.1 and integrates it with other components. Each message received by an object is interpreted
as an event. Components can function as independent processes, possibly running on different computers and possibly
receiving concurrent messages from many sources, so the sending object may not be certain of the recipient object’s state
when the event is processed.

The Automobile system consists of six core components: Acceleration, Brakes, CruiseControl, Engine,
InstrumentPanel and SystemControl. This example tests how the CruiseControl component integrates with the remainder
of the system. The classes that make up the components are shown in Table 1.

Component Classes
Acceleration GasUser, Throttle, Transmission, Wheel

Brakes BrakeUser, BrakeControl
CruiseControl CruiseUser, CruiseUnit

Engine Engine
InstrumentPanel Gauges
SystemControl AutoSystem, Ignition

Table 1: Classes in Cruise Control Components

The Ignition, GasUser, BrakeUser, Transmission and CruiseUser classes have external interfaces that are accessible

to a human driver. The Gauges are all read-only for external users, but these human observations are not part of the
automobile specification. The CruiseUser class has an On/Off switch, as well as Cancel, Resume/Accel (RA) and
Set/Decel (SD) buttons for Cruise Control. If the user holds the RA or SD button down, the user mode is that button;
when the button is released the user mode returns to Neutral (NT). Environmental conditions such as wind and hills are
simulated by an externally controlled ExternalDrag variable. Users can use controls in the car to invoke 12 methods:

 BrakeUser.IsActive (status) status ∈ {true, false}

BrakeUser.PedalPressure (press) 0 ≤ press ≤ 99
CruiseUser.Cancel ()

 CruiseUser.Mode (mode) mode ∈ {NT, SD, RA}
 CruiseUser.Switch (status) status ∈ {On, Off}
 Engine.ExternalDrag (drag) 0 ≤ drag ≤ 2

GasUser.PedalPosition (position) 0 ≤ position ≤ 99
Gauges.OilPressure (press) press ≥ 0
Gauges.WaterTemp (temp) temp ≥ 0
Ignition.Key(status) status ∈ {On, Off}
Ignition.StartEngine()
Transmission.Gear(gear) gear ∈ {N, R, 1, 2, 3, 4, 5}

All other methods are internal methods that can only be invoked by internal actions. Thus, all test case inputs are

sequences of calls to the above 12 methods. The CruiseUser class has a number of non-feasible transitions; for example,
the cruise control RA button cannot be pushed at the same time as the SD button because their physical placement
prohibits them from being depressed simultaneously.

Definition 2.1 is extended to define a combined Class State Machine for multiple classes by merging the sets V, F, P,
S and T, and adding a new set C of classes. The resulting tuple is (C, V, F, P, S, T). For the automotive example, C is a
set of 12 classes, V is a set of 58 variables consisting of the union of all state variables from each class, F is a set of 106
methods consisting of the union of all member functions from each class, P is a set of 44 parameters representing inputs
of mutator functions, S is a set of 44 states consisting of the union of all states from each class, and T is a set of 263
transitions consisting of the union of all transitions from each class. A database schema for representing these sets and
the relationships among them is defined in Section 3 and a partial table that lists relevant transitions for the CruiseControl
component of a combined Class State Machine is given in Appendix I.

Figure 2 is a directed graph that shows an abstraction of the relevant communication paths among the classes. Since
the Gauges class is passive, the double-arrow between CruiseUnit and Gauges indicates that methods in CruiseUnit can
read from and write to state variables in Gauges. The Throttle class, however, is active and can change the pedal position
in GasUser as well as increase the gas supply to the Engine. In order to simulate road conditions such as hills, the Engine

 -6-

class has an externally controlled drag variable that changes Engine RPM and thereby affects the axel speed of the Wheel
and ultimately the speedometer setting in Gauges. The Wheel sets the speed in Gauges, so the loop from CruiseUnit
through Throttle, Engine, Wheel and Gauges back to CruiseUnit will be important in integration testing.

Figure 2: Class-to-Class Data Flow

The automobile example uses some special syntax to distinguish a situation where an object sends an asynchronous

message to itself with the intent that the message is put on a queue to be acted upon in a subsequent transition. This is
used in several classes in lieu of a system clock to keep processes from terminating. For example, in most of the cruise
control transitions, the action of the transition will set parameters for gas flow and throttle, but before relinquishing
control they will send an asynchronous message back to the underlying object to check all of the gauges to see if further
action is required. This message will be put on a queue along with other explicit messages received from other
components and will be executed when it moves to the head of the queue. The cruise control component could be in a
different state when this message is finally handled. Different priorities for handling these messages are not addressed.

2.3 Overview of methodology

The overall goal is to automate the process of developing integration tests from the behavioral specifications of the
various components. This process is illustrated at a high level in Figure 3. To begin, a state/transition specification must
exist for each class, with behavior specified by a Class State Machine as in Definition 2.1. The CSM could have been
produced during design, perhaps as UML diagrams [46], or might be produced by the tester. The CSMs for the classes
are combined to form the needed sets according to a database schema (defined in Section 3). Particular attention is paid
to associations between the sets such as when a state or guard references a state variable from its own class or calls a get
function to reference a state variable from some other class. Each action of a transition is also analyzed to identify all
calls to actor or mutator functions from other classes and the passing of state variables as parameters of mutator
functions. An actor function returns a value from a class, and a mutator function can change a value.

Once the software system is represented in the database schema (DB representation of spec in Figure 3), the next
step is to identify one or more individual components to test and to determine how they integrate with other components
(Identify component to test). Then, transitions into and out of the components to test are identified (Identify relevant
transitions). In the Automobile system, the focus is on the CruiseControl component and its relevant transitions are the
interactions with other classes in the Automobile system. Since CruiseControl activity is canceled whenever the brake is
active, or whenever an emergency state is entered, this example safely ignores the complex BrakeControl behavior
dealing with anti-lock brakes and all of the AutoSystem behavior dealing with items such as air bags. Section 4 of the
paper defines relevant transitions for a given component.

 Throttle

 Cruise
 Unit

 Auto
 System

 Brake
 Control

Cruise
User

 Gas
 User

Ignition Gauges

 Wheel

 Trans-
 mission

 Engine
 Brake
 User

 -7-

Figure 3: Flow of Tool Automation

The next step is to model all potential finite state transitions as a directed graph (Component flow graph). Section 5

begins with the relevant transitions and treats those transitions, together with all of the states and guards associated with
those transitions, as the nodes of a graph. All data and control flow is modeled as directed edges between these nodes.
Following the example of Hong et al. [24], the process starts with directed edges from a source state node to the guard
node or transition node of each transition, from each guard node to its transition node, and from each transition node to
its target state node. In addition, each call of an actor function results in directed edges from potential transitions of the
called object to states, guards, or transitions of the calling object, and each call of a mutator function in the action of a
transition results in edges from the calling transition to potential source states of the called object. If a mutator function
returns a value, then there are edges from potential called transitions back to the calling transition. This process results in
a component flow graph (formally defined in Section 5).

The final step is to choose a testing criterion and to adapt it to the information stored in the database and the
component flow graph (Def/Use nodes & edges). The all-uses criterion is adapted by defining defs and uses in terms of
references to class variables (formally defined in Section 6). Each def takes place at a transition node and each use takes
place either at a transition node or at a state-to-guard, state-to-transition, or guard-to-transition edge. The procedure then
looks for candidate test paths through the component flow graph for each def-use pair. Much of the remaining effort
described in Section 6 is to construct candidate test paths that are potentially feasible and def-free. The goal is to find
paths that result in executable test cases for each def-use pair, or to prove that such a path cannot exist. If none of the
candidate test paths result in an executable test case, then the new information learned from that failure is added to the
information base and the methodology is applied again to all untested pairs.

Section 7 describes the overall effect of this methodology on the Automobile example; in particular, Section 7.2
describes a tool that automates most of the processes in Figure 3. For the automobile example, the tool analyzes over
4300 def-use pairs, constructs candidate test paths for over 2000 pairs, proves that nearly 1500 pairs are def-bound with
no possible def-free path (infeasible), and constructs an executable test sequence of 145 tests that cover about 50% of the
DU-pairs. This research project is actively pursuing the development of efficient executable test case development from
candidate test paths, partly relying on algorithms that were previously developed for specification-based testing [40].

3 Representing Component Specifications

A specification that defines the states and transitions for each class in a system must be available before test development
can begin. This specification will include names of classes, methods and variables. Some of these methods will be
invoked from an external interface; they will be the names that are used in the test cases. The eventual test cases will be
expressed in terms of these names. These names may or may not be used by the programmers in the eventual
implementation of the system, but for the context of this work, it is assumed that the names are the same. If not,
additional work will need to be done to apply the resulting tests to the software; specifically, the test specifications will
need to be translated to a form that can be used by the implementation. The mapping for this translation will need to be
supplied by the designers or programmers of the software.

Each class is used to derive a Class State Machine as defined in Definition 2.1. Using the relational database model
[11, 12, 37], classes and sets associated with classes are represented as relational tables.

Component
flow
graph Identify

relevant
transitions

Def/Use
nodes &

edges

Candidate
test

paths

Identify
component

to test

Executable
test

sequences

DB
representation

of spec

Test Sequence
Generator

 -8-

Figure 4 shows the UML class diagram [46] of a general schema definition for representing combined class state
machines. This schema allows representation of class state machines in a way that is convenient to store, access, and
process the information. Without loss of generality, it is assumed that all methods and procedures can be represented as
functions. Each of the six UML classes in Figure 4 represents a table in the model as follows: (1) the Class table contains
information about the classes that have been defined for the system, (2) the Variable table defines instance variables for
each class, (3) the Function table identifies all of the methods that are associated with each class, (4) the Parameter
table identifies the input and output parameters for each function, (5) the State table contains information about the states
in the class state machine and (6) the Transition table describes all transitions among the states.

Since variable, function and state names need be unique only within a class, and parameter names need be unique
only within a function body, compound identifiers are used for each. For example, (c, v) is a unique identifier for a
variable v that is defined in class c. Similarly (c, f) and (c, s) are compound identifiers for functions and states, and (c, f,
n) is a unique identifier for the n-th parameter of a function. In each case, the ordered tuple becomes the primary key of
the underlying table. In addition, c serves as a foreign key back to the class definition and fully represents the one-to-
many associations identified in the diagram by ClassHasStateVariables, ClassHasMethods, FnHasParameters and
Defined States. The associations SourceState and TargetState from Transition to State represent referential integrity
constraints on the sourceState and targetState attributes of the Transition table. An additional constraint is that source and
target states for a transition are always from the same class. The Method association from Transition to Function
represents a referential integrity constraint on the method attribute of the Transition table. The remaining associations
identify many-to-many relationships among Transitions, States, Variables, Functions and Parameters derived from
syntactic analysis of guard and state predicates and transition actions. They are explained further below.

DefinedStates

ClassHasMethods

SourceState TargetState

ClassHasStateVariables

Method

ActionDefVar

0..*

0..*

ActionRefVar
0..*

0..*

StateRefVar

0..*

0..* StateRefActorFn

0..*

0..*

GuardRefActorFn

0..*

0..*

ActionRefActorFn0..*

0..*

ActionRefMutatorFn 0..*

0..*

GuardRefVar
0..*

0..*

FnHasParameters

ActionRefParm0..*

0..*

ActionSetsParm

0..*

0..*

GuardRefParm 0..*

0..*

Function
+
+
+
+
+
+

funName
inputType
returnType
availability
effect
description

: identifier
: signature
: typeName
: enumeration
: enumeration
: string

Class
+
+
+
+
+

className
descriptiveName
componentName
systemName
description

: identifier
: string
: identifier
: identifier
: string

State
+
+

stateName
defnPredicate

: identifier
: predicate

Transition
+
+
+
+
+
+

sourceState
guard
method
targetState
isFeasible
action

: stateId
: predicate
: functionId
: stateId
: boolean
: programBlock

Variable
+
+
+
+
+

variableName
dataType
defaultValue
constraint
description

: identifier
: typeName
: literal
: predicate
: string

Parameter
+
+
+
+
+

position
parmName
type
direction
description

: integer
: identifier
: typeName
: enumeration
: string

Figure 4: Database Schema as a UML Class Diagram

A unique ClassId identifies each class in the Class table from Figure 4 and is the primary key of that table. The
className is a surrogate for ClassId and is used to reference the class in state and guard predicates, and in the actions of
transitions. Similarly, variableName, funName, parmName and stateName are surrogates for hidden identifiers for
variables, functions, parameters and states, respectively; each need be unique only within its class. Each class is owned

 -9-

by exactly one component, identified by componentName, but may be used by many components. In the syntax for
predicates, guards and actions, fully qualified names are used to disambiguate the references when necessary.

In the Function table, the availability attribute defines functions to be private (PRI), protected (PRO), public (PUB),
or external (EXT). Public functions may be invoked from other classes in the system, whereas external functions are part
of the external component interface and can be invoked by other systems or users. External functions typically represent
actions that are available to the human user or for black-box testing purposes. The inputType values identify the number
of input variables, as well as their data types, so className, funName, inputType and returnType determine the complete
signature of a function. The effect attribute allows functions to be categorized as Get, Set, Constructor, Actor, Mutator,
etc. These are based on standard object-oriented concepts: a Get function is read-only and is said to be an actor method
on the object, a Set function can update state variables and is said to be a mutator method. The following pays particular
attention to classifying all methods as actor, mutator, or mutator with return. In the Parameter table, both position and
parmName uniquely identify a parameter, and one will determine the other. A parameter is used by name, but is set by
position. Each parameter has a data type and a direction, i.e., In, Out, or InOut.

In the State table, the defnPredicate is a Boolean predicate over the state variables. It may reference an in-class
variable by name only, and may reference a variable in another class by invoking the appropriate actor method, if it is
available, to read the value of that variable. Only actor methods can be called from a state's definition predicate. Mutator
and constructor methods may only be called from an action that is part of a state transition.

In the Variable table, the dataType attribute identifies the data type of the variable, the defaultValue attribute
identifies all automatic value assignments upon creation of a new class instance, and the constraint attribute identifies a
post-assignment requirement on every variable definition.

For a class c and a transition t, the primary key of the Transition table is the pair (c, t), which determines all of the
other properties of a transition. Some transitions may be well defined in the model, but the implementation will not be
able to execute them because of a rule or by physical or mechanical impossibility. Such transitions are identified by the
isFeasible attribute. These types of transitions can be divided into three categories.

1. Category one is an error handling transition. Consider an elevator example where a user is at floor 5. It is an

error to push the button to go to floor 5.
2. Category two transitions are prevented by hardware; for example, hardware interlocks prevent doors from

opening when an elevator is between floors.
3. Category three transitions represent logical and physical impossibilities; for example, it is not possible to

transition from the “not pushing button” state to the “not pushing button” state.

Transitions in category one will be tested as a natural result of the technique presented in this paper. Transitions in

category three do not need to be tested. Whether to test transitions in category two depends on the goals of the testers.
Since the situation is controlled by hardware, not software, any testing that only involves the software (integration and
subsystem testing) may be able to safely ignore these transitions. At the system level, however, these transitions must be
carefully tested.

The predicates on guards and states may reference variables, and the actions of transitions may reference and assign
values to variables. Just as in traditional data flow analysis [14], predicates reference a set of objects (use) and actions
define a set of values (def). Of course, how to determine the defs and uses depends on the semantics of the language used
to express the predicates and transitions of the class state machine. The implementation in this research uses a simple
general language to describe state machines, which allows the analysis to proceed in a fairly straightforward manner.
Subsequent plans are to expand this part of the prototype to include syntactic analysis of predicates and actions specified
in UML [46], Java [27] and other commonly used class definition languages.

Once this syntactic analysis is complete, the results can be captured in the UML diagram of Figure 4 as many-to-
many associations among classes. In the database representation, each such association will be a new base table as
follows:

• The StateRefVar association between State and Variable is a table of tuples (c, s, v), where (c, s) identifies a state

and (c, v) identifies a variable in the same class as the state. The definition predicate of the state references the
variable. In the Engine example of Figure 1, the OFF state references both speed and keyOn.

• The GuardRefVar, ActionDefVar and ActionRefVar associations between Transition and Variable are each a table of
tuples (c, t, v), where (c, t) identifies a transition and (c, v) identifies a variable in the same class as that transition. In
the first association, the guard of the transition references the variable, in the second association the action of the
transition defines the variable, and in the third association the action of the transition references the variable. Since
each action in a sequence of actions has a sequence number, an occurrence attribute, SeqNbr, is assigned to each

 -10-

instance of the second and third associations. In the Engine example, the guard of t4 references keyOn, the action of
t1 defines first speed and then keyOn, and the actions of t2 and t6 both reference speed.

• The StateRefActorFn association between State and Function is a table of tuples (cs, s, cf, f), where (cs, s) identifies a
state and (cf, f) identifies an actor function. The definition predicate of the state references the actor function. In the
Automobile example, all of the states defined for CruiseUnit reference the Cruise variable from the Gauges class of
the InstrumentPanel component to see if cruise control is On or Off (not visible in Appendix I).

• The GuardRefActorFn, ActionRefActorFn and ActionRefMutatorFn associations between Transition and Variable
are each a table of tuples (ct, t, cf, f), where (ct, t) identifies a transition and (cf, f) identifies a function. In the first
association the guard of the transition references an actor function, in the second association the action of the
transition references an actor function, and in the third association the action of the transition references a mutator
function. As above, a SeqNbr attribute is assigned to each instance of the second and third associations to identify
the position of that reference in the action sequence. The Guard and Action columns of Appendix I show many
instances of these types of references for the Automobile example.

• The GuardRefParm and ActionRefParm associations between Transition and Parameter are each a table of tuples (c,
t, n), where (c, t) identifies a transition whose guard or action references (by name) a parameter of the function
associated with that transition and n is the position of that parameter in the signature of the function. In the
Automobile guards shown in Appendix I, nearly every guard of a transition derived from a mutator function that has
a parameter references that parameter by name. Moreover, the actions of all transitions derived from the Speed
method in the Gauges class and the Floor and GasPedal methods in the Throttle class reference the incoming
parameter by name. As above, an additional attribute in the ActionRefParm association, called SeqNbr, captures the
sequence number of that reference in the action sequence of the transition.

• The ActionSetsParm association between Transition and Parameter is a table of tuples (ct, t, cf, f, n), where (ct, t)
identifies a transition whose action calls a function, identified by (cf, f), from some other class and sets the n-th
parameter of that function to some non-constant value, possibly the value of a state variable from yet another class c.
For the Automobile example, Appendix I shows actions in several transitions of CruiseUnit (e.g., t064, t050) that
call the Throttle.Floor() function and set the floor either to the TargetThrottle variable of CruiseUnit, or to a value
derived from the value of the Position variable from the Throttle class. The floor represents a temporary minimum
throttle setting, which can be set by AutoSystem or by CruiseUnit. This association also carries an additional
attribute to capture the SeqNbr of the set operation in the action sequence of the transition.

Each of the above tables satisfies appropriate referential integrity constraints to the corresponding Transition,

Variable, Function, Parameter, or State tables.
Every state variable in a class definition is associated with two predefined methods, one to get its value and one to

set its value. An additional association VarAssocFn is defined between Variable and Function to maintain the
relationship between a state variable and the get function that reads its value. This association is not visible in Figure 4,
but it is represented by a table of tuples (c, v, f) where (c, v) identifies the state variable and (c, f) identifies the function.

The ActionSetsParm association defined above identifies all transitions that (1) call an external function and (2) set
some parameter of that function to a non-constant value. It is particularly important if the setting of a parameter involves
a state variable either from the same class as the calling transition or from some other class. Thus a new 3-way
association among transitions, state variables and parameters is defined. This is denoted by ActionSetsParmUsingVar as a
table of tuples (ct, t, cf, f, n, cv, v) where (ct, t, cf, f, n) is a tuple in the ActionSetsParm association and (cv, v) identifies a
state variable that is referenced in the setting of that parameter. If the state variable is from the same class as the
transition, then ct=cv, and cf=cv if the state variable is from the same class as the called function, but in general (cv, v)
could identify a variable in any class that is called by the get function on that variable. Appendix I shows examples of the
first and second alternatives, for example, several transitions derived from CheckState() in CruiseUnit call the Position
variable from Throttle and pass it back to Throttle by setting Throttle’s floor variable.

An important consideration in this type of testing has to do with concurrent interactions of the classes. Sometimes
the action of a transition will make an asynchronous call to a method defined by the same class: it does not wait for a
reply before completing the transition, and the call does not return a value. Instead, the function call is put on an input
queue for that class and considered later. An additional association ActionRefLocalAsyn is defined between Transition
and Function to represent such calls. This association is not visible in Figure 4 but it is represented by a table of tuples (c,
t, f) where (c, t) identifies the transition and (c, f) represents the asynchronously called function. In the Automobile
example, many of the CruiseUnit and Wheel transitions seen in Appendix I have final actions that put CheckState() on a
queue to be executed by CruiseUnit or Wheel when they are not busy with other requests.

Although this information is conveniently stored in database tables, it is helpful to consider the tables as sets for
most of the development of this work. This is done by a straightforward mapping. Every table can be associated with a

 -11-

mathematical set, where the set is a set of sequences consisting only of the primary key values of the table. In this sense,
the sequence (c, f) is an element of the Function set if and only if there exists a row in the Function table with primary
key values (c, f). If X is such a table-derived set, if w is a non-key column of the corresponding table T, and if x ∈X, then
w(x) is defined to be the value in column w of the row of table T identified by x. For example, in the ActionRefVar
association defined above, SeqNbr(c, v, t) identifies the value of the SeqNbr attribute of that instance. This notational
convenience is used freely in the following sections, with C, F, P, V, S and T, as the sets derived from the tables Class,
Function, Parameter, Variable, State and Transition.

4 Choosing Relevant State Machine Transitions

Given even a moderately large system, the number of transitions available over all class state machines could be quite
large. Developing tests over such a large scope would probably be prohibitively expensive, and would properly be
considered system testing. This paper divides testing into pieces by focusing on one component at a time and generating
tests based on the integration interactions that a test component has with other components.

As a testing model, this research assumes there is a test component M, whose interactions with the rest of the system
are being tested. This is typical when integrating a new component into a complete or partial system. The methodology
first determines which transitions from the overall system specification are relevant to M, that is, into or out of M.
Relevant transitions fall into two types. In transitions represent actions or data that flow into M, transitions from other
classes in the system that can modify the value of a state variable in any of M’s classes. Out transitions flow out from M
to other classes, that is, transitions that can be invoked, directly or indirectly, from actions of transitions in any of M’s
classes. Transitions from classes in M are called Base transitions, since they are the starting points for the process that
finds the transitive closure of relevant transitions, explained below.

This static analysis process begins by putting all feasible Base transitions from any class in M into a set R0. The
iterative process starts with R0. At each step, assume that n steps of the process have been completed, resulting in a set Rn
of relevant transitions, each of which is labeled as In, Out, or Base. The same transition may appear in Rn as many as
three times with different labels. To create the next set of relevant transitions, Rn+1, first initialize Rn+1 to be Rn, and then
insert newly labeled transitions as indicated below. A mutator function that returns a usable value to the calling action
results in both In and Out labels for each of its transitions. The following rules control how new transitions are added to
the relevant collection.

• Let t be a feasible transition and let f be an actor or mutator with return function that is the method associated with t.

If the SourceState, Guard or Action of any transition in Rn calls f, then t is added to Rn+1 with an In label.
• Let t be a feasible transition and let f be a mutator or constructor function that is the method associated with t. If the

Action of any Base or Out labeled transition in Rn calls f, then t is added to Rn+1 with an Out label.
• Let t be a feasible transition. Let t' be any transition in Rn labeled either as a Base transition or as an Out transition.

Let f' be an actor function that is the method associated with t'. If the SourceState, Guard or Action of t calls f', then t
is added to Rn+1 with an Out label.

• Let t be a feasible transition. Let t' be any Base or In-labeled transition in Rn and let f' be a mutator function that is
the method associated with t'. If the Action of t calls f', then t is added to Rn+1 with an In label.

• Let t be a feasible transition and let f be a function that is the method associated with t. Let t' be a transition in Rn,
from the same class as t, labeled either as a Base transition or as an Out transition. If the Action of t' calls f
asynchronously, then t is added to Rn+1 with an Out label.

• Let t be a feasible transition whose Action defines a state variable v. Let t' be any transition in Rn from the same
class as t, labeled as an In transition. If the method associated with t' is the get method for the variable v, or if the
method associated with t' is an actor method and t' has a Guard or Action that references v, then t is added to Rn+1
with an In label.

• Let t be a feasible transition. Let t' be any transition in Rn from the same class as t, labeled as an Out transition. If the
Action of t' defines a state variable v, and if the method associated with t is the get method for v, or if the method
associated with t is an actor method and t has a Guard or Action that references v, then t is added to Rn+1 with an Out
label.

Since there are only a finite number of transitions in the system, and since {Rn} is a monotonically increasing

sequence of sets, the process must terminate at some iteration with no new additions. At that point, the transition labels
are discarded and the remaining unlabeled transitions are defined to be the set of transitions in the system that are
relevant to M. These transitions will determine the component flow graph when integrating M with the system. The set of
relevant transitions that are determined by this process is the same, no matter in which order the above rules are followed.

 -12-

Definition 4.1 (relevant transitions): Let M be any component of a software system. R(M) is the set of all transitions
from the software system that are determined to be relevant to M according to the preceding iterative process.

The initial collection of transitions in the Automobile example includes several transitions in the BrakeControl class
that deal with anti-lock brakes and many in the Gauges class that deal with gauges on the instrument panel but that are
unrelated to cruise control. The above procedure focuses only on transitions relevant to CruiseControl and eliminates
these unrelated transitions. Of the original 235 feasible transitions for Automobile, only 160 are relevant to CruiseControl
by this definition. Each relevant transition that has a non-trivial action is listed in Appendix I.

5 A Data-flow Graph Model of State Transitions

The traditional testing literature [14, 29, 38, 43, 45] defines a data flow graph to be a graph representation of a program's
control structure and the flow of data through that structure. A data flow graph is composed of nodes, which represent
statements or basic blocks, and edges, which represent flows of data between basic blocks. If a variable X is given a
value, or defined, in a node d, and that value can be used in another node u, then there is a data flow dependency from d
to u. The two nodes d and u form a def-use pair for the variable X.

This research expands the traditional notion of data flows among statements in a program to be defined among states,
guards and transitions in finite state machines. A component flow graph represents both the control and data flows for the
state transitions of the classes of a component and its relevant transitions from and to other classes in the software
system. The definitions in this paper extend those of Hong et al. [24] from the single-class case to the multiple-class case.

In a component flow graph, nodes and edges are derived from the relevant transitions of that component. Each such
transition has pre-determined associations with the states, guards, variables and functions of other transitions, as defined
in Section 3 and represented in Figure 4.

Definition 5.1 (component flow graph): Let M be any component of a software system, and let R(M) be the set of all
transitions in the system that are relevant to M. Then the component flow graph G of M is a directed graph G = (N, E),
where N is drawn from elements of the relevant transitions and E represents potential flows of data between nodes in N.

Specifically, the nodes N in G are formed from the union of states, transitions and guards that appear in the relevant
transitions of M as follows:

N = Ns ∪ Nt ∪ Ng where
• Ns is the set of all states in the finite state machine that are a source state or target state of a relevant transition
• Nt is the set of all relevant transitions
• Ng is the set of all guards in the finite state machine that are non-trivial guards of a relevant transition

The edges are derived from potential data flows among states, transitions and guards in the relevant transitions.

Some of the edges represent actions that call methods from other classes. Each edge that results from a call to any
external function is labeled with the sequence number of that call in the action sequence of the transition. It helps to
distinguish these labels as being on outgoing or incoming edges, so the sequence number label for an edge that represents
an outgoing call of a mutator function is defined to be the OutSeq number and the sequence number label for an edge that
represents an incoming data flow from an actor function, or from a mutator function that returns a value, is defined to be
the InSeq number. All other edges will be left unlabeled. No edge carries more than one such label. In some cases an
edge label will disambiguate multiple edge instances. An edge is represented as an ordered pair (n1, n2) or as an ordered
triple (n1, L, n2), depending on whether a label L is required to distinguish multiple edges from one node to another.

Nine types of edges are defined. Four come from the paper by Hong et al. [24] and are termed “intra-class” edges
because they are all defined within a single class. These intra-class edges are also synchronous in the sense that in all
messages that are sent, the caller waits for the callee to complete before proceeding. To handle multiple classes, one new
intra-class edge type and four new inter-class edge types are introduced. The inter-class edges are potentially
asynchronous because each component is assumed to be a separate executable process. The new intra-class edge type
that is introduced (Ects) is also asynchronous, as explained below. The total set of edges E is defined as:

E = Est ∪ Esg ∪ Egt ∪ Ets ∪ Egtg ∪ Ests ∪ Eits ∪ Eitt ∪ Ects

Hong’s four original intra-class edge types are:

• State-Transition (Est) edges represent data flow from states to transitions. The transition has no non-trivial guard
(i.e., guard is true).

 -13-

• State-Guard (Esg) edges represent data flow from states to guards. The state is the source state of the transition that
specifies the non-trivial guard.

• Guard-Transition (Egt) edges represent data flow from guards to transitions. The guard is non-trivial and is specified
by the transition.

• Transition-State (Ets) edges represent synchronous data flow from transitions to states. The state is the target state of
the transition.

There are four types of edges between classes, potentially asynchronous. These are more complicated than intra-

class edges. They are constructed when guards, states and transitions invoke methods in other classes. The invoking
guard (g), state (s) or transition (t) may be the source or the target of the edge, depending on whether the data flow is into
or out of that node.

• Guard-Transition-Guard (Egtg) edges represent inter-class data flow, triggered by a guard, which flows from a

transition in another class back to that guard. The predicate of the guard invokes an actor function from the other
class and data flows from transitions in that class back to the guard. The GuardRefActorFn association determines
these edges. The Automobile example has 34 instances of this type of edge.

• State-Transition-State (Ests) edges represent inter-class data flow, triggered by a state, which flows from a transition
in another class back to that state. The predicate of the state invokes an actor function from the other class and data
flows from transitions in that class back to the state. The StateRefActorFn association determines these edges; the
Automobile example has 5 instances.

• Inter-class-Transition-State (Eits) edges represent inter-class data flow from a transition to a state in a different class.
The action of the transition invokes a mutator function from a different class and data flows from the transition to a
feasible source state of any transition in that class that has the mutator function as its method. The target of the flow
is the source state rather than the other transition because it may be subject to the constraint of a guard and because it
is not known which state the other object might be in when the request is received. These outgoing edges are labeled
with an OutSeq number equal to the SeqNbr of the call of the mutator method in the action sequence of the calling
transition. These edges are also labeled with the function name of the mutator function. The function label is used
later in Section 6 as part of a constraint on certain path segments. The ActionRefMutatorFn association determines
these labeled edges; the Automobile example has 174 instances.

• Inter-class-Transition-Transition (Eitt) edges represent inter-class data flow from a transition to a transition in a
different class. The target transition action invokes a method from another class and data flows from all transitions in
the class that are derived from the function back to the target transition. These incoming edges are labeled with an
InSeq number equal to the SeqNbr of the method call in the action sequence of the calling transition. The
ActionRefMutatorFn and ActionRefActorFn associations determine these labeled edges; the Automobile example has
68 instances.

There is one new intra-class asynchronous edge type:

• Class-Transition-State (Ects) edges represent asynchronous intra-class data flow from transitions to states. The
transition calls a mutator function, asynchronously, in its own class. Note that Ets edges are synchronous. Since the
call is asynchronous, it is put on a queue and the class may be in some other state when the function is executed.
These outgoing edges are labeled with an OutSeq number equal to the SeqNbr of the method call in the action
sequence of the transition. These edges are also labeled with the function name of the mutator function. The
ActionRefLocalAsyn association determines these labeled edges; the Automobile example produces 80 instances.

A more formal specification of edge derivation is in Section 5 of an earlier technical report [17]. Transition nodes

whose method has external (EXT) availability determine the external interface to the system. Input values can only be
provided through this interface in black box testing. In the Automobile example, the EXT methods listed in Section 2.2
produce all such externally invokable transitions. Various combinations of EXT methods with different inputs will
produce different paths through the component flow graph. The goal is to find appropriate paths through the graph to
ensure that all aspects of the specification are thoroughly covered, and then to choose input values for a sequence of EXT
methods to execute those paths. The paths through the graph are called test specifications and the sequences of EXT
methods with appropriate input values are called executable test cases.

6 Generating Test Requirements

 -14-

A testing criterion is a rule that imposes requirements on a set of test cases. Test engineers measure the extent to which a
criterion is satisfied in terms of coverage: A test set achieves 100% coverage if it completely satisfies the criterion.
Coverage is measured in terms of the requirements that are imposed; partial coverage is defined to be the percent of
requirements that are satisfied. Test requirements are specific things that must be satisfied or covered; for example, the
requirements for statement coverage are individual statements that must be executed during testing.

A number of different coverage criteria can be defined on data flow graphs, including all-defs, all-uses and all-
paths. These have been discussed and compared extensively in the literature [14, 38]. This research follows the lead of
other researchers and uses the all-defs and all-uses criteria [9, 15, 16, 21, 25, 36, 39]. Although some scientists may
question the value of all-defs, others believe it to be useful and if all-uses is satisfied, all-defs comes for free anyway.

6.1 Definition-use pairs

The formal definitions of variable defs and uses for the component flow graph are in a technical report [17] and given
informally here. Finding def-use pairs for inter-class testing of object-oriented components is somewhat more
complicated than for intra-class testing. This complication is caused by several factors, including the information hiding
common in OO classes (which makes it difficult to identify defs and uses), the multiple edge types that are being
considered, and the concurrent nature of the software. First, the various types of uses are defined. These include
direct/indirect uses and predicate/computation uses. These are used to define def-use pairs. This paper deviates somewhat
from traditional data flow testing papers by separating def-use pairs and DU-pairs. The purpose is to emphasize the fact
that this research finds def-clear paths from definitions to uses, and then analyzes those paths to find input values that
will execute the paths. A def-use pair that has a definition-clear path from the definition to the use is called a DU-pair.

Defs and uses are defined in terms of the associations defined in the DB schema of Figure 4. Using the notation
introduced in Section 3, let V be the set of all variables in the software system and let the variables be defined by the
Greek nu, ν = (c, v) ∈ V, where c identifies the class that declares the variable, that is, c ∈ C.

Definition 6.1 (definitions and uses): Let M be any component of a software system, let R(M) be the set of transitions
that are relevant to M, and let G = (N, E) be the component flow graph of M.

• ν is defined at a transition-node nt ∈ Nt if the variable and the transition are from the same class and if they satisfy

the association (c, t, v) ∈ ActionDefVar. Each variable definition carries along the SeqNbr attribute of the
ActionDefVar association.

• ν is directly computation-used at a transition-node nt ∈ Nt if the variable and the transition are from the same class
and if they satisfy the association (c, t, v) ∈ ActionRefVar.

• ν is indirectly computation-used at a transition-node nt ∈ Nt if the variable is associated with the get method f in its
class c and if the transition and the function satisfy the association (ct, t, c, f) ∈ ActionRefActorFn.

• ν is directly predicate-used at any state-transition-edge if the state satisfies the association (c, s, v) ∈ StateRefVar.
• ν is indirectly predicate-used at any state-transition-edge if the variable is associated with the get method f in its

class c and if the state and that function satisfy the association (cs, s, c, f) ∈StateRefActorFn.
• ν is directly predicate-used at any state-guard-edge if the state satisfies the association (c, s, v) ∈ StateRefVar.
• ν is indirectly predicate-used at any state-guard-edge if the variable is associated with the get method f in its class c

and if the state and the method satisfy the association (cs, s, c, f) ∈StateRefActorFn.
• ν is directly predicate-used at a guard-transition-edge if the transition satisfies (ct, t, c, v) ∈ GuardRefVar.
• ν is indirectly predicate-used at a guard-transition-edge if the variable is associated with the get method f in its class

c and if the transition and f satisfy the association (ct, t, c, f) ∈ GuardRefActorFn.
• ν is parameter computation-used at a transition-node nt ∈ Nt if the action of the transition associated with nt, called

(ct, t), references the n-th parameter of the function associated with t by name, that is, if (ct, t, n) ∈ ActionRefParm,
and if the variable is used to set the n-th parameter of some function, that is, if there exists a transition t1 whose
action calls a function (cf, f) such that (ct1, t1, cf, f, n, c, v) ∈ ActionSetsParmUsingVar, and if that function is the
function associated with t, that is, if ct = cf and method(t) = f.

• ν is parameter predicate-used at a guard-transition-edge if the guard of the transition associated with n, called (ct, t),
references the n-th parameter of the function associated with t by name, that is, if (ct, t, n) ∈ GuardRefParm, and if
the variable is used to set the n-th parameter of some function, that is, if there exists a transition t1 whose action calls
a function (cf, f) such that (ct1, t1, cf, f, n, c, v) ∈ ActionSetsParmUsingVar, and if that function is the function
associated with t, that is, if ct = cf and method(t) = f.

 -15-

Each computation-use instance carries along the SeqNbr attribute of the association to identify the position of that
use in the action sequence of the transition. SeqNbr values are used later in rules that constrain the creation of candidate
test paths. Since guard and state predicates do not have sequence numbers, predicate-use instances do not have such a
value. These identifications of defs and uses in a component flow graph are used to define def-use pairs in those graphs.
The Automobile example produces instances for each of these def-use categories, as listed in Section 7.1.

Definition 6.2 (def-use pairs): Let M be any component of a software system, let R (M) be the set of transitions that are
relevant to M, and let G = (N, E) be the component flow graph of M. The Greek mu (μ) represents an edge or a node that
is a use. An ordered pair (nt, μ) is said to be a def-use pair for ν if ν is defined at the transition-node nt and if μ is either a
node or an edge in G where ν is directly or indirectly used.1

Some variables have no def-use pairs. For example class constants may be defined when an object is created and
never redefined in any relevant transition; others may be defined in a relevant transition as a non-relevant side effect, but
never used in any other relevant transition. All such variables are ignored in the following sections.

Transition nodes can both define and use a variable, and which occurs first can affect later references to the variable.
If a variable is used first, then defined, the definition from the node is relevant to definitions or uses of the variable in
subsequent nodes. These cases are distinguished as follows:

Definition 6.3 (internal def-use pairs): Let ν be a variable that is both defined and used at one or more transition nodes
nt∈Nt. The set of nodes where ν is defined first and then used is called DFTU(ν), and the set of all nodes where ν is used
first and then defined is called UFTD(ν) . Both sets DFTU(ν) and UFTD(ν) can be determined by a syntactic analysis of
the action associated with the transition node nt.

The sets DFTU(ν) and UFTD(ν) are not necessarily mutually exclusive. A transition may have a use for a variable,
then a definition, then another use (for example, “x := x+1; y := f(x)”).

6.2 Data flow path coverage

A major goal of this research is to automate the generation of test data as much as possible. Most research in data flow
testing focuses on recognizing whether a set of tests cover def-use pairs as opposed to finding paths in the graphs that
will allow def-use pairs to be covered. This project attempts to find paths in the following way. The algorithm looks for
paths in the component flow graph that lead from the definition of a variable to a use. Consider triples (ν, nt, μ) where ν is
a variable, nt is a transition node that defines ν, and μ is a node or edge where ν is used. nt and μ form a DU-pair if a path
exists in the component flow graph leading from nt to μ, if the path is free of loops, if there are no defs to ν by another
transition node in the path, and if the path is potentially feasible for testing. The definitions in this section clarify these
criteria as applied to testing of class components and lead to a rigorous definition of test specifications derived from a
component flow graph.

Definition 6.4 (path): Let G = (N, E) be a directed graph with labeled edges. A path p in G of length k≥1 is a sequence
of nodes and labels n1L1n2 .. Lk-1 nk such that (ni, Li, ni+1) ∈ E for 1 ≤ i ≤ k-1. If p is a path, then the head of p, denoted by
H(p), is the first element of the sequence, the tail of p, denoted by T(p) is the last element of the sequence, and the length
of p, denoted by L(p), is the number of nodes in the sequence. If p and q are two paths, and if L is a label such that (T(p),
L, H(q)) ∈E, then the concatenation of the two sequences, p:q, is a path with L(p:q) = L(p) + L(q). If p is a path and n is a
node in the sequence that determines p, then n is said to be an element of p, denoted by n∈p. If p is a path, then InSeq(p)
or OutSeq(p) denotes the label of its first or last edge. The context makes clear which is intended.

Only feasible paths through a component flow graph can be used, so special attention is paid to path segments in the
graph that flow from a transition node nt1 to a state node ns and then from that state node to a guard node ng or to another
transition node nt2. If the edge from nt1 to ns is the result of a call to a mutator function f, then the edge from ns to ng, or
from ns to nt2, must satisfy some additional feasibility restrictions. In particular, the edge from ns to ng or nt2 must be from
a transition whose function is identical to f, and the guard predicate of any ng must be compatible with the exit conditions
from node t1 or with the values of any parameters passed with f. The rules below address the function constraint. The
guard constraint is more difficult to address because of exit conditions and dynamic values of passed parameters. To help
address such guard constraints, a new association among these types of nodes is defined. A triple of nodes (nt, ns, ng) is a
mutator Transition-State-Guard (TSG) path segment if the edge from nt to ns has a function label. A mutator TSG path
segment is potentially feasible if the edge from ns to ng is known not to be incompatible with the call of the mutator
function. Let MTSG denote the set of all node triples that are mutator TSG path segments and let FTSG be the subset of

1 Remember that a def-use pair is distinct from a DU-pair; the def-use pair may not have a def-clear path from the def to the use.

 -16-

MTSG consisting of TSG path segments that are potentially feasible. The Automobile example produces 317 instances of
MSTG, of which 85 are provably feasible and 100 are provably not feasible, leaving 132 where a simple analysis cannot
determine feasibility or non-feasibility. Appendix I shows the easy situations where a parameter is set to a literal in an
action of a transition, and the guards of some of the transitions associated with the called function test that literal directly.
The set FTSG contains all but the provably non-feasible triples (217 instances in the Automobile example).

Definition 6.5 (DU-path and DU-pair): Let G = (N, E) be a component flow graph in a software system. Let ν be any
variable, let nt be a transition node that defines ν, and let μ be a node or an edge where ν is used. A path p in G is said to
be a DU-path from nt to μ for ν if p = nt:q:μ, where q is a path in G such that no node of q is a definition node for ν and
every mutator TSG path segment in p is potentially feasible. The pair (nt, μ) is said to be a DU-pair for ν if such a path p
exists. Edge labels for p are implicit.

Definition 6.6 (candidate test paths): Let G = (N, E) be a component flow graph in a software system. Let VDU be a
set of tuples (ν, nt, μ) where (nt, μ) is a def-use pair for ν and let P be a set of tuples (ν, nt, μ, p) where (nt, μ) is a DU-pair
for ν and p is a DU-path from nt to μ. The set of all such paths p are the candidate test paths in G.

6.3 Finding all-uses candidate test paths

The all-uses testing criterion requires tests to execute at least one path from each definition to each reachable use. If there
is more than one path from a def to a use, the strict interpretation of all-uses is that any path will satisfy the criterion.
This research represents one of the few attempts to actively find paths, and it turns out that the details of how the
algorithm is constructed can represent different choices in which path to use. An extreme choice would be to attempt
every path. A choice that may save effort would be to use a shortest path. This may result in less testing, and suggests the
alternative of using a longest path. This may not be practical, so relaxing the choice to the longest findable path may be
reasonable. One of the keys to testing this kind of software is evaluating the relationships among classes, which suggests
the notion of finding a path that passes through another class, or a slightly more restrictive version, finding a path that
passes through another class in the test component. If such a path cannot be found, it is necessary to relax to another
choice, such as shortest path. These seven ways to choose paths are summarized in a subsumption hierarchy in Figure 5.

It is also possible that some paths could be “better” in some sense than others. For example, it might be possible to
incorporate a search procedure that uses some measurement function to choose from among a set of potential paths. One
measurement might be to require that all mutator TSG path segments be known to be feasible instead of just known to be
not infeasible, but that is a very difficult measurement to determine or represent. The construction described below looks
for a shortest path because it is more convenient, thus saving computation expense.

It is easy to construct the set VDU of Definition 6.6, but the set P may not have any elements. An iterative procedure
is defined to construct the elements of P beginning with definitions for P1 and P2 below. It searches for candidate test
paths using a breadth-first algorithm for finding paths from one node to another in a directed graph, a modification of
Dijkstra’s shortest-path algorithm that starts at both beginning and end nodes, and meets in the middle. It works breadth-
first from definition nodes and use nodes or edges, simultaneously forming two sets of partial paths. The def-partial paths
are paths whose head is the definition node for a state variable and whose tail is a candidate node for connecting to a use
of that variable. The use-partial paths are paths whose tail is a transition node where a variable is computation-used, or
whose last two tail nodes determine an edge where the variable is predicate-used, and whose head is a candidate node for
connecting to a definition of that state variable. Each step of the algorithm looks for an edge that links the tail of a def-
partial path for a state variable to the head of a use-partial path for that same variable. In addition, the algorithm ensures
that all partial paths are def-free by requiring that the new candidate node added as the tail of a def-partial path or the
head of a use-partial path does not define the variable. The algorithm enforces a rule that every mutator TSG path
segment be potentially feasible. The algorithm also enforces a rule that private functions may only be called by methods
within their own class and that protected functions may only be called by methods within their own component (if Java is
used, this corresponds to a Java package). Also, if the action of a transition calls a private function within its own class,
and if the next transition in the candidate path is a transition derived from the private function, the algorithm requires that
the target state of the calling transition is the source state of the derived transition. A typical example of an action calling
a private function is the asynchronous call of CheckState() as the final action of many methods in both CruiseUser and
Wheel. Finally, both sets of partial paths are constructed to ensure that edges entering or leaving a transition node occur
in a feasible order for the action sequence of that transition. These partial paths satisfy a set of rules involving SeqNbr,
InSeq and OutSeq labels. They must be constructed to help ensure the construction of DU-paths that result in feasible test
cases.

 -17-

Every path

Any path

A shortest
path

Another class Another class in the
test component

A longest
path

The longest
findable

path

Figure 5: Subsumption Hierarchy of Choices for Finding Candidate Test Paths

The following rules must be followed in the construction of def-partial paths:

• The first edge from a definition node of a state variable toward a new candidate intermediate node shall not be
labeled with an OutSeq number that is less than the SeqNbr of that definition.

• If the incoming edge entering the tail of a def-partial path is labeled with an InSeq number equal to x, then the
outgoing edge toward a new candidate intermediate node shall not be labeled with an OutSeq number less than x.

• If the tail of a def-partial path is a state node, and if the incoming edge to that tail has a function label, then the
outgoing edge to a new candidate intermediate transition or guard node shall be derived from the same function.

• If the tail of a def-partial path is a state node, and if the incoming edge to that tail has a function label, then the TSG
path segment derived from the incoming transition node, the state node, and any new candidate intermediate guard
node must be a potentially feasible mutator TSG path segment.

• If the tail of a def-partial path is a state node, and if the incoming edge to that tail does not have a function label,
then any new candidate intermediate guard or transition node must not be derived from a private function.

• If the tail of a def-partial path is a transition node, and if the edge to any new candidate intermediate state node has a
function label, then the class of the new state node must not be equal to the class of the transition node OR the state
of the new state node must be equal to the target state of the transition of the transition node.

The following rules must be satisfied in construction of use-partial paths:

• The first edge from a new candidate intermediate node toward a use node (or the lead node of a use edge) for a state

variable shall not be labeled with an InSeq number that is greater than the SeqNbr of that use.
• If the outgoing edge from the head of a use-partial path is labeled with an OutSeq number equal to x, then the

incoming edge from a new candidate intermediate node shall not be labeled with an InSeq number greater than x.
• If the head of a use-partial path is a state node (i.e., with an outgoing edge to some adjacent guard or transition

node), then any incoming edge from a new candidate intermediate node that has a function label must identify a
function that is the same as the function associated with the adjacent guard or transition node.

• If the head of a use-partial path is a state node with an outgoing edge to some adjacent guard node, then any
incoming edge from a new candidate intermediate node that has a function label must be from a transition node that
forms a potentially feasible mutator TSG path segment with the state node and its adjacent guard node.

• If the head of a use-partial path is a state node, and if the function label on the outgoing edge from that state to its
following guard or transition node identifies a private function, then any incoming edge from a new candidate
intermediate transition node must have a function label that identifies the same private function.

• If the head of a use-partial path is a state node, and if the edge from any new candidate intermediate transition node
has a function label, then the class of the new transition node must be not equal to the class of the state node or the
state of the state node must be equal to the target state of the transition of the new transition node.

In the following definitions, the Q2k+1 iterations expand the def-partial paths and the Q2k+2 iterations expand the use-

partial paths. The iterative algorithm begins with P1 and P2, where P1 identifies DU-paths for ν from nt to itself if nt is a
definition node, and P2 identifies DU-paths for ν along a transition-to-transition edge.

 -18-

 P1 = {(ν, nt, nt, nt) | (ν, nt , nt)∈VDU & nt∈DFTU (ν)}
 P2 = {(ν, nt, n, nt:n) | (ν, nt, n)∈VDU & (nt, n)∈Eitt}

All paths in P1 are of length 1 and all paths in P2 are of length 2. In general, the sets Pi will identify paths of length i

or i±1. The definition of Pi for i ≥ 3 depends upon sets of partial paths, Qk, and unresolved def-use pairs, Xj, both defined
iteratively below. Each element of Qk will be a tuple (ν, nt, μ, h, g), where (ν, nt, μ) ∈ VDU, h is a path from a def node nt
of ν to an intermediate node, and g is a path from some other intermediate node to a use item μ for ν. Each Xj will be a
subset of VDU, consisting of variable and def-use pairs that still do not have a connecting path. The algorithm begins
with:

 X1 = VDU
 Q1 = {(ν, nt, μ, nt, μ) | (ν, nt, μ)∈VDU}

 X2 = VDU - {(ν, nt, nt) | (ν, nt, nt, nt)∈P1 & nt ∉ UFTD (ν)}
 Q2 = {(ν, nt, μ, nt, μ) | (ν, nt, μ) ∈ X2}

and given Qi, (i ≥ 2) the next step defines:
 Pi+1 = {(ν, nt, μ, h:g) | (ν, nt, μ, h, g) ∈ Qi

 AND e = (T(h), H(g)) ∈ E, or e=(T(h), L, H(g)) ∈ E for some edge label L,
 AND InSeq(h) ≤ OutSeq(e) AND InSeq(e) ≤ OutSeq(g)
 AND (¬∃Fn((Pre(T(h)), T(h))) OR Fn((Pre(T(h)), T(h))) = method(H(g)))
 AND ((Pre(T(h)), T(h), H(g)) ∉ MTSG OR (Pre(T(h)), T(h), H(g)) ∈ FTSG)
 AND (¬∃Fn(e) OR Fn(e) = method(Pre(H(g))))
 AND ((T(h), H(g), Pre(H(g))) ∉ MTSG OR (T(h), H(g), Pre(H(g))) ∈ FTSG)
 AND ((T(h) ∈ Ns AND ¬∃Fn(Pre(T(h)), T(h))) availability(Fn(e)) ≠ PRI)
 AND ((H(g) ∈ Ns AND availability(Fn(H(g), Pre(H(g)))) = PRI) ∃Fn(e))
AND ((T(h) ∈Nt AND H(g) ∈ Ns AND ∃Fn(e)) (class(T(h)) ≠ class(H(g)) OR state(H(g)) = targetState(T(h))) }

 Ci+1 = {(ν, nt, μ) | ∃p [(ν, nt, μ, p) ∈ Pi+1]}
 Ai+1 = {(ν, nt, μ) | ∃h, g [(ν, nt, μ, h, g) ∈ Qi]}
 Xi+1 = Ai+1 - Ci+1
 Bi+1 = Xi - Ai+1

The sets Ci+1 identify unsolved def-use pairs in Xi that have found a DU-path in Pi+1. The sets Ai+1 identify unsolved

def-use pairs in Xi that remain active candidates for resolution in Pi+1. The sets Bi+1 identify def-use pairs that drop out of
consideration for solution at this step of the iteration; the variable they are associated with is said to be def-bound.

Definition 6.7 (def-bound): A variable ν is said to be def-bound at a definition node nt of a def-use pair (nt, μ) if there is
no path p from nt to μ, where p = (ν, nt, μ, p)∈P.

The sets of partial paths are defined iteratively as follows. Given Q2k, the def-partial paths are extended by defining:

 Q2k+1 = {(ν, nt, μ, h:n, g) | (ν, nt, μ, h, g)∈Q2k AND ∃n, L [n∈N AND (T(h), L, n) ∈ E AND n ∉ D(ν)

AND T(h):n ∉ h AND (ν, nt, μ) ∈ X2k+1
AND InSeq(h) ≤ OutSeq(T(h), n)
AND (¬∃Fn((Pre(T(h)), T(h))) OR Fn((Pre(T(h)), T(h))) = method(n))
AND ((Pre(T(h)), T(h), n) ∉ MTSG OR (Pre(T(h)), T(h), n) ∈ FTSG)
AND ((T(h) ∈ Ns AND ¬∃Fn(Pre(T(h)), T(h))) availability(Fn(T(h), n)) ≠ PRI)
AND ((T(h) ∈ Nt AND n ∈ Ns AND ∃Fn(T(h), n)) (class(n) ≠ class(T(h)) OR state(n) = targetState(T(h))))]}

and given Q2k+1, the use-partial paths are extended by defining:

 Q2k+2 = {(ν, nt, μ, h, n:g) | (ν, nt, μ, h, g) ∈ Q2k+1 AND ∃n, L [n ∈ N AND (n, L, H(g)) ∈ E AND n ∉ D(ν)

AND n:H(g) ∉ g AND (ν, nt, μ) ∈ X2k+2
AND InSeq(n:H(g)) ≤ OutSeq(g)
AND (¬∃Fn((n, H(g))) OR Fn((n, H(g))) = method(Pre(H(g))

 -19-

AND ((n, H(g), Pre(H(g))) ∉ MTSG OR (n, H(g), Pre(H(g))) ∈ FTSG)
AND ((H(g) ∈ Ns AND availability(Fn(H(g), Pre(H(g)))) = PRI) ∃Fn(n, H(g)))
AND ((n ∈ Nt AND H(g) ∈ Ns AND ∃Fn(n, H(g))) (class(n) ≠ class(H(g)) OR state(H(g)) = targetState(n)))]}

where D(ν) is the set of definition nodes for ν, Fn(e) is the function label of an edge e, Pre(T(h)) is the preceding
node adjacent to T(h) in h, and Pre(H(g)) is the following node adjacent to H(g) in g. InSeq and OutSeq inequalities are
satisfied if either label is null. The Qs with odd subscripts are building partial paths from the def node, whereas the Qs
with even subscripts are building partial paths from the uses.

In the construction of paths, it is possible that a path will exit a node derived from class instance C, leaving C in state
S1, to enter a node derived from another class instance, and then later return to the first node while C is in a new state S2.
This is possible only if some other action has caused the state of C to change from S1 to S2. To capture this other action
as part of the path, a rule is enforced at several points in the above process to ensure that paths may only exit and then re-
enter a node derived from a class instance while the state of the class instance is the same. This rule is called the state
compatibility rule. Experimentation has shown that enforcement of this rule substantially reduces the number of non-
feasible candidate test paths at the expense of increasing the number of unsolved def-use pairs.

The iterative process stops when Xi = ∅. At this point, set P = ∪ Pi. This must happen for some value of i less than
the number of edges in the graph since cycles were avoided by ensuring that no edge appears more than once in any of
the partial paths. It is possible for some state nodes and some transition nodes to appear more than once in a partial path.
Not all elements (ν, nt, μ) ∈VDU will yield a DU-path. Some variables may be defined at a node nt and used at a use item
μ, but either no path exists from nt to μ that satisfies the above constraints, or every such path contains a new definition of
ν. If all-defs is being satisfied, then another use is found. If all-uses is being satisfied, this def-use pair is infeasible.

The def-bound variables surface during the calculation of Bi+1 = Xi - Ai+1 in the iterative process of Definition 6.6. At
that point, Ci+1 ⊆ Ai+1 ⊆ Xi. It follows that Bi+1 identifies the def-use pairs that were active during the calculation of Xi,
did not find a path to join in Pi+1, yet are no longer active for Xi+1. They dropped out because in the calculation of the
previous Qi, there was no node n to form a new edge in the partial paths. Thus the sets Bi+1 identify new def-bound
variables, if they exist, at each step of the process.

6.4 Executable test cases

If a variable ν is both defined and used, and is not def-bound for a specific def-use pair, then the path generation of the
previous section may produce one or more DU-paths linking a definition node nt to its corresponding use item μ. These
DU-paths are considered to be abstract test specifications because no attempt has yet been made to choose explicit
parameter values for any of the function calls. There is no guarantee that an abstract test specification will be feasible
because it may contain a TSG path segment that is not feasible. However, the process carries along all possible
potentially feasible TSG path elements for each def-use pair, so there is a good chance that a feasible one will be in the
collection P of candidate test paths constructed by the algorithm of Section 6.3. If at the end of iteration i, all DU-paths
for a DU-pair are found to be infeasible, then it is necessary to look for DU-paths of length i+1. The DU-pair is re-
inserted into the set of active pairs Xi and the algorithm continues by looking for longer DU-paths.

Even at the end of this process, there is no guarantee that a feasible abstract test specification will lead to an
executable test case. One must still find externally invokable methods that will trigger each of the function calls in the
abstract test specification without violating any of the constraints against redefinition of the state variable. The iterative
process of Section 6.3 is modified to help construct executable tests from test specifications. Instead of beginning with
defs and uses, the modified process replaces defs with the collection of transition nodes derived from EXT functions and
replaces uses with the collection of transition nodes derived from non-EXT functions. The modified process also
eliminates edges that allow a path to enter a terminal target state. The result is a collection of candidate execution paths in
the component flow graph from transition nodes with EXT methods to all other relevant transition nodes. In this manner
an appropriate EXT function can be chosen to invoke a given transition-to-transition or guard-to-transition edge in a
candidate test path. With some manual intervention to choose appropriate guard alternatives, it is then possible to select a
sequence of EXT functions that force traversal of many candidate test paths. Some results from using this approach on
the Automobile system are given in Section 7.3. Subsequent research will attempt to use this methodology to more fully
automate the process of generating executable test cases from abstract test specifications.

The entire process will not always succeed because some def-use pairs cannot be satisfied by any candidate test path
and the problem of finding executable test cases is generally undecidable. This has been called the feasible path problem
in previous research [19, 23, 26, 42]. Figure 6 attempts to illustrate the possibilities.

 -20-

N o t
s o l v a b l e

S o l v a b l e

? ?

T o o
h a r d

T o o
h a r d U n d e c id a b l e U n d e c id a b l e

s o l v e d
c a n n o t
s o l v e

Figure 6: Possibilities When Finding Candidate Test Paths and Executable Test Cases

Some def-use pairs have solutions (solvable), and some do not (not solvable). Some of these can either be solved or
recognized as being unsolvable (solved, cannot solve) by the existing tool. There are other def-use pairs that are either too
hard to solve or too hard to prove to be unsolvable (too hard) by the current tool, and finally there are DU-paths for
which proving them to be unsolvable or finding solutions is truly undecidable (undecidable). This situation is common to
all automatic test data generation techniques, which by definition can never be perfect for all situations. The goal of any
technique is to increase the number of test requirements that can either be solved or shown to be unsolvable as much as
possible, with the explicit recognition that even if the problem is not solved completely, it can still be possible to create
good quality tests.

7 Empirical Results for the Automobile System

This section presents empirical results from applying the inter-class data flow technique to the automobile system. Tools
have been developed that automate most of the process shown in Figure 3. The database representation of the
specification must be created by hand, and the final step of generating executable test sequences is only partially
automated. As an experimental evaluation, tests were constructed and run on seeded faults, and the fault-finding ability
of the tests on the seeded faults was evaluated and compared against tests generated by hand. The subjects (full Engine
specifications and tests) are provided in a technical report [18]. This section first illustrates an application of the
technique by way of example using the automobile system, then describes the tool support, and finally the case study on
fault detection.

7.1 Applying the technique to the Automobile System

Simple versions of Cruise have been used widely in the specification, specification-based testing, and modeling
literature, but the version used in this paper includes significantly more components than other versions, such as in
references [1, 4, 20]. For example, the version used by Atlee [4] and Abdurazik et al. [1] had one class, four states, seven
functions, 184 blocks and 174 decisions. The external interface and the cruise control transitions used in this paper are
modeled on the cruise control characteristics of an automobile owned by the first author2. Instead of the four states found
in the other papers, the system used in this paper contains 12 classes for a total of 44 states. Combined, these states have
43 relevant variables that appear in more than 4300 def-use pairs. For cruise control testing purposes, only external
functions such as ignition, brake and gas pedal positions, and cruise controls are available to human users and testers.
Other functions are encapsulated and hidden.

Each process from Sections 3 through 6 is illustrated on the CruiseControl below. The initial tables contain the
following:

Class table 12 rows - one for each class in the system
Variable table 58 rows - with 9 for CruiseControl
Parameter table 44 rows – with 7 for CruiseControl
Function table 106 rows - with 20 for CruiseControl
State table 44 rows - with 12 for Cruise Control
Transition table 263 rows - with 91 for CruiseControl

2 NIST policy prohibits publication of the make or model of the car.

 -21-

The syntactic analysis from Section 3 on the predicate and action attributes of these tables yields the following
association tables:

StateRefVar 67 instances
StateRefActorFn 5 instances
ActionDefVar 252 instances
ActionRefVar 172 instances
GuardRefVar 117 instances
GuardRefActorFn 17 instances
ActionRefActorFn 32 instances

ActionRefMutatorFn 116 instances
VarAssocFn 44 instances
ActionRefLocalAsyn 22 instances
GuardRefParm 121 instances
ActionRefParm 80 instances
ActionSetsParm 70 instances
ActionSetsParmUsingVar 70 instances

Section 4 describes how to derive transitions in each existing class that are relevant to CruiseControl. In some cases

only a few transitions are relevant; for example, the only state of BrakeControl that is relevant to CruiseControl is
whether or not the brakes are engaged. When the brakes are engaged, a message is sent to AutoSystem, and AutoSystem
sends a Cancel message to CruiseUnit. The relevant transitions are derived iteratively from labeled transitions, as defined
in Section 4:

 R00 91 CruiseControl Base transitions
 R0 68 feasible Base transitions
 R1 194 labeled transitions at first iteration

R2 260 labeled transitions at second iteration
R3 292 labeled transitions at third iteration
R4 308 labeled transitions at fourth iteration
R5 314 labeled relevant transitions at final pass
R(M) 160 final unlabeled relevant transitions

This process leaves 75 feasible transitions that are not relevant, including oil and water pressure gauges that were

intentionally excluded from consideration, anti-lock brake actions that have no relevance after brakes become active,
various transmission actions dealing with Neutral and Reverse, and other actor methods in several classes that could not
impact CruiseControl.

R(M) has 105 transitions that have non-trivial actions, as displayed in Appendix I. The component flow graph
defined in Section 5 is summarized as:

 Nodes 293 nodes
 TransitionNodes 160
 StateNodes 44
 Guard Nodes 89

Edges 740 edges
 Est Edges 49
 Esg Edges 85

 Egt Edges 85
 Ets Edges 160
 Egtg Edges 34
 Ests Edges 5
 Eits Edges 174
 Eitt Edges 68
 Ects Edges 80

The following is the list of defs and uses from the CruiseControl component of the Automobile example in this paper

(Sections 6.1 and 6.2):

DefnNodes 188
 DirectCompUses 131
 IndirectCompUses 30
 DirectPredUseByState 304
 DirectPredUseByGuard 80
 IndirectPredUseByState 32
 IndirectPredUseByGuard 17

ParmUseByGuard 205
ParmUseByTransition 216

 Total VarDefUse triples 4319

DFTU nodes 45
UFTD nodes 17
DFTU & UFTD 17

From Section 6.3, the following are mutator TSG path
segments.

MTSG triples 317 paths
 KnownFeasible 85
 KnownNotFeasible 100

Indeterminate 132
FTSG triples 217 paths

The above calculations are almost instantaneous, even on a desktop personal computer. However, the next step, to
calculate the DU-paths leading to DU-pairs becomes much more computationally intensive. The iterative process to
construct candidate test paths Pi from Definition 6.6 proceeds in several steps. Each step is summarized below:

 -22-

 P1 45 rows (from the DFTU nodes)

Only 45 of the 62 def-use pairs with an action that both defines and uses the same variable are DFTU. For example,

the CruiseUnit transitions t016 and t064 in Appendix I define and then use TargetThrottle and CurrentSpeed. Likewise,
the GasUser transition t002 first defines and then uses PedalPosition, and Engine t003 first defines and then uses Rpm.
All relevant Throttle transitions define and then use Position. Examples of UFTD transition nodes are CruiseUnit
transitions t030 and t031, which both use TargetSpeed and then define it. Throttle transitions t004, t007 and t009 have a
parameter-use of Position as a result of calls to Floor() from CruiseUnit, and then immediately define Position. Some of
the def-use pairs are in both DFTU and UFTD, and are kept active in the search for new DU-paths from those nodes back
to themselves. The remaining def-use pairs in DFTU have a use that can never be reached from outside that node without
redefining of the variable, immediately resulting in 175 def-bound pairs.

 P2 0 rows (none of the 68 Eitt edges give DU-pairs)

Sixty-eight transitions have actions that return a value from a call to a function in some other class. None of these

calls involve mutator functions, so they do not result in any new DU-pairs with a test path of length 2. Thus P2 is empty.
Continuing with initialization of the DU-pair generation process yields:

 X1 4319 instances (from VDU triples)
 Q1 4319 instances (from VDU – set Head and Tail)
 B1 175 instances (from 45 DFTU pairs not in UFTD)

 X2 4099 instances (removing 45 found and 175 def-bound pairs)
 Q2 4099 instances (removing same 220 instances from Q1)

At iteration 3, the algorithm finds 414 candidate test paths of lengths 3 or 4. Approximately one-half of the paths go

through the target state of their transitions to an outgoing edge from that target state. Most of these yield either an easy
feasible path or an obvious non-feasible path that should have been identified in the initial class definition. The other half
of the paths do not go through the target state of the transition; instead, they follow a mutator function to the source state
of some other transition in the same class. All of these MTSG path segments are based on a call to CheckState() in the
CruiseUnit or Wheel classes. For some of these, it is relatively easy to find an executable test case. Others yield an
obvious non-feasible path that should have been identified in the transition-state-guard discussion following Definition
6.4. At this step, all paths are still completely contained in a single class. All 414 new paths result in new DU-pairs.
Seventeen new def-bound variables are identified: BrakeActive is defined in AutoSystem transitions but can never reach
their predicate uses in some Engine states, IsActive is defined in both BrakeControl and BrakeUser but can never reach
its use in state predicates. In all cases a Cancel() message gets sent instead to shut down all further CruiseControl
processing.

Iteration 4 creates 341 new paths of lengths 3 and 4, all of which identify new DU-pairs. The paths may be handled
much like the paths in the previous iteration, although some of the mutator functions force actions in other classes. For
each mutator transition in the path, the process described in Section 7.2 is used to find EXT (user-level) functions that
will trigger that transition. The difficulty is to find a function that does not redefine the def-use variable. It is often
necessary to use a longer indirect EXT function, such as ExternalDrag(), to cause changes of state in CruiseUnit without
redefining the def-use variables under test. This iteration also discovers 231 def-bound pairs.

The process takes multiple iterations, as shown in Table 2. The New Paths column corresponds to new candidate test
paths. Sometimes multiple paths are found for the same def-use pair so the New DU-pairs column corresponds to def-use
pairs that have found a path and thereby become DU-pairs. The Active Pairs column shows the number of pairs for which
no path has been found up to and including the current iteration. New DefnBnd identifies the number of def-use pairs
determined to be def-bound at this iteration. Partial Paths identifies the number of partial paths existing at the end of the
current iteration. The Process Time column is for each iteration, and is from the prototype implementation using an
Access database on a Pentium 4 class PC at 2 Ghz and 1 GB RAM.

 New Paths

Pi
New DU-pairs

Ci
Active Pairs

Xi
New DefnBnd

Bi
Partial Paths

Qi
Process Time

(h:mm:ss)

1 45 45 4319 175 4319 0:02
2 0 0 4099 0 4099 0:01

 -23-

3 414 414 3668 17 9332 2:57
4 341 341 3096 231 30,604 3:06
5 536 502 2519 75 49,898 4:17
6 194 190 2304 25 93,116 4:14
7 157 146 2036 122 58,290 3:01
8 201 132 1645 259 111,942 5:38
9 124 104 1414 127 166,281 9:05
10 124 84 1314 16 378,383 12:06
11 107 72 1185 57 747,816 20:27
12 18 8 1177 0 1,083,242 39:41
13 50 12 1137 28 1,579,445 50:36
14 3 1 1136 0 3,056,216 2:03:35
15 32 8 1010 118 4,476,452 3:32:55
16 10 1 873 136 7,589,298 6:07:22
17 0 0 802 71 12,951,518 10:16:13
18 16 3 795 4 19,938,236 16:32:52
19 0 0 762 33 ~33,114,919 ~31:44:50
20 0 0 762 0 - -

Totals 2372 2063 1494 ~74:00:00
Table 2: Cruise Control – Candidate Test Paths

The majority of DU-path generation takes place in iterations 3 through 10 (with total processing time less than 45

minutes), but some new DU-paths continue to be generated through iteration 18. Time and space costs for obtaining new
information prevent the tool from continuing past iteration 20. Out of a total of 4319 def-use pairs, 2372 candidate test
paths were found to cover 2064 pairs (47%), and 1494 (35%) pairs were shown to be def-bound, with no def-free
candidate test paths. Thus, 82% (3557) of the def-use pairs were resolved (with a test or shown to be infeasible), leaving
only 18% (762) unknown. This experimental difficulty in solving 18% of all def-use pairs is consistent with the
limitation stemming from undecidability and the theoretical discussion in the last paragraph of Section 6.4. However, as
shown in Table 3 in Section 7.3, the resulting tests did a good job at finding faults.

Table 2 shows that iteration 5 finds 536 new DU-paths, but only 502 of them identify new DU-pairs. In addition, 75
pairs were found to be def-bound (Bi). The number of active pairs (Xi) is thus reduced by 577. Many of the paths are
similar to the above, either composed of successive application of feasible transitions within a class, going through the
target state of one transition to the source state of the next, or involving interactions between classes via calls of mutator
functions along MTSG edges.

Multiple DU-paths can occur for the same DU-pair in several different ways. One is when a transition gets the
values of multiple variables from the same class so each call generates a separate potential path; this occurs in Ignition
transition t003, since it calls both ThrottleFloor and ThrottleGovernor from AutoSystem where both variables are defined
by transition t001. This also occurs in CruiseUnit transition t025 where the guard predicate calls both Position and Floor
from Throttle where both variables are defined by transition t004. Another source of multiple DU-paths for the same DU-
pair is when a guard predicate identifies multiple choices in the interior of a path, thereby generating separate subpaths to
reach the same def and use; this occurs often for variables defined in CruiseUnit where a path may travel through
multiple states of throttle, without the variable being redefined, before returning to a use in CruiseUnit.

More interesting paths begin to occur after iteration 5. For example, the following path involving Throttle (c10) and
CruiseUnit (c05) begins with Throttle.Position defined by Throttle.Floor(x) at transition node c10t005 and ends with
Position used by the action of CruiseUnit.UserMode(SD/NT) at transition node c05t043.

c10t005:TS:c10s01:ST:c10t016:TT:c05t064:TS:c05s03:SG:c05gt030:GT:c05t030:TS:c05s05:SG:c05gt043:GT:c05t043

After definition of Position, the path follows a transition-to-state (TS) edge to throttle state node c10s01 (Idle),
where it waits for a subsequent action. The action of CruiseUnit.UserMode(SD/NT) at transition node c05t064 calls
Throttle.Position() via transition node c10t016 along a transition-to-transition (TT) edge, coming to rest at state node
c05s03 (Cruise) to wait for another subsequent action. The only way this can happen is for the automobile to be in a high

 -24-

gear and going downhill so that idle speed in the throttle is sufficient to maintain speed greater than SlowCutoff to satisfy
the guard predicate of c05t064, thereby allowing an Override-to-Cruise state transition. The next action of
CruiseUnit.UserMode(SD) at transition node c05t030 leads the path through state-to-guard (SG) and guard-to-transition
(GT) edges, putting the CruiseUnit into its Decel state at state node c05s05. The user holds down the Set/Decel button to
achieve this deceleration, then releases it, thereby calling Usermode(NT), to effect the final action and usage of the
Position variable in the action at transition node c05t043, causing a Decel-to-Cruise state transition.

Using methods introduced in Section 6.4 and further described in Section 7.2, the above abstract test specification
can be used to generate the following executable test sequence. While in Cruise state at highway speed in a high gear and
going downhill, do the following sequence of actions:

1) CruiseUser.Cancel () Puts CruiseUnit in the Override state and calls Throttle.Floor(0), which

defines Throttle.Position = fconst and puts Throttle in the Idle state.
2) Pause Waits for the Engine to settle at Idle speed while maintaining

Gauges.Speed > CruiseUnit.SlowCutoff.
3) CruiseUser.Mode (SD) Sets the CruiseUnit.UserMode variable to SD with no other effect.
4) CruiseUser.Mode (NT) Causes an Override-to-Cruise transition (t064) when button is released.
5) CruiseUser.Mode (SD) Causes a Cruise-to-Decel transition in CruiseUnit while maintaining Throttle in Idle

without redefining Position.
6) CruiseUser.Mode (NT) Causes a Decel-to-Cruise transition (t043) and uses Throttle.Position() to set the

TargetThrottle variable.

7.2 Status of automation

At least four different testing activities can benefit from automation. First is the selection and generation of test data,

second is the evaluation of the test data (for example, according to a test criterion), third is the identification and
generation of expected results, and fourth is the execution of the tests. The first activity is widely considered to be the
hardest to automate and is supported by the fewest number of tools, both research and commercial. The goal of this
research is to automate the generation of test data as much as possible.

Most previous research in data flow testing has focused on the intra-method problem, and is usually based on the
source code. At the inter-method level (testing multiple methods together), Harrold and Soffa [21] tried to generate tests
that covered def-use pairs between two procedures, focusing on the problems associated with inter-method analysis. Jin
and Offutt [28] defined a limited form of data flow testing between pairs of methods that only considered certain
definitions and uses (first-uses and last-defs). This work was again based on control flow graphs from the program.
Alexander and Offutt [2, 3] defined def-use pairs among program classes and identified the various possibilities that
could occur in the presence of polymorphism and dynamic binding, based on the polymorphic call set. The current
research is based on the specifications (finite state machines) rather than the code, and goes beyond most of the previous
papers. All of these papers identified def-use pairs. Only this paper and the work by Alexander and Offutt identify
candidate test paths, and this paper goes a step further in identifying test path specifications. Work on generating test
values has previously been limited to the inter-method case; research into intra-class and inter-class testing has not tried
to automatically generate values, but has focused on generating sequences of method calls whose parameters are assigned
values by hand or created randomly.

Consider the testing architecture shown in Figure 7. The Test Sequence Generator of Figure 3 is represented as one
tool in a collection of tools designed to automate as much of the testing process as possible. A database implementation
of the specification is used to separately create a reference implementation or generation of executable test sequences.
For each test sequence, the Test Harness executes the external methods in the prescribed order against the reference
implementation, and at the end of each execution compares the predicted state of each class in the system with the actual
state in the implementation.

 -25-

Test Sequence

Generator

Java
Reference

Imp

Java
Rapid Prototype

Machine

Test
Harness

Graphical
User Interface

DB Rep
of

Spec

Executable
Test

Sequences

Figure 7: Testing Tool Architecture

This process usually finds errors in the specification; fixes can then be applied to the database representation and the

process repeated. At an appropriate time, a real implementation can be substituted for the prototype with the same set of
test sequences as in the test suite. An implementation passes the test suite if the actual states of the classes at each step
match the predicted states. The Test Harness records each mis-match for subsequent analysis. The Graphical User
Interface is an optional component that allows a tester to apply ad hoc testing procedures or to visualize the effect of
changes to the specification. At this point the visualization is tied to the automobile example, but could be partially
generalized on a class-by-class basis to provide rapid visualizations for all software systems derived from a base set of
classes or components.

The Rapid Prototype Machine (RPM) is a generic test simulator written in Java. The machine consists of a simple
kernel able to wait for, queue, and process input tasks from either a user or from the Test Harness. An input task is
codified as an instance of a Java class called a MessageObject. The MessageObject class is a wrapper class that stores
data fields traditionally associated with object-oriented programming, such as an object’s identity, state, and behavior,
applied to that object (a function). The object in question is an instance of a ClassObject. Each ClassObject instantiated
in the RPM is defined by the class, state and variable tables in the database specification. Each ClassObject retains a
queue of MessageObjects, named a CallQueue. CallQueues are threaded, interruptible, first-in, first-out data structures
capable of waiting for, storing and passing MessageObjects to an RPM interpreter. The RPM interpreter evaluates a
MessageObject by inspecting the identity, state and behavior fields stored in the MessageObject. Next, the RPM
interpreter queries the database specification’s transition table, using a combination of these fields, and then proceeds to
further evaluate the transition actions stored there. This chain of events may result in: (1) a value returned by the RPM
interpreter (accessor function), (2) a ClassObject property changed by the RPM interpreter (mutator function), or (3) a
combination of the two. The RPM provides an interface for test writers to add visual components for simulation
purposes. By implementing the interface, test writers are given access to RPM interpreter return values and ClassObject
states, can instantiate and evaluate their own MessageObjects, and can update custom visualizations appropriately.

The Test Harness is designed to support testers who want to run a sequence of test cases under the RPM, or against a
real implementation inserted into the testing architecture in place of the reference implementation. It is a threaded Java
component that sequentially evaluates executable test methods stored in a database table. The Test Harness requires the
test writer to create two application-specific tables; in Figure 7 this is done by the Test Sequence Generator. The first
table is a list of test methods to execute under the RPM. The second table is a list of the states each ClassObject should
transition to after applying a given method. For each method in the list of test methods, the Test Harness instructs the
relevant ClassObject to create a MessageObject and place that object on its CallQueue. The MessageObject is evaluated
by the RPM interpreter, causing any affected ClassObjects to transition to an appropriate state as prescribed by the
actions codified in the message. After a specified transitional period, the Test Harness interrupts all system CallQueues
and samples the state of each RPM ClassObject. Each ClassObject state is compared to the expected ClassObject state in
the second table, described above. If the set of all RPM ClassObject states for a given test method is equivalent to the set
of all expected states for that method, the system records a passing test, restarts the CallQueues, and moves on to the next
test method. If, however, the set of all ClassObject RPM states for a given test method is not equivalent to the set of all
expected states for that method, the system records a ClassObject state inconsistency, restarts the CallQueues, and moves

 -26-

on to the next test method. The preceding process is repeated until all test method items in the table have been executed
or until an action causes a fatal system error.

The last step in developing executable test sequences uses the ideas discussed in Section 6.4 to identify methods that
can be invoked externally and that lead directly to a transition node in the component flow graph. Given a system state,
that is, the state of each class instance in the system, and a transition node selected to be the next action node in a
candidate test path, our partial implementation eliminates all paths from external methods that are not compatible with
the current system state and presents the human tester with the remaining external method choices. By examining the
guard predicates of each alternative presented, the tester chooses an external method with input parameters to satisfy all
guard predicates along some path to the selected action node. Beginning with a system state in which all classes are in
their initial states, it is possible to generate an executable sequence of external methods that cover a collection of
candidate test paths. As candidate test paths are covered by these actions, they become test specifications for their
associated def-use pairs. The result also records the specific def-use pair associated with each new test specification so it
is possible to determine the specific pairs solved by each external method of the test sequence.

Using the automobile specification and the results generated above, a tester is able to identify transition nodes
derived from external functions (source transition nodes) and separate them from other transition nodes (target transition
nodes). Using these notions of source and target, the following source-to-target pairs and paths are identified. A source is
said to trigger a target if a path exists in the component flow graph from source to target that does not stop in a wait state.
The continuously generated Checkstate() methods in the CruiseUnit and Wheel classes allow many non-intuitive source-
to-target paths.

Source transition nodes 24 instances
Target transition nodes 160 instances
Source-to-target pairs 3840 instances

Pairs with one or more generated path 571 instances
Generated source-to-target paths 4598 instances

This process requires 44 iterations of the algorithm derived from Section 6.3 to test each source-to-target pair. All

source to target paths were found by the 27th iteration, but it took 17 additional iterations to prove that paths do not exist
for the remaining 3029 source-to-target pairs. The CPU processing time to generate these results, using the same Access
database on a Pentium 4 class PC at 2 Ghz and 1 GB RAM described in Section 7.1 for candidate test path generation,
was five hours and 27 minutes.

7.3 Case study

As an experimental evaluation, 108 faults were seeded into the automobile specification; then two sets of tests were run
on the seeded faults. The first test set was derived from the Finite State Machine (FSM) data flow methods presented in
this paper and the second test set was manually constructed from intuitive use of cruise control. To help eliminate bias, a
different person independently performed all manual steps. Faults were constructed by modifying the transitions table in
the specification database (Appendix I). They were designed by one author (Offutt) by making small syntactic changes,
similar to mutants, in every possible location. This process was very mechanical and straightforward. These changes
were marked on paper, and then implemented by copying the table once for each fault and making one change by another
person (Zanon). This resulted in 108 copies of the table.

One author (Gallagher) used the partially automated tool described above to create the executable FSM Data Flow
tests. Another author (Offutt) derived manual test specifications to try to emulate a typical manual testing process. The
tests followed a sequence of actions that use every user feature of the cruise control in various situations. The fact that the
same person designed the faults and also created the manual tests has the potential for introducing a problem with
internal validity. However, the faults were designed almost a full year before the manual tests, and both activities were
very mechanical in nature. These two factors serve to ameliorate the potential for problems with internal validity. The
manual test specifications were given to another person (Zanon), who translated them into inputs to the Test Harness,
whose interface was independently designed by the third author (Cincotta). The manual test specification sequence is
described in user terms as follows:

1) start ignition, change gears, and reach highway speed
2) set cruise control by turning cruise switch On and pushing Set/Decel cruise button
3) use brake to slow speed
4) use Resume/Accel button to return to previous speed
5) manually increase speed using gas pedal
6) use Set/Decel button to set cruise at higher speed

 -27-

7) use brake to slow speed
8) use Set/Decel button to set cruise at new slower speed
9) use ExternalDrag to maintain cruise speed both up and downhill
10) turn cruise switch Off
11) set speed manually with gas pedal to less than SlowCutoff
12) turn cruise switch On
13) test Set/Decel button to ensure that nothing happens at slow speed
14) brake to a stop and turn ignition off

The FSM-derived test cases were created to cover a specific set of candidate test paths and DU-pairs. This

information was not determined for the manually created tests. The FSM-derived tests predicted the system state for all
12 classes at the end of each execution, whereas intuition and common sense were used to predict the system state for the
manually created tests. Both sets of tests were executed by the third author (Cincotta), using the Rapid Prototype
Machine and Test Harness to execute all actions and to compare the predicted system state with the actual system state
after each action. The results are shown in Table 3.

 FSM Data

Flow
Manual

CTPs covered 1001 unknown
DU-pairs covered 954 unknown
Tests 145 41
Faults 108 108
Faults Found 106 24
Percent Found 98% 22%

Table 3: Case Study Results on Automobile Example

Clearly this testing scenario favors the FSM method because it contains more than 3 times as many tests as the

manual method does. In particular, the FSM tests use Accel and Decel buttons to increase and decrease speed over
normal ranges and to exceed the Slow and FastCutoff points, whereas the manual tests do not. However, the manual tests
require intensive human effort to decide what new expectations to test, while the FSM approach merely responds to
simple answers to questions about which guard predicates to satisfy at each step of the process and cranks out new test
actions to cover candidate test paths not previously covered. The actual test sequences and expected system states for
both test methods are included in the technical report [18].

A major additional benefit of the testing architecture described above is the ability to quickly generate a reference
implementation that responds reasonably to external actions. This capability allowed the tests to find a number of flaws
in the original specification that would have been difficult to detect simply by inspecting the guards and actions of the
transitions. The granularity of adjustments to the throttle in CruiseUnit transitions t026 and t027 and the granularity of
checks in the guard predicates of transitions t023 to t025 have a significant impact on the oscillating effect one gets when
using the Resume/Accel button to resume a previously targeted speed or when setting ExternalDrag to sharply different
values. Although technically correct according to the specifications, speeds would sometimes wildly oscillate above and
below the target speed several times before settling down. Another specification error immediately discovered was
forgetting that action queues can hold multiple actions, sometimes resulting in unexpected method invocations in a
current state that were put on the queue while the class was in a previous state. Another unexpected result occurs when
“Pauses” are added to the specification, e.g., in CruiseUnit transitions t023, t026, t027, t038, t050 and t065. One
sometimes forgets that when one class is pausing, perhaps to wait for delayed effects, other classes may be piling actions
on a call queue. Rapid access to a reference implementation helped discover a number of errors of this type in the
original specification.

Constructing test cases that predict the expected system state at each step greatly improves the ability to find
specification errors in transitions that correctly manage the state of their own class, but forget to send proper messages to
effect that change in other classes. Early tests found an error in CruiseUnit transition t057 for method UserSwitch(Off) in
that it properly changed the state of CruiseUser, CruiseUnit and Gauges, but initially forgot to send a message to the
Throttle to go into the Idle state. Very common specification errors are to assign values to variables, declare that the
object moves to a new state, but forget to check if the state predicate of the new state is satisfied. Test construction found
several subtle specification errors of this type. An error found by a test but still existing in the specification is that
Transmission transition t005 properly sends a message to the Wheel to change speed when a gear is changed, but forgets

 -28-

that DriveRatio() is handled by the current transition, which returns zero for Neutral, so the Wheel state does not change
no matter which gear is set from Neutral. This is an example of where a state predicted by a test case, i.e., Wheel in
DirectDrive, differs from intuition, i.e., Wheel in Accel, so a closer look at the specification reveals the error. In all,
approximately a dozen errors were found in the specifications. These were found by tests that were created when the test
generator was under development, and the specifications were corrected, so the manual tests and the experimental results
in Table 3 were based on the corrected version of the specifications. Of course, this may not be indicative because
domain experts did not write the specifications. Still, it is positive anecdotal evidence that the analysis needed to develop
tests can help improve specifications.

7.4 Scalability

The collection of tools described in Section 7.2 automates all but two steps in the generation of executable test cases. The
database representation of the specification must be created by hand, and the final step of generating executable test
sequences is only partially automated. A Web-based GUI is currently under development to capture and store
specification information into the database. These tool implementations are not typical testing tools that consist of
compiled programs. Instead, they consist of the system information represented in a highly structured database schema,
together with database queries and other database operations that implement each step in the process. The logical
requirements of the algorithm for path generation are implemented as queries and updates to leverage the database system
for powerful logical computation and efficient I/O management. Modern commercial databases access the hard disk in
the most optimal way, certainly not with every query. They use very effective optimization strategies that are based on
caching, prefetching, and other OS concepts. Optimization is part of the advantage of using a database – few
programmers could manage memory with even a fraction of the efficiency of commercial database products. This allows
the methodology to be applied to integration testing in software systems that might otherwise be too large for easy
manipulation in main memory. The literature contains no other methodology that leverage database capabilities in this
manner or that can handle data flow testing with graphs this large.

Although it is true that this work thus far has not assured scalability, the authors have experience in both building
and using source code-level data flow analysis software. We know of no other source code-level data flow testing
systems, either commercial or experimental, which can handle software specifications that have thousands of DU-pairs.
A less obvious advantage was with regards to maintenance. With this technique, it was very easy to modify the algorithm
to add additional refinements or to correct small omissions – by modifying a single SQL predicate.

The FSM flow tests found 106 faults, whereas the manual tests only found 24 faults. Not only did the FSM flow tests
find more faults, they found more faults per test. This might be a little misleading, however, because the exact number of
tests created will vary greatly depending on the decisions made during test creation. Thus even though not all def-use
pairs were covered by the automatic approach, the tests were of a high quality and indicate that in larger systems, not all
def-use pairs would need to be covered in order to find many of the critical faults.

The database representation provides a convenient and efficient way to go one step beyond traditional data flow
systems and provide definition-clear DU-paths rather than just DU-pairs. Traditional code-level data flow systems
provide DU-pairs (as statement numbers), and use instrumentation to check whether separately supplied test inputs cause
def-clear paths to be executed from the definitions to the uses. This is often a hit-or-miss process, with the tester throwing
test inputs at the software, hoping that the data flow system eventually reports that the DU-pairs were covered. It is
sometimes very difficult for a tester to find a test case that will cover a particular DU-pair, and attempts have been made
to generate tests by generating and solving predicates [41]. Source code-level data flow analysis has always had problems
with the predicates getting too large for memory, which is one reason why data flow testing is seldom, if at all, used in
practice. The early papers on data flow discussed data flow paths, but none of the implementations dealt with
construction of the paths, which meant that discussions of data flow paths were theoretical.

One reason that traditional code-level data flow programs do not provide complete paths is because the problems of
finding feasible paths and determining if the path is def-clear are generally undecidable. When the problems can be
solved, the complexity of the control flow, problems with function calls and variable aliasing (where two different names
are given to the same memory object), and the size of the data space makes the cost of the exponential algorithms
prohibitive. This work, however, avoids some of the problems associated with code-level data flow analysis. The
“control flow” on average is much simpler than in code-level control-flow graphs, the data space is much smaller, and
there is no aliasing. The point of using a database system is that it provides a powerful compute engine for solving
predicates, which is one of the most difficult parts of a data flow analyzer to implement.

8 Conclusions and Future Work

 -29-

This paper presents two major and several minor results. The first major result is a method for integration level, inter-
class testing for object-oriented programs using data flow techniques. The second is a computational approach to find
feasible and infeasible paths. This is a difficult problem whose current solutions are not very effective. The approach in
this paper could be used in other path-based testing criteria. One minor result is a technique for representing data flow
and control flow graphs in a relational database and using the database as a compute engine for deriving DU-pairs and
DU-paths to satisfy data flow testing criteria. Software components are modeled as finite state machines, and data flows
are defined on the finite state machines, yielding DU-paths that are used as a basis for testing. A second minor result is a
rapid prototyping machine that allows a quick and convenient way to execute software specifications and a third is an
automated test harness to support the test method. A fourth minor result is the introduction of a fairly substantial cruise
control example, which can be used by other researchers in their empirical studies. The relevant transitions are in
Appendix I, and the full specifications are online in the technical report [18]. These tools and example were used to
obtain empirical results from applying the testing method and comparing it with manual tests.

This paper does not prove the existence of an executable test case for each DU-pair, but by eliminating def-bound
pairs and by generating a small collection of potentially feasible candidate test paths for each remaining pair, it
substantially increases the likelihood of finding an executable test case. Careful design of the states and guards in a
functional specification of transitions and early identification of non-feasible path segments in a component flow graph
will also help reduce the number of non-feasible candidate test paths. Future efforts will focus on improving the tool for
automatic generation of executable test cases for black-box testing and increasing the automation of generating
executable test sequences from candidate test paths.

This paper does not explicitly handle class variables (Java static) or inheritance. However, class variables can be
modeled by assuming that they are instance variables in a separate, virtual class, where only one instance of that class is
available, and where the static methods that access the class variables are methods in the separate class. Inheritance of
variables from a superclass is handled by replacing variable references in the subclass with a method invocation of the
associated get and set methods of the superclass. Other aspects of inheritance do not directly impact this model.

For clarity, the definitions and example in this paper only consider one object per class, but extending the method is
straightforward. However, aggregation and consideration of multiple class instances are essential for practical
application. In static environments with static type hierarchies and static type binding, aggregation and multiple instances
are achieved by allowing state variables to be references to some other object. All such reference variables are collected
together, creating a new table in the model with a primary key called RefId. Each row of the new table identifies an
object whose state and behavior must be maintained throughout the testing process. Then the associations of Figure 3 are
extended to be specified in terms of RefIds instead of just ClassIds. The remainder of the test specification for this
situation follows as presented here. The situation is substantially more complex when class hierarchies with dynamic type
binding and polymorphism are used. This is an issue for future work.

One interesting question is when to employ the techniques presented in this paper, and three possibilities emerge.
The most obvious is when software components are integrated. At that time, the FSMs can be generated and relevant
transitions can be determined to be those transitions that are included as part of the components in the current integration
step. It may also be possible to employ these techniques during maintenance. If a component is to be changed, the impact
of that change can be estimated in terms of the relevant transitions, and regression testing can proceed on the relevant
transitions. This impact could also be limited by applying a testing firewall [33], which was found to be very helpful in
industrial practice [47] and could readily be incorporated into the FSM model in this paper. Finally, if a new component
is to be added to a system, then relevant transitions (and the resulting tests) can be created in terms of the new
component. We hope to explore these ideas in future work.

With the increasing popularity of object-oriented specification methods, e.g., UML [46], and especially state
transition specification of classes, e.g., UML’s state machine package, it becomes possible to more closely align the
specification and testing of object-oriented software, with executable test cases generated automatically from the
specification. With the addition of database tools, it becomes possible to apply finite state analysis and testing methods to
moderate-sized software systems. Follow-on work will focus on further integration of the specification and testing
aspects of software development and on the potential application of statistical methods.

Acknowledgements

The second author gratefully acknowledges the support by the U.S. National Science Foundation under grant CCR-98-
04111 during this research. The second author is also employed as a part-time faculty researcher at NIST. It is a pleasure
to acknowledge Julie Zanon for the tool that generates all of the derived associations described in Figure 4 as well as
initial tool development for making this approach available on the Internet as a web application, and also Roger
Alexander, Paul E. Black, and the anonymous reviewers for a number of helpful suggestions.

 -30-

References

1. Abdurazik, P. Ammann, W. Ding, and J. Offutt, “Evaluation of Three Specification-based Testing Criteria,”

Proceedings of the Sixth IEEE International Conference on Engineering of Complex Computer Systems (ICECCS
'00), pp. 179-187, Tokyo, Japan, September 2000.

2. Roger Alexander and Jeff Offutt, “Analysis Techniques for Testing Polymorphic Relationships,” Proceedings of the
Thirtieth International Conference on Technology of Object-Oriented Languages and Systems (TOOLS USA '99) ,
pp. 104-114, Santa Barbara, CA, August 1999.

3. Roger Alexander and Jeff Offutt, “Criteria for Testing Polymorphic Relationships,” Proceedings of the 11th
International Symposium on Software Reliability Engineering (ISSRE ‘00), pp. 15-23, San Jose, CA, October 2000.

4. J. M. Atlee, “Native Model-checking of SCR Requirements,” Proceedings of the Fourth International SCR
Workshop, November 1994.

5. G. Booch, Object Oriented Design with Applications, Benjamin Cummings, 1991.
6. H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, “In Black and White: An Integrated Approach to Class-Level

Testing of Object-Oriented Programs,” ACM Transactions on Software Engineering Methodology, 7(3):250-295,
1998.

7. H. Y. Chen, T. H. Tse, and T. Y. Chen, “TACCLE: A Methodology for Object-Oriented Software Testing at the
Class and Cluster Levels,” ACM Transactions on Software Engineering Methodology, 10(4):56-109, 2001.

8. Mei-Hwa Chen and Ming-Hung Kao, “Testing Object-Oriented Programs -- An Integrated Approach,” Proceedings
of the 10th International Symposium on Software Reliability Engineering, pp. 73-83, Boca Raton, FL, November
1999.

9. L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A Comparison of Data Flow Path Selection Criteria,”
Proceedings of the Eighth International Conference on Software Engineering, pp. 244-251, London UK, August
1985.

10. T. Chow, “Testing Software Design Modeled by Finite-State Machines,” IEEE Transactions on Software
Engineering, SE-4(3): pp. 178-187, May 1978.

11. E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the ACM, 13(6): 377-
387, June 1970, reprinted in Vol. 26, No. 1, Jan. 1983.

12. J. Date, An Introduction to Database Systems, 6th edition, Addison-Wesley, 1995.
13. R. K. Doong and P. G. Frankl, “The ASTOOT Approach to Testing Object-Oriented Programs,” ACM Transactions

on Software Engineering and Methodology, 3(2):101-130, April 1994.
14. P. G. Frankl and E. J. Weyuker, “An Applicable Family of Data Flow Testing Criteria,” IEEE Transactions on

Software Engineering, 14(10):1483-1498, October 1988.
15. P. G. Frankl and S. N. Weiss, “An Experimental Comparison of the Effectiveness of Branch Testing and Data Flow

Testing,” IEEE Transactions on Software Engineering, 19(8):774-787, August 1993.
16. P. G. Frankl, S. N. Weiss, and C. Hu, “All-Uses Versus Mutation Testing: An Experimental Comparison of

Effectiveness,” The Journal of Systems and Software, 38(3):235-253, 1997.
17. L. Gallagher, “Conformance Testing of Object-Oriented Components Specified by State/Transition Classes”,

National Institute of Standards and Technology Technical Report NISTIR 6592, May 1999.
 http://www.itl.nist.gov/div897/ctg/conformance/obj-comp-testing.pdf.
18. L. Gallagher and A. J. Offutt, “Integration Testing of Object-Oriented Components Using FSMS: Theory and

Experimental Details,” Technical Report ISE-TR-04-04, Department of Information and Software Engineering,
George Mason University, Fairfax VA, July 2004, http://www.ise.gmu.edu/techrep/.

19. Goldberg, T. C. Wang and D. Zimmerman, “Applications of Feasible Path Analysis to Program Testing,”
Proceedings of the 1994 International Symposium on Software Testing, and Analysis, pp. 80-94, Seattle, WA,
August 1994.

20. H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with UML, Addison-Wesley, 2000.
21. M. J. Harrold and M. L. Soffa, “Selecting and Using Data for Integration Testing,” IEEE Software, 8(2):58-65,

March 1991.
22. M. J. Harrold and G. Rothermel, “Performing Data Flow Testing on Classes,” Proceedings of 2nd ACM SIGSOFT

Symposium on Foundations of Software Engineering, pp. 154-163, New Orleans, LA, December 1994.
23. Hedley and M. A. Hennell, “The Cause and Effects of Infeasible Paths in Computer Programs,” Proceedings of the

Eighth International Conference on Software Engineering, London UK, August 1985.
24. H. S. Hong, Y. R. Kwon, and S. D. Cha, “Testing of Object-Oriented Programs Based on Finite State Machines,”

Proceedings of Asia-Pacific Software Engineering Conference, pp. 234-241, 1995.

 -31-

25. M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the Effectiveness of Dataflow- and
Controlflow-Based Test Adequacy Criteria,” Proceedings of the Sixteenth International Conference on Software
Engineering, pp. 191-200, Sorrento, Italy, May 1994,.

26. R. Jasper, M. Brennan, K. Williamson, B. Currier and D. Zimmerman, “Test Data Generation and Feasible Path
Analysis,” Proceedings of the 1994 International Symposium on Software Testing, and Analysis, pp. 95-107, Seattle
WA, August 1994.

27. Java Development Kit, version 1.2, Sun Microsystems, Inc., Copyright1995, http://java.sun.com/products/jdk/1.2.
28. Zhenyi Jin and Jeff Offutt, “Coupling-Based Criteria for Integration Testing,” The Journal of Software Testing,

Verification, and Reliability, 8(3):133-154, September 1998.
29. Kung, N. Suchak, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen, “On Object State Testing,” Proceedings of Computer

Software and Applications Conference, pp. 222-227, November 1994.
30. Kung, C. H. Liu and P. Hsia, “An Object-Oriented Web Test Model for Testing Web Applications,” Proceedings of

the 24th Annual International Computer Software and Applications Conference (COMPSAC 2000), pp. 73-83, Taipei
Taiwan, October 2000.

31. D. Kung, J. Gao, Pei Hsia, Y. Toyoshima, and C. Chen, “A Test Strategy for Object-Oriented Programs,” 19th
Computer Software and Applications Conference (COMPSAC 95) , pp. 239-244, Dallas, TX, August 1995.

32. J. Laski and B. Korel, “A Data Flow Oriented Program Testing Strategy,” IEEE Transactions on Software
Engineering, 9(3):347-354, May 1983.

33. H. Leung and L. White, “A Study of Integration Testing and Software Regression at the Integration Level,”
Proceedings of the IEEE International Conference on Software Maintenance, pp. 290-301, November 1990.

34. R. J. Linn and M. Ü. Uyar, Conformance Testing Methodologies and Architectures for OSI Protocols, IEEE
Computer Society Press, 1994.

35. C. H. Liu, D. Kung, P. Hsia and C. T. Hsu, “Structural Testing for Web Applications,” Proceedings of the 11th
International Symposium on Software Reliability Engineering (ISSRE 2000), pp. 84-96, San Jose CA, October 2000.

36. P. Mathur and W. E. Wong, ”An Empirical Comparison of Data Flow and Mutation-Based Test Adequacy Criteria,”
Journal of Software Testing, Verification and Reliability, 4(1):9-31, March 1994.

37. J. Melton and A. Simon, Understanding the New SQL: A Complete Guide, Morgan Kauffman, 1993.
38. S. C. Ntafos, “A Comparison of Some Structural Testing Strategies,” IEEE Transactions on Software Engineering,

14(6): 868-874, June 1988.
39. J. Offutt, Jie Pan, Kanupriya Tewary, and Tong Zhang, “An Experimental Evaluation of Data Flow and Mutation

Testing,” Software--Practice and Experience, 26(2):165-176, February 1996.
40. J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. “Generating Test Data from State-based Specifications,” The

Journal of Software Testing, Verification, and Reliability, Wiley, 13(1):25-53, March 2003.
41. J. Offutt , Z. Jin and J. Pan, “The Dynamic Domain Reduction Approach to Test Data Generation”, Software--

Practice and Experience, 29(2):167-193, January 1999.
42. J. Offutt and J. Pan, “Detecting Equivalent Mutants and the Feasible Path Problem,” Proceedings of the 1996 Annual

Conference on Computer Assurance (COMPASS 96), pp. 224-236, Gaithersburg MD, June 1996.
43. S. Parrish, R. B. Borie, and D. W. Cordes, “Automated Flow Graph-Based Testing of Object-Oriented Software

Modules,” Journal of Systems and Software, 23, pp. 95-109, 1993.
44. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object Oriented Modeling and Design, Prentice

Hall, 1991.
45. D. Turner and D. J. Robson, “The State-Based Testing of Object-Oriented Programs,” Proceedings of the

Conference on Software Maintenance, pp. 302-310, Montreal, Quebec, Canada, September 1993.
46. Unified Modeling Language, Object Constraint Language Specification and UML Semantics, version 1.1, Sept.

1997, Rational Software, http://www.rational.com/uml/.
47. L. White and B. Robinson, “Industrial Real-Time Regression Testing and Analysis Using Firewalls,” Proceedings of

the 20th IEEE International Conference on Software Maintenance, pp. 18-27, September 2004.

Appendix I: Relevant Feasible Mutator Transitions for CruiseControl

Class TranId Source Target Function Guard Action
AutoSystem t001 Initial Inactive AutoSystem() true ThrottleFloor:=12; ThrottleGovernor:=80;

Global BrakeControl:=New BrakeControl();
BrakeActive:=false;
Global ClutchUser:=New ClutchUser();
ClutchActive:=false;
Global Gauges:=New Gauges(); Danger:=false;
Global CruiseUnit:=New CruiseUnit();

 -32-

Class TranId Source Target Function Guard Action
AutoSystem t002 Inactive Active BrakeActive(x) x=true BrakeActive:=true; Call CruiseUnit.Cancel();
AutoSystem t005 Active Active BrakeActive(x) x=true BrakeActive:=true; Call CruiseUnit.Cancel();
AutoSystem t008 Active Inactive BrakeActive(x) x=false & ClutchActive=false

& Danger=false
BrakeActive:=false;

BrakeControl t001 Initial Inactive BrakeControl() true Global BrakeUser:=New BrakeUser(); IsActive:=false;
PedalPressure:=0;LinePressure:=0;
WheelsTurning:=false;

BrakeControl t002 Inactive Braking IsActive(x) x=true IsActive:=true; Call AutoSystem.BrakeActive(true);
BrakeControl t003 Braking Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false);
BrakeControl t004 Locked Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false);
BrakeUser t001 Initial Inactive BrakeUser() true IsActive:=false; PedalPressure:=0; pconst:=5;
BrakeUser t002 Inactive Braking IsActive(x) x=true IsActive:=true; Call AutoSystem.BrakeActive(true);

Call BrakeControl.IsActive(true);
BrakeUser t003 Braking Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false);

Call BrakeControl.IsActive(false);
CruiseUnit t001 Initial Off CruiseUnit() true Global CruiseUser:=New CruiseUser();

UserSwitch:=Off;
SlowCutoff:=25; FastCutoff:=95;UserMode:=Null;
CurrentSpeed:=0; TargetSpeed:=0; TargetThrottle:=0;

CruiseUnit t004 Off Off SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit t009 Off Inactive UserSwitch(x) x=On UserSwitch:=On;
CruiseUnit t012 Inactive Inactive SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit t014 Inactive Inactive UserMode(x) x=NT & UserMode=SD

& (Gauges.Speed()<=SlowCutoff
OR Gauges.Speed()>=FastCutoff)

UserMode:=NT;

CruiseUnit t016 Inactive Cruise UserMode(x) x=NT & UserMode=SD
& (SlowCutoff<Gauges.Speed()
<FastCutoff)
& AutoSystem.BrakeActive()=false &
AutoSystem.ClutchActive()=false

UserMode:=NT; CurrentSpeed:=Gauges.Speed();
 TargetSpeed:=CurrentSpeed;
TargetThrottle:=Throttle.Position();
Call Gauges.Cruise(On);
Call Throttle.Floor(TargetThrottle);
Put CheckState() on Call Queue;

CruiseUnit t017 Inactive Inactive UserMode(x) x<>NT UserMode:=x;
CruiseUnit t019 Inactive Off UserSwitch(x) x=Off UserSwitch:=Off;
CruiseUnit t021 Cruise Override Cancel() true Call Gauges.Cruise(Off); Call Throttle.Floor(0);
CruiseUnit t023 Cruise Cruise CheckState() ABS(TargetSpeed-

CurrentSpeed)<0.5
Pause; CurrentSpeed:=Gauges.Speed();
Put CheckState() on Call Queue;

CruiseUnit t024 Cruise Cruise CheckState() 0.5<=ABS(TargetSpeed-
CurrentSpeed)<1.0

CurrentSpeed:=Gauges.Speed();
Put CheckState() on Call Queue;

CruiseUnit t025 Cruise Cruise CheckState() ABS(TargetSpeed-
CurrentSpeed)>=1.0 &
Throttle.Position()>Throttle.Floor()

CurrentSpeed:=Gauges.Speed();
Put CheckState() on Call Queue;

CruiseUnit t026 Cruise Cruise CheckState() CurrentSpeed-TargetSpeed>=1.0 &
Throttle.Position()=Throttle.Floor()

Call Throttle.Floor(Throttle.Floor()-0.5); Pause;
CurrentSpeed:=Gauges.Speed();
Put CheckState() on Call Queue;

CruiseUnit t027 Cruise Cruise CheckState() TargetSpeed-CurrentSpeed>=1.0 &
Throttle.Position()=Throttle.Floor()

Call Throttle.Floor(Throttle.Floor()+0.5); Pause;
CurrentSpeed:=Gauges.Speed();
Put CheckState() on Call Queue;

CruiseUnit t028 Cruise Cruise SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit t030 Cruise Decel UserMode(x) x=SD TargetSpeed:=TargetSpeed-1; UserMode:=SD;

Put CheckState() on Call Queue;
CruiseUnit t031 Cruise Accel UserMode(x) x=RA TargetSpeed:=TargetSpeed+1; UserMode:=RA;

Put CheckState() on Call Queue;
CruiseUnit t034 Cruise Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off;

UserMode:=Null; Call Throttle.Floor(0);
CruiseUnit t035 Decel Override Cancel() true Call Gauges.Cruise(Off); UserMode:=Null;

Call Throttle.Floor(0);
CruiseUnit t038 Decel Decel CheckState() CurrentSpeed>SlowCutoff Call Throttle.Floor(Throttle.Position()-0.5); Pause;

CurrentSpeed:=Gauges.Speed();
Put CheckState() on Call Queue;

CruiseUnit t039 Decel Override CheckState() CurrentSpeed<=SlowCutoff Call Gauges.Cruise(Off); UserMode:=Null;
Call Throttle.Floor(0);

CruiseUnit t040 Decel Decel SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit t043 Decel Cruise UserMode(x) x=NT UserMode:=NT; TargetSpeed:=Gauges.Speed();

 -33-

Class TranId Source Target Function Guard Action
 TargetThrottle:=Throttle.Position();
CurrentSpeed:=TargetSpeed;
Put CheckState() on Call Queue;

CruiseUnit t045 Decel Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off;
 UserMode:=Null; Call Throttle.Floor(0);

CruiseUnit t047 Accel Override Cancel() true Call Gauges.Cruise(Off); UserMode:=Null;
Call Throttle.Floor(0);

CruiseUnit t050 Accel Accel CheckState() CurrentSpeed<FastCutoff Call Throttle.Floor(Throttle.Position()+0.5); Pause;
CurrentSpeed:=Gauges.Speed();
Put CheckState() on Call Queue;

CruiseUnit t051 Accel Override CheckState() CurrentSpeed>=FastCutoff Call Gauges.Cruise(Off); UserMode:=Null;
Call Throttle.Floor(0);

CruiseUnit t052 Accel Accel SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit t055 Accel Cruise UserMode(x) x=NT UserMode:=NT; TargetSpeed:=Gauges.Speed();

TargetThrottle:=Throttle.Position();
CurrentSpeed:=TargetSpeed;
Put CheckState() on Call Queue;

CruiseUnit t057 Accel Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off;
 UserMode:=Null; Call Throttle.Floor(0);

CruiseUnit t061 Override Override SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit t063 Override Override UserMode(x) x<>NT

OR Gauges.Speed()<=SlowCutoff
OR Gauges.Speed()>=FastCutoff

UserMode:=x;

CruiseUnit t064 Override Cruise UserMode(x) x=NT & UserMode=SD
& (SlowCutoff<Gauges.Speed()<
FastCutoff)
& AutoSystem.BrakeActive()=false &
AutoSystem.ClutchActive()=false

CurrentSpeed:=Gauges.Speed();
TargetSpeed:=CurrentSpeed;
TargetThrottle:=Throttle.Position();
Call Gauges.Cruise(On);
Call Throttle.Floor(TargetThrottle); UserMode:=NT;
Put CheckState() on Call Queue;

CruiseUnit t065 Override Cruise UserMode(x) x=NT & UserMode=RA
&(SlowCutoff<Gauges.Speed()<
FastCutoff)
& AutoSystem.BrakeActive()=false &
AutoSystem.ClutchActive()=false

Call Throttle.Floor(TargetThrottle);
Call Gauges.Cruise(On); UserMode:=NT; Pause;
CurrentSpeed:=Gauges.Speed();
Put CheckState() on Call Queue;

CruiseUnit t066 Override Override UserMode(x) x=NT & UserMode=Null UserMode:=NT;
CruiseUnit t069 Override Off UserSwitch(x) x=Off UserSwitch:=Off; UserMode:=Null;
CruiseUser t001 Initial Off CruiseUser() true Switch:=Off; Mode:=NT;
CruiseUser t002 Off Neutral Switch(x) x=On Switch:=On; Call CruiseUnit.UserSwitch(On);
CruiseUser t003 Neutral Off Switch(x) x=Off Switch:=Off; Call CruiseUnit.UserSwitch(Off);
CruiseUser t004 Neutral Accel Mode(x) x=RA Mode:=RA; Call CruiseUnit.UserMode(RA);
CruiseUser t005 Accel Neutral Mode(x) x=NT Mode:=NT; Call CruiseUnit.UserMode(NT);
CruiseUser t006 Decel Neutral Mode(x) x=NT Mode:=NT; Call CruiseUnit.UserMode(NT);
CruiseUser t007 Neutral Decel Mode(x) x=SD Mode:=SD; Call CruiseUnit.UserMode(SD);
CruiseUser t008 Accel Off Switch(x) x=Off Switch:=Off; Mode:=NT; Call

CruiseUnit.UserSwitch(Off);
CruiseUser t009 Decel Off Switch(x) x=Off Switch:=Off; Mode:=NT; Call

CruiseUnit.UserSwitch(Off);
CruiseUser t010 Neutral Neutral Cancel() true Call CruiseUnit.Cancel();
CruiseUser t016 Accel Accel Cancel() true Call CruiseUnit.Cancel();
CruiseUser t019 Decel Decel Cancel() true Call CruiseUnit.Cancel();
Engine t001 Initial Normal Engine() true Rpm:=0; GasFlow:=0; ExternalDrag:=1;

WaterTMin:=0; OilPMin:=0;
Engine t003 Normal Normal GasFlow(x) true GasFlow:=x; Rpm:=(2-ExternalDrag)*GasFlow*630;

Call Gauges.Tach(Rpm);
Call Wheel.AxelRpm(Rpm*Transmission.DriveRatio());

Engine t005 Normal Normal ExternalDrag(x) true ExternalDrag:=x; Rpm:=(2-
ExternalDrag)*GasFlow*630;
Call Gauges.Tach(Rpm);
Call Wheel.AxelRpm(Rpm*Transmission.DriveRatio());

GasUser t001 Initial Active GasUser() true PedalPosition:=0;
GasUser t002 Active Active PedalPosition(x) x>0 & x<>PedalPosition PedalPosition:=x; Call

Throttle.GasPedal(PedalPosition);
Gauges t000 Initial Normal Gauges() true Speed:=0; Cruise:=Off; Tach:=0; OilPressure:=0;

 -34-

Class TranId Source Target Function Guard Action
OilLight:=Off; Odometer:=Null; TripMeter:=Null;
WaterTemp:=0; AbsLight:=Off; Battery:=Off;
SeatBelt:=Off; HandBrake:=Null; LowGas:=Off;

Gauges t006 Normal Normal Tach(x) true Tach:=x;
Gauges t008 Normal Normal Speed(x) x<180 Speed:=x;
Gauges t009 Normal Danger Speed(x) x>=180 Speed:=Min(x,250); Call AutoSystem.Danger(true);
Gauges t017 Normal Normal Cruise(x) true Cruise:=x;
Gauges t034 Danger Danger Speed(x) x>=180 Speed:=Min(x,250);
Ignition t000 Initial On Ignition() true Key:=On; EngineOn:=false;

Global AutoSystem:=New AutoSystem();
Ignition t001 On Initial Key(x) x=Off Key:=Off; EngineOn:=false; Destroy Throttle;

Destroy Engine; Destroy AutoSystem; Destroy Self;
Ignition t003 On On StartEngine() EngineOn=false Global Transmission:=New Transmission();

Global Engine:=New Engine();
Global GasUser:=New GasUser(); Global
Throttle:=New Throttle(AutoSystem.ThrottleFloor();
AutoSystem.ThrottleGovernor()); EngineOn:=true;

Throttle t001 Initial Idle Throttle(x, y) 0<x & x<y & y<100 fconst:=x; gconst:=y; Position:=fconst;
Call Engine.GasFlow(Convert(Position)); Floor:=fconst;
Call GasUser.PedalPosition(fconst);

Throttle t002 Idle Manual GasPedal(x) x>fconst GasPedal:=x; Position:=Min(GasPedal, gconst);
Call Engine.GasFlow(Convert(Position));

Throttle t003 Manual Idle GasPedal(x) x<=fconst GasPedal:=x; Position:=fconst;
Call Engine.GasFlow(Convert(fconst));
Call GasUser.PedalPosition(fconst);

Throttle t004 Idle Automatic Floor(x) x>fconst Floor:=Min(x, gconst); Position:=Floor;
Call Engine.GasFlow(Convert(Position));
Call GasUser.PedalPosition(Position);

Throttle t005 Automatic Idle Floor(x) x<=fconst Floor:=fconst; Position:=fconst;
Call Engine.GasFlow(Convert(Position));
Call GasUser.PedalPosition(fconst);

Throttle t006 Manual Automatic GasPedal(x) x>fconst & x<=Floor GasPedal:=x; Position:=Floor;
Call Engine.GasFlow(Convert(Position));
Call GasUser.PedalPosition(Floor);

Throttle t007 Manual Automatic Floor(x) x>=Position Floor:=Min(x, gconst); Position:=Floor;
Call Engine.GasFlow(Convert(Position));
Call GasUser.PedalPosition(Floor);

Throttle t008 Automatic Manual GasPedal(x) x>fconst & x>Floor & x<=gconst GasPedal:=x; Position:=x;
Call Engine.GasFlow(Convert(Position));

Throttle t009 Automatic Automatic Floor(x) x>fconst Floor:=Min(x, gconst); Position:=Floor;
Call Engine.GasFlow(Convert(Position));
Call GasUser.PedalPosition(Position);

Throttle t024 Idle Idle GasPedal(x) x<=fconst GasPedal:=x;
Throttle t025 Idle Idle Floor(x) x<=fconst Floor:=fconst;
Throttle t026 Manual Manual GasPedal(x) x>fconst & x<=gconst & x>Floor GasPedal:=x; Position:=x;

Call Engine.GasFlow(Convert(Position));
Throttle t028 Manual Manual Floor(x) x<Position Floor:=Max(fconst, x);
Throttle t030 Automatic Automatic GasPedal(x) x>fconst & x<=Floor GasPedal:=x;
Transmissio
n

t001 Initial Neutral Transmission() true Gear:=N; Ratio_R:=1.846; Ratio_1:=2.563;
Ratio_2:=1.552; Ratio_3:=1.022;
Ratio_4:=0.653; Ratio_5:=0.471;
Ratio_Diff:=4.429; Global Wheel:=New Wheel();

Transmissio
n

t005 Neutral Forward Gear(x) x=1 OR x=2 OR x=3
OR x=4 OR x=5

Gear:=x;
Call Wheel.AxelRpm(Gauges.Tach()*DriveRatio());

Transmissio
n

t007 Forward Neutral Gear(x) x=N Gear:=N; Call Wheel.AxelRpm(0);
Transmissio
n

t008 Forward Forward Gear(x) x=1 OR x=2 OR x=3
OR x=4 OR x=5

Gear:=x;
Call Wheel.AxelRpm(Gauges.Tach()*DriveRatio());

Wheel t001 Initial DirectDrive Wheel() true AxelRpm:=0; WheelRpm:=0; WheelDiam:=0.00056;
Wheel t002 DirectDrive DirectDrive AxelRpm(x) ABS(x-WheelRpm)<=2 AxelRpm:=x; WheelRpm:=x; Call

Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
Wheel t003 DirectDrive Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1; Call

Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
Put CheckState() on Call queue;

 -35-

Class TranId Source Target Function Guard Action
Wheel t004 DirectDrive Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1; Call

Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
 Put CheckState() on Call queue;

Wheel t005 Decel Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
Put CheckState() on Call queue;

Wheel t006 Decel Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
Put CheckState() on Call queue;

Wheel t007 Decel DirectDrive AxelRpm(x) ABS(x-WheelRpm)<=2 AxelRpm:=x; WheelRpm:=x; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel t008 Accel Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
Put CheckState() on Call queue;

Wheel t009 Accel DirectDrive AxelRpm(x) ABS(x-WheelRpm)<=2 AxelRpm:=x; WheelRpm:=x; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel t010 Accel Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
Put CheckState() on Call queue;

Wheel t012 Decel Decel CheckState() AxelRpm+2<WheelRpm WheelRpm:=WheelRpm-1; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
Put CheckState() on Call queue;

Wheel t013 Decel DirectDrive CheckState() AxelRpm+2>=WheelRpm WheelRpm:=AxelRpm; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel t014 Accel Accel CheckState() AxelRpm-2>WheelRpm WheelRpm:=WheelRpm+1; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
 Put CheckState() on Call queue;

Wheel t015 Accel DirectDrive CheckState() AxelRpm-2<=WheelRpm WheelRpm:=AxelRpm; Call
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

