
A Mutation Carol: Past, Present and Future

Jeff Offutt
Software Engineering

George Mason University
Fairfax, VA 22030, USA

offutt@gmu.edu

Abstract

Context: The field of mutation analysis has been growing, both in the number
of published papers and the number of active researchers. This special issue
provides a sampling of recent advances and ideas. But do all the new researchers
know where we started?
Objective: To imagine where we are going, we must first know where we are.
To understand where we are, we must know where we have been. This paper
reviews past mutation analysis research, considers the present, then imagines
possible future directions.
Method: A retrospective study of past trends lets us the ability to see the current
state of mutation research in a clear context, allowing us to imagine and then
create future vectors.
Results: The value of mutation has greatly expanded since the early view of
mutation as an expensive way to unit test subroutines. Our understanding of
what mutation is and how it can help has become much deeper and broader.
Conclusion: Mutation analysis has been around for 35 years, but we are just now
beginning to see its full potential. The papers in this issue and future mutation
workshops will eventually allow us to realize this potential.

Keywords: Mutation testing

1. Introduction

The concept of mutation analysis was invented nearly 40 years ago and the
first paper was published in 1977. My personal involvement with mutation anal-
ysis began as a graduate student in the mid-1980s. I started by reading most of
the early papers, then helped write technical sections of a proposal that would

Preprint submitted to Information and Software Technology April 20, 2011

lead to one of the most exciting and dynamic research projects of my career, the
Mothra project.

Since those early days, the field of mutation testing has grown remarkably.
Jia and Harman [1] documented growth in theoretical work, empirical work,
papers published, and tool development over the past 25 years. They found the
field to be continuing to expand with more papers published and more scientists
working on more projects every year. This paper is based on a keynote talk at
Mutation 2009 and offers a retrospective on how the field developed in the past,
where it is today, and where it might go in the next decade.

2. Mutation in the Past

Legend has it that the first ideas of mutation analysis were postulated in 1971
in a class term paper by Richard Lipton [2]. Depending on who we ask, his
professor, Dave Parnas, either thought mutation was a bad idea or a reasonably
clever idea that was not worthy of a PhD dissertation. The first research project
was started in the late 1970s by DeMillo (Georgia Tech), Lipton (Princeton) and
Sayward (Yale). The first research papers were published by Budd and Sayward
[3], Hamlet [4], and DeMillo, Lipton, and Sayward [5]. DeMillo, Lipton, and
Sayward’s 1978 paper [5] is most often cited as the seminal reference. Mutation
has primarily been applied to software by creating mutant versions of the source,
but has also been applied to formal software specifications and many other arti-
facts.

Many fundamental theoretical concepts were laid out in 1980 PhD disserta-
tions by Budd [6] at Yale University and Acree [7] and Hanks [8] at the Georgia
Institute of Technology, and in a related technical report [9]. These papers in-
cluded the original analysis of the number of mutants generated for a program,
which Budd found to be roughly proportional to the product of the number of
variable references times the number of data objects (O(Re f s ∗ Vars)). A later
analysis [7] claimed that the number of mutants is O(Lines ∗ Re f s)–assuming
that the number of data objects in a program is proportional to the number of
lines. This was reduced to O(Lines ∗ Lines) for most programs; the figure that
usually appears in the literature.

A 1996 statistical regression analysis of actual programs by Offutt et al. [10]
showed that the number of lines did not contribute to the number of mutants,
but that Budd’s figure was accurate. The selective mutation approach eliminates
the number of data objects so that the number of mutants is proportional to the
number of variable references (O(Re f s)).

2

Budd’s thesis also established theoretical results on recognizers and gener-
ators. A recognizer is an algorithm that decides whether a set of tests satisfies
mutation (or some other test criterion) and a generator is an algorithm that cre-
ates a set of tests to satisfy a test criterion. Budd showed that both problems
are undecidable, but that there are far more specific instances of the recognizer
problem that can be decided than of the generator problem. In practical terms,
coverage analysis tools provide approximate solutions to the recognizer prob-
lem. They do well except for equivalent mutants, which cannot be determined
automatically. The problem of detecting equivalent mutants is a specific instance
of the more general feasible path problem [11]. Automatic test data generators
provide approximate solutions to the generator problem [12, 13]. Confirming
Budd’s theoretical results, researchers and tool builders have found this a much
harder practical problem to address.

The first mutation research project in the late 1970s and early 1980s focused
exclusively on program mutation at the unit level. Mutation operators were de-
veloped for Fortran [14, 15], Cobol [16, 17], and Lisp [18]. Several working
systems were built, including PIMS (for Fortran) [14, 3], CPMS (for Cobol)
[19, 16], and EXPER (for Cobol) [20].

This multi-year, multi-university, project developed many of the fundamental
concepts and theory behind program-based mutation analysis. In addition to the
above theoretical concepts, the paper by DeMillo, Lipton, and Sayward [5] de-
fined the coupling effect, which claims that “simple faults” and “complex faults”
are coupled in such a way that tests that detect “simple errors” can usually detect
“complex errors.” The problem of equivalent mutants was also identified, both
in theoretical terms (Budd’s recognizers) and in practical terms (the tools). The
important concept of program neighborhoods was also identified by Budd [6].
A neighborhood of a program is a set of programs that are very similar to the
original program; this is a key theoretical basis for how to define mutation oper-
ators. These basic concepts have been explored, refined, evaluated, and updated
in dozens of papers through the 1980s and 1990s.

Perhaps most importantly, the working systems built during the original mu-
tation research project established that tools could be built to support mutation.
However, these tools were fairly limited in their functionality. They were also
not distributed beyond the researchers involved in the initial project, and not used
by anybody but the developers.

3

2.1. The Mothra Project
The Mothra project was established at the Georgia Institute of Technology

in the 1980s to demonstrate practical feasibility of mutation1. This Air Force-
funded project had a goal of solving the many engineering problems associated
with using mutation in practice. The resulting tool, Mothra, was the first widely
used working mutation system. In addition to the researchers on the Mothra
project, Mothra was installed at hundreds of universities and research labs, and
used by dozens of researchers in their own projects [21, 22, 23, 24]. Mothra also
gained wide popularity as a fault-insertion tool to support experimental com-
parisons of other test criteria [25, 26]. When requested, the source (over 100
KLOC of C) was provided to other researchers who went on to create numerous
modifications that were used to demonstrate research solutions and to support
fundamental mutation-related research questions. Some have called Mothra an
early precursor to modern open source software.

The Mothra project resulted in dozens of papers during the project, and more
after [27, 12, 22, 28, 29, 21, 30, 31, 23, 13, 11, 10, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 24] (this is far from a complete list). Four PhD theses
were a direct result of the Mothra project: Offutt (1988) at Georgia Tech [46],
and Agrawal (1991), Krauser (1991), Wong (1993) at Purdue University [47,
48, 49]. Follow-on PhD theses after the primary Mothra project finished were
by Choi in 1991 and Ghosh in 2000 at Purdue University [50, 51] and Untch
at Clemson University in 1995 [52]. More than half a dozen MS theses were
also completed after the primary Mothra project finished, including Craft (1989),
Seaman (1989), Lee (1991), Pressley (1992), Zapf (1993) at Clemson University
and Pan (1994) at George Mason University [53, 54, 55, 56, 57, 58].

The Mothra research project addressed several technical and engineering
problems. Some required fundamental theoretical advances, while others re-
quired new design, engineering, or programming solutions. One of the most
novel aspects of this project was that it was one of the first large-scale software
engineering research projects that included the philosophy “We build tools.”
Most software engineering research at the time was qualitative in nature and few
involved building tools that were robust enough to distribute to other researchers.
Of course, building tools is now the expected norm in software engineering.

1In some early documents, Mothra was given as the acronym Mutation Oriented Test Harness
for Reliable Ada, but that acronym was very seldom used, partly because Mothra itself tested
Fortran programs, not Ada. Rumors that the name Mothra was based on an old Japanese monster
movie are greatly exaggerated.

4

• Architecture of a mutation system: An important philosophy behind the
architecture of Mothra was to view it as a laboratory for future research
efforts. Thus, Mothra should contain an infrastructure that was adaptable
and expandable. The idea was to make it easy to add new tools, mod-
ify existing tools, and inspect and modify all data stores. The primary
designers of Mothra were Rich DeMillo (the project PI), and Jeff Offutt
(PhD student). This philosophy led us to an architecture of a collection of
separate programs, which were integrated around a common set of data
stores with standardized APIs. In modern terms, this would be called
an object-oriented, component-based system, although those terms were
barely known in 1984 when the design was created. Parts of the design
were documented in technical reports and early papers [59, 23, 24]. Fig-
ure 1 illustrates the overall architecture.

Figure 1: The Mothra Tool Set

The four rounded rectangles in the middle of the figure represent major
data stores. The eight squared rectangles represent separate tools. Each
tool performed a separate mutation task, and they communicated through
the data stores. The parser accepted a program from the user and translated
it to a special-purpose intermediate language, the Mothra Intermediate
Language (MIL). The MIL was at a fairly high level, and included lots
of operators specifically designed to support mutation2. The interpreter

2The MIL looks fairly similar to Java ByteCode, at least in terms of format and amount of
5

read the MIL, read test inputs from Test Cases, ran the program, and
saved the results in Expected Output. The mutant maker read the MIL,
then applied a number of rules (mutation operators), and saved the results
in Mutants. The interpreter also read the Mutants data store, applied
operators to modify the MIL to create mutants, and passed the results to
the killer. The killer tool read the Expected Output, compared it with
the actual output of each mutant, and then marked dead mutants in the
Mutants data store.

The test case manager accepted inputs from the user and saved them in a
form the interpreter could read. The decoder read the MIL and the Mu-
tants, then showed the mutants to the user in source code, human read-
able, form. The automatic test data generator (Godzilla) generated tests
automatically and is described below. Other tools were also created as the
Mothra project continued, including tools to mark mutants as equivalent
by hand, then automatically.

The team designed and built several user interfaces (UIs) for Mothra. One
of the goals of the tool-based architecture was to allow maximum flexi-
bility in how Mothra was used. In development, testing, and much of the
experimentation, the different tools were run directly from the command
line (in Unix). Options were built into the tools to support different types
of use. For example, the interpreter had options to run a single test, a set
of tests, or all tests; a single mutant, a set of mutants, or all mutants; to
run only live mutants or to run all live, dead, and equivalent mutants; and
to display more or less information. The killer tool could kill one mutant
or a set of mutants; and could make a mutant alive again. The design sur-
rendered efficiency of integration in favor of flexibility of operation. Most
of the execution time was spent in the interpreter, so the lost of efficiency
elsewhere was relatively unimportant. The interpreter developers (Offutt
and Kim King) spent a lot of effort in optimizing the interpreter.

The first non-command line UI was a menu system in the Bourne shell (sh),
with menu options mapped to tools. More sophisticated interfaces were
built in the C-shell (csh), the Korn shell (ksh), and the Bourne-Again shell
(bash); the Bourne-Again shell version was most commonly distributed
with Mothra. Later, a graphical user interface was built with the X-library.
Unfortunately, it depended on local modifications to the X-library that

information kept.

6

were made at Purdue University, so few were able to successfully install it
elsewhere.

• Creation and storage of mutants: Mutation has more test requirements
(that is, mutants) than most other test criteria, so handling the mutants was
a major issue in the design and development of Mothra. The most obvious
way to implement mutation is to create a complete copy of the source for
every mutant. Of course, this requires lots of space and lots of compila-
tion, costs that were viewed as being prohibitive for Mothra. The solution
was based on the MIL, which can be described as halfway between as-
sembly language and source code. The MIL was designed specifically so
that each mutant required a change to one and only one MIL statement.
Thus, most Mutants were stored as simple records that had a replacement
MIL statement and an index into the MIL. A few mutants required a new
MIL statement to be inserted after the indexed statement. This simple
and efficient storage mechanism allowed the interpreter to read the entire
Mutants description file into an in-memory array, then run a mutant by
making a single change to the original MIL.

Another early decision was to be able to view the data stores and hand-
modify them. Thus, each data store was a flat text file. This slowed down
I/O, so the tools were designed to read data into memory before execution
and only access the files at the beginning and end of execution.

• Efficient execution of mutants: A related issue was how to most effi-
ciently execute large numbers of mutants. The simple design of the Mu-
tants file helped a lot. Interpreting the MIL was slower than running a
compiled program and speed comparisons showed that the interpreter was
between five and ten times slower. Not having to read and write files when
changing mutants or tests saved significant execution time. The killer pro-
gram was adapted to run both as a standalone program that read the Mu-
tants file, changed it, then wrote it back out, and as a function call from
the interpreter to avoid reading and writing the Mutants file. In unit-level
program-based mutation, the first few tests tend to kill lots of mutants. So
the normal execution of the interpreter was to run each test on every live
mutant, as opposed to running each mutant against each test. The first
test ran against all mutants, the second usually ran against only about two
thirds of the mutants, and by the fourth or fifth test, Mothra was typically
running 20% or fewer of the mutants.

Another issue with the interpreter was that it was running (almost) the
7

same program dozens or hundreds of times in the same process. Thus it
was important that state from one run not interfere with subsequent runs.
This was done by zeroing out the entire memory array in the interpreter (a
technique now implemented much more elegantly by Java’s thread mech-
anism). Another issue that came up is that some mutants would cause
an infinite loop. Unix will happily run a process forever or until the user
forcibly stops it, but that is not an option when the same process needs to
manage hundreds of executions. Mothra’s simple solution was the “10X”
rule–if a mutant executed 10 times as many MIL statements as the origi-
nal program on the same test, the mutant was stopped and marked killed.
Some mutants will also lead to run time exceptions (we are, after all, trying
to cause failures!), which in Unix C programs usually cause the process to
terminate. Thus the interpreter had to catch all exceptions, kill the mutant,
and continue execution.

• Definition and storage of test cases: Mothra was built for unit testing
of Fortran functions, which has an advantage of making the definition of
a test very simple. A Mothra test was comprised of only primitive type
variables in either parameters or global statements. The test case manager
identified the inputs and gave users a simple interface to add values for
each input. If a program had a read statement, during original execution
the read statement prompted the users for inputs, then saved them and used
them again when executing mutants (a very primitive form of a capture-
replay tool).

• Automatic test data generation: One of the most difficult and expen-
sive tasks in testing is finding input values to test software with. This
was the subject of Offutt’s dissertation [46, 12]. The first version of the
Godzilla tool simply created random values that were correctly formatted
to be stored in the Test Cases file. This led to a fascinating result–random
values killed from 40% to 50% of the mutants, indicating that roughly half
of all mutants are trivial, that is, easily killed. Even though mutation gen-
erates a lot of test requirements when compared to other criteria, it does
not require significantly more tests.

The theory of having to reach the mutated statement (reachability), in-
fect the state with an incorrect value (necessity), and then propagate to an
incorrect output (sufficiency) led to a symbolic evaluation approach com-
bined with rules for creating tests to kill individual mutants. Satisfying
reachability (the next version of the tool) killed 70% to 75% of the mu-

8

tants, implying that the statement coverage criterion would kill most mu-
tants. Satisfying infection yielded tests that killed 85% to 90% of the non-
equivalent mutants [12, 28, 22, 29, 44, 43, 41]. However, these results only
held for program units that did not have loops, arrays, or pointers (gener-
ally, programs that did not need to place data objects on the stack). Later
research resulted in a dynamic symbolic approach [60, 61] that, combined
with domain reduction procedures, killed over 95% of non-equivalent mu-
tants in the presence of loops and arrays, and got near 100% coverage on
data flow and branch coverage [13].

• Most effective mutation operators: An important question about muta-
tion is what operators to use. Which are redundant with respect to other
operators? Which lead to the strongest tests? Mothra was used for nu-
merous experimental studies on individual operators, many of which were
never published. The most important were probably the constrained, or
selective, approaches [62, 63, 10, 32], which led to a conclusion that only
five of Mothra’s 22 operators are needed. Moreover, those five operators
yielded mutants that were linear in the number of variable references (as
mentioned above).

• Process and user interface: Another issue that Mothra helped consider
was how best to structure the mutation process. The tool-based architec-
ture allowed any process to be imposed on Mothra, and two important
concepts emerged from the automatic test data generation research. First,
if test inputs are generated automatically, they become cheap, throwaway,
resources. Second, most tests are ineffective in the sense that they do not
kill new mutants that previous tests did not already kill. This led to the
realization that the step of evaluating the results of tests should be saved to
the end. That is one of the most human-intensive and thus expensive parts
of mutation, thus this process change greatly reduces the cost of using
mutation [64].

Figure 2 shows two different views of a mutation process. Figure 2(A) on
the left shows the mutation process as it was usually applied before the
Mothra project. The Mothra project led to advances in automation, includ-
ing test data generation, execution methods, and equivalent mutant detec-
tion. The key part of Figure 2(A) is that the manual steps of determining if
the program is correct on the tests and analyzing and marking equivalent
mutants is inside the main loop. Figure 2(B) shows the mutation process
after the Mothra project and some of its following research. (The Mothra

9

Figure 2: Two Mutation Processes

project officially ended in 1990, and followon work continued throughout
the ’90s. These figures are from Offutt and Untch’s paper from the first
Mutation workshop in 2000, and reflects results from Untch’s 1995 dis-
sertation, as well as other papers.) Figure 2(B) includes automation for
generating tests and determining equivalent mutants as well as advances
in mutation execution such as the schema-based approach. Most impor-
tantly, figure 2(B) has no manual steps inside the main loop. Most tests
are thrown away in the “Eliminate ineffective tests” step, and the results of
tests’ execution on the original program are only considered for tests that
are kept. Instead of expecting to find all equivalent mutants and kill all
non-equivalent mutants, the tester supplies a practical “threshold” muta-
tion score. When that score is reached, mutation testing should stop. This
is a pragmatic engineering process that is not perfect, but that helps testers
create good tests.

• Parallelization of mutation execution: Another issue that was looked at
extensively with Mothra was parallelization of mutant execution. Krauser
and Mathur first investigated parallelization with an NCube in 1986 [65].
Offutt, Pargas, Fichter, and Khambekar modified the interpreter to run
on a hypercube in 1992 [40]. Zapf modified the interpreter to distribute
across a collection of loosely connected Sun 4 Unix workstations [58].
Choi and Mathur also tried mutation on a hypercube in 1993 [27], and

10

in Choi’s 1999 dissertation with three architectures, a MIMD, a vector
processor, and a MIMD with vector processes [50]. Because mutation
involves executing hundreds of almost identical programs independently,
it is a natural for parallelization, and all studies reported successful results.

• The coupling hypothesis: The seminal paper by DeMillo, Lipton, and
Sayward [5] introduced the notion of the coupling effect. The Mothra sys-
tem was used to carry out an experimental evaluation of the coupling effect
by modifying the interpreter to introduce two, then three, mutants at a time
[66, 39]. Wah subsequently verified the positive experimental results with
analytical proofs [67, 68].

• Weak mutation: Howden suggested the concept of weak mutation in 1982
[69]. Weak mutation stops execution of a mutant immediately after the mu-
tated software “component,” essentially satisfying reachability and infec-
tion, but not propagation. Girgis and Woodward evaluated weak mutation
by hand in 1985 [70], and Woodward and Halewood suggested a compro-
mise called firm mutation in 1988, in which execution is stopped at some
point after the mutated software component but well before the end of the
program [71]. Horgan and Mathur published theoretical support for weak
mutation in 1990 [72]. In separate studies in 1991, Marick [73] and Offutt
and Lee [42, 37] built weak mutation systems and evaluated the idea ex-
perimentally. Offutt and Lee’s system was built by modifying the Mothra
interpreter. This building tool effort revealed that evaluating a mutant af-
ter a mutated software “component” was ambiguous, and in fact, all weak
mutation has to be in some sense firm. They found the most appropriate
place to check mutants was after the basic block that enclosed the mutant.

• Equivalent mutants: A mutant that always exhibits the same behavior as
the original program is equivalent. Equivalent mutants cannot be killed
so represent noise in the mutation process. They are specific examples
of the “feasible path” problem [74, 75], also known as the infeasible test
requirement problem. Deciding whether a mutant is equivalent is generally
undecidable, so various approximation procedures have been proposed.

The first suggestion was by Baldwin and Sayward in 1979, who proposed
using compiler optimization strategies to determine equivalence [76]. In
1981, Tanaka suggested using data flow analysis [77]. Offutt and Craft
investigated Baldwin and Sayward’s suggestion by adding an equivalence
checker tool to Mothra [53, 36], which found around 15% of equivalent

11

mutants. This research suggested a stronger technique of using the con-
straints developed for test data generation to detect equivalent mutants.
Subsequently, Pan and Offutt used algebraic techniques to detect infeasi-
ble constraints, which represented equivalent mutants [78, 11, 56]. This
technique found all equivalent mutants that compiler optimization found,
plus more for a total of around 45%. In her thesis, Pan suggested that pro-
gram slicing could subsume the infeasible constraint method, and probably
find more equivalent mutants. This idea was picked up by Hierons, Har-
man and Danicic, who explored the use of program slicing and program
dependence in test data generation and equivalent mutant detection [79].

The Mothra project can be viewed as one of the field’s most successful soft-
ware engineering research projects. While funding only lasted a few years, its
influence is still felt twenty years later. It demonstrated the strength and potential
of mutation research. Before Mothra, most testing researchers doubted whether
mutation had any value at all. After Mothra, mutation was widely recognized
as the strongest test criterion known, although many still questioned its practi-
cal feasibility. Dozens of papers were a direct result of the Mothra project, and
hundreds of papers were written after the project, but based on the product. The
Mothra project also established the careers of several scientists who are still ac-
tive researchers today. A goal of the Mothra system was to create a laboratory
that could be used in many ways by many researchers, and by this measure, the
product was enormously successful. Perhaps most importantly, it stimulated the
field of software testing, engaging many young scientists in many ways. Jia and
Harman [1] called Mothra “the most widely studied mutation testing tool.” Vir-
tually all current mutation systems can trace their lineage back to Mothra in one
way or another.

2.2. Mutation Through the 1990s
Mutation research expanded in several directions during the 1990s. More

researchers joined the field, more problems were addressed, and mutation be-
gan to be used for problems other than program-based unit testing. The Mothra
project identified two problems for practical (industry) adoption of mutation: (1)
Mutation analysis was too slow, and (2) Mutation was too hard for testers to use
without becoming experts on the theory.

As Untch [52] put it, research into speeding up mutation fell into three cate-
gories; (1) Do fewer (that is, fewer mutants), (2) Do smarter, and (3) Do faster.
Do fewer approaches include selective mutation [80, 26, 10, 32, 81, 62, 63] and
mutant sampling [82]. Do smarter approaches include weak mutation [83, 70,

12

69, 73, 84, 42, 37, 71], distributed execution [27, 65, 40, 58], and different pro-
cesses [64]. Do smarter approaches include schema-based analysis [85, 52, 86,
87] and compiler-integration [30, 48]. Most research into making mutation easier
to use during the 1990s tried to eliminate manual labor, including automatic test
data generation [28, 12, 29, 43, 41, 46, 13, 44] and equivalent mutant detection
[76, 53, 79, 36, 78, 11, 56, 77].

Most of this work focused on program-based unit testing. Tools used muta-
tion operators defined for traditional programming languages to modify individ-
ual statements, one at a time. Languages for which researchers defined mutation
operators included Fortran [23], Ada [88, 89], C [90, 91, 92], and Lisp [18]. This
use of mutation can be considered to be “traditional mutation.”

One of the first “out of the box” ideas for mutation was interface mutation
[93, 94, 95, 96, 81]. Interface mutation mutates function calls, moving the appli-
cation of mutation beyond the unit testing level to integration testing.

Another higher level application of mutation that started in the 1990s was
specification mutation, which mutates formal specifications [97, 98, 99, 100,
101, 102]. Mutation analysis was also applied to concurrent software [103],
used in many experimental studies [104, 105, 25, 26, 33, 106, 107, 63], applied
to finite state machine testing [108] used to measure reliability [31], finding secu-
rity vulnerabilities [109], testing network protocols [110], and integration testing
between classes [111, 112].

In 2000, I thought mutation research was finished [64] and the only thing left
was industry adoption. But I completely missed the significance of these novel,
non-unit level, applications of mutation.

3. Mutation in the Present

The 2000s saw an explosion of new results, papers, and tools. muJava [113,
114, 115] incorporates statement-level and class-level mutation operators and has
been widely used in research studies since its first release in 2003. Other tools
presently in use include Proteum [91, 93, 94] (built in the 1990s), Csaw [116],
Certitude [117], Mu Dynamics [118], Jumble [119], PlexTest [120], Heckle
[121], and many more [1]. Mutation has been applied to a variety of program
levels and issues including interface mutation [94], class testing [122, 112, 113,
111], multi-class testing [123], object-oriented software [113], web applications
[124], real-time software [125], and concurrency [126]; and several new lan-
guages, including Python, C#, SQL, Lustre, Ruby, SQL, PHP and AspectJ.

Whereas in the past mutation was applied to programming languages, muta-
tion in the present is being applied to other software artifacts and models, such as

13

XML, statecharts, activity diagrams, input languages, SQL, HTML, and spread-
sheet formulas; not to mention problems other than testing such as security, reli-
ability, and complexity measurement.

These new applications have led to a redefinition of mutation based on an
aggregating realization: Mutation applied to program units is only one instance
of a general class of applications. A modern definition of mutation analysis is:

Mutation Analysis: The use of well defined rules defined on syntactic
descriptions to make systematic changes to the syntax or to objects de-
veloped from the syntax.

In program-based unit testing, the rules are mutation operators, the syntactic
description is the grammar of the programming language, and the objects are the
methods or functions under test. This can also be described as a diversity view,
where mutation is one version of syntax-directed testing, which finds tests that
cover a space defined by a grammar

This generic interpretation of mutation allows it to be applied in many situa-
tions. Essentially, any software artifact that can be described as a grammar can
be mutated [127].

Another great step forward in mutation analysis was when mutation entered
the mainstream through successful commercialization. All respectable software
engineering research should have the eventual goal of helping real programmers
build better software. In a purely theoretical area of research, having no path
to practical use can be acceptable. However, a field that includes the word
“engineering” cannot be purely theoretical. Some advances may take years or
decades, but the path should be there. At the beginning, some certainly had
doubts whether mutation would ever be practical, but the possibility was always
clearly there. The advances in the 1990s made practical application possible in
the 2000s.

The product Certitude by Certess (now sold by SpringSoft) tests integrated
circuit designs in VHDL or Verilog by using mutation and includes many of the
engineering advances that were invented during the 1990s. A more limited tool
is PlexTest by ITRegister, which tests C++ using a limited version of mutation.
Mutation has also been used in ad-hoc ways by many non-researchers, indicat-
ing that it is moving out of the research stage3. Perhaps the strongest evidence

3My favorite example is by a former student, who hand-crafted mutants to test a large embed-
ded real-time control program, and found over a dozen software faults that had been deployed for
years. One had cost the company tens of millions of dollars, and my student was rewarded with
a $750,000 bonus. Unfortunately, this company strongly prefers to remain nameless for fear that
its customers may think its software “has bugs.”

14

of widespread acceptance of mutation is very 21st century; it now has its own
Wikipedia entry4. Thus, mutation is truly becoming a story of a long-term effort
by numerous researchers around the world leading to great practical success.

4. Mutation in the Future
Prediction is difficult – especially about the future. - Niels
Bohr

But prediction is a lot of fun! Before any thinker in a computing discipline
dares to discuss the future, it is essential to caution ourselves with the world
wide web. It did not exist in 1990, yet by 2000 the web had changed the world.
In retrospect, once we had fast computers, a mature knowledge of hypertext,
and a far-reaching network, wasn’t the web inevitable? With that caution, the
following discussions are partly predictions and partly wishes. Only time will
tell which wishes become truth, and which predictions will be obviated by new
changes in our field.

4.1. Mutation Must be Integrated With Development
Over time, I have realized that developers do not want to understand muta-

tion. They just want good tests! In fact, developers do not want to understand
testing. They just want to find problems with their software.

I first heard about the compile-debug-edit cycle as a student and remember
thinking “I don’t want to compile or debug or edit, I want to write a program
and run it!” That was naive; programmers will always need to debug. But
modern IDEs eliminate the need to explicitly ask for a compilation. After all,
programmers do not care about compiling, they just want to run their programs.

Later, as I learned about testing, I wondered why do we separate syntax errors
from semantic errors so strongly? IDEs find syntax errors and either correct them
or tell the programmer what they are. Then once we compile cleanly, the IDEs
give up and make us do the rest of the work by hand!

Figure 3 illustrates this idea. The compiler finds syntax errors and reports
them to the developer, who then uses an editor to modify the program. Once the
compiler finds no syntax errors, it turns to a test engine. Mutants are created,
tests are automatically generated, and the programmer is presented with a list
of tests and their results. The tests are demonstrably effective (having achieved
a high mutation score), and when the programmer marks test results as being
incorrect, those tests are automatically sent to a debugger.

4http://en.wikipedia.org/wiki/Mutation testing
15

Figure 3: Integrating Mutation into an IDE

This kind of application requires certain relaxations of theoretical concerns.
A mutation tool integrated into an IDE must ignore problems of completeness
and infeasibility. Primarily, some mutants will not be killed and equivalent mu-
tants should be ignored. While this is uncomfortable for theoretically-minded
researchers, the truth is that developers do not care about equivalent mutants or
the mutation score. They just want good tests; more precisely, they just want to
know when software fails. If the developer has strong concerns about reliability,
the tool could provide options to inspect individual mutants and add additional
tests or mark them as equivalent. But even ignoring these issues, the tests this
tool could generate would be much stronger than the hand-crafted tests the vast
majority of programmers currently create during developer testing.

4.2. What Kinds of Faults Can Mutation Detect?
Although we have many theoretical results and a wealth of knowledge for

how to use mutation, we have very little knowledge about what specific kinds
of faults mutation is good at finding. This requires more experimental studies,
preferably on real software with real faults. A related question is what kind of
faults do we really care about?

An interesting example can be taken from Java. If a program overrides
equals(), for the program to behave correctly, it must also override hashcode().
Will mutation help us detect that kind of fault? Can we design mutation operators
to help detect this kind of fault?

16

A more esoteric example comes from the features of object-oriented soft-
ware, specifically, inheritance and polymorphism. Many class-level mutants in
Java [115] cannot be killed unless the tester creates a subclass of the mutated
class, and the subclass has specific characteristics. How hard is it to create tests
to kill these mutants? How useful are these mutants in testing real software?

4.3. Deeper Theory of Mutation Operators
Another likely subject of future exploration is for a deeper theory for mu-

tation operators. The most common goal of mutation operators has been to
model software faults. But this is based on a somewhat narrow view of mutation;
program-based mutation for functional correctness. What else can be modeled?
What kinds of changes or differences cannot be modeled by mutants?

Some data indicate that our mutation operators are inefficient. Although
small programs tend to create a lot of mutants, experimentalists have found that
only a few tests will kill most mutants [128, 129]. This implies that we may not
need many of the overlapping mutants. Although experimental studies can help
us reduce the number of mutation operators we use [10], a theoretical approach
to mutation operator subsumption or dominance could lead to a more compre-
hensive theory to what mutants are needed. Ultimately, what is a minimalist
approach to mutation?

4.4. Mutate for Improvement Instead of Correctness
The advances in mutation allows for many novel applications of mutation.

Whereas the 1990s saw us moving from mutating programs to mutating other
software artifacts, the generic view of mutation allows us to use mutation anal-
ysis for problems other than assessing functional correctness. One novel idea is
to mutate an artifact, then measure the new version to see if it is in some way
“better” than the original.

Figure 4 illustrates this process. The figure describes the original artifact as a
“model of the software,” perhaps some sort of design model. The model is then
mutated, perhaps with existing mutation operators or possibly with specially-
designed operators, to create N mutants. Then the mutants are measured through
some sort of “assessment” process. For example, the mutant could be measured
as to whether it exhibits improved maintainability, performance, size, or some
other qualitative measure. Then tradeoffs among the many mutants could be
evaluated, an some mutants may be merged to produce the next version. The
process could repeat. This process is similar to traditional biological mutation
and shares a lot with genetic algorithms.

17

Figure 4: Mutation for Improvement

4.5. What Else Can We Mutate?
The novel generic view of mutation leads to some intriguing possibilities.

Grammars can model many software artifacts. What other kinds of artifacts can
we mutate? What additional problems can be solved with mutation? How else
can we use mutants? I fully expect that this kind of out of the box thinking will
lead to many new applications for mutation analysis in the future.

5. Conclusions

The generic definition of mutation in section 3 raises an intriguing possibility.
All previous and existing mutation tools have been instantiated for a particular
language and set of mutation operators. Even the flexible nature of Mothra did
not allow new operators to be added easily. But a more abstract mutation engine
generator (MEG) might be possible. A MEG would have two inputs: a grammar
and a collection of mutation operators. It would need a flexible language for
defining operators. The MEG could then create a mutation engine that uses the
operators to create mutants on strings of the language defined by the grammar.
The MEG could be a tool that allows many mutation analysis tools to be built
fairly quickly, just like yacc allows compilers to be generated quickly.

6. Acknowledgements

This paper is based on a keynote talk at Mutation 2009. I want to thank the
organizers for inviting me, as well as all the attendees for a fascinating workshop.

18

There is no way to fully acknowledge and thank my PhD advisor, Rich DeMillo.
He was a co-inventor of mutation, convinced me to stay in testing by letting
me help write the Mothra proposal, then gave me the enormous opportunity to
take the technical lead on many aspects of the Mothra project. I also thank Dick
Lipton for the initial idea behind mutation and Fred Sayward for co-leading the
initial mutation research. I also want to thank all members of the Mothra team:
Carolyn Budinger, Byoung-Ju Choi, John Flaspohler, William Hsu, Winny Hsu,
Kim King, Ed Krauser, Rhonda Martin, Aditya Mathur, Mike McCracken, Hsin
Pan and Gene Spafford (please forgive me if I left anyone out!); and my col-
leagues and students with whom I have collaborated on with mutation research
since: Paul Ammann, Sten Andler, Mike Craft, Scott Fichter, Robert Geist, Fred
Harris, Mary Jean Harrold, Zhenyi Jin, Yong-Rae Kwon, Ammei Lee, Stephen
Lee, Lisa (Ling) Liu, Yu-Seung Ma, Robert Nilsson, Jie Pan, Roy Pargas, Gregg
Rothermel, Kanupriya Tewary, Roland Untch, Jeff Voas, Wuzhi Xu, Christian
Zapf, and Tong Zhang. Yue Jia and Mark Harman’s excellent survey was a
wonderful resource as I wrote this paper. And of course, I am grateful to all
researchers in the area of mutation analysis, past, present and future.

References

[1] Y. Jia, M. Harman, An analysis and survey of the development of mu-
tation testing, IEEE Transactions of Software Engineering To appear, dOI:
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62.

[2] R. Lipton, Personal communication (September 2007).
[3] T. Budd, F. Sayward, Users guide to the Pilot mutation system, Technical report 114,

Department of Computer Science, Yale University (1977).
[4] R. G. Hamlet, Testing programs with the aid of a compiler, IEEE Transactions on Software

Engineering 3 (4) (1977) 279–290.
[5] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on test data selection: Help for the

practicing programmer, IEEE Computer 11 (4) (1978) 34–41.
[6] T. A. Budd, Mutation analysis of program test data, Ph.D. thesis, Yale University, New

Haven CT (1980).
[7] A. T. Acree, On mutation, Ph.D. thesis, Georgia Institute of Technology, Atlanta GA

(1980).
[8] J. M. Hanks, Testing cobol programs by mutation, Ph.D. thesis, Georgia Institute of Tech-

nology, Atlanta GA (1980).
[9] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, F. G. Sayward, Mutation analysis,

Technical report GIT-ICS-79/08, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta GA (September 1979).

[10] J. Offutt, A. Lee, G. Rothermel, R. Untch, C. Zapf, An experimental determination of
sufficient mutation operators, ACM Transactions on Software Engineering Methodology
5 (2) (1996) 99–118.

19

[11] J. Offutt, J. Pan, Detecting equivalent mutants and the feasible path problem, Software
Testing, Verification, and Reliability, Wiley 7 (3) (1997) 165–192.

[12] R. A. DeMillo, J. Offutt, Constraint-based automatic test data generation, IEEE Transac-
tions on Software Engineering 17 (9) (1991) 900–910.

[13] J. Offutt, Z. Jin, J. Pan, The dynamic domain reduction approach to test data generation,
Software-Practice and Experience 29 (2) (1999) 167–193.

[14] D. M. S. Andre, Pilot mutation system (PIMS) user’s manual, Technical report GIT-ICS-
79/04, Georgia Institute of Technology (April 1979).

[15] T. A. Budd, R. A. DeMillo, R. J. Lipton, F. G. Sayward, The design of a prototype muta-
tion system for program testing, in: Proceedings NCC, AFIPS Conference Record, 1978,
pp. 623–627.

[16] A. T. Acree, CPMS users guide, Technical report GIT-ICS-79/04, Georgia Institute of
Technology (April 1979).

[17] J. M. Hanks, Testing COBOL programs by mutation: Volume I-introduction to the CMS.1
system, volume II - CMS.1 system documentation, Technical report GIT-ICS-80/04,
Georgia Institute of Technology (February 1980).

[18] T. A. Budd, R. J. Lipton, Proving lisp programs using test data, in: Digest for the Work-
shop on Software Testing and Test Documentation, IEEE Computer Society Press, Ft.
Lauderdale FL, 1978, pp. 374–403.

[19] A. Greece, Document cpms 1.1 in cpms users guide, Technical report GIT-ICS-79/04,
Georgia Institute of Technology (April 1979).

[20] T. A. Budd, R. Hess, F. G. Sayward, EXPER implementor’s guide, Tech. rep., Department
of Computer Science, Yale University (1980).

[21] B.-J. Choi, A. Mathur, R. A. DeMillo, E. Krauser, R. Martin, J. Offutt, G. Spafford, The
Mothra tool set, in: Proceedings of the 22nd Hawaii International Conference on System
Sciences, Kailua-Kona HI, 1989, pp. 275–284.

[22] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, J. Offutt, An extended
overview of the Mothra software testing environment, in: Proceedings of the Second
Workshop on Software Testing, Verification, and Analysis, IEEE Computer Society Press,
Banff, Alberta, 1988, pp. 142–151.

[23] K. N. King, J. Offutt, A Fortran language system for mutation-based software testing,
Software-Practice and Experience 21 (7) (1991) 685–718.

[24] J. Offutt, K. N. King, A Fortran 77 interpreter for mutation analysis, in: 1987 Symposium
on Interpreters and Interpretive Techniques, ACM SIGPLAN, St. Paul MN, 1987, pp.
177–188.

[25] P. G. Frankl, S. N. Weiss, C. Hu, All-uses versus mutation testing: An experimental com-
parison of effectiveness, Journal of Systems and Software, Elsevier 38 (3) (1997) 235–
253.

[26] E. S. Mresa, L. Bottaci, Efficiency of mutation operators and selective mutation strategies:
an empirical study, Software Testing, Verification, and Reliability, Wiley 9 (4) (1999)
205–232, december.

[27] B.-J. Choi, A. P. Mathur, High-performance mutation testing, The Journal of Systems and
Software, Elsevier 20 (2) (1993) 135–152.

[28] R. A. DeMillo, J. Offutt, Experimental results of automatically generated adequate test
sets, in: Proceedings of the Sixth Annual Pacific Northwest Software Quality Conference,
Lawrence and Craig, Portland OR, 1988, pp. 209–232.

20

[29] R. A. DeMillo, J. Offutt, Experimental results from an automatic test case generator, ACM
Transactions on Software Engineering Methodology 2 (2) (1993) 109–127.

[30] R. A. DeMillo, E. W. Krauser, A. P. Mathur, Compiler-integrated program mutation, in:
Proceedings of the Fifteenth Annual Computer Software and Applications Conference
(COMPSAC’ 92), Kogakuin University, IEEE Computer Society Press, Tokyo, Japan,
1991.

[31] R. Geist, J. Offutt, F. Harris, Estimation and enhancement of real-time software reliabil-
ity through mutation analysis, IEEE Transactions on Computers 41 (5) (1992) 550–558,
special Issue on Fault-Tolerant Computing.

[32] J. Offutt, G. Rothermel, C. Zapf, An experimental evaluation of selective mutation, in:
Proceedings of the Fifteenth International Conference on Software Engineering, IEEE
Computer Society Press, Baltimore, MD, 1993, pp. 100–107.

[33] J. Offutt, J. Pan, K. Tewary, T. Zhang, An experimental evaluation of data flow and muta-
tion testing, Software-Practice and Experience 26 (2) (1996) 165–176.

[34] J. Offutt, J. Pan, J. M. Voas, Procedures for reducing the size of coverage-based test sets,
in: Twelfth International Conference on Testing Computer Software, Washington, DC,
1995, pp. 111–123.

[35] J. Offutt, Practical mutation testing, in: Twelfth International Conference on Testing Com-
puter Software, Washington, DC, 1995, pp. 99–109.

[36] J. Offutt, W. M. Craft, Using compiler optimization techniques to detect equivalent mu-
tants, Software Testing, Verification, and Reliability, Wiley 4 (3) (1994) 131–154.

[37] J. Offutt, S. D. Lee, An empirical evaluation of weak mutation, IEEE Transactions on
Software Engineering 20 (5) (1994) 337–344.

[38] J. Offutt, A practical system for mutation testing: Help for the common programmer, in:
International Test Conference, IEEE Computer Society Press, Washington, DC, 1994, pp.
824–830.

[39] J. Offutt, Investigations of the software testing coupling effect, ACM Transactions on
Software Engineering Methodology 1 (1) (1992) 3–18.

[40] J. Offutt, R. Pargas, S. V. Fichter, P. Khambekar, Mutation testing of software using a
MIMD computer, in: 1992 International Conference on Parallel Processing, Chicago,
Illinois, 1992, pp. II–257–266.

[41] J. Offutt, An integrated automatic test data generation system, Journal of Systems Integra-
tion 1 (3) (1991) 391–409.

[42] J. Offutt, S. D. Lee, How strong is weak mutation?, in: Proceedings of the Fourth Sym-
posium on Software Testing, Analysis, and Verification, IEEE Computer Society Press,
Victoria, British Columbia, Canada, 1991, pp. 200–213.

[43] J. Offutt, An integrated system for automatically generating test data, in: Proceedings of
the 1990 Conference on Systems Integration, IEEE Computer Society Press, Morristown
New Jersey, 1990, pp. 694–701.

[44] J. Offutt, E. J. Seaman, Using symbolic execution to aid automatic test data generation,
in: Proceedings of the 1990 Annual Conference on Computer Assurance (COMPASS 90),
IEEE Computer Society Press, Gaithersburg MD, 1990.

[45] J. Offutt, Using mutation analysis to test software, in: Proceedings of the Seventh Inter-
national Conference on Testing Computer Software, ACM SIGSOFT, San Francisco CA,
1990, pp. 65–77.

[46] J. Offutt, Automatic test data generation, Ph.D. thesis, Georgia Institute of Technology,

21

Atlanta GA, technical report GIT-ICS 88/28 (1988).
[47] H. Agrawal, Towards automatic debugging of computer programs, Ph.D. thesis, Purdue

University, (also Technical Report SERC-TR-103-P, Software Engineering Research Cen-
ter, Purdue University, West Lafayette, IN) (August 1991).

[48] E. W. Krauser, Compiler-integrated software testing, Ph.D. thesis, Purdue University,
(also Technical Report SERC-TR-118-P, Software Engineering Research Center, Purdue
University, West Lafayette, IN) (December 1991).

[49] W. E. Wong, On mutation and data flow, Ph.D. thesis, Purdue University, (Also Technical
Report SERC-TR-149-P, Software Engineering Research Center, Purdue University, West
Lafayette, IN) (December 1993).

[50] B. CHoi, Software testing using high performance computers, Ph.D. thesis, Purdue Uni-
versity (December 1999).

[51] S. Ghosh, Testing component-based distributed applications, Ph.D. thesis, Purdue Univer-
sity, West Lafayette IN (2000).

[52] R. Untch, Schema-based mutation analysis: A new test data adequacy assessment method,
Ph.D. thesis, Clemson University, Clemson SC, clemson Department of Computer Sci-
ence Technical report 95-115 (1995).

[53] W. M. Craft, Detecting equivalent mutants using compiler optimization techniques, Mas-
ter’s thesis, Department of Computer Science, Clemson University, Clemson SC, techni-
cal Report 91-128 (1989).

[54] S. Lee, Weak vs. strong: An empirical comparison of mutation variants, Master’s thesis,
Department of Computer Science, Clemson University, Clemson SC (1991).

[55] D. L. Pressley, The path to godzilla, Master’s thesis, Department of Computer Science,
Clemson University, Clemson SC, technical Report 92-113 (1992).

[56] J. Pan, Using constraints to detect equivalent mutants, Master’s thesis, Department of
Information and Software Engineering, George Mason University, Fairfax VA, (Also re-
leased as technical report ISSE-TR-94-109, http://www.cs.gmu.edu/∼tr admin/) (1994).

[57] E. J. Seaman, Using symbolic evaluation to address the internal variable problem, Mas-
ter’s thesis, Department of Computer Science, Clemson University, Clemson SC (1989).

[58] C. N. Zapf, Medusamothra-A distributed interpreter for the mothra mutation testing sys-
tem, M.S. thesis, Clemson University, Clemson, SC (August 1993).

[59] A. H. Agrawal, R. A. DeMillo, W. Hsu, W. Hsu, E. W. Krauser, J. Offutt, H. Pan, G. Spaf-
ford, Mothra internal documentation, version 1.5, Technical report SERC-TR, Software
Engineering Research Center, Purdue University, West Lafayette IN (July 1989).

[60] B. Korel, Automated software test data generation, IEEE Transactions on Software Engi-
neering 16 (8) (1990) 870–879.

[61] B. Korel, Dynamic method for software test data generation, Software Testing, Verifica-
tion, and Reliability, Wiley 2 (4) (1992) 203–213.

[62] W. E. Wong, A. P. Mathur, Fault detection effectiveness of mutation and data flow testing,
Software Quality Journal 4 (1) (1995) 69–83.

[63] W. E. Wong, A. P. Mathur, Reducing the cost of mutation testing: An empirical study,
Journal of Systems and Software, Elsevier 31 (3) (1995) 185–196.

[64] J. Offutt, R. Untch, Mutation 2000: Uniting the orthogonal, in: Proceedings of Mutation
2000: Mutation Testing in the Twentieth and the Twenty First Centuries, San Jose, CA,
2000, pp. 45–55.

[65] E. W. Krauser, A. P. Mathur, Program testing on a massively parallel transputer based sys-

22

tem, in: Proceedings of the ISMM International Symposium on Mini and Microcomputers
and their Applications, Austin TX, 1986, pp. 67–71.

[66] J. Offutt, The coupling effect: Fact or fiction?, in: Proceedings of the Third Symposium
on Software Testing, Analysis, and Verification, ACM SIGSOFT 89, Key West Florida,
1989, pp. 131–140.

[67] K. S. H. T. Wah, Fault coupling in finite bijective functions, Software Testing, Verification,
and Reliability, Wiley 5 (1) (1995) 3–47.

[68] K. S. H. T. Wah, A theoretical study of fault coupling, Software Testing, Verification, and
Reliability, Wiley 10 (1) (2000) 3–46.

[69] W. E. Howden, Weak mutation testing and completeness of test sets, IEEE Transactions
on Software Engineering 8 (4) (1982) 371–379.

[70] M. R. Girgis, M. R. Woodward, An integrated system for program testing using weak
mutation and data flow analysis, in: Proceedings of the Eighth International Conference
on Software Engineering, IEEE Computer Society Press, London UK, 1985, pp. 313–319.

[71] M. R. Woodward, K. Halewood, From weak to strong, dead or alive? An analysis of some
mutation testing issues, in: Proceedings of the Second Workshop on Software Testing,
Verification, and Analysis, IEEE Computer Society Press, Banff, Alberta, 1988, pp. 152–
158.

[72] J. R. Horgan, A. P. Mathur, Weak mutation is probably strong mutation, Technical re-
port SERC-TR-83-P, Software Engineering Research Center, Purdue University, West
Lafayette IN (December 1990).

[73] B. Marick, The weak mutation hypothesis, in: Proceedings of the Fourth Symposium
on Software Testing, Analysis, and Verification, IEEE Computer Society Press, Victoria,
British Columbia, Canada, 1991, pp. 190–199.

[74] A. Goldberg, T. C. Wang, D. Zimmerman, Applications of feasible path analysis to pro-
gram testing, in: Proceedings of the 1994 International Symposium on Software Testing,
and Analysis, ACM Press, Seattle WA, 1994, pp. 80–94.

[75] R. Jasper, M. Brennan, K. Williamson, B. Currier, D. Zimmerman, Test data generation
and feasible path analysis, in: Proceedings of the 1994 International Symposium on Soft-
ware Testing, and Analysis, ACM Press, Seattle WA, 1994, pp. 95–107.

[76] D. Baldwin, F. Sayward, Heuristics for determining equivalence of program mutations,
Research report 276, Department of Computer Science, Yale University (1979).

[77] A. Tanaka, Equivalence testing for fortran mutation system using data flow analysis, Mas-
ter’s thesis, School of Information and Computer Science, Georgia Institute of Technol-
ogy, Atlanta GA (1981).

[78] J. Offutt, J. Pan, Detecting equivalent mutants and the feasible path problem, in: Pro-
ceedings of the 1996 Annual Conference on Computer Assurance (COMPASS 96), IEEE
Computer Society Press, Gaithersburg MD, 1996, pp. 224–236.

[79] R. Hierons, M. Harman, S. Danicic, Using program slicing to assist in the detection of
equivalent mutants, Software Testing, Verification, and Reliability, Wiley 9 (4) (1999)
233–262.

[80] E. F. Barbosa, J. C. Maldonado, A. M. R. Vincenzi, Toward the determination of sufficient
mutant operators for C, Software Testing, Verification, and Reliability, Wiley 11 (2001)
113–136.

[81] W. E. Wong, M. E. Delamaro, J. C. Maldonado, A. P. Mathur, Constrained mutation in
C programs, in: Proceedings of the 8th Brazilian Symposium on Software Engineering,

23

Curitiba, Brazil, 1994, pp. 439–452.
[82] M. Sahinoglu, E. H. Spafford, A sequential statistical procedure in mutation-based testing,

in: Proceedings of the 28th Annual Spring Reliability Seminar, IEEE Computer Society
Press, Boston MA, 1990, pp. 127–148.

[83] V. N. Fleyshgakker, S. N. Weiss, Efficient Mutation Analysis: A New Approach, in: Pro-
ceedings of the International Symposium on Software Testing and Analysis (ISSTA 94),
ACM SIGSOFT, ACM Press, Seattle, WA, 1994, pp. 185–195.

[84] A. C. Marshall, Static dataflow-aided weak mutation analysis (SDAWM), Information and
Software Technology 32 (1) (1990) 99–104.

[85] R. Untch, Mutation-based software testing using program schemata, in: Proceedings of
the 30th ACM Southeast Regional Conference, Raleigh, NC, 1992.

[86] R. Untch, M. J. Harrold, J. Offutt, TUMS: Testing using mutant schemata, in: Proceedings
of the 35th Annual ACM Southeast Conference, ACM, Murfreesboro, TN, 1997, pp. 174–
181.

[87] R. Untch, J. Offutt, M. J. Harrold, Mutation analysis using program schemata, in: Pro-
ceedings of the 1993 International Symposium on Software Testing, and Analysis, Cam-
bridge MA, 1993, pp. 139–148.

[88] J. H. Bowser, Reference manual for Ada mutant operators, Technical report GIT-SERC-
88/02, Georgia Institute of Technology (February 1988).

[89] J. Offutt, J. Payne, J. M. Voas, Mutation operators for Ada, Technical report ISSE-TR-
96-09, Department of Information and Software Engineering, George Mason University,
Fairfax VA, http://www.cs.gmu.edu/∼tr admin/ (March 1996).

[90] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. Krauser, R. J. Martin,
A. Mathur, G. Spafford, Design of mutant operators for the C programming language,
Technical report SERC-TR-41-P, Software Engineering Research Center, Purdue Univer-
sity, West Lafayette IN (March 1989).

[91] M. E. Delamaro, J. C. Maldonado, M. Jino, M. Chaim, Proteum: Uma ferramenta de teste
baseada na análise de mutantes (proteum: A testing tool based on mutation analysis),
in: 7th Brazilian Symposium on Software Engineering, Rio de Janeiro, Brazil, 1993, pp.
31–33, in Portuguese.

[92] M. E. Delamaro, J. C. Maldonado, Proteum-A tool for the assessment of test adequacy for
C programs, in: Proceedings of the Conference on Performability in Computing Systems
(PCS 96), New Brunswick, NJ, 1996, pp. 79–95.

[93] M. Delamaro, J. Maldonado, A. Vincenzi, Proteum/IM 2.0: An integrated mutation testing
environment, in: Proceedings of Mutation 2000: Mutation Testing in the Twentieth and
the Twenty First Centuries, San Jose, CA, 2000.

[94] M. Delamaro, J. C. Maldonado, A. P. Mathur, Interface mutation: An approach for inte-
gration testing, IEEE Transactions on Software Engineering 27 (3) (2001) 228–247.

[95] S. Ghosh, A. P. Mathur, Interface mutation, Software Testing, Verification, and Reliability,
Wiley 11 (2001) 227–247.

[96] S. Ghosh, A. Mathur, Interface mutation, in: Proceedings of Mutation 2000: Mutation
Testing in the Twentieth and the Twenty First Centuries, San Jose, CA, 2000.

[97] P. Ammann, P. E. Black, Abstracting formal specifications to generate software tests
via model checking, in: Proceedings of the 18th Digital Avionics Systems Conference
(DASC99), 1999.

[98] P. Ammann, P. E. Black, A specification-based coverage metric to evaluate test sets, in:

24

Proceedings HASE99: 4th IEEE International Symposium on High Assurance Systems,
Washington, DC, 1999, pp. 239–248.

[99] P. Ammann, W. Ding, D. Xu, Using a model checker to test safety properties, in: Proceed-
ings ICECCS 2001: Seventh IEEE International Conference on Engineering of Complex
Computer Systems, IEEE, 2001.

[100] P. E. Ammann, P. E. Black, W. Majurski, Using model checking to generate tests from
specifications, in: Second IEEE International Conference on Formal Engineering Meth-
ods (ICFEM’98), Brisbane, Australia, 1998, pp. 46–54.

[101] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, E. W. Wong, Muta-
tion analysis applied to validate specifications based on Petri nets, in: Proceedings of the
8th International Conference on Formal Description Techniques (FORTE’95), Quebec,
Canada, 1995, pp. 329–337.

[102] S. D. R. S. D. Souza, J. C. Maldonado, S. C. P. F. Fabbri, W. L. D. Souza, Mutation testing
applied to estelle specifications, Software Quality Control 8 (4) (1999) 285–301.

[103] R. H. Carver, Mutation-based testing of concurrent programs, in: Proceedings of the IEEE
International Test Conference on Designing, Testing, and Diagnostics, Baltimore, Mary-
land, 1993, pp. 845–853.

[104] M. Daran, P. Thevenod-Fosse, Software error analysis: A real case study involving real
faults and mutations, ACM SIGSOFT Software Engineering Notes 21 (3) (1996) 158–
177.

[105] R. A. DeMillo, A. P. Mathur, On the use of software artifacts to evaluate the effectiveness
of mutation analysis for detecting errors in production software, Technical report SERC-
TR-92-P, Software Engineering Research Center, Purdue University, West Lafayette IN
(March 1992).

[106] A. P. Mathur, W. E. Wong, An empirical comparison of data flow and mutation-based
test adequacy criteria, Software Testing, Verification, and Reliability, Wiley 4 (1) (1994)
9–31.

[107] P. Thévenod-Fosse, H. Waeselynck, Y. Crouzet, An experimental study on software struc-
tural testing: Deterministic versus random input generation, in: Fault-Tolerant Comput-
ing: The Twenty-First International Symposium, IEEE Computer Society Press, Mon-
treal, Canada, 1991, pp. 410–417.

[108] S. C. P. F. Fabbri, J. C. Maldonado, M. E. Delamaro, P. C. Masiero, Mutation analy-
sis testing for finite state machines, in: 5th IEEE International Symposium on Software
Reliability Engineering (ISSRE 94), Monterey, CA, 1994, pp. 220–229.

[109] A. K. Ghosh, T. OConnor, G. McGraw, An automated approach for identifying poten-
tial vulnerabilities in software, in: Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, California, 1998, pp. 104–114.

[110] R. L. Probert, F. Guo, Mutation testing of protocols: Principles and preliminary experi-
mental results, in: I. Davidson, D. W. Litwack (Eds.), Protocol Test Systems, III, Elsevier
Science Publishers B. V. (North-Holland), 1991, pp. 57–76.

[111] H. Yoon, B.-J. Choi, J. O. Jeon, Mutation-based inter-class testing, in: Proceedings of the
Asian-Pacific Software Engineering Conference, Taipei, Taiwan, 1998, p. 174.

[112] S.-W. Kim, J. Clark, J. McDermid, Assessing test set adequacy for object-oriented pro-
grams using class mutation, in: Proceedings of Symposium on Software Technology
(SoST’99), 1999, pp. 72–83.

[113] Y.-S. Ma, J. Offutt, Y.-R. Kwon, MuJava : An automated class mutation system, Software

25

Testing, Verification, and Reliability, Wiley 15 (2) (2005) 97–133.
[114] J. Offutt, Y.-S. Ma, Y.-R. Kwon, An experimental mutation system for Java, ACM SIG-

SOFT Software Engineering Notes 29 (5) (2004) 1–4, workshop on Empirical Research
in Software Testing.

[115] J. Offutt, Y.-S. Ma, Y.-R. Kwon, The class-level mutants of muJava, in: Workshop on
Automation of Software Test (AST 2006), Shanghai, China, 2006, pp. 78–84.

[116] M. Ellims, D. Ince, M. Petre, The Csaw C mutation tool: Initial results, in: Third Work-
shop on Mutation Analysis (Mutation 2007), Windsor, UK, 2007, pp. 185–192.

[117] M. Hampton, S. Petithomme, Leveraging a commercial mutation analysis tool for re-
search, in: Third Workshop on Mutation Analysis (Mutation 2007), Windsor, UK, 2007,
pp. 203–209.

[118] D. Kresse, Mu Dynamics home page, Online, http://www.mudynamics.com/, last access
August 2010 (2005).

[119] SourceForge, Jumble home page, Online, http://jumble.sourceforge.net/ (2007).
[120] D. Kresse, PlexTest home page, Online, http://www.itregister.com.au/products/plextest.htm,

last access August 2010 (2005).
[121] Rubyforge, Heckle home page, Online, http://seattlerb.rubyforge.org/heckle/ (2007).
[122] P. Chevalley, Applying mutation analysis for object-oriented programs using a reflec-

tive approach, in: Proceedings of the 8th Asia-Pacific Software Engineering Conference
(APSEC 2001), Macau SAR, China, 2001.

[123] P. R. Mateo, M. P. Usaola, J. Offutt, Mutation at system and functional levels, in: Sixth
Workshop on Mutation Analysis (Mutation 2010), Paris, France, 2010.

[124] U. Praphamontripong, J. Offutt, Applying mutation testing to web applications, in: Sixth
Workshop on Mutation Analysis (Mutation 2010), Paris, France, 2010.

[125] R. Nilsson, J. Offutt, J. Mellin, Test case generation for mutation-based testing of timeli-
ness, in: Proceedings of the 2nd International Workshop on Model Based Testing, Vienna,
Austria, 2006, pp. 102–121.

[126] J. Bradbury, J. Cordy, J. Dingel, Mutation operators for concurrent java (J2SE 5.0), in:
Second Workshop on Mutation Analysis (Mutation 2006), Raleigh, NC, 2006.

[127] J. Offutt, P. Ammann, L. L. Liu, Mutation testing implements grammar-based testing,
in: Second Workshop on Mutation Analysis (Mutation 2006), Raleigh, NC, 2006, pp.
93–102.

[128] N. Li, U. Praphamontripong, J. Offutt, An experimental comparison of four unit test cri-
teria: Mutation, edge-pair, all-uses and prime path coverage, in: Fifth Workshop on Mu-
tation Analysis (Mutation 2009), Denver CO, 2009.

[129] S. Wang, J. Offutt, Comparison of unit-level automated test generation tools, in: Fifth
Workshop on Mutation Analysis (Mutation 2009), Denver CO, 2009.

26

