
Mutation Operators for Testing Android Apps

Lin Deng∗, Jeff Offutt, Paul Ammann, Nariman Mirzaei

Department of Computer Science
George Mason University

Fairfax, Virginia, USA
{ldeng2, offutt, pammann, nmirzaei}@gmu.edu

Abstract

Context: Due to the widespread use of Android devices, Android appli-
cations (apps) have more releases, purchases, and downloads than apps for
any other mobile devices. The sheer volume of code in these apps creates sig-
nificant concerns about the quality of the software. However, testing Android
apps is different from testing traditional Java programs due to the unique
program structure and new features of apps. Simple testing coverage criteria
such as statement coverage are insufficient to assure high quality of Android
apps. While researchers show significant interest in finding better Android
testing approaches, there is still a lack of effective and usable techniques to
evaluate their proposed test selection strategies, and to ensure a reasonable
number of effective tests.

Objective: As mutation analysis has been found to be an effective way
to design tests in other software domains, we hypothesize that it is also a
viable solution for Android apps. Method: This paper proposes an innova-
tive mutation analysis approach that is specific for Android apps. We define
mutation operators specific to the characteristics of Android apps, such as
the extensive use of XML files to specify layout and behavior, the inherent
event-driven nature, and the unique Activity lifecycle structure. We also re-
port on an empirical study to evaluate these mutation operators. Results:
We have built a tool that uses the novel Android mutation operators to mu-
tate the source code of Android apps, then generates mutants that can be
installed and run on Android devices. We evaluated the effectiveness of An-
droid mutation testing through an empirical study on real-world apps. This

∗Corresponding author.

Preprint submitted to Information and Software Technology April 20, 2016

paper introduces several novel mutation operators based on a fault study of
Android apps, presents a significant empirical study with real-world apps,
and provides conclusions based on an analysis of the results. Conclusion:
The results show that the novel Android mutation operators provide compre-
hensive testing for Android apps. Additionally, as applying mutation testing
to Android apps is still at a preliminary stage, we identify challenges, possi-
bilities, and future research directions to make mutation analysis for mobile
apps more effective and efficient.

Keywords: Android, Software Testing, Mutation Testing

1. Introduction1

A mobile application is a software program that runs on a mobile device2

such as a smartphone or a tablet. The number of mobile applications (apps) is3

growing as more platforms become available, more apps are marketed, prices4

drop, and more users acquire more devices. The Android operating system5

currently dominates the market with 83.1% of sales in the third quarter of6

2014 (iOS was second with 12.7%) [1]. Over a million apps are available to7

Android users on the Google Play store, the most widely used Android app8

store [2], and thousands are added every day.9

Not surprisingly, quality is a serious and growing problem. Many apps10

reach the market containing significant faults, which often result in failures11

during use. To investigate the pervasiveness of software faults in Android12

apps, Bhattacharya et al. [3] analyzed 29,233 bug reports in 24 widely-used13

open source Android apps and found that more than 8,500 of the bug reports14

were confirmed as faults and fixed by developers later. None of the Android15

apps they analyzed was fault-free. Although part of the problem is a lack16

of software engineering (including little or no testing), a significant technical17

problem also exists. Android apps involve several new programming features18

and we have very little knowledge about how to test them. This results in19

weak and ineffective testing. In fact, even among developers who attempt to20

test their apps well, random value generation is quite common [4]. Although21

several researchers have proposed improved test techniques [4, 5, 6, 7, 8],22

these have not reached practice.23

The goal of our overall research project is to develop testing techniques24

that can allow developers to find faults in Android apps before release, es-25

pecially in the parts of the code that use new programming features (as26

2

described in Section 2). Specifically, we propose to use mutation analysis, a27

high-end testing technique that is known for helping engineers design pow-28

erful tests.29

We start by analyzing the unique technical features of Android apps,30

and design novel mutation operators for those features. Tests that kill those31

mutants can be expected to reveal many faults in the use of the features. We32

have built a proof-of-concept mutation analysis tool that implements the new33

Android mutation operators as well as more traditional mutation operators.34

Our Android mutation analysis tool can be used in three different ways.35

As a method for test case design, mutation analysis is one of the most pow-36

erful test criteria known. Thus mutation can be used to design very pow-37

erful tests. Second, once completed, polished, and made available to other38

researchers, a mutation analysis tool can be used to evaluate other test tech-39

niques for Android apps. Third, if a tester has a large number of pre-existing40

tests, many are likely to be redundant. This is particularly troublesome for41

Android testers, because for a variety of technical reasons, test execution42

tends to be quite slow. However, identifying which tests to keep and which43

tests to dispose of is a challenging problem. Mutation analysis allows tests44

to be filtered by keeping only tests that increase the mutation score.45

The paper makes the following contributions:46

• It defines novel mutation operators specific to Android apps.47

• It evaluates these mutation operators on eight Android apps.48

• It identifies future research areas for mutation analysis of Android apps.49

This paper extends our work published at the 2015 Mutation Workshop50

[9]. The previous experiment revealed some shortcomings, so we have de-51

signed new Android mutation operators based on common faults in Android52

apps, conducted additional empirical studies with new real-world apps, col-53

lected results and carried out a thorough analysis, and compared executions54

between emulators and real devices, as well as different runtime systems.55

This paper also studies eight apps, compared with only one in the previous56

paper [9].57

This paper is organized as follows. Section 2 describes how Android apps58

are programmed, including some of the unique aspects of programming in the59

framework, and introduces how mutation analysis works. Section 3 defines60

eleven novel mutation operators that mutate new programming features such61

3

as the Intent and event handlers. Section 4 outlines how mutation analysis62

is applied in the Android framework, which is quite different from traditional63

languages such as Java. Section 5 presents the Android apps we study, shows64

how mutation analysis can be used to test them, and describes results for65

the empirical study. The paper concludes with an overview of the related66

research in Section 6, and a discussion of our planned future work in Section67

7.68

2. Background69

Android apps are built differently from traditional software, and use new70

structures and new control and data connections. This research project is71

applying an existing testing technique, mutation testing, to a new type of72

software, mobile apps. So before going into our research, we need to provide a73

brief overview of how Android app works, followed by an overview of mutation74

testing.75

2.1. Programming Android Applications76

Android comes with a development environment called the Android Ap-77

plication Development Framework (ADF). Android ADF provides an API to78

help build apps, create GUIs, and access data on devices. Android includes79

an operating system based on Linux, including middleware, pre-installed ap-80

plications, and system libraries. Android used the Dalvik Virtual Machine81

[10] to execute Java programs before the version of 4.4 (KitKat). The most82

recent release, Android 5.0 (Lollipop), replaced Dalvik with Android Run-83

time (ART). However, as stated by Google, most apps developed for Dalvik84

should work without any changes under ART [11]. The change does not85

affect the general structure or programming methodology of Android apps.86

Android apps can also publish their features for other apps to use, subject87

to certain constraints.88

Android apps are built according to a novel structure with a mandatory89

manifest file and four types of components. Manifest files are written in90

eXtensible Markup Language (XML) and provide information about the app91

to the ADF, including configuration information and descriptions of the apps’92

components.93

Android apps have four types of components: Activities, Services, Broad-94

cast Receivers, and Content Providers. An Activity presents a screen to the95

4

Figure 1: Activity lifecycle in Android apps

user based on one or more layout designs. These layouts can include differ-96

ent configurations for different sized screens. The layouts define view widgets,97

which are GUI controls. A configuration file in XML describes the controls98

and how they are laid out with a unique identifier for each widget. Service99

components run on the device in the background. They perform tasks that100

do not require interaction with the user such as counting steps, monitoring101

set alarms, and playing music. Services do not interact with the screen,102

although they may interact with an Activity, which in turn interacts with103

the screen. A Content Provider stores and provides access to structured104

data stored in the file system, including calendar, photographs, contacts,105

and stored music. Finally, a Broadcast Receiver handles messages that are106

announced system-wide such as low battery.107

5

An Android component is activated by using an Intent message, which108

includes an action that the component should carry out, and data that the109

component needs. Android supports run-time binding of Intent messages.110

This is enabled by having calls go through the Android messaging service,111

rather than being explicitly present in the app.112

Android requires all major components such as Services and Activities to113

behave according to a pre-specified lifecycle [12]. The ADF manages these114

behaviors. Figure 1 shows the lifecycle of an Activity as a collection of events115

and states. The states are Running, Paused, and Stopped. The Running state116

is reached after events onCreate(), onStart(), and onResume(). onPause()117

sends the Activity to the Paused state, then onStop() sends it to Stopped and118

onResume() sends it back to Running. From Stopped, the Activity can go to119

Running with onRestart(), onStart(), or onResume(), or it can exit with an120

onDestroy() event. ADF calls lifecycle event handlers and are integral to our121

research, as explained later.122

2.2. Mutation Analysis123

This paper proposes the use of mutation to design effective tests for An-124

droid app components. Mutation testing modifies a software artifact such125

as a program, requirements specification, or a configuration file, to create126

new versions called mutants [13]. The mutants are usually intended to be127

faulty versions and are created by applying rules for changing the syntax of128

the software artifact. These rules are called mutation operators. The tester129

then creates tests that cause the original and each mutated version to exhibit130

different behaviors, called killing the mutant. For example, the ROR oper-131

ator for traditional programming languages replaces every instance of every132

relational operator (for example, <=) with all other relational operators (<,133

==, >, >=, ! =) plus trueOp and falseOp, which set the condition to true134

and false [14]. Mutation operators sometimes create changes that are similar135

to programmer mistakes, and sometimes introduce changes that force testers136

to design test inputs that are likely to find faults.137

Each mutant is run against the tests in a test suite to measure the per-138

centage of mutants the tests kill. This is called the mutation adequacy score.139

Mutation testing has consistently been found to usually be stronger than140

other test criteria. One source of that strength is that it does more than141

just apply local requirements, such as reach a statement or tour a subpath142

in the control flow graph (reachability), but it also requires that the mutated143

statement result in an error in the program’s execution state (infection), and144

6

that erroneous state propagate to incorrect external behavior of the mutated145

program (propagation) [14, 15, 16].146

Some mutants have the same behavior as the original program on every147

input, so cannot be killed. These mutants are called equivalent. Identifying148

and eliminating equivalent mutants from consideration is a major cost of149

mutation testing. Some mutants do not compile and become stillborn [14, 17,150

18, 19] because the change makes the program syntactically incorrect. While151

these stillborn mutants can usually be avoided if the mutation operators152

are well designed and properly implemented, some do occur. A mutation153

system must be prepared to recognize stillborn mutants and remove them154

from consideration.155

Mutation operators have been created for many different languages, in-156

cluding C, Java, and Fortran [20, 21, 22, 23]. Mutation operators for Android157

apps focus on the novel features of Android, including the manifest file, ac-158

tivities, and services.159

3. Android Mutation Operators160

Mutation analysis relies on mutation operators, which are syntactic rules161

for changing the program or artifact. Good mutation operators can lead162

to very effective tests, but poor mutation operators can lead to ineffective163

tests or large numbers of redundant tests. Mutation operators are usually164

defined using one of two approaches. When available, mutation operators165

are defined from fault models where each type of fault is used to design a166

mutation operator that creates instances of those faults. The muJava class-167

level operators [24, 25] were based on a previous fault model by Alexander168

[26]. Another approach is to analyze every syntactic element of the language169

being mutated, and design mutants to modify the syntax in ways that typical170

programmers might make mistakes.171

We have defined five categories of mutation operators, four of which are172

based on the Android app elements they cover (Intent, Activity lifecycle,173

event handler, and XML). The fifth is based on common faults that app174

programmers make. Every Android app must have at least one Activity [27],175

making it crucial for testing.176

Google’s “Activity Testing: What To Test” [28] document lists Intent177

and lifecycle events as two essential elements to test. Android apps are178

event-driven GUI programs [8, 29, 30], thus we designed operators that mu-179

tate event handlers. Because aspects of Android apps are defined in XML180

7

Original Type Default Value

int, short, long, float, double, char 0
boolean true / false
String “” / (String) null
Array (Array) null
Others (Others) null

Table 1: IPR default values

configuration files, we also designed operators to mutate the XML files.181

Android apps often have faults based on null values and the orientation182

of the screen [31]. Thus, we have designed two mutation operators based on183

those faults.184

We have designed eleven mutation operators within these five categories.185

The following subsections define each operator in turn, organized by the186

categories.187

3.1. Intent Mutation Operators188

As described in Section 2, an Intent is an abstraction of an operation to189

be performed among Android components [32]. They are usually used to190

launch an activity or transmit data or messages between activities.191

3.1.1. Intent Payload Replacement (IPR)192

An Intent can carry different types of data (called payload) as key-value193

pairs. The putExtra() method takes the key name as the first parameter, and194

the value as the second parameter. The IPR operator mutates the second195

parameter to a default value that depends on the underlying data type. These196

default values are listed in Table 1. Objects with primitive numeric types,197

such as int, short, long, etc., are replaced by the value zero, and boolean198

variables are replaced by both true and false. String objects are replaced by199

empty strings and null values. Array and other types of objects are replaced200

by null values cast into the appropriate types.201

Figure 2 shows an example IPR mutant. The String object message is202

replaced with an empty String (the original and mutated statements are in203

bold face). IPR mutants challenge testers to design test cases to ensure the204

value passed by an Intent object is correct.205

8

public void test (View view)
{

Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById (R.id.edit message);
String message = editText.getText().toString();
intent.putExtra (EXTRA MESSAGE, message);
startActivity (intent);
}

Original
public void test (View view)
{

Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById (R.id.edit message);
String message = editText.getText().toString();
intent.putExtra (EXTRA MESSAGE, “”);
startActivity (intent);
}

Mutant

Figure 2: Intent Payload Replacement mutant example

3.1.2. Intent Target Replacement (ITR)206

Developers use an explicit Intent to specify which component should be207

started by declaring the Intent with the target component’s name within an208

app.209

Figure 3 shows an Intent object that is declared with ActivityB.class as210

the target. The ITR operator first looks up all the classes within the same211

package of the current class, and then replaces the target of each Intent with212

all possible classes. This challenges the tester to design test cases that check213

that the target activity or service is launched successfully after the Intent is214

executed.215

3.2. Activity Lifecycle Mutation Operator216

Section 2 described the pre-specified lifecycle followed by major compo-217

nents, as illustrated in Figure 1. Components use seven methods to fulfill218

transitions among different states in the lifecycle. This operator modifies219

those methods.220

3.2.1. Lifecycle Method Deletion (MDL)221

Developers override transition methods to define transitions among states.222

MDL deletes each overriding method to force Android to call the version in223

9

public void startActivityB (View v)
{
Intent intent = new Intent (ActivityA.this, ActivityB.class);
startActivity (intent);

}
Original

public void startActivityB (View v)
{
Intent intent = new Intent (ActivityA.this, ActivityC.class);
startActivity (intent);

}
Mutant

Figure 3: Intent Target Replacement mutant example

the super class. This requires the tester to design tests that ensure the app is224

in the correct expected state. The MDL operator is similar to the Overriding225

Method Deletion mutation operator (IOD) in muJava [25], but only considers226

the methods related to the Activity lifecycle.227

3.3. Event Handler Mutation Operators228

Android apps are event-based, so event handlers are normally used to229

recognize and respond to events. Common user actions are clicking and230

touching, each of which generates an event. Thus, we define two mutation231

operators for event handlers, the OnClick Event Replacement (ECR) opera-232

tor, and the OnTouch Event Replacement (ETR) operator.233

3.3.1. OnClick Event Replacement (ECR)234

ECR first searches and stores all event handlers that respond to OnClick235

events in the current class. Then, it replaces each handler with every other236

compatible handler. Figure 4 shows an ECR mutant where the event handler237

for the button mPrepUp has been replaced by the event handler for the238

button mPrepDown. To kill ECR mutants, each widget’s OnClick event has239

to be executed by at least one test.240

3.3.2. OnTouch Event Replacement (ETR)241

This operator replaces the event handlers for each OnTouch event. It242

works exactly the same as the ECR mutation operator.243

10

mPrepUp.setOnClickListener (new OnClickListener()
{
public void onClick (View v) {
incrementPrepTime();

}
});
mPrepDown.setOnClickListener (new OnClickListener()
{

public void onClick (View v) {
decrementPrepTime();

}
});

Original
mPrepUp.setOnClickListener (new OnClickListener()
{
public void onClick (View v) {
decrementPrepTime();

}
});
mPrepDown.setOnClickListener (new OnClickListener()
{

public void onClick (View v) {
decrementPrepTime();

}
});

Mutant

Figure 4: OnClick Event Replacement mutant example

3.4. XML Mutation Operators244

Android uses many XML files, not just the manifest file. XML files are245

used to define user interfaces, to store configuration data such as permissions,246

to define the default launch activity, and more. These three operators are247

unusual in that they do not modify executable code, but static XML.248

3.4.1. Activity Permission Deletion (APD)249

The Android operating system grants each app a set of permissions, such250

as the ability to access cameras or load location data from GPS sensors.251

These permissions are requested from the user when an app is first installed,252

and stored in the app’s manifest file (AndroidManifest.xml). Some apps ag-253

gressively request unnecessary, even irrelevant, permissions, and many users254

click “OK” without paying attention to the details of these requested per-255

11

missions when installing an app. This can create security and privacy vul-256

nerabilities in Android systems.257

APD mutants delete an app’s permissions from its AndroidManifest.xml258

file, one at a time. If this mutant cannot be killed by any tests, it means259

that the app asked for a permission it did not need. For example, in Fig-260

ure 5, the original program requests four permissions: WRITE SETTINGS,261

WAKE LOCK, MODIFY AUDIO SETTINGS, and VIBRATE. APD deletes262

the VIBRATE permission in the example mutant. Then, the app is not al-263

lowed to use the device’s vibrator. A test that kills this mutant must cause264

the app to attempt to access the vibrator of the Android system.265

<manifest xmlns:android=“http://schemas.android.com/apk/res/android”
... ...

<uses-permission android:name=“android.permission.WRITE SETTINGS”/>
<uses-permission android:name=“android.permission.WAKE LOCK” />
<uses-permission android:name=“android.permission.MODIFY AUDIO SETTINGS” />
<uses-permission android:name=“android.permission.VIBRATE”>
</uses-permission>

</manifest>
Original

<manifest xmlns:android=“http://schemas.android.com/apk/res/android”
... ...

<uses-permission android:name=“android.permission.WRITE SETTINGS”/>
<uses-permission android:name=“android.permission.WAKE LOCK” />
<uses-permission android:name=“android.permission.MODIFY AUDIO SETTINGS” />

<!- -
<uses-permission android:name=“android.permission.VIBRATE”>

- ->
</uses-permission>

</manifest>
Mutant

Figure 5: Activity Permission Deletion (APD) mutant example

3.4.2. Button Widget Deletion (BWD)266

The button widget is used by nearly all Android apps in many ways.267

BWD deletes one button at a time from the XML layout file of the UI.268

Killing the BWD mutants requires tests that ensure that every button is269

successfully displayed. Figure 6 shows an original screen on the left, and two270

mutants on the right. The middle screen is a BWD mutant where the button271

12

Figure 6: Button Widget Deletion (BWD) and EditText Widget Deletion (TWD) mutant
examples

“7” is deleted from the UI. This mutation operator forces the tester to design272

tests that use each button in a way that affects the output behavior.273

3.4.3. EditText Widget Deletion (TWD)274

The EditText widget is used to display text to users. The TWD mutation275

operator removes each EditText widget, one at a time. The rightmost screen276

in Figure 6 shows an example TWD mutant where the bill amount cannot277

be displayed. To kill this mutant, a test must use the bill amount.278

3.4.4. Button Widget Switch (BWS)279

It is common for testers to design test cases to ensure an app works as280

expected with respect to its functional requirements, and evaluate the GUI281

structure as a secondary issue. However, Android apps are event-based,282

which means it is essential to display the GUI structure appropriately, as283

well as handling user events. Unlike BWD, BWS does not remove a button284

widget, but switches the locations of two buttons on the same screen. In285

this way, the function of a button is unaffected, but the GUI layout looks286

different from the original version. BWS requires the tester to design tests287

that deliberately check the location (either relative or absolute) of a button288

widget. Figure 7 illustrates an example of BWS mutant. The mutant on the289

right side switches the locations of button “7” and “OK.”290

13

Figure 7: Button Widget Switch mutant example

BWS mutants require tests to check the location of a widget. Testers291

need to design tests that load the location of a widget, and compare it with292

an expected value, or other widgets’ location, to ensure its correct location.293

For example, the code snippet in Figure 8 loads and compares the locations294

of two button widgets to ensure the OK button is displayed on the left of the295

Cancel button.296

3.5. Mutation Operators Based on Common Faults297

We started our efforts to design mutation operators by investigating bug298

reports and code change history logs on GitHub repositories. With the anal-299

ysis on the repositories of open source Android apps, including DAVdroid300

[33], CosyDVR [34], URL evaluator for Android [35], and oandbackup [36],301

we observed several types of faults that were common across different apps.302

To cover these, we designed and implemented novel fault-based operators.303

14

Button okButton = (Button) solo.getView (R.id.ok);
Button cancelButton = (Button) solo.getView (R.id.cancel);
int [] locationOfOK = new int [2];
int [] locationOfCancel = new int [2];
okButton.getLocationInWindow (locationOfOK);
cancelButton.getLocationInWindow (locationOfCancel);
assertTrue (“OK button is on the left of Cancel”, locationOfOK [0] < locationOfCancel [0]);

Figure 8: Test code to kill a Button Widget Switch mutant

3.5.1. Fail on Null (FON)304

According to Arlt et al. [37], NullPointerException is one of the most305

common exceptions thrown in programs. A common cause is that developers306

forget to check if an object is null before accessing it. In our initial study307

on GitHub repositories, we found 80 corrections to one app, of which 52308

were patching null-checking statements. FON mutants add a “fail on null”309

statement before each object is referenced. For String objects, FON also310

adds a “fail on empty” statement before objects are accessed. Figure 9 shows311

an example of an FON mutant. The mutated statement is inserted before312

accessing members. FON mutants are used to encourage the tester to design313

tests that make members null and trigger the “fail on null” statement.314

List<ResourceType> res = new LinkedList<> ();
List<Member> members = collection.getMembers ();

for (WebDavResource member : members)
res.add (newResource (member.getName (), member.getETag ()));

return res.toArray (new Resource[0]);
Original

List<ResourceType> res = new LinkedList<> ();
List<Member> members = collection.getMembers ();
failOnNull (members);
for (WebDavResource member : members)

res.add (newResource (member.getName (), member.getETag ()));
return res.toArray (new Resource[0]);

Mutant

Figure 9: Fail on Null mutant example

3.5.2. Orientation Lock (ORL)315

Mobile devices such as smartphones and tablets have the unique feature316

of being able to change the screen orientation. Thus, many apps change317

15

Figure 10: Fault in landscape orientation

the layout of the GUI when the orientation changes. For example, YouTube318

automatically switches to play video in full screen when the orientation is319

changed from portrait to landscape. However, Android devices are man-320

ufactured by different factories with various hardware specifications, using321

different screen sizes and resolutions. This makes switching the orientation322

difficult for the developers, in turn leading to many faults in Android apps.323

Figure 10 shows a correct and a faulty version of TippyTipper with dif-324

ferent orientations. Even though both devices properly display the GUI in325

portrait orientation, when switching to landscape orientation, as shown in326

Figure 10, the user is not able to see or click the button at the bottom or327

scroll down the screen.328

ORL mutants freeze the orientation of an activity to be in portrait or329

landscape, by inserting a special locking statement into the source code.330

Only test cases that explicitly changes the orientation and checks whether331

the GUI structure is displayed as expected in both orientations can kill these332

mutants.333

3.6. Mutation Operator Summary334

These eleven mutation operators are defined on several unique and novel335

aspects of Android apps. These mutation operators cover many of Android336

app’s novel features and allow a feasibility study.337

Previous research efforts that defined new mutation operators have found338

that an initial set of operators can often be improved [16, 24, 38, 39, 40].339

Improvements include adding additional operators that improve the fault340

detection ability of the resulting tests, eliminating redundant operators, and341

modifying operators to generate more, fewer, or better mutants. This will342

require experimental evaluations to identify mutation operators that do not343

16

lead to useful tests or that are redundant, as well as to identify additional344

useful operators.345

4. Mutating Android Applications346

Mutation analysis cannot be performed the same way for Android apps347

as for traditional Java programs. First, whereas Java mutation analysis tools348

mutate only Java files, Android operators also mutate XML layout and con-349

figuration files. Second, Android apps require additional processing before350

being deployed. Java mutation engines usually either mutate the source, then351

compile to bytecode class files, or compile to bytecode, then mutate the byte-352

code. The Java bytecode files are then dynamically linked by the language353

system during execution. Android apps have the additional requirement that354

each Android mutant must be compiled as an Android application package355

(APK) file so that it can be installed and executed on mobile devices and356

emulators. This significantly impacts the design of mutation analysis tools.357

Figure 11 illustrates how our mutation analysis engine works. Below are358

the steps for conducting mutation analysis on Android apps. Note that steps359

3, 4, 6, and 7 are different from traditional mutation testing processes.360

1. First, the tester selects which mutation operators should be used. In361

addition to the eleven new Android operators defined in Section 3, we362

reuse 15 method level operators from muJava [25], and four deletion363

operators [41, 42]. The Android mutation analysis tool uses part of the364

muJava [25] mutant generation engine to implement these mutation365

operators1.366

2. For the operators that mutate Java code (both our new Android and367

the traditional muJava operators), the system modifies the original368

Java source code, and compiles them to bytecode class files.369

3. XML mutation operators are applied directly to the XML file, creating370

a new copy of the file for each mutant. They are swapped into place371

for dynamic binding when the APK file is created.372

4. For each mutated Java bytecode class file and XML file, the mutation373

system generates a mutated APK file by including the mutated source374

and other project files. Some mutants might cause compilation errors375

1muJava is now open source on GitHub (https://github.com/jeffoffutt/muJava).

17

Figure 11: Performing mutation analysis on Android apps

(stillborn), which are discarded immediately and not used in the final376

results.377

5. The Android testing framework extends JUnit [43] to support the test-378

ing of different types of Android components [44]. In addition, testers379

can write test cases with the support of external Android test automa-380

tion frameworks, such as Robotium [45]. Our Android mutation anal-381

ysis tool is implemented to run both kinds of test cases above. Tests382

18

are either designed by the tester to target mutants, or an externally383

created set of pre-existing tests can be used. Each test is imported and384

compiled as an APK test file.385

6. After generating mutants and compiling them to APK files, the system386

loads the original (non-mutated) version of the app under test into an387

emulator or onto a mobile device. Then the system executes all test388

cases on the original app and records the outputs as expected results.389

The results of the mutant executions are compared with the results of390

the original app to determine which mutants are killed.391

7. Then, each mutant is loaded into an emulator or onto a mobile device.392

The mutation system executes all the test cases against the mutants393

and stores the outputs as the actual results. With the current tool,394

running Robotium test cases is very time-consuming. According to395

the Robotium developer, higher test execution speed may make the396

execution unstable on emulators [46]. In the emulator, each test re-397

quires hours to run against all mutants. In the future, we plan several398

optimizations to reduce this cost.399

8. After collecting all the results, the mutation system compares the ex-400

pected results with the actual results. If the actual result on a test dif-401

fers from the expected result on the same test, that mutant is marked402

as having been killed by that test.403

9. Finally, the mutation score is computed as a percentage of the mutants404

killed by the tests. Currently, the tool does not implement any heuris-405

tics to help identify equivalent mutants, so these must all be evalu-406

ated manually. Encouragingly, based on the evidence in Section 5, the407

Android mutation operators do not seem to create many equivalent408

mutants.409

5. Empirical Evaluation410

To evaluate our proposed approach, we developed a new mutation analysis411

tool that implements the mutation operators defined in Section 3. The tool412

was then used to generate mutants, compile the APK files, install them413

into emulators and Android devices, execute tests against the mutants, and414

compute and report the final results.415

Based on other uses of mutation testing, we expect mutation of Android416

apps to be stronger than statement coverage, thus we use statement cover-417

age as a comparison. Our empirical evaluation includes five phases: selecting418

19

empirical subjects, designing test data with 100% statement coverage, gener-419

ating mutants with muJava and Android mutation operators, executing tests420

against mutants, and analyzing results.421

Most testing is done using Android emulators, and most of our research422

has followed that example. However, to extend our previous work, and to423

check whether results are consistent between the emulator and hardware424

devices, we also used two Motorola MOTO G Android smartphones, one425

with the Dalvik Virtual Machine, and the other with ART. We executed426

tests in developer mode.427

5.1. Empirical Subjects428

Eight Android apps were selected as empirical subjects. These eight apps429

were used in previous papers [4, 8]. TippyTipper [47] is an Android app430

that can calculate tips after taxes are added and split bills among several431

customers. According to the Google Play store, the latest version 2.0 was432

released in December 2013 and currently has a 4.6 star rating from 761 users.433

We tested it by downloading the source from its homepage. TippyTipper has434

five Activities: TippyTipper, SplitBill, Total, Settings, and About. It also435

has one Service: TipCalculatorService. Figure 12 illustrates three Activities:436

TippyTipper is on the left, SplitBill is in the middle, and Total is on the437

right.438

PasswordMaker Pro for Android [48] produces passwords for websites and439

other apps. It accepts a “master password” from the user, combines the URL440

or the name of the website requiring the password, and computes a unique441

password with hash algorithms. It has 23 classes in three different packages.442

On the Google Play store, the latest update was in January 2015, and it has443

a 3.7 star rating from 64 users.444

MunchLife [49] is a counter application for tracking levels achieved while445

playing the card game Munchkin. Its latest version is 1.4.4, released in446

February 2014, with a 4.3 star rating from 242 users. JustSit [50] is a timer447

app with an alarm used for meditation. Its latest version is 0.3.3, released448

in July 2010, with a 3.8 star rating from 145 users. Tipster [51] is an app449

similar to TippyTipper that is used for splitting payment and calculating450

tips. It is an example from Darwin’s book [52].451

K-9 Mail [53] is an email client app with a rich set of useful features452

that are not offered by similar email clients. On the Google Play store, it453

has a 4.3 star rating from more than 155,000 reviewers, and several million454

user installations. Unlike our other apps, which were developed by a small455

20

number of programmers, K-9 Mail is developed and released by an open456

source community with hundreds of contributors.457

Alarm Klock [54] is an alarm clock app with advanced and customizable458

features. It has a 4.5 star rating by 6291 reviews, and the Google Play store459

shows that the number of user installations is between 500,000 and 1,000,000.460

Jamendo for Android [55] is an app for searching, streaming, and down-461

loading free online music. We obtained it from F-Droid [56], a repository462

of free and open source Android apps. It is not currently available on the463

Google Play store, so we do not have review or download data.464

We used twelve classes along with their corresponding XML layout files,465

and the AndroidManifest.xml files from the eight apps. TippyTipper, Munch-466

LifeActivity, JustSit, PasswordMakerPro, TipsterActivity, ActivityAlarm-467

Clock, and HomeActivity are the main Activity classes of their apps. Other468

classes were chosen based on their features in the corresponding apps. For469

example, in the TippyTipper app, we chose the Activities SplitBill and To-470

tal because they provide features including splitting and calculating tips and471

taxes, and generate a rich set of mutants. We did not use the Activity About472

because it only displays information about the app without any additional473

functions, so could not create mutants. In addition, ColorPickerDialog of K-474

9 Mail is the only class that included event handlers for an OnTouch event.475

We used it to ensure the ETR operator was used.476

Details about the empirical subjects are in Table 2. The source lines of477

code (SLOC) and executable lines of code (ELOC) for the Android classes478

were calculated by Emma [57], and the LOCs for XML files were counted479

within the Android IDE. We also used the XML Document Object Model480

(DOM) parser to count the number of XML elements. We believe the number481

of elements is a better way to measure size of XML files than the number of482

lines.483

The largest Java class is the main Activity of PasswordMaker Pro, Pass-484

wordMakerPro, with 606 SLOC. The smallest is the setting Activity of485

MunchLife, SettingsActivity, with 17 ELOC. The largest XML file is the486

AndroidManifest.xml of K-9 Mail, with 214 SLOC and 124 nodes.487

Table 2 also lists the number of lines of dead code manually identified488

for each class. Our subjects had three types of dead code. First, if the489

default case is included in a switch-case block, but can never be reached with490

any user input, it is dead code. Second, if an event listener is designed for491

handling menu clicks, but no menu is on the screen, the entire listener class492

is dead code. Third, in a try-catch block, if it is impossible to throw and493

21

App File SLOC ELOC Lines of XML
Dead Code Elements

TippyTipper

TippyTipper 239 103 1
main.xml 93 93 20
SplitBill 134 63 6

SplitBill.xml 93 93 31
Total (a Java class) 279 133 2

Total.xml 139 139 44
AndroidManifest.xml 32 32 16

MunchLife

MunchLifeActivity 384 144 10
main.xml 58 58 12

SettingsActivity 68 17 0
preferences.xml 25 25 5

AndroidManifest.xml 32 32 10

JustSit

JustSit 444 207 30
main.xml 99 99 13
JsSettings 61 22 0

JsSettings.xml 52 52 6
AndroidManifest.xml 23 23 14

PasswordMaker
PasswordMakerPro 606 343 26

main.xml 141 141 19
Pro AndroidManifest.xml 26 26 13

Tipster
TipsterActivity 297 115 0

main.xml 177 177 30
AndroidManifest.xml 23 23 7

K-9 Mail
ColorPickerDialog 199 93 0

colorpicker dialog.xml 59 59 7
AndroidManifest.xml 214 214 124

Alarm Klock
ActivityAlarmClock 290 127 3

alarm list.xml 39 39 6
AndroidManifest.xml 53 53 35

Jamendo
HomeActivity 441 132 10

main.xml 66 66 10
AndroidManifest.xml 146 146 93

Total 5032 3089 88 515

Table 2: Details of empirical subjects

22

Figure 12: Three activities for TippyTipper

catch a required exception the entire catch block will be dead code.494

5.2. Test Data Generation495

We used pre-existing tests from our previous paper [9], and created new496

tests by hand. In our previous paper, EvoDroid [4], an evolutionary algorithm-497

based tool, generated 744 test cases for the main Activity of TippyTipper498

through multiple generations. We chose ten tests from the last generation,499

which covered 82% of the methods, 90% of the blocks, and 85% of the state-500

ments in the main Activity class, TippyTipper. We then added one additional501

test by hand to achieve full statement coverage.502

For the other nine Android classes and their associated XML layout files,503

we manually designed test inputs to achieve 100% statement coverage (Table504

2), excluding the dead code. All available test sets designed for each app were505

executed against APD mutants of AndroidManifest.xml files. For example,506

the test set for AndroidManifest.xml of TippyTipper consists of all the test507

cases designed to test the Activities of TippyTipper, SplitBill, and Total.508

Because mobile devices and emulators usually have relatively fewer com-509

putation resources (e.g., less memory and lower CPU speed), sending test510

inputs directly to them without waiting for their responses to each user ac-511

tion is very likely to get inaccurate testing results. For example, if an action512

of clicking a button is sent before the button is completely rendered on the513

23

screen, the test will fail due to the failure of finding the button. Thus, to get514

accurate empirical results, we added code to our tests to wait for two seconds515

after each user action and before executing assertion statements.516

5.3. Mutant Generation517

App File muJava Mutants Android Mutants

TippyTipper

TippyTipper 105 195
SplitBill 124 37

Total 231 104
AndroidManifest.xml n/a 4

MunchLife
MunchLifeActivity 534 151

SettingsActivity 47 7
AndroidManifest.xml n/a 1

JustSit
JustSit 415 241

JsSettings 28 29
PasswordMakerPro PasswordMakerPro 515 379

Tipster TipsterActivity 327 118

K-9 Mail
ColorPickerDialog 551 60

AndroidManifest.xml n/a 17

Alarm Klock
ActivityAlarmClock 161 235
AndroidManifest.xml n/a 6

Jamendo
HomeActivity 237 115

AndroidManifest.xml n/a 7

Total 3275 1706

Table 3: Mutants generated

According to the design of applying mutation analysis in Android apps in518

Section 4, we used 19 method-level mutation operators borrowed from mu-519

Java [25], and eleven Android operators designed in our research to generate520

mutants, and compile them into installable APK files. Generating a mutant521

and compiling it as an APK file took up to two seconds on a MacBook Pro522

with a 2.6 GHz Intel i7 processor and 16 GB memory.523

Table 3 lists the results of mutants generation. Our system generated a524

total of 3275 mutants from the 19 method-level operators. The number of mu-525

Java mutants ranged from 28 (in JsSettings of JustSit) to 551 (in ColorPicker-526

Dialog of K-9 Mail). The eleven new Android mutation operators generated527

1706 valid Android mutants for twelve Android classes along with their corre-528

sponding XML layout files, and five AndroidManifest.xml files (TippyTipper,529

MunchLife, K-9 Mail, Alarm Klock, and Jamendo). The number of Android530

24

mutants ranged from seven (in SettingsActivity of MunchLife) to 379 (in531

PasswordMakerPro of PasswordMakerPro), excluding AndroidManifest.xml532

files.533

As stated in Section 2, a mutant that cannot be compiled into an APK534

file is called stillborn, and is not counted in the results. For example, the Ac-535

tivity class TippyTipper has 110 stillborn mutants in addition to 105 muJava536

and 195 Android mutants, for a total of 300 mutants. The entire TippyTip-537

per app has 195+37+104+4 = 340 Android mutants and 105+124+231 =538

460 muJava mutants (muJava does not generate any mutants for XML files).539

The 110 stillborn mutants are comprised of 36 AOIS mutants, 2 LOI mu-540

tants, 6 ITR mutants, and 66 ECR mutants. Some mutants are stillborn541

because of incorrect syntax. Other mutants are stillborn because Android542

apps use integers to identify pre-defined resources and values that are saved543

in a separate file. Some mutation operators mutate the identification inte-544

gers, making it impossible for Android to locate these pre-defined values. In545

turn, this prevents APK files from being compiled.546

Each Android app has an AndroidManifest.xml file, but three Android-547

Manifest.xml files (in subjects JustSit, PasswordMakerPro, and Tipster) did548

not have any mutants. Thus, they are not listed in Table 3.549

5.4. Empirical results550

We used our mutation analysis tool to load and execute 100% statement551

coverage test sets against all mutants. Table 4 summarizes results from run-552

ning both muJava and Android mutants. Across all subjects, 1778 of 3275553

muJava mutants and 530 of 1706 Android mutants were killed by the state-554

ment coverage test sets. Equivalent mutants were identified by hand analysis.555

The MS columns in Table 4 show mutation scores after equivalent mutants556

are filtered out. In other words, the percentages show how many mutants557

are killed relative to how many can be killed. The mutation scores for the558

muJava mutants ranged from 0.419 (in JustSit of JustSit) to 0.78 (in Tip-559

sterActivity of Tipster), with a mean of 0.622 and a median of 0.644. For560

Android mutants, the mutation scores ranged from 0.455 (in SplitBill of Tip-561

pyTipper) to 0.885 (in HomeActivity of Jamendo for Android), with a mean562

of 0.666 and a median of 0.674, excluding the three AndroidManifest.xml563

files.564

Table 5 shows results for each mutation operator. The first group contains565

results from the muJava traditional mutants. Arithmetic Operator Replace-566

ment (AORS) and Logical Operator Replacement (LOR) mutants have the567

25

App File
muJava Mutants Android Mutants

Total Killed Equiv. MS Total Killed Equiv. MS

TippyTipper

TippyTipper 105 71 4 0.703 195 85 41 0.552
SplitBill 124 52 14 0.473 37 5 26 0.455
Total 231 123 29 0.609 104 24 57 0.511

AndroidManifest.xml n/a 4 0 4 1.000

MunchLife
MunchLifeActivity 534 324 72 0.701 151 31 105 0.674
SettingsActivity 47 19 8 0.487 7 2 3 0.500

AndroidManifest.xml n/a 1 1 0 1.000

JustSit
JustSit 415 153 50 0.419 241 59 174 0.881

JsSettings 28 17 3 0.680 29 6 18 0.546
PasswordMakerPro PasswordMakerPro 515 229 89 0.538 379 78 290 0.876

Tipster TipsterActivity 327 234 27 0.780 118 22 88 0.733

K-9 Mail
ColorPickerDialog 551 271 56 0.547 60 13 45 0.867

AndroidManifest.xml n/a 17 3 0 0.176

Alarm Klock
ActivityAlarmClock 161 114 12 0.765 235 141 49 0.758
AndroidManifest.xml n/a 6 2 0 0.333

Jamendo
HomeActivity 237 171 13 0.763 115 54 54 0.885

AndroidManifest.xml n/a 7 4 0 0.571

Total 3275 1778 377 0.614 1706 530 954 0.705
Median 234 138 28 0.644 60 13 41 0.674
Mean 272.9 148.2 31.4 0.622 100.4 31.2 56.1 0.666

Table 4: Empirical results

lowest mutation scores of 0, meaning that none were killed by the statement568

coverage test sets. These two operators only generated five mutants, so this569

low percentage probably isn’t meaningful. Among the Android mutation570

operators, none of the Button Widget Switch (BWS) mutants were killed.571

The highest mutation score among the traditional muJava mutants were for572

Conditional Operator Deletion (COD), 0.857. All of the Android mutants573

for OnTouch Event Replacement (ETR), Intent Payload Replacement (IPR),574

and Button Widget Deletion (BWD) were killed.575

To assess whether the emulator had any effect on our tests, we ran the576

tests on different smartphones using Dalvik and ART. The mutation scores577

were identical in all three environments. However, the emulator is much578

slower than real devices, even with the Intel Hardware Accelerated Execution579

Manager (HAXM) installed.580

5.5. Discussion581

The APD operator (permission deletion) only applies to AndroidMani-582

fest.xml files. The principle of least privilege [58] requires that an app should583

only request necessary permissions from the Android system. If an app still584

works correctly after APD deletes its permissions (that is, the mutant is585

26

Operator Killed Equivalent Live Total Mutation
Mutants Mutants Mutants Mutants Scores

Traditional Mutants
AODU 3 0 1 4 0.750
AOIS 249 151 120 520 0.675
AOIU 253 17 112 382 0.693
AORB 113 4 71 188 0.614
AORS 0 0 1 1 0.000
CDL 22 9 18 49 0.550
COD 6 0 1 7 0.857
COI 70 4 55 129 0.560
COR 18 0 14 32 0.563
LOI 296 7 118 421 0.715
LOR 0 0 4 4 0.000
ODL 82 22 84 188 0.494
ROR 169 51 186 406 0.476
SDL 471 109 309 889 0.604
VDL 26 3 26 55 0.500

Subtotal 1778 377 1120 3275 0.614

Android Mutants
APD 10 4 21 35 0.323
IPR 7 0 0 7 1.000
ITR 181 0 29 210 0.862
ECR 111 0 4 115 0.965
ETR 2 0 0 2 1.000
FON 146 949 25 1120 0.854
MDL 18 1 5 24 0.783
BWD 36 0 0 36 1.000
TWD 6 0 4 10 0.600
ORL 13 0 35 48 0.271
BWS 0 0 99 99 0.000

Subtotal 530 954 222 1706 0.705

Total 2308 1331 1342 4981 0.632

Table 5: Empirical results for each mutation operator

27

equivalent), the permission was unnecessary and granting it could create a586

security or privacy threat.587

In our empirical study, none of the four APD mutants of TippyTipper588

were killed. We designed tests to cover only three out of five Activities in the589

app, thus testing could not show whether those Activities needed the permis-590

sions. To verify whether the permissions were needed, we conducted a de-591

tailed hand analysis of the needs of all the Activities, finding that none of the592

Activities used any of the four permissions requested (WRITE SETTINGS,593

WAKE LOCK, MODIFY AUDIO SETTINGS, and VIBRATE), leading us594

to conclude that TippyTipper does not need any of them. Thus we judged595

them to be equivalent. Additionally, fourteen live APD mutants of K-9 Mail596

were judged not equivalent after manual analysis.597

In Table 5, 949 of 1120 (84.7%) FON mutants are equivalent, which is the598

highest in all mutation operators. This is because many objects in an app599

can never be null or empty. Thus, the “fail on null” statement is impossible600

to trigger. Our tool cannot decide if an object can be null when generating601

mutants. However, identifying and filtering these equivalent mutants by hand602

is straightforward and not time-consuming.603

All the 99 BWS mutants were still alive after testing. as the statement604

coverage test sets could not ensure the locations (either relative, or absolute)605

of any button widgets.606

In our previous paper [9], once the test set was augmented to achieve607

100% statement coverage, the mutation score on the Android mutants was608

very high. Since mutation is usually much stronger than statement coverage,609

we interpreted this to mean that the initial Android mutants were not strong610

enough. The new operators used in this paper appear to have made this611

testing much stronger. 222 Android mutants were not killed, with an overall612

mutation score of 0.705. Additionally, the 100% statement coverage test sets613

were only able to kill 61% of muJava mutants, and 71% of Android mutants.614

This is more in line with previous mutation systems.615

5.6. Threats to Validity616

Our empirical evaluation has several threats to validity. First, dead code617

and equivalent mutants were identified manually by one person. Second,618

our implementation of the eleven proposed Android operators and Android619

mutation tool may include faults. To ensure they work as expected, we620

tested our tool constantly, and checked mutants generated by hand very621

carefully. Third, like most software engineering experiments, it is not possible622

28

to guarantee the representativeness of selected subjects. We tried to choose623

apps with different sizes, from different sources, and used in various domains.624

The fact that all the subjects were used by previous researchers provide625

consistency across multiple studies.626

6. Related Work627

This section describes relevant research in three areas: Android testing,628

mutation testing, and testing GUIs with mutation.629

6.1. Android Testing630

Android’s development environment includes its own test framework [44],631

which extends the ubiquitous JUnit. Additionally, several testing automation632

frameworks are available to testers. Many testers use Robotium [45] for unit633

testing, system testing, and user acceptance testing. It is also compatible634

with other code coverage measurement tools, such as Emma and Cobertura.635

Thanks to its APIs that directly interact with Android GUI components by636

run-time binding, people with little knowledge of the implementation de-637

tails can also write tests with Robotium. It is possible to test an app with638

Robotium even if only its APK file is available. However, to maintain a stable639

test execution on emulators and mobile devices, Robotium is set to run tests640

at a relatively low speed. All test sets used in our empirical study are de-641

signed with Robotium. Another framework for Android apps is Robolectric642

[59], which runs on the Java VM, instead of Dalvik or ART. It splits tests643

from the emulator, making it possible to run tests by directly referencing the644

Android library files. In testing Android apps, one challenge is the variety645

of hardware specifications, e.g., different screen sizes and resolutions. Selen-646

droid [60] enables testers to distribute their tests across multiple emulators647

with different configurations. All these frameworks automate execution, but648

none supports test value generation, test criteria, or any other type of test649

design.650

Several research papers have been based on random test value creation.651

Amalfitano et al. [5, 6] presented an approach that starts with random inputs,652

then uses a code-crawling algorithm to generate test cases. Hu and Neamtiu653

[61] generated GUI test inputs randomly and executed them with Android654

Monkey. They also collected and categorized faults from ten open source655

Android apps, and categorized Android faults into eight types: activity error,656

event error, dynamic type error, unhandled exceptions, API error, I/O error,657

29

concurrency error, and others. These categories are too general for use in658

mutation analysis.659

The tool Dynodroid [8] creates random values and sequences of events,660

and uses heuristics to increase the speed of Android Monkey.661

Some researchers use model-based approaches to generate tests for An-662

droid apps. By employing Android Monkey, TEMA [62] uses state machines663

(labeled state transition systems) to generate test sequences. However, two664

levels of state machines (action machine and refinement machine) need to be665

created by hand. MobiGUITAR [29] automates GUI-driven testing of An-666

droid apps by extracting run-time states of GUI widgets, and generates tests667

with abstraction of models. Compared with Android Monkey and Dynodroid,668

MobiGUITAR was reported to detect more faults. ORBIT [30] creates a GUI669

model of the app and then generates tests. A3E [7] uses static taint analysis670

algorithms to build a model of the app, which is then used to automatically671

explore the Activities in the app. These papers focus on constructing models672

from which tests can be designed, as opposed to applying a test criterion673

such as mutation.674

Some papers explore and extend symbolic execution into testing Android675

apps. Mirzaei et al. [63] created stubs and mock classes to make Android676

apps run on Java PathFinder (JPF) [64]. Merwe et al. [65, 66] developed677

JPF-Android by extending JPF to verify Android apps, but the state ex-678

plosion problem made it difficult to generate complex test inputs. Jensen et679

al. [67] combined symbolic execution with test sequence generation to sup-680

port system testing. Their goal was to find valid sequences and inputs that681

would reach locations in the code. Our research tries to maximize test case682

effectiveness through mutation testing, an exceptionally strong coverage cri-683

terion. Anand et al. [68] used dynamic symbolic execution [69, 70] in the684

form of concolic testing [71] to test an Android library. Their testing used685

pixel coordinates to identify valid GUI events.686

Finally, several papers applied evolutionary algorithms [4, 72] to test An-687

droid apps. They focused on generating inputs for GUI testing of Android688

apps, instead of using test criteria.689

6.2. Mutation Testing690

Mutation testing has been applied to many languages, including Fortran691

77 [16, 21], C [73], Java [25, 74], Javascript [75], AspectJ [76], and web ap-692

plications [39]. Several papers also extend mutation analysis to model-level,693

such as Finite State Machines [77, 78], statecharts [79], Petri nets [80], timed694

30

automata [81], and Aspect-oriented models [82]. For GUI-based applications,695

a specific set of mutation operators [83] are also proposed. However, to our696

knowledge, mutation testing has not previously been applied to mobile apps.697

To test messages transmitted between web components, Lee and Offutt698

applied mutation testing to XML data by defining mutation operators to699

mutate the interaction recorded in XML files [84]. Test cases are designed to700

detect the changes made to XML messages. Offutt and Xu approached the701

problem of input data validation for web services by designing mutation op-702

erators that modified XML schemas [85]. The approach was verified through703

experiments on web service applications. The paper used the term pertur-704

bation instead of mutation to emphasize that the mutation operators were705

perturbing the input space. Our approach is slightly different. We mutate706

XML files, but the XML files we mutate do not define input data, they help707

configure the app.708

Mutation testing subsumes other test criteria by incorporating appropri-709

ate mutation operators. Designing effective mutation operators is the most710

important task when applying mutation to new technology, because the op-711

erators directly determine the strength of the resulting tests.712

The cost of mutation testing is very high, as it has the largest number713

of test requirements among all of test coverage criteria. To reduce this cost,714

three types of approaches are used: do-fewer, do-smarter, and do-faster [86,715

87]. As a do-fewer approach, selective mutation was proposed by Wong and716

Mathur by only choosing a subset of mutation operators [88, 89]. The muJava717

tool selects 15 operators to preserve almost the same test coverage as non-718

selected mutation [25]. Additionally, empirical studies in both Java and C719

show that Statement Deletion mutation operator (SDL) is able to result in720

very effective tests with much cheaper cost [41, 42]. Deletion operators are721

also included in the empirical study of this paper.722

6.3. Testing GUIs with Mutation723

The first research paper to use mutation to test GUIs was by Oliveira et724

al. in 2015 [83]. The paper introduced a way to design comprehensive tests725

for GUI-related programs, and also defined several challenges with respect726

to how to killing mutants. In practice, testers usually design tests to check727

the presence of GUI widgets. For example, with the help of Robotium, the728

statement729

assertTrue(solo.searchButton(“OK”));730

checks whether a button widget with text “OK” is displayed on the screen.731

31

To kill deletion-related GUI mutants, such as BWD mutants, testers need to732

design test code similar to the one above to ensure all widgets are correctly733

displayed, regardless of their locations.734

Furthermore, computer vision techniques and graphical test oracles have735

been used to test GUI and Android apps [90, 91, 92]. These techniques can736

also be used to kill GUI-related mutants, though they require more empirical737

studies to validate their value. We can imagine that these killing tests could738

be especially useful in regression testing, such as when features are added,739

removed, or adjusted.740

7. Conclusions and Future Work741

This paper proposes an innovative approach to test Android apps by742

using mutation analysis. We defined new mutation operators specific to An-743

droid apps, implemented them in a mutation analysis tool, and conducted744

an experiment with eight Android apps. The results show that mutation745

testing can be extended to accommodate program structures novel to An-746

droid development. Our approach provides more comprehensive testing for747

Android apps by considering not only Java characteristics, but also XML748

layout, configuration information, and other Android characteristics.749

In comparison with our previous paper [9], this paper contributes three750

additional novel Android mutation operators (FON, BWS, and ORL). We751

also extended the empirical study from one Android app to eight. In addition752

to using an Android emulator, we ran our tests on two Android devices with753

different runtime systems (Dalvik and ART). The tests behaved identically754

on 100% statement coverage tests in all the three environments.755

While promising, several research questions remain unanswered. An im-756

portant evaluation, currently being planned, is to do a full fault study. We757

will generate tests to kill all non-equivalent mutants, then evaluate those758

tests to determine how many faults the tests detect, and compare with tests759

generated for other criteria (possibly statement or branch coverage).760

As mentioned in Section 6, Hu and Neamtiu [61] categorized Android761

faults into eight types. However, these categories appear to be too general to762

be applied in mutation analysis. Instead, we defined new Android mutation763

operators based on the unique characteristics of Android applications.764

A well defined Android fault model could improve the power of our mu-765

tation operators by providing a reference against which to evaluate mutation766

32

operators. We are currently developing an Android fault model by investi-767

gating actual faults in open source repositories.768

This paper defined eleven Android mutation operators that mutate Java769

source code, XML layout files, and Android permissions. However, we have770

not yet considered all aspects of Android apps. For instance, one important771

distinct characteristic of mobile apps is that they are context-aware. Context-772

aware apps behave differently when the phone is moving in a vehicle and773

sitting at a desk. This difference in behavior is not reflected directly in774

the app code; rather the difference is in how often the app receives an event775

notification about location. In a sense, location event notifications are inputs776

that should be modeled as part of the test. We plan additional mutation777

operators to test context-aware behaviors.778

We are still improving our Android mutation tool. In particular, we779

need to make our tool generate fewer stillborn mutants, fewer mutants that780

immediately crash, and more hard to kill mutants. Also, we hope to employ781

external well-established frameworks, such as Xposed [93], which has the782

potential to speed up mutation analysis.783

The cost of mutation testing Android apps is especially expensive due to784

the slow speed of Android test execution with Robotium. A single iteration of785

an experiment required more than 20 hours. Performance could be improved786

by evaluating mutants in parallel, finding or building a faster test framework,787

or using fewer mutants. Work in general program mutation suggests that788

only a small number of generated mutants are necessary [40]; this result789

may extend to Android mutation as well. We are currently evaluating these790

approaches.791

Acknowledgment792

Offutt is partially funded by The Knowledge Foundation (KKS) through793

project 20130085, Testing of Critical System Characteristics (TOCSYC).794

References795

[1] Gartner, Gartner says sales of smartphones grew 20 percent in third796

quarter of 2014, Online, 2014. https://www.gartner.com/newsroom/797

id/2944819/, last access January 2015.798

[2] Google Play, 2015. https://play.google.com/store, last access Jan-799

uary 2015.800

33

https://www.gartner.com/newsroom/id/2944819/
https://www.gartner.com/newsroom/id/2944819/
https://www.gartner.com/newsroom/id/2944819/
https://play.google.com/store

[3] P. Bhattacharya, L. Ulanova, I. Neamtiu, S. C. Koduru, An empirical801

analysis of bug reports and bug fixing in open source Android apps, in:802

2013 17th European Conference on Software Maintenance and Reengi-803

neering (CSMR), pp. 133–143.804

[4] R. Mahmood, N. Mirzaei, S. Malek, Evodroid: Segmented evolutionary805

testing of Android apps, in: Proceedings of the 2014 ACM SIGSOFT806

International Symposium on Foundations of Software Engineering, FSE807

’14, ACM, Hong Kong, China, 2014.808

[5] D. Amalfitano, A. Fasolino, P. Tramontana, A GUI crawling-based tech-809

nique for Android mobile application testing, in: Third International810

Workshop on TESTing Techniques & Experimentation Benchmarks for811

Event-Driven Software, pp. 252–261.812

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, A. M.813

Memon, Using GUI ripping for automated testing of Android applica-814

tions, in: Proceedings of the 27th IEEE/ACM International Conference815

on Automated Software Engineering, ASE 2012, ACM, New York, NY,816

USA, 2012, pp. 258–261.817

[7] T. Azim, I. Neamtiu, Targeted and depth-first exploration for systematic818

testing of Android apps, in: Proceedings of the 2013 ACM SIGPLAN In-819

ternational Conference on Object Oriented Programming Systems Lan-820

guages & Applications, OOPSLA ’13, ACM, New York, NY, USA, 2013,821

pp. 641–660.822

[8] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: An input generation823

system for Android apps, in: Proceedings of the 2013 9th Joint Meeting824

on Foundations of Software Engineering, ESEC/FSE 2013, ACM, New825

York, NY, USA, 2013, pp. 224–234.826

[9] L. Deng, N. Mirzaei, P. Ammann, J. Offutt, Towards mutation analysis827

of Android apps, in: Eleventh IEEE Workshop on Mutation Analysis828

(Mutation 2015), Graz, Austria, pp. 1–10.829

[10] Dalvik - code and documentation from Android’s VM team, 2014. http:830

//code.google.com/p/dalvik/, last access January 2015.831

[11] ART and Dalvik, 2014. https://source.android.com/devices/tech/832

dalvik/index.html, last access March 2015.833

34

http://code.google.com/p/dalvik/
http://code.google.com/p/dalvik/
http://code.google.com/p/dalvik/
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html

[12] Android developers guide, 2015. http://developer.android.com/834

guide/topics/fundamentals.html, last access January 2015.835

[13] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on test data selection:836

Help for the practicing programmer, IEEE Computer 11 (1978) 34–41.837

[14] P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge838

University Press, Cambridge, UK, 2008. ISBN 978-0-521-88038-1.839

[15] L. J. Morell, A theory of fault-based testing, IEEE Transactions on840

Software Engineering 16 (1990) 844–857.841

[16] R. A. DeMillo, J. Offutt, Constraint-based automatic test data genera-842

tion, IEEE Transactions on Software Engineering 17 (1991) 900–910.843

[17] J. Offutt, J. Payne, J. M. Voas, Mutation Operators for Ada,844

Technical Report ISSE-TR-96-09, Department of Information and845

Software Engineering, George Mason University, Fairfax VA, 1996.846

Http://www.cs.gmu.edu/∼tr admin/.847

[18] G. M. Kapfhammer, P. McMinn, C. J. Wright, Search-based testing848

of relational schema integrity constraints across multiple database man-849

agement systems, in: 2013 IEEE Sixth International Conference on850

Software Testing, Verification and Validation, pp. 31–40.851

[19] L. Bottaci, Type sensitive application of mutation operators for dynam-852

ically typed programs, in: 5th International Workshop on Mutation853

Analysis (Mutation 2010), pp. 126–131.854

[20] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. Krauser,855

R. J. Martin, A. Mathur, G. Spafford, Design of Mutant Operators for856

the C Programming Language, Technical Report SERC-TR-41-P, Soft-857

ware Engineering Research Center, Purdue University, West Lafayette858

IN, 1989.859

[21] K. N. King, J. Offutt, A Fortran language system for mutation-based860

software testing, Software-Practice and Experience 21 (1991) 685–718.861

[22] Y.-S. Ma, Y.-R. Kwon, J. Offutt, Inter-class mutation operators for862

Java, in: Proceedings of the 13th International Symposium on Software863

Reliability Engineering, IEEE Computer Society Press, Annapolis MD,864

2002, pp. 352–363.865

35

http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html

[23] S. Kim, J. A. Clark, J. A. McDermid, Investigating the applicability866

of traditional test adequacy criteria for object-oriented programs, in:867

Proceedings of ObjectDays 2000.868

[24] J. Offutt, Y.-S. Ma, Y.-R. Kwon, The class-level mutants of muJava,869

in: Workshop on Automation of Software Test (AST 2006), Shanghai,870

China, pp. 78–84.871

[25] Y.-S. Ma, J. Offutt, Y.-R. Kwon, MuJava : An automated class mu-872

tation system, Software Testing, Verification, and Reliability, Wiley 15873

(2005) 97–133.874

[26] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, C. Hutchinson, A fault875

model for subtype inheritance and polymorphism, in: Proceedings of876

the 12th International Symposium on Software Reliability Engineering,877

IEEE Computer Society Press, Hong Kong China, 2001, pp. 84–93.878

[27] Android App Development Tutorial, 2015. http://www.codelearn.879

org/android-tutorial/android-introduction, last access Novem-880

ber 2015.881

[28] Activity Testing: What to Test, 2015. http://developer.android.882

com/tools/testing/activity_testing.html#WhatToTest, last ac-883

cess November 2015.884

[29] D. Amalfitano, A. Fasolino, P. Tramontana, B. Ta, A. Memon,885

Mobiguitar–A tool for automated model-based testing of mobile apps,886

IEEE Software 32 (2014) 53–59.887

[30] W. Yang, M. R. Prasad, T. Xie, A grey-box approach for automated888

GUI-model generation of mobile applications, in: Proceedings of the889

16th International Conference on Fundamental Approaches to Software890

Engineering, FASE’13, Springer-Verlag, Berlin, Heidelberg, 2013, pp.891

250–265.892

[31] Android: What to Test, 2015. http://developer.android.com/893

tools/testing/what_to_test.html, last access November 2015.894

[32] Android Intent, 2015. http://developer.android.com/reference/895

android/content/Intent.html, last access January 2015.896

36

http://www.codelearn.org/android-tutorial/android-introduction
http://www.codelearn.org/android-tutorial/android-introduction
http://www.codelearn.org/android-tutorial/android-introduction
http://developer.android.com/tools/testing/activity_testing.html#WhatToTest
http://developer.android.com/tools/testing/activity_testing.html#WhatToTest
http://developer.android.com/tools/testing/activity_testing.html#WhatToTest
http://developer.android.com/tools/testing/what_to_test.html
http://developer.android.com/tools/testing/what_to_test.html
http://developer.android.com/tools/testing/what_to_test.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html

[33] DAVdroid, 2015. https://github.com/bitfireAT/davdroid, last ac-897

cess May 2015.898

[34] URL evaluator for Android, 2015. https://github.com/899

nicolassmith/urlevaluator, last access May 2015.900

[35] CosyDVR, 2015. https://github.com/sergstetsuk/CosyDVR, last ac-901

cess May 2015.902

[36] oandbackup, 2015. https://github.com/jensstein/oandbackup, last903

access May 2015.904

[37] S. Arlt, C. Rubio-Gonzalez, P. Rummer, M. Schaf, N. Shankar, The905

gradual verifier, in: J. Badger, K. Rozier (Eds.), NASA Formal Meth-906

ods, volume 8430 of Lecture Notes in Computer Science, Springer Inter-907

national Publishing, 2014, pp. 313–327.908

[38] J. Offutt, A. Lee, G. Rothermel, R. Untch, C. Zapf, An experimental909

determination of sufficient mutation operators, ACM Transactions on910

Software Engineering Methodology 5 (1996) 99–118.911

[39] U. Praphamontripong, J. Offutt, Applying mutation testing to web912

applications, in: Sixth Workshop on Mutation Analysis (IEEE Mutation913

2010), Paris, France.914

[40] P. Ammann, M. E. Delamaro, J. Offutt, Establishing theoretical mini-915

mal sets of mutants, in: 7th IEEE International Conference on Software916

Testing, Verification and Validation (ICST 2014), Cleveland, Ohio.917

[41] L. Deng, J. Offutt, N. Li, Empirical evaluation of the statement deletion918

mutation operator, in: 6th IEEE International Conference on Software919

Testing, Verification and Validation (ICST 2013), Luxembourg.920

[42] M. E. Delamaro, J. Offutt, P. Ammann, Designing deletion mutation921

operators, in: 7th IEEE International Conference on Software Testing,922

Verification and Validation (ICST 2014), Cleveland, Ohio.923

[43] JUnit, 2014. http://junit.org, last access January 2015.924

[44] Android testing framework, 2015. http://developer.android.com/925

guide/topics/testing/, last access January 2015.926

37

https://github.com/bitfireAT/davdroid
https://github.com/nicolassmith/urlevaluator
https://github.com/nicolassmith/urlevaluator
https://github.com/nicolassmith/urlevaluator
https://github.com/sergstetsuk/CosyDVR
https://github.com/jensstein/oandbackup
http://junit.org
http://developer.android.com/guide/topics/testing/
http://developer.android.com/guide/topics/testing/
http://developer.android.com/guide/topics/testing/

[45] Robotium, 2015. http://code.google.com/p/robotium/, last access927

January 2015.928

[46] How to increase speed of tests in Robotium?, 2012. https://github.929

com/robotiumtech/robotium/issues/296, last access December 2015.930

[47] TippyTipper, 2013. https://code.google.com/p/tippytipper, last931

access January 2015.932

[48] PasswordMakerProForAndroidActivity, 2015. https://play.google.933

com/store/apps/details?id=org.passwordmaker.android, last ac-934

cess July 2015.935

[49] MunchLife, 2014. https://play.google.com/store/apps/details?936

id=info.bpace.munchlife, last access July 2015.937

[50] JustSit, 2010. https://play.google.com/store/apps/details?id=938

com.brocktice.JustSit, last access July 2015.939

[51] I. Darwin, Tipster, 2014. https://github.com/IanDarwin/940

Android-Cookbook-Examples/tree/master/Tipster, last access941

July 2015.942

[52] I. Darwin, Android Cookbook, O’Reilly Media, 2012. ISBN 9978-943

1449388416.944

[53] K-9 Mail, 2015. https://play.google.com/store/apps/details?id=945

com.fsck.k9, last access November 2015.946

[54] Alarm Klock, 2015. https://play.google.com/store/apps/details?947

id=com.angrydoughnuts.android.alarmclock, last access November948

2015.949

[55] Jamendo for Android, 2015. http://telecapoland.github.io/950

jamendo-android/, last access November 2015.951

[56] F-Droid, 2015. https://f-droid.org, last access November 2015.952

[57] V. Roubtsov, Emma, Online, 2006. http://emma.sourceforge.net/,953

last access January 2015.954

38

http://code.google.com/p/robotium/
https://github.com/robotiumtech/robotium/issues/296
https://github.com/robotiumtech/robotium/issues/296
https://github.com/robotiumtech/robotium/issues/296
https://code.google.com/p/tippytipper
https://play.google.com/store/apps/details?id=org.passwordmaker.android
https://play.google.com/store/apps/details?id=org.passwordmaker.android
https://play.google.com/store/apps/details?id=org.passwordmaker.android
https://play.google.com/store/apps/details?id=info.bpace.munchlife
https://play.google.com/store/apps/details?id=info.bpace.munchlife
https://play.google.com/store/apps/details?id=info.bpace.munchlife
https://play.google.com/store/apps/details?id=com.brocktice.JustSit
https://play.google.com/store/apps/details?id=com.brocktice.JustSit
https://play.google.com/store/apps/details?id=com.brocktice.JustSit
https://github.com/IanDarwin/Android-Cookbook-Examples/tree/master/Tipster
https://github.com/IanDarwin/Android-Cookbook-Examples/tree/master/Tipster
https://github.com/IanDarwin/Android-Cookbook-Examples/tree/master/Tipster
https://play.google.com/store/apps/details?id=com.fsck.k9
https://play.google.com/store/apps/details?id=com.fsck.k9
https://play.google.com/store/apps/details?id=com.fsck.k9
https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.alarmclock
https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.alarmclock
https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.alarmclock
http://telecapoland.github.io/jamendo-android/
http://telecapoland.github.io/jamendo-android/
http://telecapoland.github.io/jamendo-android/
https://f-droid.org
http://emma.sourceforge.net/

[58] J. Saltzer, M. Schroeder, The protection of information in computer955

systems, Proceedings of the IEEE 63 (1975) 1278–1308.956

[59] Robolectric, 2015. https://github.com/robolectric/robolectric,957

last access January 2015.958

[60] Selendroid, 2015. http://selendroid.io, last access July 2015.959

[61] C. Hu, I. Neamtiu, Automating GUI testing for Android applications,960

in: Proceedings of the 6th International Workshop on Automation of961

Software Test, AST ’11, ACM, New York, NY, USA, 2011, pp. 77–83.962

[62] T. Takala, M. Katara, J. Harty, Experiences of system-level model-based963

GUI testing of an android application, in: 4th IEEE International Con-964

ference on Software Testing, Verification and Validation (ICST 2011),965

pp. 377–386.966

[63] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, R. Mahmood, Test-967

ing Android apps through symbolic execution, SIGSOFT Software En-968

gineering Notes 37 (2012) 1–5.969

[64] Java PathFinder, 2007. http://babelfish.arc.nasa.gov/trac/jpf/,970

last access January 2015.971

[65] H. van der Merwe, B. van der Merwe, W. Visser, Verifying android ap-972

plications using java pathfinder, SIGSOFT Software Engineering Notes973

37 (2012) 1–5.974

[66] H. van der Merwe, B. van der Merwe, W. Visser, Execution and property975

specifications for JPF-Android, SIGSOFT Softw. Eng. Notes 39 (2014)976

1–5.977

[67] C. S. Jensen, M. R. Prasad, A. Møller, Automated testing with targeted978

event sequence generation, in: Proceedings of the 2013 International979

Symposium on Software Testing and Analysis, ISSTA 2013, ACM, New980

York, NY, USA, 2013, pp. 67–77.981

[68] S. Anand, M. Naik, M. J. Harrold, H. Yang, Automated concolic test-982

ing of smartphone apps, in: Proceedings of the ACM SIGSOFT 20th983

International Symposium on the Foundations of Software Engineering,984

FSE ’12, ACM, New York, NY, USA, 2012, pp. 59:1–59:11.985

39

https://github.com/robolectric/robolectric
http://selendroid.io
http://babelfish.arc.nasa.gov/trac/jpf/

[69] B. Korel, A dynamic approach of test data generation, in: Conference986

on Software Maintenance-1990, San Diego, CA, pp. 311–317.987

[70] J. Offutt, Z. Jin, J. Pan, The dynamic domain reduction approach to988

test data generation, Software-Practice and Experience 29 (1999) 167–989

193.990

[71] P. Godefroid, N. Klarlund, K. Sen, DART: Directed automated random991

testing, in: 2005 ACM SIGPLAN conference on Programming Language992

Design and Implementation, Chicago Illinois, USA, pp. 213–223.993

[72] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, A. Stavrou,994

A whitebox approach for automated security testing of Android applica-995

tions on the cloud, in: 2012 7th International Workshop on Automation996

of Software Test (AST), pp. 22–28.997

[73] M. E. Delamaro, J. C. Maldonado, Proteum-A tool for the assessment998

of test adequacy for C programs, in: Proceedings of the Conference on999

Performability in Computing Systems (PCS 96), New Brunswick, NJ,1000

pp. 79–95.1001

[74] S. Kim, J. A. Clark, J. A. McDermid, Investigating the effectiveness of1002

object-oriented strategies with the mutation method, in: Proceedings1003

of Mutation 2000: Mutation Testing in the Twentieth and the Twenty1004

First Centuries, San Jose, CA, pp. 4–100. Wiley’s Software Testing,1005

Verification, and Reliability, December 2001.1006

[75] S. Mirshokraie, A. Mesbah, K. Pattabiraman, Efficient JavaScript muta-1007

tion testing, in: 6th IEEE International Conference on Software Testing,1008

Verification and Validation (ICST 2013), pp. 74–83.1009

[76] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, C. V. Lopes, Testing1010

aspect-oriented programming pointcut descriptors, in: Proceedings of1011

the 2nd workshop on testing aspect-oriented programs, ACM, pp. 33–38.1012

[77] S. C. P. F. Fabbri, J. C. Maldonado, M. E. Delamaro, P. C. Masiero,1013

Mutation analysis testing for finite state machines, in: 5th IEEE Inter-1014

national Symposium on Software Reliability Engineering (ISSRE 94),1015

Monterey, CA, pp. 220–229.1016

40

[78] R. Hierons, M. Merayo, Mutation testing from probabilistic finite state1017

machines, in: Third Workshop on Mutation Analysis (IEEE Mutation1018

2007), Windsor, UK, pp. 141–150.1019

[79] M. Trakhtenbrot, New mutations for evaluation of specification and1020

implementation levels of adequacy in testing of statecharts models, in:1021

Third Workshop on Mutation Analysis (IEEE Mutation 2007), Windsor,1022

UK, pp. 151–160.1023

[80] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro,1024

E. W. Wong, Mutation analysis applied to validate specifications based1025

on Petri nets, in: Proceedings of the 8th International Conference on1026

Formal Description Techniques (FORTE’95), Quebec, Canada, pp. 329–1027

337.1028

[81] R. Nilsson, J. Offutt, J. Mellin, Test case generation for mutation-based1029

testing of timeliness, in: Proceedings of the 2nd International Workshop1030

on Model Based Testing, Vienna, Austria, pp. 102–121.1031

[82] B. Lindstrom, S. Andler, J. Offutt, P. Pettersson, D. Sundmark, Mutat-1032

ing aspect-oriented models to test cross-cutting concerns, in: Eleventh1033

IEEE Workshop on Mutation Analysis (Mutation 2015).1034

[83] R. Oliveira, E. Alegroth, Z. Gao, A. Memon, Definition and evaluation1035

of mutation operators for GUI-level mutation analysis, in: Eleventh1036

IEEE Workshop on Mutation Analysis (Mutation 2015), pp. 1–10.1037

[84] S. C. Lee, J. Offutt, Generating test cases for XML-based web compo-1038

nent interactions using mutation analysis, in: 2001 12th International1039

Symposium on Software Reliability Engineering (ISSRE 2001), pp. 200–1040

209.1041

[85] J. Offutt, W. Xu, Testing web services by XML perturbation, in: Pro-1042

ceedings of the 16th International Symposium on Software Reliability1043

Engineering, IEEE Computer Society Press, Chicago, IL, 2005.1044

[86] R. Untch, Schema-based Mutation Analysis: A New Test Data Ade-1045

quacy Assessment Method, Ph.D. thesis, Clemson University, Clemson1046

SC, 1995. Clemson Department of Computer Science Technical report1047

95-115.1048

41

[87] J. Offutt, R. Untch, Mutation 2000: Uniting the orthogonal, in: Pro-1049

ceedings of Mutation 2000: Mutation Testing in the Twentieth and the1050

Twenty First Centuries, San Jose, CA, pp. 45–55.1051

[88] W. E. Wong, M. E. Delamaro, J. C. Maldonado, A. P. Mathur, Con-1052

strained mutation in C programs, in: Proceedings of the 8th Brazilian1053

Symposium on Software Engineering, Curitiba, Brazil, pp. 439–452.1054

[89] W. E. Wong, A. P. Mathur, Reducing the cost of mutation testing: An1055

empirical study, Journal of Systems and Software, Elsevier 31 (1995)1056

185–196.1057

[90] T.-H. Chang, T. Yeh, R. C. Miller, GUI testing using computer vi-1058

sion, in: Proceedings of the SIGCHI Conference on Human Factors in1059

Computing Systems, CHI ’10, ACM, New York, NY, USA, 2010, pp.1060

1535–1544.1061

[91] M. E. Delamaro, F. de Lourdes dos Santos Nunes, R. A. P. de Oliveira,1062

Using concepts of content-based image retrieval to implement graphical1063

testing oracles, Software Testing, Verification and Reliability 23 (2013)1064

171–198.1065

[92] Y.-D. Lin, J. Rojas, E.-H. Chu, Y.-C. Lai, On the accuracy, efficiency,1066

and reusability of automated test oracles for android devices, IEEE1067

Transactions on Software Engineering 40 (2014) 957–970.1068

[93] Xposed Framework, 2015. http://repo.xposed.info, last access July1069

2015.1070

42

http://repo.xposed.info

