
Mutation 2000: Uniting the Orthogonal�

A. Je�erson O�utt

ISE Department, 4A4

George Mason University

Fairfax, VA 22030-4444 USA

703-993-1654

ofut@ise.gmu.edu

www.ise.gmu.edu/faculty/ofut/

Roland H. Untch

Department of Computer Science

Middle Tennessee State University

Murfreesboro, TN 37132-0048

615-898-5047

untch@mtsu.edu

www.mtsu.edu/�untch/

Abstract

Mutation testing is a powerful, but computationally ex-
pensive, technique for unit testing software. This ex-
pense has prevented mutation from becoming widely
used in practical situations, but recent engineering ad-
vances have given us techniques and algorithms for sig-
ni�cantly reducing the cost of mutation testing. These
techniques include a new algorithmic execution tech-
nique called schema-based mutation, an approximation
technique called weak mutation, a reduction technique
called selective mutation, heuristics for detecting equiv-
alent mutants, and algorithms for automatic test data
generation. This paper reviews experimentation with
these advances and outlines a design for a system that
will approximate mutation, but in a way that will be
accessible to everyday programmers. We envision a
system to which a programmer can submit a program
unit and get back a set of input/output pairs that are
guaranteed to form an e�ective test of the unit by be-
ing close to mutation adequate. We believe this system
could be eÆcient enough to be adopted by leading-edge
software developers. Full automation in unit testing
has the potential to dramatically change the economic
balance between testing and development, by reducing
the cost of testing from the major part of the total de-
velopment cost to a small fraction.

1. Introduction

Mutation analysis has a rich and varied history, with
major advances in concepts, theory, technology, and
social viewpoints. This history begins in 1971, when
Richard Lipton proposed the initial concepts of muta-
tion in a class term paper titled \Fault Diagnosis of

�Supported by the National Science Foundation under awards
CCR-9804011 and CCR-9707792.

Computer Programs." It was not until the end of the
1970's, however, before major work was published on
the subject [1, 2, 3]; the DeMillo, Lipton, and Sayward
paper [3] is generally cited as the seminal reference.

PIMS [1, 4, 5, 6], an early mutation testing tool, pi-
oneered the general process typically used in mutation
testing of creating mutants (of Fortran IV programs),
accepting test cases from the users, and then executing
the test cases on the mutants to decide how many mu-
tants were killed. In 1987, this same process (of add
test cases, run mutants, check results, and repeat) was
adopted and extended in the Mothra mutation toolset
[7, 8, 9, 10], which provided an integrated set of tools,
each of which performed an individual, separate task to
support mutation analysis and testing. Because each
Mothra tool is a separate command, it was easy to in-
corporate, and thus experiment with, additional types
of processing. Although a few other mutation testing
tools have been developed since Mothra [11, 12, 13],
Mothra is likely the most widely known mutation test-
ing system extant.

Despite the relatively long history of mutation
testing, the software development industry has failed
to employ it. We posit that the three primary rea-
sons why industry has failed to use mutation testing
are the lack of economic incentives for stringent test-
ing, inability to successfully integrate unit testing into
software development processes, and diÆculties with
providing full and economical automated technology to
support mutation analysis and testing. The �rst rea-
son, the lack of economic incentives for applying highly
advanced testing techniques, is beyond the scope of this
paper, which is primarily technological in nature. On
the other hand, software is increasingly being used to
perform essential roles in applications that require high
reliability, including safety-critical software (avionics,
medical, and industrial control) infrastructure-critical
software (telephony and networks), and commercial en-

terprises (e-commerce and business-to-business trans-
actions). This increasing reliance on software implies
that software must be increasingly be more reliable,
thus we may expect there to be more economic incen-
tives for applying high-end testing techniques such as
mutation in the future.

The other two reasons for the lack of commer-
cial success of mutation are primarily technological in
nature. During the 1990s, a number of technological
and theoretical advances were made in the applica-
tion of mutation analysis and testing. Most of these
advances are orthogonal, that is, they a�ect di�erent
aspects of mutation testing. This paper summarizes
many of these advances and discusses ways to incorpo-
rate mutation into standard software development. It
is thought that these advances, once united, can allow
a truly practical mutation system to be built that can
be used by real programmers on real software projects
to greatly increase the reliability of their software prod-
ucts.

Before going into detail about these advances, a
discussion of how mutation is used is given from a pro-
cedural point of view. Following that, a number of
advances for applying mutation are discussed, which
leads to a new process for how mutation can be applied.
We envision a test tool that provides almost complete
automation to the tester. A programmer submits a
software module, and after a few minutes of compu-
tation, the tool responds with a set of test cases that
are assured to provide the software with a very e�ec-
tive test, and a set of outputs that can be examined to
�nd failures in the software. Furthermore, these input-
output pairs can be used as a basis for debugging when
failures are found. To be used by industry, this tech-
nology must be integrated with compilers, debuggers,
and report generators.

1.1. The Mutation Analysis Process

Mutation analysis induces faults into software by cre-
ating many versions of the software, each containing
one fault. Test cases are used to execute these faulty
programs with the goal of distinguishing the faulty pro-
grams from the original program. Hence the terminol-
ogy; faulty programs are mutants of the original, and
a mutant is killed by distinguishing the output of the
mutant from that of the original program.

Mutants either represent likely faults, a mistake
the programmer could have made, or they explicitly
require a typical testing heuristic to be satis�ed, such
as execute every branch or cause all expressions to be-
come zero. Mutants are limited to simple changes on
the basis of the coupling e�ect, which says that com-

plex faults are coupled to simple faults in such a way
that a test data set that detects all simple faults in a
program will detect most complex faults The coupling
e�ect was �rst hypothesized in 1978 [3], then supported
empirically in 1992 [14], and has been demonstrated
theoretically in 1995 [15, 16].

Mutation analysis provides a test criterion, rather
than a test process. A testing criterion is a rule or
collection of rules that imposes requirements on a set
of test cases. Test engineers measure the extent to
which a criterion is satis�ed in terms of coverage; a set
of test cases achieves 100% coverage if it completely
satis�es the criterion. Coverage is measured in terms
of the requirements that are imposed; partial cover-
age is de�ned to be the percent of requirements that
are satis�ed. Test requirements are speci�c things that
must be satis�ed or covered; for example, reaching
statements are the requirements for statement coverage
and killing mutants are the requirements for mutation.
Thus, a test criterion establishes �rm requirements for
how much testing is necessary; a test process gives a se-
quence of steps to follow to generate test cases. There
may be many processes used to satisfy a given criterion,
and a test process need not have the goal of satisfying a
criterion. In precise terms, mutation analysis is a way
to measure the quality of the test cases and the ac-
tual testing of the software is a side e�ect. In practical
terms however, the software is tested, and tested well,
or the test cases do not kill mutants. This point can
best be understood by examining a typical mutation
analysis process.

When a program is submitted to a mutation sys-
tem, the system �rst creates many mutated versions
of the program. A mutation operator1 is a rule that
is applied to a program to create mutants. Typical
mutation operators, for example, replace each operand
by every other syntactically legal operand, or modify
expressions by replacing operators and inserting new
operators, or delete entire statements. Figure 1 graph-
ically shows a traditional mutation process. The solid
boxes represent steps that are automated by traditional
systems such as Mothra, and the dashed boxes repre-
sent steps that are done manually.

Next, test cases are supplied to the system to serve
as inputs to the program. Each test case is executed
on the original program and the tester veri�es that the
output is correct. If incorrect, a bug has been found
and the program should be �xed before that test case
is used again. If correct, the test cases are executed
on each mutant program. If the output of a mutant

1The terminology varies; they are also sometimes called mu-
tant operators, mutagenic operators, mutagens, mutation trans-
formations, and mutation rules [17].

Input test
program

Create
mutants

Input
test cases

Run T
on P

P (T)

correct
?

Fix
P

F T
Run test

cases on
each live
mutant

All
mutants

dead
?

T F
Quit

Analyze and
mark equivalent
mutants

Prog

Tests

Figure 1: Traditional Mutation Testing Process.

Solid boxes represent steps that are automated and

dashed boxes represent steps that are manual.

program di�ers from the original (correct) output, the
mutant is marked as being dead. Dead mutants are not
executed against subsequent test cases.

Once all test cases have been executed, a mutation
score is computed. The mutation score is the ratio of
dead mutants over the total number of non-equivalent
mutants. Thus, the tester's goal is to raise the mu-
tation score to 1.00, indicating that all mutants have
been detected. A test set that kills all the mutants is
said to be adequate relative to the mutants.

If (as is likely) mutants are still alive, the tester
can enhance the set of test cases by supplying new in-
puts. Some mutants are functionally equivalent to the
original program. Equivalent mutants always produce
the same output as the original program, so cannot be
killed. Equivalent mutants are not counted in the mu-
tation score. Note that even if the tester has not found
any faults by using the previous set of test cases, the
mutation score gives some indication of the extent of
the testing. Moreover, the live mutants point out in-
adequacies in the test cases. In most cases, the tester
creates test cases to kill speci�c live mutants. This pro-
cess of adding new test cases, verifying correctness, and
killing mutants is repeated until the tester is satis�ed
with the mutation score. A mutation score threshold
can be set as a policy decision to require testers to test
software to a prede�ned level.

2. Using Mutation Analysis to

Detect Faults

Many research papers about mutation (including our
own) have obscured the issue of how and when fail-
ures are found when using mutation. In standard IEEE
terminology [18], a failure is an external, incorrect be-
havior of a program (an incorrect output or a runtime
failure). A fault is the group of incorrect statements in
the program that causes a failure. Failures in the soft-
ware are detected when test cases are executed against
the original program. The tester must decide whether
the output of the program on each test case is cor-
rect. If the output is correct, the process continues
as described above. If the output is incorrect, then a
failure has been found and the process stops until the
associated fault can be corrected. This leads to the
fundamental premise of mutation testing, as coined by
Geist [19]: In practice, if the software contains

a fault, there will usually be a set of mutants

that can only be killed by a test case that also

detects that fault.

3. Bringing Down the Barriers

One of the barriers to the practical use of mutation test-
ing is the unacceptable computational expense of gen-

erating and running vast numbers of mutant programs
against the test cases. The number of mutants gener-
ated for a software unit is proportional to the product
of the number of data references and the number of
data objects [20]. Typically, this is a large number for
even small software units. Because each mutant pro-
gram must be executed against at least one, and po-
tentially many, test cases, mutation analysis requires
large amounts of computation. This is shown in Fig-
ure 1 in the box labeled \Run test cases on each

live mutant". It is by far the most computationally
expensive step in mutation testing.

The other barrier to more widespread use of muta-
tion testing is the amount of manual labor involved in
using this technique. For example, manual equivalent
mutant detection is quite tedious and developing mu-
tation adequate test cases can be very labor-intensive.

Recent advances show promise in bringing down
both of these barriers. We �rst describe advances
for reducing the computational expense of mutation
analysis and then review research work that has been
successful in partially automating much of the labor-
intensive portions of mutation testing. We continue by
suggesting how these advances can be combined in a
manner that can lead to a practical mutation testing
system in the near future.

3.1. Reducing the Computational Cost of

Mutation Analysis

Recall that the major cost of mutation analysis arises
from the computational expense of generating and run-
ning vast numbers of mutant programs. Approaches
to reduce this computational expense usually follow
one of three strategies: do fewer, do smarter, or do
faster. The \do fewer" approaches seek ways of running
fewer mutant programs without incurring intolerable
information loss. The \do smarter" approaches seek
to distribute the computational expense over several
machines or factor the expense over several executions
by retaining state information between runs or seek to
avoid complete execution. The \do faster" approaches
focus on ways of generating and running each mutant
program as quickly as possible.

3.1.1. Selective Mutation { a \do fewer"

approach

Mothra used 22 mutation operators, of which the six
most populous account for 40% to 60% of all mutants.
This is typical of mutation systems { the goal was to in-
clude as much testing as possible by de�ning as many
mutants as possible. These six mutants, and others,

are in some sense redundant; that is, test sets that are
generated to kill only mutants generated from the other
mutant operators are very e�ective in killing mutants
generated from the six. Wong and Mathur suggested
the idea of constrained mutation to be applying mu-
tation with only the most critical mutation operators
being used [21]. This idea was later developed by Of-
futt et al. as an approximation technique called selec-
tive mutation that tries to select only mutants that are
truly distinct from other mutants [20, 22].

Results showed that of the 22 mutation operators
used by Mothra, 5 turn out to be \key" operators.
In experimental trials, those �ve operators provided
almost the same coverage as non-selective mutation,
with cost reductions of at least four times with small
programs, and up to 50 times with larger programs.
The 5 suÆcient operators are ABS, which forces each
arithmetic expression to take on the value 0, a posi-
tive value, and a negative value, AOR, which replaces
each arithmetic operator with every syntactically legal
operator, LCR, which replaces each logical connector
(AND and OR) with several kinds of logical connectors,
ROR, which replaces relational operators with other re-
lational operators, and UOI, which inserts unary oper-
ators in front of expressions. Future mutation systems
will have the goal of minimizing the number of muta-
tion operators { getting as much testing strength as
possible with as few mutants as possible.

3.1.2. Mutant Sampling { a \do fewer" approach

First proposed by Acree [23] and Budd [24], in sam-
pling only a randomly selected subset of the mutant
programs are run. The e�ects of varying the sampling
percentage from 10% to 40% in steps of 5% were later
investigated by Wong [25]. A 10% sample of mutant
programs, for example, was found to be only 16% less
e�ective than a full set in ascertaining fault detection
e�ectiveness.

An alternative sampling approach is proposed by
S. ahino�glu and Spa�ord [26] that does not use sam-
ples of some a priori �xed size but rather, based on a
Bayesian sequential probability ratio test, selects mu-
tant programs until suÆcient evidence has been col-
lected to determine that a statistically appropriate
sample size has been reached.

3.1.3.Weak Mutation - a \do smarter" approach

Research systems such as Mothra execute mutant pro-
grams until they terminate, then compare the �nal out-
put of the program with the output of the original
program. Originally proposed by Howden [27], weak
mutation is an approximation technique that compares

the internal states of the mutant and original program
immediately after execution of the mutated portion of
the program. That is, weak mutation ensures that the
necessity condition is satis�ed, but not the suÆciency
condition.

Weak mutation has been discussed theoretically
[28, 29, 30] and studied empirically [31, 32, 33, 34].
Howden's original proposal stated that the states
should be compared \after" the mutated statement,
without elaborating on exactly when. Morell's concept
of \extent" [28] and Woodward and Halewood's \�rm"
mutation [29] suggested that the comparison could be
done at any point after the mutated statement.

The Leonardo system [35, 34], which was imple-
mented as part of Mothra, did two things. It imple-
mented a working weak mutation system that could be
easily compared with strong mutation, and evaluated
the extent/�rm concept by allowing comparisons to be
made at four di�erent locations after the mutated com-
ponent: (1) after the �rst evaluation of the innermost
expression surrounding the mutated symbol, (2) after
the �rst execution of the mutated statement, (3) after
the �rst execution of the basic block that contains the
mutated statement, and (4) after each execution of the
basic block that contains the mutated statement (ex-
ecution stops as soon as an invalid state is detected).
Experience with Leonardo indicated that weak muta-
tion was able to generate tests that were almost as
e�ective as tests generated with strong mutation, and
that at least 50% and usually more of the execution
time was saved. Moreover, it was found that the most
e�ective point at which to compare the program states
was after the �rst execution of the mutated statement.

3.1.4. Other \do smarter" approaches

Using novel computer architectures to distribute the
computational expense over several machines repre-
sents another \ do smarter" strategy. Work has been
done to adapt mutation analysis systems to vector pro-
cessors [36], SIMD machines [37], Hypercube (MIMD)
machines [38, 39], and Network (MIMD) computers
[40]. Because each mutant program is independent of
all other mutant programs, communication costs are
fairly low. At least one tool was able to achieve almost
linear speedup for moderate sized program functions
[38].

In another \do smarter" approach, Fleyshgakker
and Weiss describe algorithms that improve the run
time complexity of conventional mutation analysis sys-
tems at the expense of increased space complexity [41].
By intelligently storing state information, their tech-
niques factor the expense of running a mutant over

several related mutant executions and thereby lower
the total computational costs. In the best case, these
techniques can improve the speed by a factor propor-
tional to the average number of mutants per program
statement.

3.1.5. Schema-based Mutation Analysis { a \do

faster" approach

Most mutation systems have worked by interpreting
many slightly di�erent versions of the same program.
Although interpretation-based systems make the man-
agement of the mutant executions convenient, this con-
ventional method has signi�cant problems. Automated
mutation analysis systems based on the conventional
interpretive method are slow, laborious to build, and
usually unable to completely emulate the intended op-
erational environment of the software being tested. To
solve these problems, Untch developed a new execution
model for mutation, the Mutant Schema Generation
(MSG) method [42, 12].

Instead of mutating an intermediate form, the
MSG method encodes all mutations into one source-
level program, a \metamutant". This program is then
compiled (once) with the same compiler used during
development and is executed in the same operational
environment at compiled-program speeds. Because
mutation systems based on mutant schemata do not
need to provide the entire run-time semantics and en-
vironment, they are signi�cantly less complex and eas-
ier to build than interpretive systems, as well as more
portable. Benchmarks show TUMS, an MSG-based pro-
totype mutation analysis system, to be signi�cantly
faster than Mothra, with speed-ups as high as an order-
of-magnitude observed.

3.1.6. Other \do faster" approaches

Another way of avoiding interpretive execution is the
separate compilation approach, wherein each mutant is
individually created, compiled, linked and run. The
Proteum system [13] is an example of this approach.
When mutant run times greatly exceed individual com-
pilation/link times, a system based on such a strategy
will execute 15 to 20 times faster than an interpretive
system. When this condition is not met, however, a
compilation bottleneck [39] may result.

To avoid compilation bottlenecks, DeMillo,
Krauser, and Mathur developed a compiler-integrated
programmutation scheme that avoids much of the over-
head of the compilation bottleneck and yet is able to
execute compiled code [11]. In this method, the pro-
gram under test is compiled by a special compiler. As
the compilation process proceeds, the e�ects of muta-

tions are noted and code patches that represent these
mutations are prepared. Execution of a particular mu-
tant requires only that the appropriate code patch be
applied prior to execution. Patching is inexpensive and
the mutant executes at compiled-speeds.

3.2.Reducing Burdensome Manual Tasks

Manually developing test cases that are mutation ad-
equate requires a great deal of e�ort. Additionally,
determining which mutant programs are equivalent to
the original program is a very tedious and error-prone
activity. Progress has been made on partially automat-
ing both of these tasks and is described next.

3.2.1. Automatic Test Data Generation

One of the most diÆcult technical tasks in testing soft-
ware is that of generating the test case values needed to
satisfy the testing criterion. In his dissertation [9], Of-
futt developed a technique called constraint-based test
data generation (CBT), which creates test data that
comes reasonably close to satisfying mutation. CBT is
based on the observation that a test case that kills a
mutant must satisfy three conditions. The �rst is that
the mutated statement must be reached; this is called
the reachability condition. The second condition re-
quires the execution of the mutated statement to result
in an error in the program's state; this is called the ne-
cessity condition. The third condition, the suÆciency
condition, states that the incorrect state must propa-
gate through the program's computation to result in an
output failure. Godzilla is a test data generator that
uses constraint-based testing to automatically generate
test data for Mothra [10].

Godzilla describes these conditions as mathemati-
cal systems of constraints. Reachability conditions are
described by constraint systems called path expressions.
Each statement in the program has a path expression
that describes all execution paths through the program
to that statement. The path expression is an assertion
that is true if the statement is reached. The necessity
condition is described by a constraint that is speci�c to
the mutant operator and requires that the computation
performed by the mutated statement create an incor-
rect intermediate program state. Because expressing
the suÆciency condition as a set of constraints requires
knowing in advance the complete path a program will
take (in general, undecidable), Godzilla does not at-
tempt to automatically satisfy this condition directly.

Godzilla conjoins each necessity constraint with
the appropriate path expression constraint. The re-
sulting constraint system is solved to generate a test

case such that the constraint system is true. Experi-
mentation [43] has veri�ed that constraint-based test-
ing creates test cases that kill over 90% of the mutants
for most programs. CBT uses control-
ow analysis,
symbolic evaluation, and information about mutants
to create the constraints, and a constraint satisfaction
technique called domain reduction to generate test val-
ues.

CBT su�ers from several shortcomings that pre-
vent it from working in some situations and hamper
its applicability in practical situations. Many of these
shortcomings stem from weaknesses associated with
symbolic evaluation and include problems handling ar-
rays, loops, and nested expressions. Godzilla occasion-
ally fails to �nd test cases, and for some programs it
fails a large percentage of the time. This is partly be-
cause of problems with the technique, partly because
of insuÆciently general approaches to handling expres-
sions, and partly because Godzilla employed relatively
unsophisticated search procedures.

More recently, a test data technique called the dy-
namic domain reduction procedure was developed to
address most of these problems [44, 45]. The dynamic
domain reduction procedure (DDR) uses part of the
CBT approach, and also draws from Korel's dynamic
test data generation approach [46, 47] and symbolic
evaluation. It uses a direct \domain reduction" method
for deriving values, rather than function minimiza-
tion methods as used by Korel or linear programming-
like methods as used by Clarke [48]. Korel's dynamic
method [47] executes a program along one speci�c path
by starting with a particular input. When a branch-
ing point is reached, if the current inputs will cause
the appropriate branch to be taken, the inputs will re-
main the same. If a di�erent branch is required, then
the inputs are dynamically modi�ed to take the correct
branch using function minimization. DDR also works
by choosing a speci�c path, but there are no initial val-
ues, and the values are derived in-process from initial
input domains.

Unlike dynamic symbolic evaluation [49, 50], DDR
creates sets of values that represent conditions under
which a path will be executed. Thus, the results of
dynamic symbolic evaluation attempt to represent all
possible values that will execute a given path, while
dynamic domain reduction only results in a small set
of possible values. While this is more limited, it is also
more practical for real programs.

The dynamic nature of DDR, which combines
analysis of the software with satisfaction of constraints
and test data generation, allows better handling of
arrays and expressions. DDR also incorporates a so-
phisticated back-tracking search procedure to partially

solve a problem that caused previous methods to fail.
Because of the historical basis, the DDR procedure will
always work when CBT does, and also in many cases
when CBT does not.

The DDR procedure walks through the program
control
ow graph, generating test data along the way.
Each input variable is initially given a large set of po-
tential values (its domain) and, as branches are taken
in the control
ow graph, the domains for the variables
involved in the predicates are reduced so that the ap-
propriate predicates would be true for any assignment
of values from the domain. When choices for how to
reduce the domains must be made, a search process
is initiated and choices are systematically made to try
to �nd a choice that allows the subsequent edges on
the path to be executed. When the procedure is �n-
ished, the remaining values for the variables' domains
represent sets of test cases that will cause execution of
the path. If any variable's domain is empty, the search
process failed due to one of two possible reasons. One,
the path is infeasible, so no satisfying values could be
found. Two, it was very diÆcult to �nd values that
execute the path; this could be because the constraints
were too complicated or there are relatively few inputs
that will execute the path.

3.2.2. Partial Automatic Equivalent Mutant

Detection

A major problem with practically applying mutation
is that of equivalent mutant programs. Equivalent mu-
tants can be thought of as \dead-weight" in the test-
ing process { they do not contribute to the generation
of test cases, but require lots of time and attention
from the tester. Equivalent mutants have traditionally
been detected by hand, which is very expensive and
time-consuming, and restricts the practical usefulness
of mutation testing.

Although recognition of equivalent programs is in
general undecidable [51], the idea of using compiler-
optimization techniques to recognize some if not most
equivalent mutants was suggested by Baldwin and Say-
ward in 1979 [52]. This technique was tried in a lim-
ited way by hand in Tanaka's 1981 thesis [53]. O�utt
and Craft [54] re�ned, extended, and implemented the
Baldwin and Sayward suggestions in a tool that was in-
tegrated with Mothra. This led directly to the idea of
using constraint-based testing to detect equivalent mu-
tants, which was implemented in a tool that detected
almost 50% of the equivalent mutants [55, 56].

The constraint-based technique uses mathematical
constraints to automatically detect equivalent mutants.
The general idea is that if a constraint system that is

created to kill a mutant is infeasible, then that mu-
tant is equivalent. Although recognizing infeasible con-
straints is a diÆcult problem that cannot be solved in
general, heuristic approximations have been developed
that are quite e�ective. This approach also subsume
all of the previous compiler-optimization techniques.

Hierons, Harman, and Danicic have gone one step
further and use program slicing to detect equivalent
mutants [57]. This approach in turn subsumes the
constraint-based technique.

Unfortunately, no automated system will be able
to detect all equivalent mutants, thus to complement
the technique of recognizing equivalent mutants, we
suggest that the remaining equivalent mutants can be
safely ignored. Although this requires the tester to
be willing to accept less than full mutation coverage,
results indicate that the loss will not usually be signif-
icant, and the testing will still be more e�ective than
testing with most other testing techniques. Although
this approach is not completely satisfying from a the-
oretical view, it is an eminently practical engineering
solution to a practically impossible problem.

3.3. Procedural Advances using

Mutation

The traditional mutation testing process as shown in
Figure 1 su�ers from several problems. The major loop
of entering test cases, running the original program,
checking the output, running mutants, and marking
equivalent mutants is very human intensive. The ad-
vances in automatic test data generation led to viewing
test cases as throw-away items, rather than valuable
resources. This in turn leads to the realization that
checking whether the original program is correct on
each test case does not have to be in the major loop,
but can be postponed until later. This, combined with
the automation of steps that were previously manual,
allows us to eliminate the human tester from the main
mutation loop.

Figure 2 presents a new process for applying mu-
tation testing. Initially, a set of test cases is auto-
matically generated and those test cases are executed
against the original program, and then the mutants.
The tester de�nes a \threshold" value, which is a min-
imum acceptable mutation score. If the threshold has
not been reached, then test cases that killed no mu-
tants (termed ine�ective) are removed. This process is
repeated, each time generating test cases to target live
mutants, until the threshold mutation score is reached.
Up to this point, the process has been entirely auto-
matic. To �nish testing, the tester will examine ex-
pected output of the e�ective test cases, and �x the

Input test
program

Create
mutants

F

T

Prog
test cases
Generate

reached

?

Threshold

Fix
P

P (T)
correct

?

F

T

ineffective
TCs

Eliminate

threshold
Define Run mutants:

 schema−based
 weak
 selective

on P
Run TRun

equivalence
detector

Figure 2: New Mutation Testing Process.

Bold boxes represent steps that are automated;

remaining boxes represent steps that are manual.

program if any faults are found.
In both the traditional and this new process, the

major part of the time and e�ort of mutation is in the
loop of generating, running, and disposing of test cases.
As before, the most signi�cant computational expense
is in the mutation engine. The di�erence is that the
new mutation engine will employ a schema-based ap-
proach (or one of the other \do faster" techniques) to
execute the code, apply weak mutation to reduce the
amount of execution, and use selective mutation to re-
duce the number of mutations. Given that the im-
provements given in Section 3.1 are orthogonal (rather
than serial), combining these techniques will yield geo-
metric (rather than incremental) performance boosts.
Uniting these orthogonal techniques should reduce the
amount of execution time for the mutation engine by
orders of magnitude, making it possible to process
moderate routines within a reasonable period of time.

A signi�cant innovation in this new process is that
the major loop (the boxes and arrows in bold in Figure
2) contains no manual steps. All manual steps are out-
side the loop and only need to be done once. In fact,
the only signi�cant manual step is that of deciding if
the outputs of each test case is correct. Some progress
on constructing automated test oracles has been made
[58, 59]. However even without an automated test ora-
cle, by disposing of ine�ective test cases before check-
ing outputs we can signi�cantly reduce the workload of

the tester. Additionally, the threshold input allows the
practical tester to use approximation in the coverage
criterion. This approximation heuristic does not at-
tempt to �nd an exact solution to the testing problem.
Software testing is an imperfect science and we see no
reason for coverage to be exact. Rather, a application
of a coverage criterion must be cost-e�ective and must
always improve the situation|by providing better test
cases. The use of a threshold heuristic meets this re-
quirement.

4. A Practical and E�ective

Mutation Analysis System

Using these technological advances and process im-
provements, practical, 21st century mutation systems
will be faster and more practical, and require signi�-
cantly less human interaction. Figure 3 presents a high
level architectural view of this type of testing system.

In this system, a program to be tested is sub-
mitted to the schemata generator, which produces
a metamutant that incorporates all the mutants of
the test program into one program. The schemata

generator also produces a mutant data store, which
is used to store statistics about the mutants such as
which are alive and which have been killed. The
constraint & slicing analyzer integrates the pre-

MetaProgram

Test
Cases

Report

Outputs

Prog
Schemata
Generator

Test Case
Generator

Driver

Constraint &
Slicing

Analyzer

Analysis
Data Store

Detector
Equiv

Mutant
Data
Store

Figure 3: Architecture of a Practical, EÆcient Mutation Testing System

processing steps for test data generation and equiva-
lent mutant detection into one tool. It produces con-
straints on mutants as well as control, data
ow, and
slicing information about the program and its mutants.
The analysis data store is used by the equivalent
mutant detector to detect and mark mutants that are
equivalent in the mutant data store. The test case

generator uses the analysis data store to gener-
ate test cases to try to kill each mutant. The driver

compiles the metamutant, runs each test case on the
original program, then on each mutant, saving only
test cases that kill at least one mutant. It contin-
ues to obtain and execute more test cases until the
threshold percentage of mutants is reached. The re-
sults of running the mutants are saved in the mutant

data store, and a report summarizing how many mu-
tants have been killed is generated. The output of the
original program on each e�ective test case is saved for
examination by the tester.

The schemata generator only generates mutants
using the selective operators. This consists of mutants
that replace each arithmetic operator with each other
arithmetic operator, replace each relational operator
with each other relational operator, replace each logi-
cal connector operator with each other logical connec-
tor operator, and that modify expressions by insert-
ing unary operations that cause each expression to be
zero, negative, positive, and that modify each expres-
sion by very small amounts. The metamutant incor-
porates weak mutation semantics, so that each mutant
will not execute completely, but will only execute to
the end of the basic block that contains the mutated

statement.
Because parallelism depends very heavily on the

type of hardware available, we do not automatically
assume it will be incorporated in future mutation sys-
tems. However, if it is thought to be helpful, the
driver in Figure 3 could be modi�ed to execute pro-
grams from the metamutant in parallel.

5. Conclusions

By combining the recent technological advances and
an improved testing process, future mutation testing
tools will be orders of magnitude faster than previous
research systems and will require signi�cantly less hu-
man involvement. Additionally, experience has shown
that these systems can be built easier and faster than
previous systems.

We envision a test tool that provides almost com-
plete automation to the tester. A programmer submits
a software module, and after a reasonable period of
computation, the tool responds with a set of test cases
that are assured to provide the software with a very ef-
fective test, and a set of outputs that can be examined
to �nd failures in the software. Furthermore, these
input-output pairs can be used as a basis for debug-
ging when failures are found. This technology can be
integrated with compilers, debuggers, and report gen-
erators.

6. Acknowledgments

We would like to thank the many students and fac-
ulty colleagues who contributed to the ideas and tool
development to support the research contained in this
paper, including Roger Alexander, Michael Craft, Scott
Fichter, Dr. Robert Geist, Fred Harris, Dr. Mary Jean
Harrold, Zhenyi Jin, Ammei Lee, Stephen Lee, Tracey
Oakes, Jie Pan, Dr. Gregg Rothermel, and Christian
Zapf.

References

[1] T. Budd and F. Sayward, \Users guide to the Pilot mu-
tation system," technical report 114, Department of Com-
puter Science, Yale University, 1977.

[2] R. G. Hamlet, \Testing programs with the aid of a com-
piler," IEEE Transactions on Software Engineering, vol. 3,
pp. 279{290, July 1977.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, \Hints on
test data selection: Help for the practicing programmer,"
IEEE Computer, vol. 11, pp. 34{41, April 1978.

[4] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
\The design of a prototype mutation system for program
testing," in Proceedings NCC, AFIPS Conference Record,
pp. 623{627, 1978.

[5] R. J. Lipton and F. G. Sayward, \The status of research on
programmutation," inDigest for the Workshop on Software
Testing and Test Documentation, pp. 355{373, December
1978.

[6] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and
F. G. Sayward, \Mutation analysis," technical report GIT-
ICS-79/08, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta GA, September
1979.

[7] A. J. O�utt and K. N. King, \A Fortran 77 interpreter for
mutation analysis," in 1987 Symposium on Interpreters and
Interpretive Techniques, (St. Paul MN), pp. 177{188, ACM
SIGPLAN, June 1987.

[8] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken,
and A. J. O�utt, \An extended overview of the Mothra soft-
ware testing environment," in Proceedings of the Second
Workshop on Software Testing, Veri�cation, and Analy-
sis, (Ban� Alberta), pp. 142{151, IEEE Computer Society
Press, July 1988.

[9] A. J. O�utt, Automatic Test Data Generation. PhD thesis,
Georgia Institute of Technology, Atlanta GA, 1988. Tech-
nical report GIT-ICS 88/28.

[10] R. A. DeMillo and A. J. O�utt, \Constraint-based auto-
matic test data generation," IEEE Transactions on Soft-
ware Engineering, vol. 17, pp. 900{910, September 1991.

[11] R. A. DeMillo, E. W. Krauser, and A. P. Mathur,
\Compiler-integrated program mutation," in Proceedings of
the Fifteenth Annual Computer Software and Applications
Conference (COMPSAC' 92), (Tokyo, Japan), Kogakuin
University, IEEE Computer Society Press, September 1991.

[12] R. H. Untch, M. J. Harrold, and J. O�utt, \Schema-based
mutation analysis." In preparation.

[13] M. E. Delamaro and J. C. Maldonado, \Proteum{A tool
for the assessment of test adequacy for c programs," in Pro-
ceedings of the Conference on Performability in Computing
Systems (PCS 96), (New Brunswick, NJ), pp. 79{95, July
1996.

[14] A. J. O�utt, \Investigations of the software testing cou-
pling e�ect," ACM Transactions on Software Engineering
Methodology, vol. 1, pp. 3{18, January 1992.

[15] K. S. H. T. Wah, \Fault coupling in �nite bijective func-
tions," The Journal of Software Testing, Veri�cation, and
Reliability, vol. 5, pp. 3{47, March 1995.

[16] K. S. H. T. Wah, \A theoretical study of fault coupling,"
The Journal of Software Testing, Veri�cation, and Relia-
bility, vol. 10, pp. 3{46, March 2000.

[17] D. Wu, M. A. Hennell, D. Hedley, and I. J. Riddell, \A
practical method for software quality control via program
mutation," in Proceedings of the Second Workshop on Soft-
ware Testing, Veri�cation, and Analysis, (Ban�, Alberta,
Canada), pp. 159{170, IEEE Computer Society Press, July
1988.

[18] IEEE, IEEE Standard Glossary of Software Engineering
Terminology. ANSI/IEEE Std 610.12-1990, 1996.

[19] R. Geist, A. J. O�utt, and F. Harris, \Estimation and en-
hancement of real-time software reliability through muta-
tion analysis," IEEE Transactions on Computers, vol. 41,
pp. 550{558, May 1992. Special Issue on Fault-Tolerant
Computing.

[20] A. J. O�utt, A. Lee, G. Rothermel, R. Untch, and
C. Zapf, \An experimental determination of suÆcient muta-
tion operators," ACM Transactions on Software Engineer-
ing Methodology, vol. 5, pp. 99{118, April 1996.

[21] W. E. Wong, M. E. Delamaro, J. C. Maldonado, and A. P.
Mathur, \Constrained mutation in C programs," in Pro-
ceedings of the 8th Brazilian Symposium on Software Engi-
neering, (Curitiba, Brazil), pp. 439{452, October 1994.

[22] A. J. O�utt, G. Rothermel, and C. Zapf, \An experimen-
tal evaluation of selective mutation," in Proceedings of the
Fifteenth International Conference on Software Engineer-
ing, (Baltimore, MD), pp. 100{107, IEEE Computer Society
Press, May 1993.

[23] A. T. Acree, On Mutation. PhD thesis, Georgia Institute
of Technology, Atlanta GA, 1980.

[24] T. A. Budd,Mutation Analysis of Program Test Data. PhD
thesis, Yale University, New Haven CT, 1980.

[25] W. E. Wong, On Mutation and Data Flow. PhD thesis,
Purdue University, December 1993. (Also Technical Re-
port SERC-TR-149-P, Software Engineering Research Cen-
ter, Purdue University, West Lafayette, IN).

[26] M. S.ahino�glu and E. H. Spa�ord, \A bayes sequential
statistical procedure for approving software products," in
Proccedings of the IFIP Conference on Approving Software
Products (ASP{90) (W. Ehrenberger, ed.), (Garmisch-
Partenkirchen, Germany), pp. 43{56, Elsevier/North Hol-
land, New York, Sept. 1990.

[27] W. E. Howden, \Weak mutation testing and completeness
of test sets," IEEE Transactions on Software Engineering,
vol. 8, pp. 371{379, July 1982.

[28] L. J. Morell, \Theoretical insights into fault-based testing,"
in Proceedings of the Second Workshop on Software Test-
ing, Veri�cation, and Analysis, (Ban� Alberta), pp. 45{62,
IEEE Computer Society Press, July 1988.

[29] M. R. Woodward and K. Halewood, \From weak to strong,
dead or alive? An analysis of some mutation testing issues,"
in Proceedings of the Second Workshop on Software Testing,
Veri�cation, and Analysis, (Ban� Alberta), pp. 152{158,
IEEE Computer Society Press, July 1988.

[30] J. R. Horgan and A. P. Mathur, \Weak mutation is probably
strong mutation," technical report SERC-TR-83-P, Soft-
ware Engineering Research Center, Purdue University, West
Lafayette IN, December 1990.

[31] M. R. Girgis and M. R. Woodward, \An integrated system
for program testing using weak mutation and data
ow anal-
ysis," in Proceedings of the Eighth International Conference
on Software Engineering, (London UK), pp. 313{319, IEEE
Computer Society Press, August 1985.

[32] B. Marick, \Two experiments in software testing," technical
report UIUCDCS-R-90-1644, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, Urbana-
Champaign Illinois, November 1990.

[33] B. Marick, \The weak mutation hypothesis," in Proceed-
ings of the Fourth Symposium on Software Testing, Analy-
sis, and Veri�cation, (Victoria, British Columbia, Canada),
pp. 190{199, IEEE Computer Society Press, October 1991.

[34] A. J. O�utt and S. D. Lee, \An empirical evaluation of weak
mutation," IEEE Transactions on Software Engineering,
vol. 20, pp. 337{344, May 1994.

[35] A. J. O�utt and S. D. Lee, \How strong is weak muta-
tion?," in Proceedings of the Fourth Symposium on Soft-
ware Testing, Analysis, and Veri�cation, (Victoria, British
Columbia, Canada), pp. 200{213, IEEE Computer Society
Press, October 1991.

[36] A. P. Mathur and E. W. Krauser, \Mutant uni�cation for
improved vectorization," technical report SERC-TR-14-P,
Software Engineering Research Center, Purdue University,
West Lafayette IN, April 1988.

[37] E. W. Krauser, A. P. Mathur, and V. Rego, \High perfor-
mance testing on SIMD machines," in Proceedings of the
Second Workshop on Software Testing, Veri�cation, and
Analysis, (Ban� Alberta), pp. 171{177, IEEE Computer
Society Press, July 1988.

[38] A. J. O�utt, R. Pargas, S. V. Fichter, and P. Khambekar,
\Mutation testing of software using a mimd computer,"
in 1992 International Conference on Parallel Processing,
(Chicago, Illinois), pp. II{257{266, August 1992.

[39] B. Choi and A. P. Mathur, \High-performance mutation
testing," The Journal of Systems and Software, vol. 20,
pp. 135{152, February 1993.

[40] C. N. Zapf, \Medusamothra { a distributed interpreter for
the mothra mutation testing system," M.S. thesis, Clemson
University, Clemson, SC, August 1993.

[41] V. N. Fleyshgakker and S. N. Weiss, \EÆcient Mutation
Analysis: A New Approach," in Proceedings of the In-
ternational Symposium on Software Testing and Analysis
(ISSTA 94), (Seattle, WA), pp. 185{195, ACM SIGSOFT,
ACM Press, Aug. 17{19 1994.

[42] R. Untch, A. J. O�utt, and M. J. Harrold, \Mutation anal-
ysis using program schemata," in Proceedings of the 1993
International Symposium on Software Testing, and Analy-
sis, (Cambridge MA), pp. 139{148, June 1993.

[43] R. A. DeMillo and A. J. O�utt, \Experimental results
from an automatic test case generator," ACM Transactions
on Software Engineering Methodology, vol. 2, pp. 109{127,
April 1993.

[44] J. O�utt, Z. Jin, and J. Pan, \The dynamic domain re-
duction approach for test data generation: Design and al-
gorithms," technical report ISSE-TR-94-110, Department
of Information and Software Systems Engineering, George
Mason University, Fairfax VA, September 1994.

[45] J. O�utt, Z. Jin, and J. Pan, \The dynamic domain reduc-
tion approach to test data generation," Software{Practice
and Experience, vol. 29, pp. 167{193, January 1999.

[46] B. Korel, \Automated software test data generation," IEEE
Transactions on Software Engineering, vol. 16, pp. 870{879,
August 1990.

[47] B. Korel, \Dynamic method for software test data genera-
tion," The Journal of Software Testing, Veri�cation, and
Reliability, vol. 2, no. 4, pp. 203{213, 1992.

[48] L. A. Clarke, \A system to generate test data and symbol-
ically execute programs," IEEE Transactions on Software
Engineering, vol. 2, pp. 215{222, September 1976.

[49] L. A. Clarke and D. J. Richardson, \Applications of sym-
bolic evaluation," The Journal of Systems and Software,
vol. 5, pp. 15{35, January 1985.

[50] R. E. Fairley, \An experimental program testing facility,"
IEEE Transactions on Software Engineering, vol. SE-1,
pp. 350{3571, December 1975.

[51] T. A. Budd and D. Angluin, \Two notions of correctness
and their relation to testing," Acta Informatica, vol. 18,
pp. 31{45, November 1982.

[52] D. Baldwin and F. Sayward, \Heuristics for determining
equivalence of program mutations," research report 276, De-
partment of Computer Science, Yale University, 1979.

[53] A. Tanaka, \Equivalence testing for fortran mutation sys-
tem using data
ow analysis," Master's thesis, School of In-
formation and Computer Science, Georgia Institute of Tech-
nology, Atlanta GA, 1981.

[54] A. J. O�utt and W. M. Craft, \Using compiler optimiza-
tion techniques to detect equivalent mutants," The Journal
of Software Testing, Veri�cation, and Reliability, vol. 4,
pp. 131{154, September 1994.

[55] A. J. O�utt and J. Pan, \Detecting equivalent mutants and
the feasible path problem," in Proceedings of the 1996 An-
nual Conference on Computer Assurance (COMPASS 96),
(Gaithersburg MD), pp. 224{236, IEEE Computer Society
Press, June 1996.

[56] A. J. O�utt and J. Pan, \Detecting equivalent mutants
and the feasible path problem," The Journal of Software
Testing, Veri�cation, and Reliability, vol. 7, pp. 165{192,
September 1997.

[57] R. Hierons, M. Harman, and S. Danicic, \Using program
slicing to assist in the detection of equivalent mutants,"
Software Testing, Veri�cation, and Reliability, vol. 9,
pp. 233{262, December 1999.

[58] E. Mikk, \Compilation of z speci�cations into c for auto-
matic test result evaluation," in 9th International Confer-
ence of Z Users (ZUM'95), (Limerick, Ireland), pp. 167{
180, Springer-Verlag Lecture Notes in Computer Science
Volume 967, J.P. Bowen and M.G. Hinchey (Eds.), Septem-
ber 1995.

[59] D. K. Peters and D. L. Parnas, \Using test oracles gener-
ated from program documentation," IEEE Transactions on
Software Engineering, vol. 24, pp. 161{173, March 1998.

