
 
Integration testing of object-oriented 
components using finite 
state machines 

 
Leonard Gallagher1, Jeff Offutt2 and Anthony Cincotta1 

 
1Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg MD 20899-8970 USA, 
lgallagher@nist.gov or tony.cincotta@nist.gov  
2Information and Software Engineering, George Mason University, Fairfax VA  22032-4400 USA, offutt@ise.gmu.edu  

 
 
 

SUMMARY 
In object-oriented terms, one of the goals of integration testing is to ensure that messages from objects in one class or 
component are sent and received in the proper order and have the intended effect on the state of the objects that receive 
the messages. This research extends an existing single-class testing technique to integration testing of multiple classes. 
The single-class technique models the behavior of a single class as a finite state machine, transforms the representation 
into a data flow graph that explicitly identifies the definitions and uses of each state variable of the class, and then applies 
conventional data flow testing to produce test case specifications that can be used to test the class. This paper extends 
those ideas to inter-class testing by developing flow graphs, finding paths between pairs of definitions and uses, 
detecting some infeasible paths, and automatically generating tests for an arbitrary number of classes and components. It 
introduces flexible representations for message sending and receiving among objects and allows concurrency among any 
or all classes and components. Data flow graphs are stored in a relational database, and database queries are used to 
gather def-use information. This approach is conceptually simple, mathematically precise, quite powerful, and general 
enough to be used for traditional data flow analysis. This testing approach relies on finite state machines, database 
modeling and processing techniques, and algorithms for analysis and traversal of directed graphs. The paper presents 
empirical results of the approach applied to an automotive system. 
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1 Introduction 
 

Testing of object-oriented software is complicated by the fact that software being tested is often constructed from a 
combination of previously written, off-the-shelf components with some new components developed to satisfy new 
requirements. The previously written components are often “sealed” so that source code is not available, yet objects in 
the new components will interoperate via messages with objects in the existing components. Software conformance 
testing is the act of determining whether or not a software product conforms to a functional specification, where the 
functional specification is a set of rules that the product must satisfy. One goal of this paper is to provide conformance-
testing techniques for the integration of new product components into a complete software system. 

Each component is assumed to be object-oriented, that is, it is implemented with objects that have state and behavior. 
In this paper, a class is the basic unit of semantic abstraction, a component is a closely related collection of classes, and a 
system is a collection of components designed to solve a problem. Each component is assumed to be a separate 
executable, thereby allowing asynchronous behavior.  An object is an instance of a class. Each object has state and 
behavior, where state is determined by the values of variables defined in the class, and behavior is determined by 
methods (functions or procedures) defined in the class that operate on one or more objects to read and modify their state 
variables. The behavior of an object when acted upon by a method can be modeled as the effect the method has on the 
variables of that object (the state), together with the messages it sends to other objects. Variables declared by the class 
that have one instance for each object are called instance variables, and variables that are shared among all objects of the 
class (static in Java) are class variables. The results in this paper are independent of programming language, and this 
paper uses a mix of Java and C++ terminology. 
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If a finite state machine represents the states and transitions of a class, then the behavior of an object can be captured 
as a set of transition rules for each method. Thus finite state machines are often used for class specifications in object-
oriented analysis and design [8, 10, 34, 45]. The behavior of a component is specified by the behavior of its constituent 
classes. The public interface to a component is a list of public classes, which are accessed through the public methods in 
those classes. A state transition specification for a class is the set of state transition rules for each method of the class. 
The state of an object is determined by the values of its instance and class variables, which are collectively called state 
variables. Given a state transition specification for each class in a software system, the goal of this research is to 
construct test specifications that are used to construct an executable test suite to determine if an implementation of a 
software system conforms to its functional specification. 

This paper uses definitions from Booch [5] and Rumbaugh et al. [44] to characterize an object as something that has 
state, behavior and identity. Also, an object’s class is characterized in terms of the states, events and transitions of a finite 
state machine. A graph model of the software is used as a basis for generating test specifications. Hong et al. [24] 
developed a class-level flow graph to represent control and data flow within a single class. This research uses their ideas 
as a basis for integration testing of multiple interacting classes. The state transition specification is stored in a database, 
which is then used as a basis for creating a component flow graph, which includes control and data flow information. The 
methodology described here defines test criteria on this graph and generates test specifications to satisfy the criteria. 

The paper describes a process that begins with state transition specifications for each class in an object-oriented 
software system, defines the transitions that are relevant to a specific component of that system, and then translates the 
relevant transitions into a component flow graph with nodes and edges labeled for control, and variable definitions and 
uses. Test criteria are defined on this graph, and sets of paths are selected that constitute test specifications to satisfy the 
criteria. Executable tests are then constructed from the test specifications. 

The use of a database to store definition/use information makes it convenient to provide additional information to the 
tester. In traditional data flow testing [14], the tester is provided with pairs of definitions and uses of variables (def-use 
pairs), and the tester attempts to find tests to cover those DU-pairs by supplying tests through an instrumented program. 
These tests are sometimes random, arbitrary, automatically generated, or generated by humans with well-defined goals. 
Traditional data flow testing works for individual functions because the number of possible tests is fairly small, but is 
likely to run into trouble during inter-class testing because the number of possible tests is much larger. Thus it is 
necessary to provide the tester with more information. The database representation helps provide more information; 
instead of simply identifying def-use pairs, the tester is given full paths between the definitions and uses (DU-paths). In 
traditional code-based data flow testing, storing the complete path predicates for anything more than a tiny (20 to 50 
LOC) function is impractical, and this has been a factor in the lack of widespread adoption of the technique. Using the 
database allows efficient management of these potentially large predicates.   

The attributes and constraints of classes and methods are modeled as attributes and constraints of tables in a 
relational database. In this manner, mathematical specifications over the class properties can be translated to database 
operations. Sections 3 through 6 describe the process of representing state transition specifications in a database, 
determining relevant transitions in the state machine, generating a component flow graph, and determining test 
specifications. Section 7 presents empirical results from applying this technique to an automotive system that includes the 
cruise control, engine, brakes, gas, throttle, ignition, transmission, wheels and displays.  

 
2 Background 

 
Much of testing has been based on data and control flow through programs [14, 40]. In such testing, graphs are defined in 
which nodes are formed from basic blocks, which are maximal sequences of straight-line statements with the property 
that if the first statement is executed, then all the statements will be executed. In a control flow graph, edges are formed 
from the branching statements of the program. A definition (def) of a memory location x is a node in which x is given a 
value, and a use is a node in which that value is accessed, either through the same name or a different name via aliasing. 
An edge is formed from nodes in which a memory location is defined to nodes in which the memory location is used and 
there is a def-clear control subpath from the def to the use. A def-clear subpath for a location x is a control subpath that 
does not contain a definition of x. A DU-pair is a definition and a use of the same location such that there is a def-clear 
subpath from the def to the use. A DU-path is a def-clear subpath from a specific definition to a use. 

Data flow testing criteria [14, 21, 32] require tests that execute from data definitions to data uses under various 
conditions. Most research papers in data flow analysis have derived graphs directly from the code, called traditional data 
flow analysis here. This paper uses a form of data flow analysis that is defined on finite state machines that are derived 
from the behavior of classes; thus the data flow might not be directly reflected in the implementation.  

Harrold and Rothermel describe an approach that applies traditional data-flow analysis to classes [22]. That approach 
emphasizes three levels of testing: (1) intra-method testing, in which tests are constructed for individual methods; (2) 



 
 -3- 

inter-method testing, in which multiple methods within a class are tested in concert; and (3) intra-class testing in which 
tests are constructed for a single class, usually as sequences of calls to methods within the class. Integration testing 
attempts to test interactions among different classes; thus this paper introduces the term inter-class testing, in which more 
than one class is tested at the same time. To perform these analyses, Harrold and Rothermel represent a class as a Class 
Control Flow Graph (CCFG), which contains information that can be used during testing. 

Most research in object-oriented testing has been at the intra-class level. This includes work by Hong et al. [24], 
Parrish et al. [43], Turner and Robson [45], Doong and Frankl [13] and Chen et al. [6]. Intra-class testing strategies focus 
on one class at a time, so do not look for problems that exist in the interfaces between classes, or in inheritance and 
polymorphism among classes. In their TACCLE methodology [7], Chen et al. define class semantics algebraically as 
axioms and construct test cases as paths through a state-transition diagram with path selection based on attributely non-
equivalent ground terms. They extend this methodology to multiple classes by defining inter-class semantics in terms of 
contracts. The contract notion increases complexity substantially and is difficult to re-use when other components are 
added to the system. 

Inter-class testing work has been done by Jin and Offutt [28], who defined coupling-based testing, which requires 
tests to be found that cover code-level control and data couplings between methods in different classes. Alexander and 
Offutt [2, 3] have extended these ideas to cover couplings formed from inheritance and polymorphism. Chen and Kao [8] 
describe an approach to testing object-oriented programs called Object Flow Testing, in which testing is guided by data 
definitions and uses in pairs of methods that are called by the same caller, and in which testing should cover all possible 
type bindings in the presence of polymorphism. Kung et al. [29] address object-oriented testing of inheritance, 
aggregation and association relationships among multiple classes in C++ source code by automatically generating an 
object-relation diagram and finding a test in order to minimize the effort to construct test stubs.  

Some related work has been done on the subject of testing web software. Kung et al. [30, 31, 35] have carried out 
some initial work in this area. They have developed a model to represent web sites as a graph, and provide preliminary 
definitions for developing tests based on the graph in terms of web page traversals. They define intra-object testing, 
where test paths are selected for the variables that have def-use chains within an object, inter-object testing, where test 
paths are selected for variables that have def-use chains across objects, and inter-client testing, where tests are derived 
from a reachability graph related to the data interactions among clients. 

This paper extends the intra-class data flow work by Hong et al. [24] to the inter-class level, thus providing full 
integration level testing. This paper does not explicitly deal with inheritance and polymorphism.  

Following Rumbaugh et al, the behavior of a class is specified as a finite state machine in terms of states and events 
[44]. When an event is received, a transition occurs and the current state, a guard, and the event determine the next state. 
A state is represented by a categorization of values of the state variables, i.e., by a predicate that evaluates to true. Note 
that state predicates are explicitly allowed to overlap, that is, two states may share the same predicate. In this case, a 
target state is determined by all of the properties of a transition, not just the predicate that defines the target state. 

A transition is composed of a source state, a target state, an event, a guard, and a sequence of actions. Events are 
represented as calls to member functions of the class. A guard is a predicate that must be true for the transition to be 
taken; guards are expressed in terms of predicates over state variables (possibly from multiple classes) and input 
parameters to the event function. An action is an operation that is performed when the transition occurs; actions are 
usually expressed as assignments to class member variables, calls sent to other objects, and values that are returned from 
the event method. A sequence of actions is assumed to be a block of code in which all operations are executed if any one 
is executed. 

Pre-conditions and post-conditions of methods in a class can be derived directly from the transitions. The pre-
condition is a combination of the predicates of the source state and the guard; the post-condition is the predicate of the 
target state. Note that the post-condition derived from a transition is not the strongest post-condition. If the tester desired, 
state definitions could be more refined, which would allow stronger post-conditions. In turn, stronger post-conditions 
would yield larger graphs and more tests, so this becomes a choice of granularity that results in a cost versus potential 
benefit tradeoff. Although future experimentation may provide some guidance, it is likely that the wisdom and experience 
of both system analysts and test engineers will be needed to make the best choice of granularity. 

A class state machine (CSM) for a single class is defined in Definition 2.1. This definition is from Hong’s paper 
[24], with the addition of the parameter set P, which will be needed for multiple classes. The CSM is extended to a CSM 
for multiple classes in Section 2.2. 

 
Definition 2.1 (CSM):  A class state machine of a class C is a tuple (V, F, P, S, T), where 

• V is a finite set of instance variables of C. 
• F is a finite set of member functions of C. 
• P is a finite set of parameters of member functions. 
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•  S is a finite set of states, S = {s | s = (pred)} where pred is a predicate on the instance variables in V. 
• T is a finite set of transitions, T = {t | t = (source, target, fn, guard, action)} where: 

o source, target ∈ S are the states before and after the transition. 
o fn ∈ F is a member function that triggers t if the guard predicate evaluates to true. 
o guard is a predicate on instance variables in V and parameters of member functions in F. 
o action is a sequence of computations on instance variables in V and parameters of member functions in F. 

 
2.1 Single-class example – Engine 

 
As a simple example, consider a class Engine, which has states ON and OFF, instance variables speed and keyOn, and 
methods Start(sp) and Stop(). Each state is associated with values of the instance variables as follows: 

 
 OFF: speed = 0 ∧ keyOn = false ON: 0 ≤ speed ≤ 110 ∧ keyOn = true 
 
In the Engine example, the transition from OFF to ON is triggered by the class member function Start(). The guard 

for this transition should require the key to be in (keyOn = true), and the action should specify that the speed is set (speed 
= sp). The sets of variables, member functions, states, and transitions are defined as follows: 

S = {S0, Sf, ON, OFF} 
V = {int speed, boolean keyOn} 
F = {Engine (), ~Engine (), setKeyOn (boolean in), Start (int sp), Stop (), setSpeed (int sp), int getSpeed ()} 
P = {setKeyOn:in, Start: sp, setSpeed: sp } 
T = {ti | 1 ≤ i ≤ 9} 
      t1 = (S0, OFF, Engine(), true, {speed = 0, keyOn = false}) 
      t2 = (OFF, OFF, getSpeed(), true, {return speed}) 
      t3 = (OFF, OFF, setKeyOn(in), true, {keyOn = in}) 
      t4 = (OFF, ON, Start(sp), keyOn==true ∧ 0 ≤ sp ≤ 110, {speed = sp }) 
      t5 = (OFF, Sf, ~Engine(), true, { }) 
      t6 = (ON, ON, getSpeed(), true, {return speed }) 
      t7 = (ON, ON, setSpeed(sp), 0 ≤ sp ≤ 110, {speed = sp}) 
      t8 = (ON, OFF, Stop(), true, {speed = 0}) 
      t9 = (ON, Sf, ~Engine(), true, { }) 
 
Engine() and ~Engine() are the class constructors and destructors. The method setKeyOn(in) allows the key to be 

inserted into the ignition, and setSpeed(sp) and getSpeed() control the speed of the engine. Start(sp) starts the engine 
running at speed sp, and Stop() turns the engine off. The state transition diagram for Engine is shown in Figure 1, with 
each transition represented as a labeled and directed arc between two states. 

OFF ON 
t 1 

t 7 

t 2 t 3 

t 4 

t 8 
t 9 t 5 

t 6 

S  f 

S 0 

  

Figure 1: Class State Machine for Engine 

In the class Engine, the engine is turned on (transition t4) by method Start(sp), and can only be turned on if the key is 
in the ignition and the initial speed is between 0 and 110 (the guard keyOn==true ∧ 0 ≤ sp ≤ 110). If the guard is true, 
then the new speed is set to the parameter given to the Start() method (the action speed = sp). The other transitions are 
similar to t4. 

 
2.2 Multi-class example - Automobile 
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Inter-class integration testing addresses interactions among multiple components, so the following example modifies the 
Engine class from Section 2.1 and integrates it with other components. Each message received by an object is interpreted 
as an event.  Components can function as independent processes, possibly running on different computers and possibly 
receiving concurrent messages from many sources, so the sending object may not be certain of the recipient object’s state 
when the event is processed.  

The Automobile system consists of six core components: Acceleration, Brakes, CruiseControl, Engine, 
InstrumentPanel and SystemControl. This example tests how the CruiseControl component integrates with the remainder 
of the system. The classes that make up the components are shown in Table 1. 

 
Component Classes 
Acceleration GasUser, Throttle, Transmission, Wheel 

Brakes BrakeUser, BrakeControl 
CruiseControl CruiseUser, CruiseUnit 

Engine Engine 
InstrumentPanel Gauges 
SystemControl AutoSystem, Ignition 

Table 1: Classes in Cruise Control Components 

 
The Ignition, GasUser, BrakeUser, Transmission and CruiseUser classes have external interfaces that are accessible 

to a human driver. The Gauges are all read-only for external users, but these human observations are not part of the 
automobile specification. The CruiseUser class has an On/Off switch, as well as Cancel, Resume/Accel (RA) and 
Set/Decel (SD) buttons for Cruise Control. If the user holds the RA or SD button down, the user mode is that button; 
when the button is released the user mode returns to Neutral (NT). Environmental conditions such as wind and hills are 
simulated by an externally controlled ExternalDrag variable. Users can use controls in the car to invoke 12 methods: 

 
  BrakeUser.IsActive (status)  status ∈ {true, false} 

BrakeUser.PedalPressure (press) 0 ≤ press ≤ 99 
CruiseUser.Cancel ()  

 CruiseUser.Mode (mode)   mode ∈ {NT, SD, RA} 
 CruiseUser.Switch (status)   status ∈ {On, Off} 
 Engine.ExternalDrag (drag)  0 ≤ drag ≤ 2 

GasUser.PedalPosition (position)  0 ≤ position ≤ 99 
Gauges.OilPressure (press)  press ≥ 0 
Gauges.WaterTemp (temp)  temp ≥ 0 
Ignition.Key(status)    status ∈ {On, Off} 
Ignition.StartEngine() 
Transmission.Gear(gear)   gear ∈ {N, R, 1, 2, 3, 4, 5} 
 
All other methods are internal methods that can only be invoked by internal actions.  Thus, all test case inputs are 

sequences of calls to the above 12 methods. The CruiseUser class has a number of non-feasible transitions; for example, 
the cruise control RA button cannot be pushed at the same time as the SD button because their physical placement 
prohibits them from being depressed simultaneously.  

Definition 2.1 is extended to define a combined Class State Machine for multiple classes by merging the sets V, F, P, 
S and T, and adding a new set C of classes. The resulting tuple is (C, V, F, P, S, T). For the automotive example, C is a 
set of 12 classes, V is a set of 58 variables consisting of the union of all state variables from each class, F is a set of 106 
methods consisting of the union of all member functions from each class, P is a set of 44 parameters representing inputs 
of mutator functions, S is a set of 44 states consisting of the union of all states from each class, and T is a set of 263 
transitions consisting of the union of all transitions from each class. A database schema for representing these sets and 
the relationships among them is defined in Section 3 and a partial table that lists relevant transitions for the CruiseControl 
component of a combined Class State Machine is given in Appendix I. 

Figure 2 is a directed graph that shows an abstraction of the relevant communication paths among the classes. Since 
the Gauges class is passive, the double-arrow between CruiseUnit and Gauges indicates that methods in CruiseUnit can 
read from and write to state variables in Gauges. The Throttle class, however, is active and can change the pedal position 
in GasUser as well as increase the gas supply to the Engine. In order to simulate road conditions such as hills, the Engine 
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class has an externally controlled drag variable that changes Engine RPM and thereby affects the axel speed of the Wheel 
and ultimately the speedometer setting in Gauges. The Wheel sets the speed in Gauges, so the loop from CruiseUnit 
through Throttle, Engine, Wheel and Gauges back to CruiseUnit will be important in integration testing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Class-to-Class Data Flow 
 
The automobile example uses some special syntax to distinguish a situation where an object sends an asynchronous 

message to itself with the intent that the message is put on a queue to be acted upon in a subsequent transition. This is 
used in several classes in lieu of a system clock to keep processes from terminating. For example, in most of the cruise 
control transitions, the action of the transition will set parameters for gas flow and throttle, but before relinquishing 
control they will send an asynchronous message back to the underlying object to check all of the gauges to see if further 
action is required. This message will be put on a queue along with other explicit messages received from other 
components and will be executed when it moves to the head of the queue. The cruise control component could be in a 
different state when this message is finally handled. Different priorities for handling these messages are not addressed. 
 
2.3 Overview of methodology 

 
The overall goal is to automate the process of developing integration tests from the behavioral specifications of the 
various components. This process is illustrated at a high level in Figure 3. To begin, a state/transition specification must 
exist for each class, with behavior specified by a Class State Machine as in Definition 2.1. The CSM could have been 
produced during design, perhaps as UML diagrams [46], or might be produced by the tester. The CSMs for the classes 
are combined to form the needed sets according to a database schema (defined in Section 3). Particular attention is paid 
to associations between the sets such as when a state or guard references a state variable from its own class or calls a get 
function to reference a state variable from some other class. Each action of a transition is also analyzed to identify all 
calls to actor or mutator functions from other classes and the passing of state variables as parameters of mutator 
functions. An actor function returns a value from a class, and a mutator function can change a value. 

Once the software system is represented in the database schema (DB representation of spec in Figure 3), the next 
step is to identify one or more individual components to test and to determine how they integrate with other components 
(Identify component to test). Then, transitions into and out of the components to test are identified (Identify relevant 
transitions). In the Automobile system, the focus is on the CruiseControl component and its relevant transitions are the 
interactions with other classes in the Automobile system. Since CruiseControl activity is canceled whenever the brake is 
active, or whenever an emergency state is entered, this example safely ignores the complex BrakeControl behavior 
dealing with anti-lock brakes and all of the AutoSystem behavior dealing with items such as air bags. Section 4 of the 
paper defines relevant transitions for a given component. 
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Figure 3: Flow of Tool Automation 

 
The next step is to model all potential finite state transitions as a directed graph (Component flow graph). Section 5 

begins with the relevant transitions and treats those transitions, together with all of the states and guards associated with 
those transitions, as the nodes of a graph. All data and control flow is modeled as directed edges between these nodes. 
Following the example of Hong et al. [24], the process starts with directed edges from a source state node to the guard 
node or transition node of each transition, from each guard node to its transition node, and from each transition node to 
its target state node. In addition, each call of an actor function results in directed edges from potential transitions of the 
called object to states, guards, or transitions of the calling object, and each call of a mutator function in the action of a 
transition results in edges from the calling transition to potential source states of the called object. If a mutator function 
returns a value, then there are edges from potential called transitions back to the calling transition. This process results in 
a component flow graph (formally defined in Section 5). 

The final step is to choose a testing criterion and to adapt it to the information stored in the database and the 
component flow graph (Def/Use nodes & edges). The all-uses criterion is adapted by defining defs and uses in terms of 
references to class variables (formally defined in Section 6). Each def takes place at a transition node and each use takes 
place either at a transition node or at a state-to-guard, state-to-transition, or guard-to-transition edge. The procedure then 
looks for candidate test paths through the component flow graph for each def-use pair. Much of the remaining effort 
described in Section 6 is to construct candidate test paths that are potentially feasible and def-free. The goal is to find 
paths that result in executable test cases for each def-use pair, or to prove that such a path cannot exist. If none of the 
candidate test paths result in an executable test case, then the new information learned from that failure is added to the 
information base and the methodology is applied again to all untested pairs.  

Section 7 describes the overall effect of this methodology on the Automobile example; in particular, Section 7.2 
describes a tool that automates most of the processes in Figure 3. For the automobile example, the tool analyzes over 
4300 def-use pairs, constructs candidate test paths for over 2000 pairs, proves that nearly 1500 pairs are def-bound with 
no possible def-free path (infeasible), and constructs an executable test sequence of 145 tests that cover about 50% of the 
DU-pairs. This research project is actively pursuing the development of efficient executable test case development from 
candidate test paths, partly relying on algorithms that were previously developed for specification-based testing [40]. 

 
3 Representing Component Specifications 

 
A specification that defines the states and transitions for each class in a system must be available before test development 
can begin. This specification will include names of classes, methods and variables. Some of these methods will be 
invoked from an external interface; they will be the names that are used in the test cases. The eventual test cases will be 
expressed in terms of these names. These names may or may not be used by the programmers in the eventual 
implementation of the system, but for the context of this work, it is assumed that the names are the same. If not, 
additional work will need to be done to apply the resulting tests to the software; specifically, the test specifications will 
need to be translated to a form that can be used by the implementation. The mapping for this translation will need to be 
supplied by the designers or programmers of the software. 

Each class is used to derive a Class State Machine as defined in Definition 2.1. Using the relational database model 
[11, 12, 37], classes and sets associated with classes are represented as relational tables. 
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Figure 4 shows the UML class diagram [46] of a general schema definition for representing combined class state 
machines. This schema allows representation of class state machines in a way that is convenient to store, access, and 
process the information. Without loss of generality, it is assumed that all methods and procedures can be represented as 
functions. Each of the six UML classes in Figure 4 represents a table in the model as follows: (1) the Class table contains 
information about the classes that have been defined for the system, (2) the Variable table defines instance variables for 
each class, (3) the Function table identifies all of the methods that are associated with each class, (4) the Parameter 
table identifies the input and output parameters for each function, (5) the State table contains information about the states 
in the class state machine and (6) the Transition table describes all transitions among the states.  

Since variable, function and state names need be unique only within a class, and parameter names need be unique 
only within a function body, compound identifiers are used for each. For example, (c, v) is a unique identifier for a 
variable v that is defined in class c. Similarly (c, f) and (c, s) are compound identifiers for functions and states, and (c, f, 
n) is a unique identifier for the n-th parameter of a function. In each case, the ordered tuple becomes the primary key of 
the underlying table. In addition, c serves as a foreign key back to the class definition and fully represents the one-to-
many associations identified in the diagram by ClassHasStateVariables, ClassHasMethods, FnHasParameters and 
Defined States. The associations SourceState and TargetState from Transition to State represent referential integrity 
constraints on the sourceState and targetState attributes of the Transition table. An additional constraint is that source and 
target states for a transition are always from the same class. The Method association from Transition to Function 
represents a referential integrity constraint on the method attribute of the Transition table. The remaining associations 
identify many-to-many relationships among Transitions, States, Variables, Functions and Parameters derived from 
syntactic analysis of guard and state predicates and transition actions. They are explained further below.  

 
 

DefinedStates

ClassHasMethods

SourceState TargetState
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ActionDefVar 

0..* 

0..* 

ActionRefVar 
0..* 

0..* 

StateRefVar 

0..* 

0..* StateRefActorFn

0..*

0..*

GuardRefActorFn

0..*

0..*

ActionRefActorFn0..*

0..*

ActionRefMutatorFn 0..*

0..* 

GuardRefVar 
0..* 

0..* 

FnHasParameters

ActionRefParm0..*

0..*

ActionSetsParm

0..*

0..*

GuardRefParm 0..*

0..* 

Function
+
+
+
+
+
+

funName
inputType
returnType
availability
effect
description

: identifier
: signature
: typeName
: enumeration
: enumeration
: string

Class
+ 
+ 
+ 
+ 
+ 

className 
descriptiveName
componentName
systemName
description 

: identifier
: string
: identifier
: identifier
: string

State
+ 
+ 

stateName
defnPredicate

: identifier
: predicate

Transition
+ 
+ 
+ 
+ 
+ 
+ 

sourceState
guard 
method 
targetState
isFeasible 
action 

: stateId
: predicate
: functionId
: stateId
: boolean
: programBlock

Variable 
+ 
+ 
+ 
+ 
+ 

variableName 
dataType 
defaultValue 
constraint 
description 

: identifier 
: typeName 
: literal 
: predicate 
: string 

Parameter
+ 
+ 
+ 
+ 
+ 

position
parmName
type 
direction
description

: integer
: identifier
: typeName
: enumeration
: string

  

Figure 4: Database Schema as a UML Class Diagram 

A unique ClassId identifies each class in the Class table from Figure 4 and is the primary key of that table. The 
className is a surrogate for ClassId and is used to reference the class in state and guard predicates, and in the actions of 
transitions. Similarly, variableName, funName, parmName and stateName are surrogates for hidden identifiers for 
variables, functions, parameters and states, respectively; each need be unique only within its class. Each class is owned 
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by exactly one component, identified by componentName, but may be used by many components. In the syntax for 
predicates, guards and actions, fully qualified names are used to disambiguate the references when necessary. 

In the Function table, the availability attribute defines functions to be private (PRI), protected (PRO), public (PUB), 
or external (EXT). Public functions may be invoked from other classes in the system, whereas external functions are part 
of the external component interface and can be invoked by other systems or users. External functions typically represent 
actions that are available to the human user or for black-box testing purposes. The inputType values identify the number 
of input variables, as well as their data types, so className, funName, inputType and returnType determine the complete 
signature of a function. The effect attribute allows functions to be categorized as Get, Set, Constructor, Actor, Mutator, 
etc. These are based on standard object-oriented concepts: a Get function is read-only and is said to be an actor method 
on the object, a Set function can update state variables and is said to be a mutator method. The following pays particular 
attention to classifying all methods as actor, mutator, or mutator with return. In the Parameter table, both position and 
parmName uniquely identify a parameter, and one will determine the other. A parameter is used by name, but is set by 
position. Each parameter has a data type and a direction, i.e., In, Out, or InOut. 

In the State table, the defnPredicate is a Boolean predicate over the state variables. It may reference an in-class 
variable by name only, and may reference a variable in another class by invoking the appropriate actor method, if it is 
available, to read the value of that variable. Only actor methods can be called from a state's definition predicate. Mutator 
and constructor methods may only be called from an action that is part of a state transition. 

In the Variable table, the dataType attribute identifies the data type of the variable, the defaultValue attribute 
identifies all automatic value assignments upon creation of a new class instance, and the constraint attribute identifies a 
post-assignment requirement on every variable definition. 

For a class c and a transition t, the primary key of the Transition table is the pair (c, t), which determines all of the 
other properties of a transition. Some transitions may be well defined in the model, but the implementation will not be 
able to execute them because of a rule or by physical or mechanical impossibility. Such transitions are identified by the 
isFeasible attribute. These types of transitions can be divided into three categories. 

 
1. Category one is an error handling transition. Consider an elevator example where a user is at floor 5. It is an 

error to push the button to go to floor 5. 
2. Category two transitions are prevented by hardware; for example, hardware interlocks prevent doors from 

opening when an elevator is between floors. 
3. Category three transitions represent logical and physical impossibilities; for example, it is not possible to 

transition from the “not pushing button” state to the “not pushing button” state. 
 
Transitions in category one will be tested as a natural result of the technique presented in this paper. Transitions in 

category three do not need to be tested. Whether to test transitions in category two depends on the goals of the testers. 
Since the situation is controlled by hardware, not software, any testing that only involves the software (integration and 
subsystem testing) may be able to safely ignore these transitions. At the system level, however, these transitions must be 
carefully tested. 

The predicates on guards and states may reference variables, and the actions of transitions may reference and assign 
values to variables. Just as in traditional data flow analysis [14], predicates reference a set of objects (use) and actions 
define a set of values (def). Of course, how to determine the defs and uses depends on the semantics of the language used 
to express the predicates and transitions of the class state machine. The implementation in this research uses a simple 
general language to describe state machines, which allows the analysis to proceed in a fairly straightforward manner. 
Subsequent plans are to expand this part of the prototype to include syntactic analysis of predicates and actions specified 
in UML [46], Java [27] and other commonly used class definition languages.  

Once this syntactic analysis is complete, the results can be captured in the UML diagram of Figure 4 as many-to-
many associations among classes. In the database representation, each such association will be a new base table as 
follows: 

 
• The StateRefVar association between State and Variable is a table of tuples (c, s, v), where (c, s) identifies a state 

and (c, v) identifies a variable in the same class as the state. The definition predicate of the state references the 
variable. In the Engine example of Figure 1, the OFF state references both speed and keyOn. 

• The GuardRefVar, ActionDefVar and ActionRefVar associations between Transition and Variable are each a table of 
tuples (c, t, v), where (c, t) identifies a transition and (c, v) identifies a variable in the same class as that transition. In 
the first association, the guard of the transition references the variable, in the second association the action of the 
transition defines the variable, and in the third association the action of the transition references the variable. Since 
each action in a sequence of actions has a sequence number, an occurrence attribute, SeqNbr, is assigned to each 
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instance of the second and third associations. In the Engine example, the guard of t4 references keyOn, the action of 
t1 defines first speed and then keyOn, and the actions of t2 and t6 both reference speed. 

• The StateRefActorFn association between State and Function is a table of tuples (cs, s, cf, f), where (cs, s) identifies a 
state and (cf, f) identifies an actor function. The definition predicate of the state references the actor function. In the 
Automobile example, all of the states defined for CruiseUnit reference the Cruise variable from the Gauges class of 
the InstrumentPanel component to see if cruise control is On or Off (not visible in Appendix I). 

• The GuardRefActorFn, ActionRefActorFn and ActionRefMutatorFn associations between Transition and Variable 
are each a table of tuples (ct, t, cf, f), where (ct, t) identifies a transition and (cf, f) identifies a function. In the first 
association the guard of the transition references an actor function, in the second association the action of the 
transition references an actor function, and in the third association the action of the transition references a mutator 
function. As above, a SeqNbr attribute is assigned to each instance of the second and third associations to identify 
the position of that reference in the action sequence. The Guard and Action columns of Appendix I show many 
instances of these types of references for the Automobile example. 

• The GuardRefParm and ActionRefParm associations between Transition and Parameter are each a table of tuples (c, 
t, n), where (c, t) identifies a transition whose guard or action references (by name) a parameter of the function 
associated with that transition and n is the position of that parameter in the signature of the function. In the 
Automobile guards shown in Appendix I, nearly every guard of a transition derived from a mutator function that has 
a parameter references that parameter by name. Moreover, the actions of all transitions derived from the Speed 
method in the Gauges class and the Floor and GasPedal methods in the Throttle class reference the incoming 
parameter by name. As above, an additional attribute in the ActionRefParm association, called SeqNbr, captures the 
sequence number of that reference in the action sequence of the transition. 

• The ActionSetsParm association between Transition and Parameter is a table of tuples (ct, t, cf, f, n), where (ct, t) 
identifies a transition whose action calls a function, identified by (cf, f), from some other class and sets the n-th 
parameter of that function to some non-constant value, possibly the value of a state variable from yet another class c. 
For the Automobile example, Appendix I shows actions in several transitions of CruiseUnit (e.g., t064, t050) that 
call the Throttle.Floor() function and set the floor either to the TargetThrottle variable of CruiseUnit, or to a value 
derived from the value of the Position variable from the Throttle class. The floor represents a temporary minimum 
throttle setting, which can be set by AutoSystem or by CruiseUnit. This association also carries an additional 
attribute to capture the SeqNbr of the set operation in the action sequence of the transition. 
 
Each of the above tables satisfies appropriate referential integrity constraints to the corresponding Transition, 

Variable, Function, Parameter, or State tables.  
Every state variable in a class definition is associated with two predefined methods, one to get its value and one to 

set its value. An additional association VarAssocFn is defined between Variable and Function to maintain the 
relationship between a state variable and the get function that reads its value. This association is not visible in Figure 4, 
but it is represented by a table of tuples (c, v, f) where (c, v) identifies the state variable and (c, f) identifies the function. 

The ActionSetsParm association defined above identifies all transitions that (1) call an external function and (2) set 
some parameter of that function to a non-constant value. It is particularly important if the setting of a parameter involves 
a state variable either from the same class as the calling transition or from some other class. Thus a new 3-way 
association among transitions, state variables and parameters is defined. This is denoted by ActionSetsParmUsingVar as a 
table of tuples (ct, t, cf, f, n, cv, v) where (ct, t, cf, f, n) is a tuple in the ActionSetsParm association and (cv, v) identifies a 
state variable that is referenced in the setting of that parameter. If the state variable is from the same class as the 
transition, then ct=cv, and cf=cv if the state variable is from the same class as the called function, but in general (cv, v) 
could identify a variable in any class that is called by the get function on that variable. Appendix I shows examples of the 
first and second alternatives, for example, several transitions derived from CheckState() in CruiseUnit call the Position 
variable from Throttle and pass it back to Throttle by setting Throttle’s floor variable.  

An important consideration in this type of testing has to do with concurrent interactions of the classes. Sometimes 
the action of a transition will make an asynchronous call to a method defined by the same class:  it does not wait for a 
reply before completing the transition, and the call does not return a value. Instead, the function call is put on an input 
queue for that class and considered later. An additional association ActionRefLocalAsyn is defined between Transition 
and Function to represent such calls. This association is not visible in Figure 4 but it is represented by a table of tuples (c, 
t, f) where (c, t) identifies the transition and (c, f) represents the asynchronously called function. In the Automobile 
example, many of the CruiseUnit and Wheel transitions seen in Appendix I have final actions that put CheckState() on a 
queue to be executed by CruiseUnit or Wheel when they are not busy with other requests. 

Although this information is conveniently stored in database tables, it is helpful to consider the tables as sets for 
most of the development of this work. This is done by a straightforward mapping. Every table can be associated with a 
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mathematical set, where the set is a set of sequences consisting only of the primary key values of the table. In this sense, 
the sequence (c, f) is an element of the Function set if and only if there exists a row in the Function table with primary 
key values (c, f). If X is such a table-derived set, if w is a non-key column of the corresponding table T, and if x ∈X, then 
w(x) is defined to be the value in column w of the row of table T identified by x. For example, in the ActionRefVar 
association defined above, SeqNbr(c, v, t) identifies the value of the SeqNbr attribute of that instance. This notational 
convenience is used freely in the following sections, with C, F, P, V, S and T, as the sets derived from the tables Class, 
Function, Parameter, Variable, State and Transition.  

 
4 Choosing Relevant State Machine Transitions 

 
Given even a moderately large system, the number of transitions available over all class state machines could be quite 
large. Developing tests over such a large scope would probably be prohibitively expensive, and would properly be 
considered system testing. This paper divides testing into pieces by focusing on one component at a time and generating 
tests based on the integration interactions that a test component has with other components.  

As a testing model, this research assumes there is a test component M, whose interactions with the rest of the system 
are being tested. This is typical when integrating a new component into a complete or partial system. The methodology 
first determines which transitions from the overall system specification are relevant to M, that is, into or out of M. 
Relevant transitions fall into two types. In transitions represent actions or data that flow into M, transitions from other 
classes in the system that can modify the value of a state variable in any of M’s classes. Out transitions flow out from M 
to other classes, that is, transitions that can be invoked, directly or indirectly, from actions of transitions in any of M’s 
classes. Transitions from classes in M are called Base transitions, since they are the starting points for the process that 
finds the transitive closure of relevant transitions, explained below.  

This static analysis process begins by putting all feasible Base transitions from any class in M into a set R0. The 
iterative process starts with R0. At each step, assume that n steps of the process have been completed, resulting in a set Rn 
of relevant transitions, each of which is labeled as In, Out, or Base. The same transition may appear in Rn as many as 
three times with different labels. To create the next set of relevant transitions, Rn+1, first initialize Rn+1 to be Rn, and then 
insert newly labeled transitions as indicated below. A mutator function that returns a usable value to the calling action 
results in both In and Out labels for each of its transitions. The following rules control how new transitions are added to 
the relevant collection.   

 
• Let t be a feasible transition and let f be an actor or mutator with return function that is the method associated with t. 

If the SourceState, Guard or Action of any transition in Rn calls f, then t is added to Rn+1 with an In label. 
• Let t be a feasible transition and let f be a mutator or constructor function that is the method associated with t. If the 

Action of any Base or Out labeled transition in Rn calls f, then t is added to Rn+1 with an Out label. 
• Let t be a feasible transition. Let t' be any transition in Rn labeled either as a Base transition or as an Out transition. 

Let f' be an actor function that is the method associated with t'. If the SourceState, Guard or Action of t calls f', then t 
is added to Rn+1 with an Out label. 

• Let t be a feasible transition. Let t' be any Base or In-labeled transition in Rn and let f' be a mutator function that is 
the method associated with t'. If the Action of t calls f', then t is added to Rn+1 with an In label. 

• Let t be a feasible transition and let f be a function that is the method associated with t. Let t' be a transition in Rn, 
from the same class as t, labeled either as a Base transition or as an Out transition. If the Action of t' calls f 
asynchronously, then t is added to Rn+1 with an Out label. 

• Let t be a feasible transition whose Action defines a state variable v. Let t' be any transition in Rn from the same 
class as t, labeled as an In transition. If the method associated with t' is the get method for the variable v, or if the 
method associated with t' is an actor method and t' has a Guard or Action that references v, then t is added to Rn+1 
with an In label. 

• Let t be a feasible transition. Let t' be any transition in Rn from the same class as t, labeled as an Out transition. If the 
Action of t' defines a state variable v, and if the method associated with t is the get method for v, or if the method 
associated with t is an actor method and t has a Guard or Action that references v, then t is added to Rn+1 with an Out 
label. 
 
Since there are only a finite number of transitions in the system, and since {Rn} is a monotonically increasing 

sequence of sets, the process must terminate at some iteration with no new additions. At that point, the transition labels 
are discarded and the remaining unlabeled transitions are defined to be the set of transitions in the system that are 
relevant to M. These transitions will determine the component flow graph when integrating M with the system. The set of 
relevant transitions that are determined by this process is the same, no matter in which order the above rules are followed.  
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Definition 4.1 (relevant transitions): Let M be any component of a software system. R(M) is the set of all transitions 
from the software system that are determined to be relevant to M according to the preceding iterative process. 

The initial collection of transitions in the Automobile example includes several transitions in the BrakeControl class 
that deal with anti-lock brakes and many in the Gauges class that deal with gauges on the instrument panel but that are 
unrelated to cruise control. The above procedure focuses only on transitions relevant to CruiseControl and eliminates 
these unrelated transitions. Of the original 235 feasible transitions for Automobile, only 160 are relevant to CruiseControl 
by this definition. Each relevant transition that has a non-trivial action is listed in Appendix I. 
 
5 A Data-flow Graph Model of State Transitions 

 
The traditional testing literature [14, 29, 38, 43, 45] defines a data flow graph to be a graph representation of a program's 
control structure and the flow of data through that structure. A data flow graph is composed of nodes, which represent 
statements or basic blocks, and edges, which represent flows of data between basic blocks. If a variable X is given a 
value, or defined, in a node d, and that value can be used in another node u, then there is a data flow dependency from d 
to u. The two nodes d and u form a def-use pair for the variable X. 

This research expands the traditional notion of data flows among statements in a program to be defined among states, 
guards and transitions in finite state machines. A component flow graph represents both the control and data flows for the 
state transitions of the classes of a component and its relevant transitions from and to other classes in the software 
system. The definitions in this paper extend those of Hong et al. [24] from the single-class case to the multiple-class case. 

In a component flow graph, nodes and edges are derived from the relevant transitions of that component. Each such 
transition has pre-determined associations with the states, guards, variables and functions of other transitions, as defined 
in Section 3 and represented in Figure 4.  
 
Definition 5.1 (component flow graph):  Let M be any component of a software system, and let R(M) be the set of all 
transitions in the system that are relevant to M. Then the component flow graph G of M is a directed graph G = (N, E), 
where N is drawn from elements of the relevant transitions and E represents potential flows of data between nodes in N.  

Specifically, the nodes N in G are formed from the union of states, transitions and guards that appear in the relevant 
transitions of M as follows: 

N = Ns ∪ Nt ∪ Ng   where 
• Ns is the set of all states in the finite state machine that are a source state or target state of a relevant transition 
• Nt is the set of all relevant transitions 
• Ng is the set of all guards in the finite state machine that are non-trivial guards of a relevant transition 
 
The edges are derived from potential data flows among states, transitions and guards in the relevant transitions. 

Some of the edges represent actions that call methods from other classes. Each edge that results from a call to any 
external function is labeled with the sequence number of that call in the action sequence of the transition. It helps to 
distinguish these labels as being on outgoing or incoming edges, so the sequence number label for an edge that represents 
an outgoing call of a mutator function is defined to be the OutSeq number and the sequence number label for an edge that 
represents an incoming data flow from an actor function, or from a mutator function that returns a value, is defined to be 
the InSeq number. All other edges will be left unlabeled. No edge carries more than one such label. In some cases an 
edge label will disambiguate multiple edge instances. An edge is represented as an ordered pair (n1, n2) or as an ordered 
triple (n1, L, n2), depending on whether a label L is required to distinguish multiple edges from one node to another. 

Nine types of edges are defined. Four come from the paper by Hong et al. [24] and are termed “intra-class” edges 
because they are all defined within a single class. These intra-class edges are also synchronous in the sense that in all 
messages that are sent, the caller waits for the callee to complete before proceeding. To handle multiple classes, one new 
intra-class edge type and four new inter-class edge types are introduced. The inter-class edges are potentially 
asynchronous because each component is assumed to be a separate executable process. The new intra-class edge type 
that is introduced (Ects) is also asynchronous, as explained below. The total set of edges E is defined as: 

 
E = Est ∪ Esg ∪ Egt ∪ Ets ∪ Egtg ∪ Ests ∪ Eits ∪ Eitt ∪ Ects 

 
Hong’s four original intra-class edge types are: 
 

• State-Transition (Est) edges represent data flow from states to transitions. The transition has no non-trivial guard 
(i.e., guard is true). 



 
 -13- 

• State-Guard (Esg) edges represent data flow from states to guards. The state is the source state of the transition that 
specifies the non-trivial guard. 

• Guard-Transition (Egt) edges represent data flow from guards to transitions. The guard is non-trivial and is specified 
by the transition. 

• Transition-State (Ets) edges represent synchronous data flow from transitions to states. The state is the target state of 
the transition. 

 
There are four types of edges between classes, potentially asynchronous. These are more complicated than intra-

class edges. They are constructed when guards, states and transitions invoke methods in other classes. The invoking 
guard (g), state (s) or transition (t) may be the source or the target of the edge, depending on whether the data flow is into 
or out of that node.  

 
• Guard-Transition-Guard (Egtg) edges represent inter-class data flow, triggered by a guard, which flows from a 

transition in another class back to that guard. The predicate of the guard invokes an actor function from the other 
class and data flows from transitions in that class back to the guard. The GuardRefActorFn association determines 
these edges. The Automobile example has 34 instances of this type of edge. 

• State-Transition-State (Ests) edges represent inter-class data flow, triggered by a state, which flows from a transition 
in another class back to that state. The predicate of the state invokes an actor function from the other class and data 
flows from transitions in that class back to the state. The StateRefActorFn association determines these edges; the 
Automobile example has 5 instances. 

• Inter-class-Transition-State (Eits) edges represent inter-class data flow from a transition to a state in a different class. 
The action of the transition invokes a mutator function from a different class and data flows from the transition to a 
feasible source state of any transition in that class that has the mutator function as its method. The target of the flow 
is the source state rather than the other transition because it may be subject to the constraint of a guard and because it 
is not known which state the other object might be in when the request is received. These outgoing edges are labeled 
with an OutSeq number equal to the SeqNbr of the call of the mutator method in the action sequence of the calling 
transition. These edges are also labeled with the function name of the mutator function. The function label is used 
later in Section 6 as part of a constraint on certain path segments. The ActionRefMutatorFn association determines 
these labeled edges; the Automobile example has 174 instances. 

• Inter-class-Transition-Transition (Eitt) edges represent inter-class data flow from a transition to a transition in a 
different class. The target transition action invokes a method from another class and data flows from all transitions in 
the class that are derived from the function back to the target transition. These incoming edges are labeled with an 
InSeq number equal to the SeqNbr of the method call in the action sequence of the calling transition. The 
ActionRefMutatorFn and ActionRefActorFn associations determine these labeled edges; the Automobile example has 
68 instances. 
 
There is one new intra-class asynchronous edge type: 
 

• Class-Transition-State (Ects) edges represent asynchronous intra-class data flow from transitions to states. The 
transition calls a mutator function, asynchronously, in its own class. Note that Ets edges are synchronous. Since the 
call is asynchronous, it is put on a queue and the class may be in some other state when the function is executed. 
These outgoing edges are labeled with an OutSeq number equal to the SeqNbr of the method call in the action 
sequence of the transition. These edges are also labeled with the function name of the mutator function. The 
ActionRefLocalAsyn association determines these labeled edges; the Automobile example produces 80 instances. 

 
A more formal specification of edge derivation is in Section 5 of an earlier technical report [17]. Transition nodes 

whose method has external (EXT) availability determine the external interface to the system. Input values can only be 
provided through this interface in black box testing. In the Automobile example, the EXT methods listed in Section 2.2 
produce all such externally invokable transitions. Various combinations of EXT methods with different inputs will 
produce different paths through the component flow graph. The goal is to find appropriate paths through the graph to 
ensure that all aspects of the specification are thoroughly covered, and then to choose input values for a sequence of EXT 
methods to execute those paths. The paths through the graph are called test specifications and the sequences of EXT 
methods with appropriate input values are called executable test cases.  

 
6 Generating Test Requirements 
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A testing criterion is a rule that imposes requirements on a set of test cases. Test engineers measure the extent to which a 
criterion is satisfied in terms of coverage: A test set achieves 100% coverage if it completely satisfies the criterion. 
Coverage is measured in terms of the requirements that are imposed; partial coverage is defined to be the percent of 
requirements that are satisfied. Test requirements are specific things that must be satisfied or covered; for example, the 
requirements for statement coverage are individual statements that must be executed during testing. 

A number of different coverage criteria can be defined on data flow graphs, including all-defs, all-uses and all-
paths. These have been discussed and compared extensively in the literature [14, 38]. This research follows the lead of 
other researchers and uses the all-defs and all-uses criteria [9, 15, 16, 21, 25, 36, 39]. Although some scientists may 
question the value of all-defs, others believe it to be useful and if all-uses is satisfied, all-defs comes for free anyway. 

 
6.1 Definition-use pairs 

 
The formal definitions of variable defs and uses for the component flow graph are in a technical report [17] and given 
informally here. Finding def-use pairs for inter-class testing of object-oriented components is somewhat more 
complicated than for intra-class testing. This complication is caused by several factors, including the information hiding 
common in OO classes (which makes it difficult to identify defs and uses), the multiple edge types that are being 
considered, and the concurrent nature of the software. First, the various types of uses are defined. These include 
direct/indirect uses and predicate/computation uses. These are used to define def-use pairs. This paper deviates somewhat 
from traditional data flow testing papers by separating def-use pairs and DU-pairs. The purpose is to emphasize the fact 
that this research finds def-clear paths from definitions to uses, and then analyzes those paths to find input values that 
will execute the paths. A def-use pair that has a definition-clear path from the definition to the use is called a DU-pair. 

Defs and uses are defined in terms of the associations defined in the DB schema of Figure 4. Using the notation 
introduced in Section 3, let V be the set of all variables in the software system and let the variables be defined by the 
Greek nu, ν = (c, v) ∈ V, where c identifies the class that declares the variable, that is, c ∈ C. 

 
Definition 6.1 (definitions and uses):  Let M be any component of a software system, let R(M) be the set of transitions 
that are relevant to M, and let G = (N, E) be the component flow graph of M.  

 
• ν is defined at a transition-node nt ∈ Nt if the variable and the transition are from the same class and if they satisfy 

the association (c, t, v) ∈ ActionDefVar. Each variable definition carries along the SeqNbr attribute of the 
ActionDefVar association. 

• ν is directly computation-used at a transition-node nt ∈ Nt if the variable and the transition are from the same class 
and if they satisfy the association (c, t, v) ∈ ActionRefVar. 

• ν is indirectly computation-used at a transition-node nt ∈ Nt if the variable is associated with the get method f in its 
class c and if the transition and the function satisfy the association (ct, t, c, f) ∈ ActionRefActorFn.  

• ν is directly predicate-used at any state-transition-edge if the state satisfies the association (c, s, v) ∈ StateRefVar. 
• ν is indirectly predicate-used at any state-transition-edge if the variable is associated with the get method f in its 

class c and if the state and that function satisfy the association (cs, s, c, f) ∈StateRefActorFn. 
• ν is directly predicate-used at any state-guard-edge if the state satisfies the association (c, s, v) ∈ StateRefVar. 
• ν is indirectly predicate-used at any state-guard-edge if the variable is associated with the get method f in its class c 

and if the state and the method satisfy the association (cs, s, c, f) ∈StateRefActorFn. 
• ν is directly predicate-used at a guard-transition-edge if the transition satisfies (ct, t, c, v) ∈ GuardRefVar. 
• ν is indirectly predicate-used at a guard-transition-edge if the variable is associated with the get method f in its class 

c and if the transition and f satisfy the association (ct, t, c, f) ∈ GuardRefActorFn. 
• ν is parameter computation-used at a transition-node nt ∈ Nt if the action of the transition associated with nt, called 

(ct, t), references the n-th parameter of the function associated with t by name, that is, if (ct, t, n) ∈  ActionRefParm, 
and if the variable is used to set the n-th parameter of some function, that is, if there exists a transition t1 whose 
action calls a function (cf, f) such that (ct1, t1, cf, f, n, c, v) ∈ ActionSetsParmUsingVar, and if that function is the 
function associated with t, that is, if ct = cf and method(t) = f.  

• ν is parameter predicate-used at a guard-transition-edge if the guard of the transition associated with n, called (ct, t), 
references the n-th parameter of the function associated with t by name, that is, if (ct, t, n) ∈  GuardRefParm, and if 
the variable is used to set the n-th parameter of some function, that is, if there exists a transition t1 whose action calls 
a function (cf, f) such that (ct1, t1, cf, f, n, c, v) ∈ ActionSetsParmUsingVar, and if that function is the function 
associated with t, that is, if ct = cf and method(t) = f.  
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Each computation-use instance carries along the SeqNbr attribute of the association to identify the position of that 
use in the action sequence of the transition. SeqNbr values are used later in rules that constrain the creation of candidate 
test paths. Since guard and state predicates do not have sequence numbers, predicate-use instances do not have such a 
value. These identifications of defs and uses in a component flow graph are used to define def-use pairs in those graphs. 
The Automobile example produces instances for each of these def-use categories, as listed in Section 7.1. 
 
Definition 6.2 (def-use pairs):  Let M be any component of a software system, let R (M) be the set of transitions that are 
relevant to M, and let G = (N, E) be the component flow graph of M. The Greek mu (μ) represents an edge or a node that 
is a use. An ordered pair (nt, μ) is said to be a def-use pair for ν if ν is defined at the transition-node nt and if μ is either a 
node or an edge in G where ν is directly or indirectly used.1 

Some variables have no def-use pairs. For example class constants may be defined when an object is created and 
never redefined in any relevant transition; others may be defined in a relevant transition as a non-relevant side effect, but 
never used in any other relevant transition. All such variables are ignored in the following sections. 

Transition nodes can both define and use a variable, and which occurs first can affect later references to the variable. 
If a variable is used first, then defined, the definition from the node is relevant to definitions or uses of the variable in 
subsequent nodes. These cases are distinguished as follows: 
 
Definition 6.3 (internal def-use pairs):  Let ν be a variable that is both defined and used at one or more transition nodes 
nt∈Nt. The set of nodes where ν is defined first and then used is called DFTU(ν), and the set of all nodes where ν is used 
first and then defined is called UFTD(ν) . Both sets DFTU(ν) and UFTD(ν) can be determined by a syntactic analysis of 
the action associated with the transition node nt.  

The sets DFTU(ν) and UFTD(ν) are not necessarily mutually exclusive. A transition may have a use for a variable, 
then a definition, then another use (for example, “x := x+1; y := f(x)”). 

 
6.2 Data flow path coverage 

 
A major goal of this research is to automate the generation of test data as much as possible. Most research in data flow 
testing focuses on recognizing whether a set of tests cover def-use pairs as opposed to finding paths in the graphs that 
will allow def-use pairs to be covered. This project attempts to find paths in the following way. The algorithm looks for 
paths in the component flow graph that lead from the definition of a variable to a use. Consider triples (ν, nt, μ) where ν is 
a variable, nt is a transition node that defines ν, and μ is a node or edge where ν is used. nt and μ form a DU-pair if a path 
exists in the component flow graph leading from nt to μ, if the path is free of loops, if there are no defs to ν by another 
transition node in the path, and if the path is potentially feasible for testing. The definitions in this section clarify these 
criteria as applied to testing of class components and lead to a rigorous definition of test specifications derived from a 
component flow graph. 
 
Definition 6.4 (path):  Let G = (N, E) be a directed graph with labeled edges. A path p in G of length k≥1 is a sequence 
of nodes and labels n1L1n2 .. Lk-1 nk such that (ni, Li, ni+1) ∈ E for 1 ≤ i ≤ k-1. If p is a path, then the head of p, denoted by 
H(p), is the first element of the sequence, the tail of p, denoted by T(p) is the last element of the sequence, and the length 
of p, denoted by L(p), is the number of nodes in the sequence. If p and q are two paths, and if L is a label such that (T(p), 
L, H(q)) ∈E, then the concatenation of the two sequences, p:q, is a path with L(p:q) = L(p) + L(q). If p is a path and n is a 
node in the sequence that determines p, then n is said to be an element of p, denoted by n∈p. If p is a path, then InSeq(p) 
or OutSeq(p) denotes the label of its first or last edge. The context makes clear which is intended.  

Only feasible paths through a component flow graph can be used, so special attention is paid to path segments in the 
graph that flow from a transition node nt1 to a state node ns and then from that state node to a guard node ng or to another 
transition node nt2. If the edge from nt1 to ns is the result of a call to a mutator function f, then the edge from ns to ng, or 
from ns to nt2, must satisfy some additional feasibility restrictions. In particular, the edge from ns to ng or nt2 must be from 
a transition whose function is identical to f, and the guard predicate of any ng must be compatible with the exit conditions 
from node t1 or with the values of any parameters passed with f. The rules below address the function constraint. The 
guard constraint is more difficult to address because of exit conditions and dynamic values of passed parameters. To help 
address such guard constraints, a new association among these types of nodes is defined. A triple of nodes (nt, ns, ng) is a 
mutator Transition-State-Guard (TSG) path segment if the edge from nt to ns has a function label. A mutator TSG path 
segment is potentially feasible if the edge from ns to ng is known not to be incompatible with the call of the mutator 
function. Let MTSG denote the set of all node triples that are mutator TSG path segments and let FTSG be the subset of 

                                                           
1 Remember that a def-use pair is distinct from a DU-pair; the def-use pair may not have a def-clear path from the def to the use. 
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MTSG consisting of TSG path segments that are potentially feasible. The Automobile example produces 317 instances of 
MSTG, of which 85 are provably feasible and 100 are provably not feasible, leaving 132 where a simple analysis cannot 
determine feasibility or non-feasibility. Appendix I shows the easy situations where a parameter is set to a literal in an 
action of a transition, and the guards of some of the transitions associated with the called function test that literal directly. 
The set FTSG contains all but the provably non-feasible triples (217 instances in the Automobile example).  
 
Definition 6.5 (DU-path and DU-pair): Let G = (N, E) be a component flow graph in a software system. Let ν be any 
variable, let nt be a transition node that defines ν, and let μ be a node or an edge where ν is used. A path p in G is said to 
be a DU-path from nt to μ for ν if p = nt:q:μ, where q is a path in G such that no node of q is a definition node for ν and 
every mutator TSG path segment in p is potentially feasible. The pair (nt, μ) is said to be a DU-pair for ν if such a path p 
exists. Edge labels for p are implicit. 
 
Definition 6.6 (candidate test paths): Let G = (N, E) be a component flow graph in a software system. Let VDU be a 
set of tuples (ν, nt, μ) where (nt, μ) is a def-use pair for ν and let P be a set of tuples (ν, nt, μ, p) where (nt, μ) is a DU-pair 
for ν and p is a DU-path from nt to μ. The set of all such paths p are the candidate test paths in G. 

 
6.3 Finding all-uses candidate test paths 

 
The all-uses testing criterion requires tests to execute at least one path from each definition to each reachable use. If there 
is more than one path from a def to a use, the strict interpretation of all-uses is that any path will satisfy the criterion. 
This research represents one of the few attempts to actively find paths, and it turns out that the details of how the 
algorithm is constructed can represent different choices in which path to use. An extreme choice would be to attempt 
every path. A choice that may save effort would be to use a shortest path. This may result in less testing, and suggests the 
alternative of using a longest path. This may not be practical, so relaxing the choice to the longest findable path may be 
reasonable. One of the keys to testing this kind of software is evaluating the relationships among classes, which suggests 
the notion of finding a path that passes through another class, or a slightly more restrictive version, finding a path that 
passes through another class in the test component. If such a path cannot be found, it is necessary to relax to another 
choice, such as shortest path. These seven ways to choose paths are summarized in a subsumption hierarchy in Figure 5.  

It is also possible that some paths could be “better” in some sense than others. For example, it might be possible to 
incorporate a search procedure that uses some measurement function to choose from among a set of potential paths. One 
measurement might be to require that all mutator TSG path segments be known to be feasible instead of just known to be 
not infeasible, but that is a very difficult measurement to determine or represent. The construction described below looks 
for a shortest path because it is more convenient, thus saving computation expense. 

It is easy to construct the set VDU of Definition 6.6, but the set P may not have any elements. An iterative procedure 
is defined to construct the elements of P beginning with definitions for P1 and P2 below. It searches for candidate test 
paths using a breadth-first algorithm for finding paths from one node to another in a directed graph, a modification of 
Dijkstra’s shortest-path algorithm that starts at both beginning and end nodes, and meets in the middle. It works breadth-
first from definition nodes and use nodes or edges, simultaneously forming two sets of partial paths. The def-partial paths 
are paths whose head is the definition node for a state variable and whose tail is a candidate node for connecting to a use 
of that variable. The use-partial paths are paths whose tail is a transition node where a variable is computation-used, or 
whose last two tail nodes determine an edge where the variable is predicate-used, and whose head is a candidate node for 
connecting to a definition of that state variable. Each step of the algorithm looks for an edge that links the tail of a def-
partial path for a state variable to the head of a use-partial path for that same variable. In addition, the algorithm ensures 
that all partial paths are def-free by requiring that the new candidate node added as the tail of a def-partial path or the 
head of a use-partial path does not define the variable. The algorithm enforces a rule that every mutator TSG path 
segment be potentially feasible. The algorithm also enforces a rule that private functions may only be called by methods 
within their own class and that protected functions may only be called by methods within their own component (if Java is 
used, this corresponds to a Java package). Also, if the action of a transition calls a private function within its own class, 
and if the next transition in the candidate path is a transition derived from the private function, the algorithm requires that 
the target state of the calling transition is the source state of the derived transition. A typical example of an action calling 
a private function is the asynchronous call of CheckState() as the final action of many methods in both CruiseUser and 
Wheel. Finally, both sets of partial paths are constructed to ensure that edges entering or leaving a transition node occur 
in a feasible order for the action sequence of that transition. These partial paths satisfy a set of rules involving SeqNbr, 
InSeq and OutSeq labels. They must be constructed to help ensure the construction of DU-paths that result in feasible test 
cases.  
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Figure 5: Subsumption Hierarchy of Choices for Finding Candidate Test Paths 

 
The following rules must be followed in the construction of def-partial paths: 
 

• The first edge from a definition node of a state variable toward a new candidate intermediate node shall not be 
labeled with an OutSeq number that is less than the SeqNbr of that definition. 

• If the incoming edge entering the tail of a def-partial path is labeled with an InSeq number equal to x, then the 
outgoing edge toward a new candidate intermediate node shall not be labeled with an OutSeq number less than x. 

• If the tail of a def-partial path is a state node, and if the incoming edge to that tail has a function label, then the 
outgoing edge to a new candidate intermediate transition or guard node shall be derived from the same function. 

• If the tail of a def-partial path is a state node, and if the incoming edge to that tail has a function label, then the TSG 
path segment derived from the incoming transition node, the state node, and any new candidate intermediate guard 
node must be a potentially feasible mutator TSG path segment.  

• If the tail of a def-partial path is a state node, and if the incoming edge to that tail does not have a function label, 
then any new candidate intermediate guard or transition node must not be derived from a private function.  

• If the tail of a def-partial path is a transition node, and if the edge to any new candidate intermediate state node has a 
function label, then the class of the new state node must not be equal to the class of the transition node OR the state 
of the new state node must be equal to the target state of the transition of the transition node. 
 

The following rules must be satisfied in construction of use-partial paths: 
 
• The first edge from a new candidate intermediate node toward a use node (or the lead node of a use edge) for a state 

variable shall not be labeled with an InSeq number that is greater than the SeqNbr of that use. 
• If the outgoing edge from the head of a use-partial path is labeled with an OutSeq number equal to x, then the 

incoming edge from a new candidate intermediate node shall not be labeled with an InSeq number greater than x.  
• If the head of a use-partial path is a state node (i.e., with an outgoing edge to some adjacent guard or transition 

node), then any incoming edge from a new candidate intermediate node that has a function label must identify a 
function that is the same as the function associated with the adjacent guard or transition node.  

• If the head of a use-partial path is a state node with an outgoing edge to some adjacent guard node, then any 
incoming edge from a new candidate intermediate node that has a function label must be from a transition node that 
forms a potentially feasible mutator TSG path segment with the state node and its adjacent guard node. 

• If the head of a use-partial path is a state node, and if the function label on the outgoing edge from that state to its 
following guard or transition node identifies a private function, then any incoming edge from a new candidate 
intermediate transition node must have a function label that identifies the same private function. 

• If the head of a use-partial path is a state node, and if the edge from any new candidate intermediate transition node 
has a function label, then the class of the new transition node must be not equal to the class of the state node or the 
state of the state node must be equal to the target state of the transition of the new transition node. 
 
In the following definitions, the Q2k+1 iterations expand the def-partial paths and the Q2k+2 iterations expand the use-

partial paths. The iterative algorithm begins with P1 and P2, where P1 identifies DU-paths for ν from nt to itself if nt is a 
definition node, and P2 identifies DU-paths for ν along a transition-to-transition edge.  
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    P1 = {(ν, nt, nt, nt) | (ν, nt , nt)∈VDU & nt∈DFTU (ν)}  
    P2 = {(ν, nt, n, nt:n) | (ν, nt, n)∈VDU & (nt, n)∈Eitt} 
 
All paths in P1 are of length 1 and all paths in P2 are of length 2. In general, the sets Pi will identify paths of length i 

or i±1. The definition of Pi for i ≥ 3 depends upon sets of partial paths, Qk, and unresolved def-use pairs, Xj, both defined 
iteratively below. Each element of Qk will be a tuple (ν, nt, μ, h, g), where (ν, nt, μ) ∈ VDU, h is a path from a def node nt 
of ν to an intermediate node, and g is a path from some other intermediate node to a use item μ for ν. Each Xj will be a 
subset of VDU, consisting of variable and def-use pairs that still do not have a connecting path. The algorithm begins 
with:   

 
   X1 = VDU 
   Q1 = {(ν, nt, μ, nt, μ) | (ν, nt, μ)∈VDU} 
 
   X2 = VDU - {(ν, nt, nt) | (ν, nt, nt, nt)∈P1 & nt ∉ UFTD (ν)}  
   Q2 = {(ν, nt, μ, nt, μ) | (ν, nt, μ) ∈ X2} 
 
and given Qi, ( i ≥ 2) the next step defines: 
    Pi+1 = {(ν, nt, μ, h:g) | (ν, nt, μ, h, g) ∈ Qi 

 AND e = (T(h), H(g)) ∈ E, or e=(T(h), L, H(g)) ∈ E for some edge label L, 
 AND InSeq(h) ≤ OutSeq(e)  AND InSeq(e) ≤ OutSeq(g)  
 AND (¬∃Fn((Pre(T(h)), T(h))) OR Fn((Pre(T(h)), T(h))) = method(H(g))) 
 AND ((Pre(T(h)), T(h), H(g)) ∉ MTSG OR (Pre(T(h)), T(h), H(g)) ∈ FTSG)  
 AND (¬∃Fn(e) OR Fn(e) = method(Pre(H(g)))) 
 AND ((T(h), H(g), Pre(H(g))) ∉ MTSG OR (T(h), H(g), Pre(H(g))) ∈ FTSG)  
 AND ((T(h) ∈ Ns  AND ¬∃Fn(Pre(T(h)), T(h)))  availability(Fn(e)) ≠ PRI) 
 AND ((H(g) ∈ Ns  AND availability(Fn(H(g), Pre(H(g)))) = PRI)  ∃Fn(e)) 
AND ((T(h) ∈Nt AND H(g) ∈ Ns AND ∃Fn(e))  (class(T(h)) ≠ class(H(g)) OR state(H(g)) = targetState(T(h))) } 

    Ci+1 = {(ν, nt, μ) | ∃p [(ν, nt, μ, p) ∈ Pi+1]} 
    Ai+1 = {(ν, nt, μ) | ∃h, g [(ν, nt, μ, h, g) ∈ Qi]}  
    Xi+1 = Ai+1 - Ci+1  
    Bi+1 = Xi - Ai+1 
 
The sets Ci+1 identify unsolved def-use pairs in Xi that have found a DU-path in Pi+1. The sets Ai+1 identify unsolved 

def-use pairs in Xi that remain active candidates for resolution in Pi+1. The sets Bi+1 identify def-use pairs that drop out of 
consideration for solution at this step of the iteration; the variable they are associated with is said to be def-bound. 
 
Definition 6.7 (def-bound): A variable ν is said to be def-bound at a definition node nt of a def-use pair (nt, μ) if there is 
no path p from nt to μ, where p = (ν, nt, μ, p)∈P. 

The sets of partial paths are defined iteratively as follows. Given Q2k, the def-partial paths are extended by defining: 
 
  Q2k+1 = {(ν, nt, μ, h:n, g)  |  (ν, nt, μ, h, g)∈Q2k AND ∃n, L [n∈N AND (T(h), L, n) ∈ E AND n ∉ D(ν)  

AND T(h):n ∉ h AND (ν, nt, μ) ∈ X2k+1  
AND InSeq(h) ≤ OutSeq(T(h), n) 
AND (¬∃Fn((Pre(T(h)), T(h))) OR Fn((Pre(T(h)), T(h))) = method(n)) 
AND ((Pre(T(h)), T(h), n) ∉ MTSG OR (Pre(T(h)), T(h), n) ∈ FTSG) 
AND ((T(h) ∈ Ns AND ¬∃Fn(Pre(T(h)), T(h)))  availability(Fn(T(h), n)) ≠ PRI) 
AND ((T(h) ∈ Nt AND n ∈ Ns AND ∃Fn(T(h), n))  (class(n) ≠ class(T(h)) OR state(n) = targetState(T(h)))) ]} 

 
and given Q2k+1, the use-partial paths are extended by defining: 
 
  Q2k+2 = {(ν, nt, μ, h, n:g)  |  (ν, nt, μ, h, g) ∈ Q2k+1 AND ∃n, L [n ∈ N AND (n, L, H(g)) ∈ E AND n ∉ D(ν)  

AND n:H(g) ∉ g AND (ν, nt, μ) ∈ X2k+2  
AND InSeq(n:H(g)) ≤ OutSeq(g) 
AND (¬∃Fn((n, H(g))) OR Fn((n, H(g))) = method(Pre(H(g)) 
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AND ((n, H(g), Pre(H(g))) ∉ MTSG OR (n, H(g), Pre(H(g))) ∈ FTSG) 
AND ((H(g) ∈ Ns AND availability(Fn(H(g), Pre(H(g)))) = PRI)  ∃Fn(n, H(g))) 
AND ((n ∈ Nt AND H(g) ∈ Ns AND ∃Fn(n, H(g)))  (class(n) ≠ class(H(g)) OR state(H(g)) = targetState(n))) ]} 
 

where D(ν) is the set of definition nodes for ν, Fn(e) is the function label of an edge e,  Pre(T(h)) is the preceding 
node adjacent to T(h) in h, and Pre(H(g)) is the following node adjacent to H(g) in g. InSeq and OutSeq inequalities are 
satisfied if either label is null. The Qs with odd subscripts are building partial paths from the def node, whereas the Qs 
with even subscripts are building partial paths from the uses.  

In the construction of paths, it is possible that a path will exit a node derived from class instance C, leaving C in state 
S1, to enter a node derived from another class instance, and then later return to the first node while C is in a new state S2. 
This is possible only if some other action has caused the state of C to change from S1 to S2. To capture this other action 
as part of the path, a rule is enforced at several points in the above process to ensure that paths may only exit and then re-
enter a node derived from a class instance while the state of the class instance is the same. This rule is called the state 
compatibility rule. Experimentation has shown that enforcement of this rule substantially reduces the number of non-
feasible candidate test paths at the expense of increasing the number of unsolved def-use pairs. 

The iterative process stops when Xi  = ∅. At this point, set P = ∪ Pi. This must happen for some value of i less than 
the number of edges in the graph since cycles were avoided by ensuring that no edge appears more than once in any of 
the partial paths. It is possible for some state nodes and some transition nodes to appear more than once in a partial path. 
Not all elements (ν, nt, μ) ∈VDU will yield a DU-path. Some variables may be defined at a node nt and used at a use item 
μ, but either no path exists from nt to μ that satisfies the above constraints, or every such path contains a new definition of 
ν. If all-defs is being satisfied, then another use is found. If all-uses is being satisfied, this def-use pair is infeasible. 

The def-bound variables surface during the calculation of Bi+1 = Xi - Ai+1 in the iterative process of Definition 6.6. At 
that point, Ci+1 ⊆  Ai+1 ⊆ Xi. It follows that Bi+1 identifies the def-use pairs that were active during the calculation of Xi, 
did not find a path to join in Pi+1, yet are no longer active for Xi+1. They dropped out because in the calculation of the 
previous Qi, there was no node n to form a new edge in the partial paths. Thus the sets Bi+1 identify new def-bound 
variables, if they exist, at each step of the process. 

 
6.4 Executable test cases 

 
If a variable ν is both defined and used, and is not def-bound for a specific def-use pair, then the path generation of the 
previous section may produce one or more DU-paths linking a definition node nt to its corresponding use item μ. These 
DU-paths are considered to be abstract test specifications because no attempt has yet been made to choose explicit 
parameter values for any of the function calls. There is no guarantee that an abstract test specification will be feasible 
because it may contain a TSG path segment that is not feasible. However, the process carries along all possible 
potentially feasible TSG path elements for each def-use pair, so there is a good chance that a feasible one will be in the 
collection P of candidate test paths constructed by the algorithm of Section 6.3. If at the end of iteration i, all DU-paths 
for a DU-pair are found to be infeasible, then it is necessary to look for DU-paths of length i+1. The DU-pair is re-
inserted into the set of active pairs Xi and the algorithm continues by looking for longer DU-paths. 

Even at the end of this process, there is no guarantee that a feasible abstract test specification will lead to an 
executable test case. One must still find externally invokable methods that will trigger each of the function calls in the 
abstract test specification without violating any of the constraints against redefinition of the state variable. The iterative 
process of Section 6.3 is modified to help construct executable tests from test specifications. Instead of beginning with 
defs and uses, the modified process replaces defs with the collection of transition nodes derived from EXT functions and 
replaces uses with the collection of transition nodes derived from non-EXT functions. The modified process also 
eliminates edges that allow a path to enter a terminal target state. The result is a collection of candidate execution paths in 
the component flow graph from transition nodes with EXT methods to all other relevant transition nodes. In this manner 
an appropriate EXT function can be chosen to invoke a given transition-to-transition or guard-to-transition edge in a 
candidate test path. With some manual intervention to choose appropriate guard alternatives, it is then possible to select a 
sequence of EXT functions that force traversal of many candidate test paths. Some results from using this approach on 
the Automobile system are given in Section 7.3. Subsequent research will attempt to use this methodology to more fully 
automate the process of generating executable test cases from abstract test specifications.  

The entire process will not always succeed because some def-use pairs cannot be satisfied by any candidate test path 
and the problem of finding executable test cases is generally undecidable. This has been called the feasible path problem 
in previous research [19, 23, 26, 42]. Figure 6 attempts to illustrate the possibilities.  
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Figure 6: Possibilities When Finding Candidate Test Paths and Executable Test Cases 

Some def-use pairs have solutions (solvable), and some do not (not solvable). Some of these can either be solved or 
recognized as being unsolvable (solved, cannot solve) by the existing tool. There are other def-use pairs that are either too 
hard to solve or too hard to prove to be unsolvable (too hard) by the current tool, and finally there are DU-paths for 
which proving them to be unsolvable or finding solutions is truly undecidable (undecidable). This situation is common to 
all automatic test data generation techniques, which by definition can never be perfect for all situations. The goal of any 
technique is to increase the number of test requirements that can either be solved or shown to be unsolvable as much as 
possible, with the explicit recognition that even if the problem is not solved completely, it can still be possible to create 
good quality tests. 

 
7 Empirical Results for the Automobile System 

 
This section presents empirical results from applying the inter-class data flow technique to the automobile system. Tools 
have been developed that automate most of the process shown in Figure 3. The database representation of the 
specification must be created by hand, and the final step of generating executable test sequences is only partially 
automated. As an experimental evaluation, tests were constructed and run on seeded faults, and the fault-finding ability 
of the tests on the seeded faults was evaluated and compared against tests generated by hand. The subjects (full Engine 
specifications and tests) are provided in a technical report [18]. This section first illustrates an application of the 
technique by way of example using the automobile system, then describes the tool support, and finally the case study on 
fault detection. 

 
7.1 Applying the technique to the Automobile System 

 
Simple versions of Cruise have been used widely in the specification, specification-based testing, and modeling 
literature, but the version used in this paper includes significantly more components than other versions, such as in 
references [1, 4, 20]. For example, the version used by Atlee [4] and Abdurazik et al. [1] had one class, four states, seven 
functions, 184 blocks and 174 decisions. The external interface and the cruise control transitions used in this paper are 
modeled on the cruise control characteristics of an automobile owned by the first author2. Instead of the four states found 
in the other papers, the system used in this paper contains 12 classes for a total of 44 states. Combined, these states have 
43 relevant variables that appear in more than 4300 def-use pairs. For cruise control testing purposes, only external 
functions such as ignition, brake and gas pedal positions, and cruise controls are available to human users and testers. 
Other functions are encapsulated and hidden.  

Each process from Sections 3 through 6 is illustrated on the CruiseControl below. The initial tables contain the 
following: 

 
Class table    12 rows - one for each class in the system 
Variable table     58 rows - with 9 for CruiseControl 
Parameter table   44 rows – with 7 for CruiseControl 
Function table  106 rows - with 20 for CruiseControl 
State table    44 rows - with 12 for Cruise Control 
Transition table 263 rows - with 91 for CruiseControl 

 

                                                           
2 NIST policy prohibits publication of the make or model of the car. 
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The syntactic analysis from Section 3 on the predicate and action attributes of these tables yields the following 
association tables: 

 
StateRefVar      67  instances 
StateRefActorFn       5  instances 
ActionDefVar    252  instances 
ActionRefVar    172  instances 
GuardRefVar    117  instances 
GuardRefActorFn     17  instances 
ActionRefActorFn     32  instances 

ActionRefMutatorFn  116  instances 
VarAssocFn      44  instances 
ActionRefLocalAsyn    22  instances 
GuardRefParm   121  instances 
ActionRefParm     80  instances 
ActionSetsParm     70  instances 
ActionSetsParmUsingVar   70  instances 

 
Section 4 describes how to derive transitions in each existing class that are relevant to CruiseControl. In some cases 

only a few transitions are relevant; for example, the only state of BrakeControl that is relevant to CruiseControl is 
whether or not the brakes are engaged. When the brakes are engaged, a message is sent to AutoSystem, and AutoSystem 
sends a Cancel message to CruiseUnit. The relevant transitions are derived iteratively from labeled transitions, as defined 
in Section 4:  

 
 R00     91   CruiseControl Base transitions 
 R0    68   feasible Base transitions 
 R1  194   labeled transitions at first iteration 

R2  260   labeled transitions at second iteration  
R3  292   labeled transitions at third iteration  
R4  308   labeled transitions at fourth iteration  
R5  314   labeled relevant transitions at final pass 
R(M) 160   final unlabeled relevant transitions 

 
This process leaves 75 feasible transitions that are not relevant, including oil and water pressure gauges that were 

intentionally excluded from consideration, anti-lock brake actions that have no relevance after brakes become active, 
various transmission actions dealing with Neutral and Reverse, and other actor methods in several classes that could not 
impact CruiseControl. 

R(M) has 105 transitions that have non-trivial actions, as displayed in Appendix I. The component flow graph 
defined in Section 5 is summarized as: 

 Nodes    293  nodes 
  TransitionNodes  160 
  StateNodes     44 
  Guard Nodes     89 
  

Edges    740  edges 
  Est Edges      49 
  Esg Edges      85 

  Egt Edges      85 
  Ets Edges    160 
  Egtg Edges     34 
  Ests Edges        5 
  Eits Edges    174 
  Eitt Edges      68 
  Ects Edges     80 

 
The following is the list of defs and uses from the CruiseControl component of the Automobile example in this paper 

(Sections 6.1 and 6.2):  
 

DefnNodes     188 
 DirectCompUses    131 
 IndirectCompUses      30 
 DirectPredUseByState   304 
 DirectPredUseByGuard     80 
 IndirectPredUseByState     32 
 IndirectPredUseByGuard    17 

ParmUseByGuard    205  
ParmUseByTransition   216 

 
 Total VarDefUse triples  4319 
 
  

DFTU nodes       45 
UFTD nodes       17 
DFTU & UFTD      17 
 

From Section 6.3, the following are mutator TSG path 
segments. 

 
MTSG triples   317  paths 
 KnownFeasible    85 
 KnownNotFeasible  100 

Indeterminate   132 
FTSG triples   217  paths 

The above calculations are almost instantaneous, even on a desktop personal computer. However, the next step, to 
calculate the DU-paths leading to DU-pairs becomes much more computationally intensive. The iterative process to 
construct candidate test paths Pi from Definition 6.6 proceeds in several steps. Each step is summarized below: 
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 P1   45  rows  (from the DFTU nodes)  
 
Only 45 of the 62 def-use pairs with an action that both defines and uses the same variable are DFTU. For example, 

the CruiseUnit transitions t016 and t064 in Appendix I define and then use TargetThrottle and CurrentSpeed. Likewise, 
the GasUser transition t002 first defines and then uses PedalPosition, and Engine t003 first defines and then uses Rpm. 
All relevant Throttle transitions define and then use Position. Examples of UFTD transition nodes are CruiseUnit 
transitions t030 and t031, which both use TargetSpeed and then define it. Throttle transitions t004, t007 and t009 have a 
parameter-use of Position as a result of calls to Floor() from CruiseUnit, and then immediately define Position. Some of 
the def-use pairs are in both DFTU and UFTD, and are kept active in the search for new DU-paths from those nodes back 
to themselves. The remaining def-use pairs in DFTU have a use that can never be reached from outside that node without 
redefining of the variable, immediately resulting in 175 def-bound pairs.  

 
 P2     0  rows  (none of the 68 Eitt edges give DU-pairs) 
 
Sixty-eight transitions have actions that return a value from a call to a function in some other class. None of these 

calls involve mutator functions, so they do not result in any new DU-pairs with a test path of length 2. Thus P2 is empty. 
Continuing with initialization of the DU-pair generation process yields: 

 
 X1  4319  instances (from VDU triples)  
 Q1  4319  instances (from VDU – set Head and Tail) 
 B1    175  instances (from 45 DFTU pairs not in UFTD) 
 
 X2  4099  instances (removing 45 found and 175 def-bound pairs) 
 Q2  4099  instances (removing same 220 instances from Q1) 
 
At iteration 3, the algorithm finds 414 candidate test paths of lengths 3 or 4. Approximately one-half of the paths go 

through the target state of their transitions to an outgoing edge from that target state. Most of these yield either an easy 
feasible path or an obvious non-feasible path that should have been identified in the initial class definition. The other half 
of the paths do not go through the target state of the transition; instead, they follow a mutator function to the source state 
of some other transition in the same class. All of these MTSG path segments are based on a call to CheckState() in the 
CruiseUnit or Wheel classes. For some of these, it is relatively easy to find an executable test case. Others yield an 
obvious non-feasible path that should have been identified in the transition-state-guard discussion following Definition 
6.4. At this step, all paths are still completely contained in a single class. All 414 new paths result in new DU-pairs. 
Seventeen new def-bound variables are identified: BrakeActive is defined in AutoSystem transitions but can never reach 
their predicate uses in some Engine states, IsActive is defined in both BrakeControl and BrakeUser but can never reach 
its use in state predicates. In all cases a Cancel() message gets sent instead to shut down all further CruiseControl 
processing. 

Iteration 4 creates 341 new paths of lengths 3 and 4, all of which identify new DU-pairs. The paths may be handled 
much like the paths in the previous iteration, although some of the mutator functions force actions in other classes. For 
each mutator transition in the path, the process described in Section 7.2 is used to find EXT (user-level) functions that 
will trigger that transition. The difficulty is to find a function that does not redefine the def-use variable. It is often 
necessary to use a longer indirect EXT function, such as ExternalDrag(), to cause changes of state in CruiseUnit without 
redefining the def-use variables under test. This iteration also discovers 231 def-bound pairs. 

The process takes multiple iterations, as shown in Table 2. The New Paths column corresponds to new candidate test 
paths. Sometimes multiple paths are found for the same def-use pair so the New DU-pairs column corresponds to def-use 
pairs that have found a path and thereby become DU-pairs. The Active Pairs column shows the number of pairs for which 
no path has been found up to and including the current iteration. New DefnBnd identifies the number of def-use pairs 
determined to be def-bound at this iteration. Partial Paths identifies the number of partial paths existing at the end of the 
current iteration. The Process Time column is for each iteration, and is from the prototype implementation using an 
Access database on a Pentium 4 class PC at 2 Ghz and 1 GB RAM.  

 
 New Paths 

Pi 
New DU-pairs 

Ci 
Active Pairs

Xi 
New DefnBnd 

Bi 
Partial Paths 

Qi 
Process Time 

(h:mm:ss) 

1 45 45 4319 175 4319 0:02 
2 0 0 4099 0 4099 0:01 
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3 414 414 3668 17 9332 2:57 
4 341 341 3096 231 30,604 3:06 
5 536 502 2519 75 49,898 4:17 
6 194 190 2304 25 93,116 4:14 
7 157 146 2036 122 58,290 3:01 
8 201 132 1645 259 111,942 5:38 
9 124 104 1414 127 166,281 9:05 
10 124 84 1314 16 378,383 12:06 
11 107 72 1185 57 747,816 20:27 
12 18 8 1177 0 1,083,242 39:41 
13 50 12 1137 28 1,579,445 50:36 
14 3 1 1136 0 3,056,216 2:03:35 
15 32 8 1010 118 4,476,452 3:32:55 
16 10 1 873 136 7,589,298 6:07:22 
17 0 0 802 71 12,951,518 10:16:13 
18 16 3 795 4 19,938,236 16:32:52 
19 0 0 762 33 ~33,114,919 ~31:44:50 
20 0 0 762 0 - - 

Totals 2372 2063  1494  ~74:00:00 
Table 2: Cruise Control – Candidate Test Paths 

 
The majority of DU-path generation takes place in iterations 3 through 10 (with total processing time less than 45 

minutes), but some new DU-paths continue to be generated through iteration 18. Time and space costs for obtaining new 
information prevent the tool from continuing past iteration 20. Out of a total of 4319 def-use pairs, 2372 candidate test 
paths were found to cover 2064 pairs (47%), and 1494 (35%) pairs were shown to be def-bound, with no def-free 
candidate test paths. Thus, 82% (3557) of the def-use pairs were resolved (with a test or shown to be infeasible), leaving 
only 18% (762) unknown. This experimental difficulty in solving 18% of all def-use pairs is consistent with the 
limitation stemming from undecidability and the theoretical discussion in the last paragraph of Section 6.4. However, as 
shown in Table 3 in Section 7.3, the resulting tests did a good job at finding faults. 

Table 2 shows that iteration 5 finds 536 new DU-paths, but only 502 of them identify new DU-pairs. In addition, 75 
pairs were found to be def-bound (Bi). The number of active pairs (Xi) is thus reduced by 577. Many of the paths are 
similar to the above, either composed of successive application of feasible transitions within a class, going through the 
target state of one transition to the source state of the next, or involving interactions between classes via calls of mutator 
functions along MTSG edges.  

Multiple DU-paths can occur for the same DU-pair in several different ways. One is when a transition gets the 
values of multiple variables from the same class so each call generates a separate potential path; this occurs in Ignition 
transition t003, since it calls both ThrottleFloor and ThrottleGovernor from AutoSystem where both variables are defined 
by transition t001. This also occurs in CruiseUnit transition t025 where the guard predicate calls both Position and Floor 
from Throttle where both variables are defined by transition t004. Another source of multiple DU-paths for the same DU-
pair is when a guard predicate identifies multiple choices in the interior of a path, thereby generating separate subpaths to 
reach the same def and use; this occurs often for variables defined in CruiseUnit where a path may travel through 
multiple states of throttle, without the variable being redefined, before returning to a use in CruiseUnit. 

More interesting paths begin to occur after iteration 5. For example, the following path involving Throttle (c10) and 
CruiseUnit (c05) begins with Throttle.Position defined by Throttle.Floor(x) at transition node c10t005 and ends with 
Position used by the action of CruiseUnit.UserMode(SD/NT) at transition node c05t043. 

 
c10t005:TS:c10s01:ST:c10t016:TT:c05t064:TS:c05s03:SG:c05gt030:GT:c05t030:TS:c05s05:SG:c05gt043:GT:c05t043 

 

After definition of Position, the path follows a transition-to-state (TS) edge to throttle state node c10s01 (Idle), 
where it waits for a subsequent action. The action of CruiseUnit.UserMode(SD/NT) at transition node c05t064 calls 
Throttle.Position() via transition node c10t016 along a transition-to-transition (TT) edge, coming to rest at state node 
c05s03 (Cruise) to wait for another subsequent action. The only way this can happen is for the automobile to be in a high 
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gear and going downhill so that idle speed in the throttle is sufficient to maintain speed greater than SlowCutoff to satisfy 
the guard predicate of c05t064, thereby allowing an Override-to-Cruise state transition. The next action of 
CruiseUnit.UserMode(SD) at transition node c05t030 leads the path through state-to-guard (SG) and guard-to-transition 
(GT) edges, putting the CruiseUnit into its Decel state at state node c05s05. The user holds down the Set/Decel button to 
achieve this deceleration, then releases it, thereby calling Usermode(NT), to effect the final action and usage of the 
Position variable in the action at transition node c05t043, causing a Decel-to-Cruise state transition. 

Using methods introduced in Section 6.4 and further described in Section 7.2, the above abstract test specification 
can be used to generate the following executable test sequence. While in Cruise state at highway speed in a high gear and 
going downhill, do the following sequence of actions: 

 
1) CruiseUser.Cancel ()  Puts CruiseUnit in the Override state and calls Throttle.Floor(0), which 

defines Throttle.Position = fconst and puts Throttle in the Idle state. 
2) Pause     Waits for the Engine to settle at Idle speed while maintaining 

Gauges.Speed > CruiseUnit.SlowCutoff. 
3) CruiseUser.Mode (SD) Sets the CruiseUnit.UserMode variable to SD with no other effect. 
4) CruiseUser.Mode (NT) Causes an Override-to-Cruise transition (t064) when button is released. 
5) CruiseUser.Mode (SD) Causes a  Cruise-to-Decel transition in CruiseUnit while maintaining Throttle in  Idle 

without redefining Position. 
6) CruiseUser.Mode (NT) Causes a Decel-to-Cruise transition (t043) and uses Throttle.Position() to set  the 

TargetThrottle variable. 
 
7.2 Status of automation 

 
At least four different testing activities can benefit from automation. First is the selection and generation of test data, 

second is the evaluation of the test data (for example, according to a test criterion), third is the identification and 
generation of expected results, and fourth is the execution of the tests. The first activity is widely considered to be the 
hardest to automate and is supported by the fewest number of tools, both research and commercial. The goal of this 
research is to automate the generation of test data as much as possible. 

Most previous research in data flow testing has focused on the intra-method problem, and is usually based on the 
source code. At the inter-method level (testing multiple methods together), Harrold and Soffa [21] tried to generate tests 
that covered def-use pairs between two procedures, focusing on the problems associated with inter-method analysis. Jin 
and Offutt [28] defined a limited form of data flow testing between pairs of methods that only considered certain 
definitions and uses (first-uses and last-defs). This work was again based on control flow graphs from the program. 
Alexander and Offutt [2, 3] defined def-use pairs among program classes and identified the various possibilities that 
could occur in the presence of polymorphism and dynamic binding, based on the polymorphic call set. The current 
research is based on the specifications (finite state machines) rather than the code, and goes beyond most of the previous 
papers. All of these papers identified def-use pairs. Only this paper and the work by Alexander and Offutt identify 
candidate test paths, and this paper goes a step further in identifying test path specifications. Work on generating test 
values has previously been limited to the inter-method case; research into intra-class and inter-class testing has not tried 
to automatically generate values, but has focused on generating sequences of method calls whose parameters are assigned 
values by hand or created randomly. 

Consider the testing architecture shown in Figure 7. The Test Sequence Generator of Figure 3 is represented as one 
tool in a collection of tools designed to automate as much of the testing process as possible. A database implementation 
of the specification is used to separately create a reference implementation or generation of executable test sequences. 
For each test sequence, the Test Harness executes the external methods in the prescribed order against the reference 
implementation, and at the end of each execution compares the predicted state of each class in the system with the actual 
state in the implementation.  
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Figure 7: Testing Tool Architecture 
 
This process usually finds errors in the specification; fixes can then be applied to the database representation and the 

process repeated. At an appropriate time, a real implementation can be substituted for the prototype with the same set of 
test sequences as in the test suite. An implementation passes the test suite if the actual states of the classes at each step 
match the predicted states. The Test Harness records each mis-match for subsequent analysis. The Graphical User 
Interface is an optional component that allows a tester to apply ad hoc testing procedures or to visualize the effect of 
changes to the specification. At this point the visualization is tied to the automobile example, but could be partially 
generalized on a class-by-class basis to provide rapid visualizations for all software systems derived from a base set of 
classes or components. 

The Rapid Prototype Machine (RPM) is a generic test simulator written in Java. The machine consists of a simple 
kernel able to wait for, queue, and process input tasks from either a user or from the Test Harness. An input task is 
codified as an instance of a Java class called a MessageObject. The MessageObject class is a wrapper class that stores 
data fields traditionally associated with object-oriented programming, such as an object’s identity, state, and behavior, 
applied to that object (a function). The object in question is an instance of a ClassObject. Each ClassObject instantiated 
in the RPM is defined by the class, state and variable tables in the database specification. Each ClassObject retains a 
queue of MessageObjects, named a CallQueue. CallQueues are threaded, interruptible, first-in, first-out data structures 
capable of waiting for, storing and passing MessageObjects to an RPM interpreter. The RPM interpreter evaluates a 
MessageObject by inspecting the identity, state and behavior fields stored in the MessageObject. Next, the RPM 
interpreter queries the database specification’s transition table, using a combination of these fields, and then proceeds to 
further evaluate the transition actions stored there. This chain of events may result in:  (1) a value returned by the RPM 
interpreter (accessor function), (2) a ClassObject property changed by the RPM interpreter (mutator function), or (3) a 
combination of the two. The RPM provides an interface for test writers to add visual components for simulation 
purposes. By implementing the interface, test writers are given access to RPM interpreter return values and ClassObject 
states, can instantiate and evaluate their own MessageObjects, and can update custom visualizations appropriately. 

The Test Harness is designed to support testers who want to run a sequence of test cases under the RPM, or against a 
real implementation inserted into the testing architecture in place of the reference implementation. It is a threaded Java 
component that sequentially evaluates executable test methods stored in a database table. The Test Harness requires the 
test writer to create two application-specific tables; in Figure 7 this is done by the Test Sequence Generator. The first 
table is a list of test methods to execute under the RPM. The second table is a list of the states each ClassObject should 
transition to after applying a given method. For each method in the list of test methods, the Test Harness instructs the 
relevant ClassObject to create a MessageObject and place that object on its CallQueue. The MessageObject is evaluated 
by the RPM interpreter, causing any affected ClassObjects to transition to an appropriate state as prescribed by the 
actions codified in the message. After a specified transitional period, the Test Harness interrupts all system CallQueues 
and samples the state of each RPM ClassObject. Each ClassObject state is compared to the expected ClassObject state in 
the second table, described above. If the set of all RPM ClassObject states for a given test method is equivalent to the set 
of all expected states for that method, the system records a passing test, restarts the CallQueues, and moves on to the next 
test method. If, however, the set of all ClassObject RPM states for a given test method is not equivalent to the set of all 
expected states for that method, the system records a ClassObject state inconsistency, restarts the CallQueues, and moves 
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on to the next test method. The preceding process is repeated until all test method items in the table have been executed 
or until an action causes a fatal system error. 

The last step in developing executable test sequences uses the ideas discussed in Section 6.4 to identify methods that 
can be invoked externally and that lead directly to a transition node in the component flow graph. Given a system state, 
that is, the state of each class instance in the system, and a transition node selected to be the next action node in a 
candidate test path, our partial implementation eliminates all paths from external methods that are not compatible with 
the current system state and presents the human tester with the remaining external method choices. By examining the 
guard predicates of each alternative presented, the tester chooses an external method with input parameters to satisfy all 
guard predicates along some path to the selected action node. Beginning with a system state in which all classes are in 
their initial states, it is possible to generate an executable sequence of external methods that cover a collection of 
candidate test paths. As candidate test paths are covered by these actions, they become test specifications for their 
associated def-use pairs. The result also records the specific def-use pair associated with each new test specification so it 
is possible to determine the specific pairs solved by each external method of the test sequence. 

Using the automobile specification and the results generated above, a tester is able to identify transition nodes 
derived from external functions (source transition nodes) and separate them from other transition nodes (target transition 
nodes). Using these notions of source and target, the following source-to-target pairs and paths are identified. A source is 
said to trigger a target if a path exists in the component flow graph from source to target that does not stop in a wait state. 
The continuously generated Checkstate() methods in the CruiseUnit and Wheel classes allow many non-intuitive source-
to-target paths. 

 
Source transition nodes       24 instances 
Target transition nodes       160 instances 
Source-to-target pairs    3840 instances 

Pairs with one or more generated path   571 instances 
Generated source-to-target paths  4598 instances 

 
This process requires 44 iterations of the algorithm derived from Section 6.3 to test each source-to-target pair. All 

source to target paths were found by the 27th iteration, but it took 17 additional iterations to prove that paths do not exist 
for the remaining 3029 source-to-target pairs. The CPU processing time to generate these results, using the same Access 
database on a Pentium 4 class PC at 2 Ghz and 1 GB RAM described in Section 7.1 for candidate test path generation, 
was five hours and 27 minutes. 

 
7.3 Case study 

 
As an experimental evaluation, 108 faults were seeded into the automobile specification; then two sets of tests were run 
on the seeded faults. The first test set was derived from the Finite State Machine (FSM) data flow methods presented in 
this paper and the second test set was manually constructed from intuitive use of cruise control. To help eliminate bias, a 
different person independently performed all manual steps. Faults were constructed by modifying the transitions table in 
the specification database (Appendix I). They were designed by one author (Offutt) by making small syntactic changes, 
similar to mutants, in every possible location. This process was very mechanical and straightforward. These changes 
were marked on paper, and then implemented by copying the table once for each fault and making one change by another 
person (Zanon). This resulted in 108 copies of the table.  

One author (Gallagher) used the partially automated tool described above to create the executable FSM Data Flow 
tests. Another author (Offutt) derived manual test specifications to try to emulate a typical manual testing process. The 
tests followed a sequence of actions that use every user feature of the cruise control in various situations. The fact that the 
same person designed the faults and also created the manual tests has the potential for introducing a problem with 
internal validity. However, the faults were designed almost a full year before the manual tests, and both activities were 
very mechanical in nature. These two factors serve to ameliorate the potential for problems with internal validity. The 
manual test specifications were given to another person (Zanon), who translated them into inputs to the Test Harness, 
whose interface was independently designed by the third author (Cincotta). The manual test specification sequence is 
described in user terms as follows:  

 
1) start ignition, change gears, and reach highway speed 
2) set cruise control by turning cruise switch On and pushing Set/Decel cruise button 
3) use brake to slow speed 
4) use Resume/Accel button to return to previous speed 
5) manually increase speed using gas pedal 
6) use Set/Decel button to set cruise at higher speed 
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7) use brake to slow speed 
8) use Set/Decel button to set cruise at new slower speed 
9) use ExternalDrag to maintain cruise speed both up and downhill 
10) turn cruise switch Off 
11) set speed manually with gas pedal to less than SlowCutoff 
12) turn cruise switch On 
13) test Set/Decel button to ensure that nothing happens at slow speed 
14) brake to a stop and turn ignition off 
 
The FSM-derived test cases were created to cover a specific set of candidate test paths and DU-pairs. This 

information was not determined for the manually created tests. The FSM-derived tests predicted the system state for all 
12 classes at the end of each execution, whereas intuition and common sense were used to predict the system state for the 
manually created tests. Both sets of tests were executed by the third author (Cincotta), using the Rapid Prototype 
Machine and Test Harness to execute all actions and to compare the predicted system state with the actual system state 
after each action. The results are shown in Table 3.  

 
 FSM Data 

Flow 
Manual 

CTPs covered 1001 unknown 
DU-pairs covered   954 unknown 
Tests   145   41 
Faults   108 108 
Faults Found   106   24 
Percent Found 98% 22% 

 
Table 3: Case Study Results on Automobile Example 

 
Clearly this testing scenario favors the FSM method because it contains more than 3 times as many tests as the 

manual method does. In particular, the FSM tests use Accel and Decel buttons to increase and decrease speed over 
normal ranges and to exceed the Slow and FastCutoff points, whereas the manual tests do not. However, the manual tests 
require intensive human effort to decide what new expectations to test, while the FSM approach merely responds to 
simple answers to questions about which guard predicates to satisfy at each step of the process and cranks out new test 
actions to cover candidate test paths not previously covered. The actual test sequences and expected system states for 
both test methods are included in the technical report [18]. 

A major additional benefit of the testing architecture described above is the ability to quickly generate a reference 
implementation that responds reasonably to external actions. This capability allowed the tests to find a number of flaws 
in the original specification that would have been difficult to detect simply by inspecting the guards and actions of the 
transitions. The granularity of adjustments to the throttle in CruiseUnit transitions t026 and t027 and the granularity of 
checks in the guard predicates of transitions t023 to t025 have a significant impact on the oscillating effect one gets when 
using the Resume/Accel button to resume a previously targeted speed or when setting ExternalDrag to sharply different 
values. Although technically correct according to the specifications, speeds would sometimes wildly oscillate above and 
below the target speed several times before settling down. Another specification error immediately discovered was 
forgetting that action queues can hold multiple actions, sometimes resulting in unexpected method invocations in a 
current state that were put on the queue while the class was in a previous state. Another unexpected result occurs when 
“Pauses” are added to the specification, e.g., in CruiseUnit transitions t023, t026, t027, t038, t050 and t065. One 
sometimes forgets that when one class is pausing, perhaps to wait for delayed effects, other classes may be piling actions 
on a call queue. Rapid access to a reference implementation helped discover a number of errors of this type in the 
original specification. 

Constructing test cases that predict the expected system state at each step greatly improves the ability to find 
specification errors in transitions that correctly manage the state of their own class, but forget to send proper messages to 
effect that change in other classes. Early tests found an error in CruiseUnit transition t057 for method UserSwitch(Off) in 
that it properly changed  the state of CruiseUser, CruiseUnit and Gauges, but initially forgot to send a message to the 
Throttle to go into the Idle state. Very common specification errors are to assign values to variables, declare that the 
object moves to a new state, but forget to check if the state predicate of the new state is satisfied. Test construction found 
several subtle specification errors of this type. An error found by a test but still existing in the specification is that 
Transmission transition t005 properly sends a message to the Wheel to change speed when a gear is changed, but forgets 
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that DriveRatio() is handled by the current transition, which returns zero for Neutral, so the Wheel state does not change 
no matter which gear is set from Neutral. This is an example of where a state predicted by a test case, i.e., Wheel in 
DirectDrive, differs from intuition, i.e., Wheel in Accel, so a closer look at the specification reveals the error. In all, 
approximately a dozen errors were found in the specifications. These were found by tests that were created when the test 
generator was under development, and the specifications were corrected, so the manual tests and the experimental results 
in Table 3 were based on the corrected version of the specifications. Of course, this may not be indicative because 
domain experts did not write the specifications. Still, it is positive anecdotal evidence that the analysis needed to develop 
tests can help improve specifications. 

 
7.4 Scalability 

 
The collection of tools described in Section 7.2 automates all but two steps in the generation of executable test cases. The 
database representation of the specification must be created by hand, and the final step of generating executable test 
sequences is only partially automated. A Web-based GUI is currently under development to capture and store 
specification information into the database. These tool implementations are not typical testing tools that consist of 
compiled programs. Instead, they consist of the system information represented in a highly structured database schema, 
together with database queries and other database operations that implement each step in the process. The logical 
requirements of the algorithm for path generation are implemented as queries and updates to leverage the database system 
for powerful logical computation and efficient I/O management. Modern commercial databases access the hard disk in 
the most optimal way, certainly not with every query. They use very effective optimization strategies that are based on 
caching, prefetching, and other OS concepts. Optimization is part of the advantage of using a database – few 
programmers could manage memory with even a fraction of the efficiency of commercial database products. This allows 
the methodology to be applied to integration testing in software systems that might otherwise be too large for easy 
manipulation in main memory. The literature contains no other methodology that leverage database capabilities in this 
manner or that can handle data flow testing with graphs this large. 

Although it is true that this work thus far has not assured scalability, the authors have experience in both building 
and using source code-level data flow analysis software. We know of no other source code-level data flow testing 
systems, either commercial or experimental, which can handle software specifications that have thousands of DU-pairs. 
A less obvious advantage was with regards to maintenance. With this technique, it was very easy to modify the algorithm 
to add additional refinements or to correct small omissions – by modifying a single SQL predicate. 

The FSM flow tests found 106 faults, whereas the manual tests only found 24 faults. Not only did the FSM flow tests 
find more faults, they found more faults per test. This might be a little misleading, however, because the exact number of 
tests created will vary greatly depending on the decisions made during test creation. Thus even though not all def-use 
pairs were covered by the automatic approach, the tests were of a high quality and indicate that in larger systems, not all 
def-use pairs would need to be covered in order to find many of the critical faults. 

The database representation provides a convenient and efficient way to go one step beyond traditional data flow 
systems and provide definition-clear DU-paths rather than just DU-pairs. Traditional code-level data flow systems 
provide DU-pairs (as statement numbers), and use instrumentation to check whether separately supplied test inputs cause 
def-clear paths to be executed from the definitions to the uses. This is often a hit-or-miss process, with the tester throwing 
test inputs at the software, hoping that the data flow system eventually reports that the DU-pairs were covered. It is 
sometimes very difficult for a tester to find a test case that will cover a particular DU-pair, and attempts have been made 
to generate tests by generating and solving predicates [41]. Source code-level data flow analysis has always had problems 
with the predicates getting too large for memory, which is one reason why data flow testing is seldom, if at all, used in 
practice. The early papers on data flow discussed data flow paths, but none of the implementations dealt with 
construction of the paths, which meant that discussions of data flow paths were theoretical. 

One reason that traditional code-level data flow programs do not provide complete paths is because the problems of 
finding feasible paths and determining if the path is def-clear are generally undecidable. When the problems can be 
solved, the complexity of the control flow, problems with function calls and variable aliasing (where two different names 
are given to the same memory object), and the size of the data space makes the cost of the exponential algorithms 
prohibitive. This work, however, avoids some of the problems associated with code-level data flow analysis. The 
“control flow” on average is much simpler than in code-level control-flow graphs, the data space is much smaller, and 
there is no aliasing. The point of using a database system is that it provides a powerful compute engine for solving 
predicates, which is one of the most difficult parts of a data flow analyzer to implement. 

 
8 Conclusions and Future Work 
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This paper presents two major and several minor results. The first major result is a method for integration level, inter-
class testing for object-oriented programs using data flow techniques. The second is a computational approach to find 
feasible and infeasible paths. This is a difficult problem whose current solutions are not very effective. The approach in 
this paper could be used in other path-based testing criteria. One minor result is a technique for representing data flow 
and control flow graphs in a relational database and using the database as a compute engine for deriving DU-pairs and 
DU-paths to satisfy data flow testing criteria. Software components are modeled as finite state machines, and data flows 
are defined on the finite state machines, yielding DU-paths that are used as a basis for testing. A second minor result is a 
rapid prototyping machine that allows a quick and convenient way to execute software specifications and a third is an 
automated test harness to support the test method. A fourth minor result is the introduction of a fairly substantial cruise 
control example, which can be used by other researchers in their empirical studies. The relevant transitions are in 
Appendix I, and the full specifications are online in the technical report [18]. These tools and example were used to 
obtain empirical results from applying the testing method and comparing it with manual tests.  

This paper does not prove the existence of an executable test case for each DU-pair, but by eliminating def-bound 
pairs and by generating a small collection of potentially feasible candidate test paths for each remaining pair, it 
substantially increases the likelihood of finding an executable test case. Careful design of the states and guards in a 
functional specification of transitions and early identification of non-feasible path segments in a component flow graph 
will also help reduce the number of non-feasible candidate test paths. Future efforts will focus on improving the tool for 
automatic generation of executable test cases for black-box testing and increasing the automation of generating 
executable test sequences from candidate test paths.  

This paper does not explicitly handle class variables (Java static) or inheritance. However, class variables can be 
modeled by assuming that they are instance variables in a separate, virtual class, where only one instance of that class is 
available, and where the static methods that access the class variables are methods in the separate class. Inheritance of 
variables from a superclass is handled by replacing variable references in the subclass with a method invocation of the 
associated get and set methods of the superclass. Other aspects of inheritance do not directly impact this model. 

For clarity, the definitions and example in this paper only consider one object per class, but extending the method is 
straightforward. However, aggregation and consideration of multiple class instances are essential for practical 
application. In static environments with static type hierarchies and static type binding, aggregation and multiple instances 
are achieved by allowing state variables to be references to some other object. All such reference variables are collected 
together, creating a new table in the model with a primary key called RefId. Each row of the new table identifies an 
object whose state and behavior must be maintained throughout the testing process. Then the associations of Figure 3 are 
extended to be specified in terms of RefIds instead of just ClassIds. The remainder of the test specification for this 
situation follows as presented here. The situation is substantially more complex when class hierarchies with dynamic type 
binding and polymorphism are used. This is an issue for future work. 

One interesting question is when to employ the techniques presented in this paper, and three possibilities emerge. 
The most obvious is when software components are integrated. At that time, the FSMs can be generated and relevant 
transitions can be determined to be those transitions that are included as part of the components in the current integration 
step. It may also be possible to employ these techniques during maintenance. If a component is to be changed, the impact 
of that change can be estimated in terms of the relevant transitions, and regression testing can proceed on the relevant 
transitions. This impact could also be limited by applying a testing firewall [33], which was found to be very helpful in 
industrial practice [47] and could readily be incorporated into the FSM model in this paper. Finally, if a new component 
is to be added to a system, then relevant transitions (and the resulting tests) can be created in terms of the new 
component. We hope to explore these ideas in future work. 

With the increasing popularity of object-oriented specification methods, e.g., UML [46], and especially state 
transition specification of classes, e.g., UML’s state machine package, it becomes possible to more closely align the 
specification and testing of object-oriented software, with executable test cases generated automatically from the 
specification. With the addition of database tools, it becomes possible to apply finite state analysis and testing methods to 
moderate-sized software systems. Follow-on work will focus on further integration of the specification and testing 
aspects of software development and on the potential application of statistical methods. 
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Appendix I: Relevant Feasible Mutator Transitions for CruiseControl 
 

Class TranId Source Target Function Guard Action 
AutoSystem t001 Initial Inactive AutoSystem() true ThrottleFloor:=12; ThrottleGovernor:=80;  

Global BrakeControl:=New BrakeControl(); 
BrakeActive:=false;  
Global ClutchUser:=New ClutchUser();  
ClutchActive:=false;  
Global Gauges:=New Gauges(); Danger:=false;  
Global CruiseUnit:=New CruiseUnit(); 
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Class TranId Source Target Function Guard Action 
AutoSystem t002 Inactive Active BrakeActive(x) x=true BrakeActive:=true; Call CruiseUnit.Cancel(); 
AutoSystem t005 Active Active BrakeActive(x) x=true BrakeActive:=true; Call CruiseUnit.Cancel(); 
AutoSystem t008 Active Inactive BrakeActive(x) x=false & ClutchActive=false  

& Danger=false 
BrakeActive:=false;  

BrakeControl t001 Initial Inactive BrakeControl() true Global BrakeUser:=New BrakeUser(); IsActive:=false; 
PedalPressure:=0;LinePressure:=0; 
WheelsTurning:=false; 

BrakeControl t002 Inactive Braking IsActive(x) x=true IsActive:=true; Call AutoSystem.BrakeActive(true); 
BrakeControl t003 Braking Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false); 
BrakeControl t004 Locked Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false); 
BrakeUser t001 Initial Inactive BrakeUser() true IsActive:=false; PedalPressure:=0; pconst:=5; 
BrakeUser t002 Inactive Braking IsActive(x) x=true IsActive:=true; Call AutoSystem.BrakeActive(true);  

Call BrakeControl.IsActive(true); 
BrakeUser t003 Braking Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false);  

Call BrakeControl.IsActive(false); 
CruiseUnit t001 Initial Off CruiseUnit() true Global CruiseUser:=New CruiseUser(); 

UserSwitch:=Off; 
SlowCutoff:=25; FastCutoff:=95;UserMode:=Null; 
CurrentSpeed:=0; TargetSpeed:=0; TargetThrottle:=0;

CruiseUnit t004 Off Off SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit t009 Off Inactive UserSwitch(x) x=On UserSwitch:=On; 
CruiseUnit t012 Inactive Inactive SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit t014 Inactive Inactive UserMode(x) x=NT & UserMode=SD  

& (Gauges.Speed()<=SlowCutoff 
OR Gauges.Speed()>=FastCutoff) 

UserMode:=NT; 

CruiseUnit t016 Inactive Cruise UserMode(x) x=NT & UserMode=SD  
& (SlowCutoff<Gauges.Speed() 
<FastCutoff)  
& AutoSystem.BrakeActive()=false & 
AutoSystem.ClutchActive()=false 

UserMode:=NT; CurrentSpeed:=Gauges.Speed(); 
 TargetSpeed:=CurrentSpeed; 
TargetThrottle:=Throttle.Position();  
Call Gauges.Cruise(On);  
Call Throttle.Floor(TargetThrottle);  
Put CheckState() on Call Queue; 

CruiseUnit t017 Inactive Inactive UserMode(x) x<>NT UserMode:=x; 
CruiseUnit t019 Inactive Off UserSwitch(x) x=Off UserSwitch:=Off; 
CruiseUnit t021 Cruise Override Cancel() true Call Gauges.Cruise(Off); Call Throttle.Floor(0); 
CruiseUnit t023 Cruise Cruise CheckState() ABS(TargetSpeed-

CurrentSpeed)<0.5 
Pause; CurrentSpeed:=Gauges.Speed();  
Put CheckState() on Call Queue; 

CruiseUnit t024 Cruise Cruise CheckState() 0.5<=ABS(TargetSpeed-
CurrentSpeed)<1.0 

CurrentSpeed:=Gauges.Speed();  
Put CheckState() on Call Queue; 

CruiseUnit t025 Cruise Cruise CheckState() ABS(TargetSpeed-
CurrentSpeed)>=1.0 & 
Throttle.Position()>Throttle.Floor() 

CurrentSpeed:=Gauges.Speed();  
Put CheckState() on Call Queue; 

CruiseUnit t026 Cruise Cruise CheckState() CurrentSpeed-TargetSpeed>=1.0 & 
Throttle.Position()=Throttle.Floor() 

Call Throttle.Floor(Throttle.Floor()-0.5); Pause; 
CurrentSpeed:=Gauges.Speed();  
Put CheckState() on Call Queue; 

CruiseUnit t027 Cruise Cruise CheckState() TargetSpeed-CurrentSpeed>=1.0 & 
Throttle.Position()=Throttle.Floor() 

Call Throttle.Floor(Throttle.Floor()+0.5); Pause; 
CurrentSpeed:=Gauges.Speed();  
Put CheckState() on Call Queue; 

CruiseUnit t028 Cruise Cruise SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit t030 Cruise Decel UserMode(x) x=SD TargetSpeed:=TargetSpeed-1; UserMode:=SD;  

Put CheckState() on Call Queue; 
CruiseUnit t031 Cruise Accel UserMode(x) x=RA TargetSpeed:=TargetSpeed+1; UserMode:=RA;  

Put CheckState() on Call Queue; 
CruiseUnit t034 Cruise Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off;  

UserMode:=Null; Call Throttle.Floor(0); 
CruiseUnit t035 Decel Override Cancel() true Call Gauges.Cruise(Off); UserMode:=Null;  

Call Throttle.Floor(0); 
CruiseUnit t038 Decel Decel CheckState() CurrentSpeed>SlowCutoff Call Throttle.Floor(Throttle.Position()-0.5); Pause; 

CurrentSpeed:=Gauges.Speed();  
Put CheckState() on Call Queue; 

CruiseUnit t039 Decel Override CheckState() CurrentSpeed<=SlowCutoff Call Gauges.Cruise(Off); UserMode:=Null;  
Call Throttle.Floor(0); 

CruiseUnit t040 Decel Decel SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit t043 Decel Cruise UserMode(x) x=NT UserMode:=NT; TargetSpeed:=Gauges.Speed(); 
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Class TranId Source Target Function Guard Action 
 TargetThrottle:=Throttle.Position(); 
CurrentSpeed:=TargetSpeed;  
Put CheckState() on Call Queue; 

CruiseUnit t045 Decel Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off; 
 UserMode:=Null; Call Throttle.Floor(0); 

CruiseUnit t047 Accel Override Cancel() true Call Gauges.Cruise(Off); UserMode:=Null;  
Call Throttle.Floor(0); 

CruiseUnit t050 Accel Accel CheckState() CurrentSpeed<FastCutoff Call Throttle.Floor(Throttle.Position()+0.5); Pause; 
CurrentSpeed:=Gauges.Speed();  
Put CheckState() on Call Queue; 

CruiseUnit t051 Accel Override CheckState() CurrentSpeed>=FastCutoff Call Gauges.Cruise(Off); UserMode:=Null;  
Call Throttle.Floor(0); 

CruiseUnit t052 Accel Accel SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit t055 Accel Cruise UserMode(x) x=NT UserMode:=NT; TargetSpeed:=Gauges.Speed(); 

TargetThrottle:=Throttle.Position(); 
CurrentSpeed:=TargetSpeed;  
Put CheckState() on Call Queue; 

CruiseUnit t057 Accel Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off; 
 UserMode:=Null; Call Throttle.Floor(0); 

CruiseUnit t061 Override Override SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit t063 Override Override UserMode(x) x<>NT  

OR Gauges.Speed()<=SlowCutoff  
OR Gauges.Speed()>=FastCutoff 

UserMode:=x; 

CruiseUnit t064 Override Cruise UserMode(x) x=NT & UserMode=SD  
& (SlowCutoff<Gauges.Speed()< 
FastCutoff)  
& AutoSystem.BrakeActive()=false & 
AutoSystem.ClutchActive()=false 

CurrentSpeed:=Gauges.Speed(); 
TargetSpeed:=CurrentSpeed; 
TargetThrottle:=Throttle.Position();  
Call Gauges.Cruise(On);  
Call Throttle.Floor(TargetThrottle); UserMode:=NT;  
Put CheckState() on Call Queue; 

CruiseUnit t065 Override Cruise UserMode(x) x=NT & UserMode=RA  
&(SlowCutoff<Gauges.Speed()< 
FastCutoff)  
& AutoSystem.BrakeActive()=false & 
AutoSystem.ClutchActive()=false 

Call Throttle.Floor(TargetThrottle);  
Call Gauges.Cruise(On); UserMode:=NT; Pause; 
CurrentSpeed:=Gauges.Speed();  
Put CheckState() on Call Queue; 

CruiseUnit t066 Override Override UserMode(x) x=NT & UserMode=Null UserMode:=NT; 
CruiseUnit t069 Override Off UserSwitch(x) x=Off UserSwitch:=Off; UserMode:=Null; 
CruiseUser t001 Initial Off CruiseUser() true Switch:=Off; Mode:=NT; 
CruiseUser t002 Off Neutral Switch(x) x=On Switch:=On; Call CruiseUnit.UserSwitch(On); 
CruiseUser t003 Neutral Off Switch(x) x=Off Switch:=Off; Call CruiseUnit.UserSwitch(Off); 
CruiseUser t004 Neutral Accel Mode(x) x=RA Mode:=RA; Call CruiseUnit.UserMode(RA); 
CruiseUser t005 Accel Neutral Mode(x) x=NT Mode:=NT; Call CruiseUnit.UserMode(NT); 
CruiseUser t006 Decel Neutral Mode(x) x=NT Mode:=NT; Call CruiseUnit.UserMode(NT); 
CruiseUser t007 Neutral Decel Mode(x) x=SD Mode:=SD; Call CruiseUnit.UserMode(SD); 
CruiseUser t008 Accel Off Switch(x) x=Off Switch:=Off; Mode:=NT; Call 

CruiseUnit.UserSwitch(Off); 
CruiseUser t009 Decel Off Switch(x) x=Off Switch:=Off; Mode:=NT; Call 

CruiseUnit.UserSwitch(Off); 
CruiseUser t010 Neutral Neutral Cancel() true Call CruiseUnit.Cancel(); 
CruiseUser t016 Accel Accel Cancel() true Call CruiseUnit.Cancel(); 
CruiseUser t019 Decel Decel Cancel() true Call CruiseUnit.Cancel(); 
Engine t001 Initial Normal Engine() true Rpm:=0; GasFlow:=0; ExternalDrag:=1;  

WaterTMin:=0; OilPMin:=0; 
Engine t003 Normal Normal GasFlow(x) true GasFlow:=x; Rpm:=(2-ExternalDrag)*GasFlow*630;  

Call Gauges.Tach(Rpm);  
Call Wheel.AxelRpm(Rpm*Transmission.DriveRatio());

Engine t005 Normal Normal ExternalDrag(x) true ExternalDrag:=x; Rpm:=(2-
ExternalDrag)*GasFlow*630; 
Call Gauges.Tach(Rpm);  
Call Wheel.AxelRpm(Rpm*Transmission.DriveRatio());

GasUser t001 Initial Active GasUser() true PedalPosition:=0; 
GasUser t002 Active Active PedalPosition(x) x>0 & x<>PedalPosition PedalPosition:=x; Call 

Throttle.GasPedal(PedalPosition); 
Gauges t000 Initial Normal Gauges() true Speed:=0; Cruise:=Off; Tach:=0; OilPressure:=0; 



 
 -34- 

Class TranId Source Target Function Guard Action 
OilLight:=Off; Odometer:=Null; TripMeter:=Null; 
WaterTemp:=0; AbsLight:=Off; Battery:=Off;  
SeatBelt:=Off; HandBrake:=Null; LowGas:=Off; 

Gauges t006 Normal Normal Tach(x) true Tach:=x; 
Gauges t008 Normal Normal Speed(x) x<180 Speed:=x; 
Gauges t009 Normal Danger Speed(x) x>=180 Speed:=Min(x,250); Call AutoSystem.Danger(true); 
Gauges t017 Normal Normal Cruise(x) true Cruise:=x; 
Gauges t034 Danger Danger Speed(x) x>=180 Speed:=Min(x,250); 
Ignition t000 Initial On Ignition() true Key:=On; EngineOn:=false;  

Global AutoSystem:=New AutoSystem(); 
Ignition t001 On Initial Key(x) x=Off Key:=Off; EngineOn:=false; Destroy Throttle;  

Destroy Engine; Destroy AutoSystem; Destroy Self; 
Ignition t003 On On StartEngine() EngineOn=false Global Transmission:=New Transmission();  

Global Engine:=New Engine();  
Global GasUser:=New GasUser(); Global 
Throttle:=New Throttle(AutoSystem.ThrottleFloor(); 
AutoSystem.ThrottleGovernor()); EngineOn:=true; 

Throttle t001 Initial Idle Throttle(x, y) 0<x & x<y & y<100 fconst:=x; gconst:=y; Position:=fconst;  
Call Engine.GasFlow(Convert(Position)); Floor:=fconst; 
Call GasUser.PedalPosition(fconst); 

Throttle t002 Idle Manual GasPedal(x) x>fconst GasPedal:=x; Position:=Min(GasPedal, gconst);  
Call Engine.GasFlow(Convert(Position)); 

Throttle t003 Manual Idle GasPedal(x) x<=fconst GasPedal:=x; Position:=fconst;  
Call Engine.GasFlow(Convert(fconst));  
Call GasUser.PedalPosition(fconst); 

Throttle t004 Idle Automatic Floor(x) x>fconst Floor:=Min(x, gconst); Position:=Floor;  
Call Engine.GasFlow(Convert(Position));  
Call GasUser.PedalPosition(Position); 

Throttle t005 Automatic Idle Floor(x) x<=fconst Floor:=fconst; Position:=fconst;  
Call Engine.GasFlow(Convert(Position));  
Call GasUser.PedalPosition(fconst); 

Throttle t006 Manual Automatic GasPedal(x) x>fconst & x<=Floor GasPedal:=x; Position:=Floor;  
Call Engine.GasFlow(Convert(Position));  
Call GasUser.PedalPosition(Floor); 

Throttle t007 Manual Automatic Floor(x) x>=Position Floor:=Min(x, gconst); Position:=Floor;  
Call Engine.GasFlow(Convert(Position));  
Call GasUser.PedalPosition(Floor); 

Throttle t008 Automatic Manual GasPedal(x) x>fconst & x>Floor & x<=gconst GasPedal:=x; Position:=x;  
Call Engine.GasFlow(Convert(Position)); 

Throttle t009 Automatic Automatic Floor(x) x>fconst Floor:=Min(x, gconst); Position:=Floor;  
Call Engine.GasFlow(Convert(Position));  
Call GasUser.PedalPosition(Position); 

Throttle t024 Idle Idle GasPedal(x) x<=fconst GasPedal:=x; 
Throttle t025 Idle Idle Floor(x) x<=fconst Floor:=fconst; 
Throttle t026 Manual Manual GasPedal(x) x>fconst & x<=gconst & x>Floor GasPedal:=x; Position:=x;  

Call Engine.GasFlow(Convert(Position)); 
Throttle t028 Manual Manual Floor(x) x<Position Floor:=Max(fconst, x); 
Throttle t030 Automatic Automatic GasPedal(x) x>fconst & x<=Floor GasPedal:=x; 
Transmissio
n 

t001 Initial Neutral Transmission() true Gear:=N; Ratio_R:=1.846; Ratio_1:=2.563; 
Ratio_2:=1.552; Ratio_3:=1.022;  
Ratio_4:=0.653; Ratio_5:=0.471; 
Ratio_Diff:=4.429; Global Wheel:=New Wheel(); 

Transmissio
n 

t005 Neutral Forward Gear(x) x=1 OR x=2 OR x=3  
OR x=4 OR x=5 

Gear:=x;  
Call Wheel.AxelRpm(Gauges.Tach()*DriveRatio()); 

Transmissio
n 

t007 Forward Neutral Gear(x) x=N Gear:=N; Call Wheel.AxelRpm(0); 
Transmissio
n 

t008 Forward Forward Gear(x) x=1 OR x=2 OR x=3  
OR x=4 OR x=5 

Gear:=x;  
Call Wheel.AxelRpm(Gauges.Tach()*DriveRatio()); 

Wheel t001 Initial DirectDrive Wheel() true AxelRpm:=0; WheelRpm:=0; WheelDiam:=0.00056; 
Wheel t002 DirectDrive DirectDrive AxelRpm(x) ABS(x-WheelRpm)<=2 AxelRpm:=x; WheelRpm:=x; Call  

Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
Wheel t003 DirectDrive Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1; Call  

Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 
Put CheckState() on Call queue; 
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Class TranId Source Target Function Guard Action 
Wheel t004 DirectDrive Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1; Call  

Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
 Put CheckState() on Call queue; 

Wheel t005 Decel Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1; Call  
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 
Put CheckState() on Call queue; 

Wheel t006 Decel Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1; Call  
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 
Put CheckState() on Call queue; 

Wheel t007 Decel DirectDrive AxelRpm(x) ABS(x-WheelRpm)<=2 AxelRpm:=x; WheelRpm:=x; Call  
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel t008 Accel Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1; Call  
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 
Put CheckState() on Call queue; 

Wheel t009 Accel DirectDrive AxelRpm(x) ABS(x-WheelRpm)<=2 AxelRpm:=x; WheelRpm:=x; Call  
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel t010 Accel Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1; Call  
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 
Put CheckState() on Call queue; 

Wheel t012 Decel Decel CheckState() AxelRpm+2<WheelRpm WheelRpm:=WheelRpm-1; Call  
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 
Put CheckState() on Call queue; 

Wheel t013 Decel DirectDrive CheckState() AxelRpm+2>=WheelRpm WheelRpm:=AxelRpm; Call  
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel t014 Accel Accel CheckState() AxelRpm-2>WheelRpm WheelRpm:=WheelRpm+1; Call 
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);
 Put CheckState() on Call queue; 

Wheel t015 Accel DirectDrive CheckState() AxelRpm-2<=WheelRpm WheelRpm:=AxelRpm; Call 
Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

 


