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Abstract

This paper presents an abstract view of mutation analy-
sis. Mutation was originally thought of as making changes
to program source, but similar kinds of changes have been
applied to other artifacts, including program specifications,
XML, and input languages. This paper argues that mutation
analysis is actually a way to modify any software artifact
based on its syntactic description, and is in the same family
of test generation methods that create inputs from syntactic
descriptions. The essential characteristic of mutation is that
a syntactic description such as a grammar is used to cre-
ate tests. We call this abstract view grammar-based testing,
and view it as aninterface, which mutation analysisimple-
ments. This shift in view allows mutation to be defined in a
general way, yielding three benefits. First, it provides a sim-
pler way to understand mutation. Second, it makes it easier
to develop future applications of mutation analysis, such as
finite state machines and use case collaboration diagrams.
The third benefit, which due to space limitations is not ex-
plored in this paper, is ensuring that existing techniques are
complete according to the criteria defined here.

1 Introduction

The traditional view of mutation is that we apply it to
software by creating mutant versions of the source. In re-
cent years, researchers have also applied the concepts be-
hind mutation to other artifacts, including formal software
specifications, XML, design models, and input languages.
Thus, mutation analysis for programs is merely one of a
family of test criteria, all of which operate on grammar-
based syntactic objects. In object-oriented terms, mutation
“ implements ” the general “interface ” of grammar-
based testing.

Legend has it that the first ideas of mutation analysis
were postulated in 1971 in a class term paper by Richard
Lipton. The first research papers were published by Budd

and Sayward, Hamlet, and DeMillo, Lipton, and Sayward
in the late ’70s [11, 16]; DeMillo, Lipton, and Sayward’s
paper [11] is usually cited as the seminal reference.

A key to applying mutation to any artifact is the design
of suitable mutation operators. Mutation operators have
been designed for various programming languages, includ-
ing Fortran IV [7], COBOL [17], Fortran 77 [12, 22], C
[10], integration testing of C [9], Lisp [6], Ada [4, 29], Java
[21], and Java class relationships [24]. They have also been
designed for the formal specification languages SMV [2],
and for XML messages [23, 30, 31].

This paper places what we call “traditional mutation test-
ing,” based on program source, in the larger context of
testing based on grammar-based software artifacts. This is
calledgrammar-based mutation analysis. In this view, mu-
tation is generally about making modification to syntactic
objects. Given a syntactic description of a software arti-
fact, we can design mutation operators to generate artifacts
that are valid (correct syntax), or artifacts that are invalid
(incorrect syntax). They can be created directly from the
grammar or by modifying a ground string (such as a pro-
gram). Sometimes the structures we generate are test cases
themselves and sometimes they are used to help us find test
cases.

The termmutation analysisis used to refer to the process
of modifying syntactic software artifacts, andmutation test-
ing is used to refer to test criteria that are based on mutation
analysis.

The remainder of this paper explores this concept. Sec-
tion 2 presents a general view of grammar-based mutation
analysis, and introduces generic test criteria. The new for-
mulation and definitions makes it easier to understand mu-
tation, and to apply mutation to new context areas. Sections
3, 4, 5, and 6 define how grammar-based testing is or can
be implemented by mutation analysis for specific kinds of
artifacts. The material in Section 5 is very recent and most
of Section 6 is new to this paper, demonstrating the ability
to apply mutation to new areas.



bank ::= action ∗

action ::= dep | deb
dep ::= "deposit" account amount
deb ::= "debit" account amount
account ::= digit 3

amount ::= "$" digit 5 "." digit 2

digit ::= "0" | "1" | "2" | "3" | "4"
"5" | "6" | "7" |"8" | "9"

Figure 1. Grammar for bank transactions.

2 Grammar-Based Mutation Analysis

Software engineers often use structures from automata
theory such as grammars, usually expressed in BNF, to de-
scribe the syntax of software artifacts (programs, inputs,
specifications, models, etc.). Programming languages are
described in grammar notation, program behavior is de-
scribed in finite state machines, and allowable inputs to pro-
grams are defined by grammars. With grammar-based test-
ing, tests are created from the grammar.

Before proceeding, we provide a short review of the BNF
syntax with an example that will be used subsequently in the
paper. In the example in Figure 1,bank is thestart symbol,
the strings on the left (bank , action , etc.) are nontermi-
nal symbols and the strings on the right in quotes (“deposit,”
“debit,” etc.) are terminal symbols. Theproduction rules
are separated by ‘|’ or start with new nonterminals.

Grammatical descriptions can be used in two ways. A
recognizer, such as an automaton or parser, decides if a
given string (or test case) is in the set of strings represented
by the grammar1. Grammars are also used to buildgener-
ators, which derive strings from the grammar. An example
derivation is:

bank → action ∗

→ action action∗

→ dep action ∗

→ deposit account amount action ∗

→ deposit digit3 amount action ∗

→ deposit digit digit 2 amount actionˆ*
→ deposit 7 digit 2 amount action ∗

→ deposit 7 digit digit amount action ∗

→ deposit 7 3 digit amount action ∗

→ deposit 73 9 amount action ∗

→ deposit 739 $ digit5 . digit2 action ∗

→ deposit 739 $ digit2.digit 2 action ∗

→ deposit 739 $ digit digit .digit 2 action ∗

→ deposit 739 $ 1 digit.digit 2 action ∗

1This paper abbreviates the phrase “set of strings represented by the
grammar” as “in the grammar” for brevity and clarity. Note that in old
1960s-era terminology, “grammar” was used synonymously with “genera-
tor,” but the testing area uses the term slightly differently.
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Figure 2. Mutation as grammar-based testing.

→ deposit 739 $1 2. digit 2 action ∗

→ deposit 739 $12. digit digit action ∗

→ deposit 739 $12. 3 digit action ∗

→ deposit 739 $12.3 5 action ∗
...

Derivation continues until all nonterminals have been
rewritten and only terminal symbols remain. This paper
uses the termground stringfor a string that is in the gram-
mar.

Figure 2 illustrates this concept. Grammar-based muta-
tion analysis can be used to derive un-mutated or mutated
strings. The mutation operators can be applied directly to
the grammar (grammar mutation) or to strings that are de-
rived from grammars (ground string mutation). The in-
tent is to create invalid strings in grammar mutation, but
valid strings are sometimes created accidentally. Finally,
the strings can be in the language defined by the original
grammar (valid) or not (invalid). In ground string muta-
tion, the grammar is used to design the mutation operators
and also to differentiate valid strings from invalid. All cate-
gories have uses in software testing.

The rest of this section describes a general view of muta-
tion analysis and defines test criteria in terms of grammars.
Criteria are defined for mutations to grammars and muta-
tions to strings that are derived from grammars.

2.1 UnMutated Derivation Test Criteria

Testing is usually based ontest criteria, the rules or col-
lection of rules that impose requirements on test cases. Cri-
teria for creating unmutated derivations are given in this
subsection; criteria for mutated derivations are given in the
next. Although many test criteria could be defined, the most
straightforward areterminal symbol coverageandproduc-
tion coverage. These definitions useTR to refer to the set
of test requirements imposed by a criterion.

CRITERION 1 Terminal Symbol Coverage (TSC):
The set of test requirements,TR, contains each ter-
minal symbolt in the grammarG.



A test is simply a string that is derived by using the gram-
mar. The number of tests generated by TSC is bounded by
the number of terminal symbols; 14 in thebank example
of Figure 1. Because most tests will include more than one
terminal symbol, the actual number of tests is usually less
than the bound.

CRITERION 2 Production Coverage (PC): TR con-
tains each productionp in the grammarG.

The number of tests generated by PC is bounded by the
number of production rules; 17 in thebank example of
Figure 1.

Another possible criterion could be that of of deriving all
possible strings from a grammar, but this is not defined be-
cause many grammars have infinite derivations. For exam-
ple, the first production in thebank grammar is “action∗”,
which theoretically can be used to create an infinite num-
ber of strings. If we ignore the first production inbank ,
the number of derivable strings is finite but still very large.
There are two possible actions (“deposit” and “debit”), and
“account” has a maximum of three digits with 10 choices,
or 1000. The production for “amount” has two occurrences
of “digit,” one that has length up to two (100 choices) and
the other with length up to five (100,000 choices). Alto-
gether, thebank grammar can generate2 ∗ 1000 ∗ 100, 000
= 200, 000, 000 strings.

The criteria in the next subsection directly mutate ground
strings rather than the grammar that defines them.

2.2 Mutated Derivation Test Criteria

One of the interesting things that grammars do is de-
scribe what an input isnot. For example, it is quite com-
mon to require a program to reject malformed inputs, and
this property should clearly be tested, since it is easy for
programmers to forget it or get it wrong.

Thus, when a grammar defines a program’s inputs, it is
often useful to produce invalid strings from the grammar. It
is also helpful to test with strings that arevalid but that fol-
low a different derivation from a pre-existing string. Both
of these strings are calledmutants. This can be done by mu-
tating the grammar, then generating strings, or by mutating
values during a production.

Mutation is always based on a set ofmutation operators,
which are usually expressed with respect to agroundstring.
A mutation operatoris a rule that specifies syntactic varia-
tions of strings generated from a grammar. Amutantis the
result of one application of a mutation operator.

Mutation operators can be applied to ground strings,
grammars, or dynamically during derivations. In this for-
mulation, the traditional notion of mutating program source
(traditional mutation) uses the program as a ground string
and applies mutation operators to create valid strings. The

notion of a mutation operator is extremely general, and so
a very important part of applying mutation to any artifact is
the design of suitable mutation operators. A well designed
collection of operators can result in very powerful testing,
but a poorly designed collection is almost useless. For ex-
ample, a tool that “implements mutation” but that changes
only predicates totrue and falsewould simply provide an
expensive way to satisfy branch coverage.

Sometimes an explicit ground string exists, but some-
times it exists only implicitly as the (possible) result of not
applying any mutation operators. For example, we care
about the ground string when applying mutation to program
statements. The ground string is the sequence of program
statements in the program under test, and the mutants are
slight syntactic variations of that program. We do not use
the ground string during invalid input testing when the goal
is to see if a program correctly responds to invalid inputs.
The ground strings are valid inputs, and variants are the in-
valid inputs. For example, a valid input might be a trans-
action request from a correctly logged-in user. The invalid
version might be the same transaction request from a user
who is not logged in.

Two issues often come up when applying mutation op-
erators. First, should more than one mutation operator be
applied at the same time to create one mutant? Common
sense indicates no, and strong experimental and theoretical
evidence has been found [5, 7, 12, 17, 29] for mutating only
one element at a time in traditional (program-based) muta-
tion. Another question is should every possible application
of a mutation operator to a ground string be considered?
This is usually done in traditional mutation for the theo-
retical reason that traditional mutation subsumes a number
of other test criteria, but only if operators are applied com-
prehensively. However, this is not always done when the
ground string does not matter, for example, in the case of
invalid input testing.

When a grammar defines a program’s input space, mu-
tants can be created directly from the grammar by modi-
fying productions during a derivation, using a generator ap-
proach as introduced in the previous section. These mutants
aretests. When a given grammar defines the tested program,
a derivation is mutated to produce valid strings as mutants.
Tests are then designed to “kill” the mutants by causing the
mutants to produce different output from original program.
This leads a different formulation for the traditional idea of
killing mutants.

Given a mutantm ∈ M for a derivationD and a test
t, t is said tokill m if and only if the output oft on D is
different from the output oft onm.

The derivationD may be represented by the complete list
of productions followed, or it may simply be represented by
the final string. For example, in Section 3.1, the strings are
programs or program components.



Table 1. Structure of grammar-based mutation analysis.
Program-Based Integration Model-Based Input-Based

Grammar Section 3 Section 5 Section 6.1
Grammar Programming languagesNo known applications Algebraic specifications Input languages (XML)
Summary Compiler testing Input space testing

Valid? Valid and invalid strings Valid strings
String Mut Section 3.1 Section 4 Section 5.1 Section 6.2

Grammar Programming languagesProgramming languagesFSMs Input languages (XML)
Summary Mutates programs Tests integration Uses model-checking Error checking
Ground? Yes Yes Yes No

Valid? Yes, must compile Yes, must compile Yes No
Tests? Mutants are not tests Mutants are not tests Traces are tests Mutants are tests

Killing? Yes Yes Yes No notion of killing
Notes Subsumes many other

techniques.
Includes object-oriented
testing

Can mutate grammar,
then produce strings

If a grammar defines a tested program or a model of the
program, coverage is defined in terms of killing mutants.

CRITERION 3 Mutation Coverage (MC): For each
mutantm ∈ M , TR contains exactly one requirement,
to kill m.

That is, coverage in this kind of mutation testing equates
to killing the mutants. The amount of coverage is usually
written as a percent of mutants killed and called the “muta-
tion score.”

When a grammar is mutated to produce invalid strings,
the testing goal is to run the mutants to see if the behavior is
correct. The coverage criterion is therefore simpler, as the
mutation operators are the test requirements.

CRITERION 4 Mutation Operator Coverage
(MOC): For each mutation operator,TR contains
exactly one requirement, to create a mutated stringm
that is derived using the mutation operator.

CRITERION 5 Mutation Production Coverage
(MPC): For each mutation operator, and each pro-
duction that the operator can be applied to,TR con-
tains the requirement to create a mutated string from
that production.

If the mutation operator replaces a variable name with
another, MOC requires only one mutated program with a
single replacement. MPC requires every variable reference
to be replaced by every variable that is of compatible type.

The number of test requirements for mutation on ground
strings cannot be generally quantified because the number
depends on the syntax of the artifact as well as the muta-
tion operators. In most situations, mutation yields more test
requirements than any other test criterion.

The rest of this paper explores various forms of mutation
testing as a form of grammar-based testing. Table 1 sum-
marizes the characteristics of the various flavors of syntax
testing. The section in the paper where each application
appears is listed. Whether valid or invalid tests are cre-
ated is noted. For mutation testing, we also note whether
a ground string is used, whether the mutants are tests or not,
and whether there is a notion of killing mutants.

3 Grammar-Based Testing of Programs

The most common application of mutation is to pro-
grams. At the grammar level, grammar derivations are used
to create programs to test compilers (sometimes attributed
to Hamlet [16] and sometimes unattributed). This is a spe-
cialized application with no recent literature, so this paper
does not dwell on it.

3.1 Program-Based Mutation

Program-based mutation uses operators that are defined
in terms of the grammar of a particular programming lan-
guage. We start with aground string, which is the program
component that is being tested. We then apply mutation op-
erators to create mutants. These mutants must be compil-
able, so program-based mutation createsvalid strings. The
mutants are not tests, but are used to help us find tests.

A key to successful use of mutation is the mutation oper-
ators, which must be separately designed for each language.
In program-based mutation, invalid strings are syntactically
illegal and would be caught by a compiler. These are called
stillborn mutants and should not be generated. Atrivial
mutant can be killed by almost any test case. Some mutants
are functionallyequivalentto the original program. That
is, they always produce the same output as the original pro-
gram, so no test case can kill them. Equivalent mutants



represent infeasible test requirements, just like unreach-
able statements, infeasible paths, and definition-use pairs
for which no definition-free path exists [15, 18, 20, 28].

Program-based mutation has traditionally been applied
to individual statements for unit level testing. The mutation
operators are defined to satisfy one of two goals. One goal
is to mimic typical programmer mistakes, thus trying to en-
sure that the tests can detect those mistakes. The other goal
is to force the tester to create tests that have been found to
effectively test software. Statement level mutation operators
have been designed for various programming languages, in-
cluding Fortran IV [7], COBOL [17], Fortran 77 [12, 22],
C [10, 9], Lisp [6], Ada [4, 29], Java [21] and Java class
relationships [24] (discussed in Section 4).

The number of program-based mutants is roughly pro-
portional to the product of the number of data references
times the number of data objects (O(Refs ∗ V ars)) [5].
The termselective mutationdescribes the strategy of us-
ing only mutation operators that are particularly effective
[27, 32]. Effectiveness has been evaluated as follows: If
tests that are created specifically to kill mutants created by
mutation operatoroi also kill mutants created by mutation
operatoroj with very high probability, then mutation op-
eratoroi is moreeffectivethanoj . The selective mutation
approach eliminates the number of data objects so that the
number of mutants is proportional to the number of variable
references (O(Refs)) [27].

Many program-level mutation operators could be de-
fined, as in other systems [4, 6, 7, 12, 17, 21, 22, 29]. Re-
searchers have found that a collection of mutation operators
that insert unary operators and that modify unary and bi-
nary operators will beeffective[32, 27]. This research was
done with Fortran-77 (the Mothra system), resulting in five
operators, and applied to Java by Ma, Offutt and Kwon, re-
sulting in 11 operators for muJava [26]. These operators are
summarized here and defined in detail in the muJava papers
[24, 25].

1. ABS—Absolute Value Insertion
2. AOR—Arithmetic Operator Replacement
3. ROR—Relational Operator Replacement
4. COR—Conditional Operator Replacement
5. SOR—Shift Operator Replacement
6. LOR—Logical Operator Replacement
7. ASR—Assignment Operator Replacement
8. UOI—Unary Operator Insertion
9. UOD—Unary Operator Deletion
10. SVR—Scalar Variable Replacement
11. BSR—Bomb Statement Replacement

4 Grammar-based Integration Mutation
Testing

Beizer defined integration testing to be assessing
whether the interfaces between modules (defined below) in
a given subsystem have consistent assumptions and com-
municate correctly [3]. This section first discusses how mu-
tation can be used for testing at the integration level without
regard to object-oriented relationships, then how mutation
can be used to test for problems involving inheritance, poly-
morphism and dynamic binding.

Integration mutation(also called “interface mutation”)
works by creating mutants based on the grammar of con-
nections between components [9]. These mutants must be
compilable, thus they are alsovalid strings. Most muta-
tions are around method calls, and both the calling (caller)
and called (callee) method must be considered. Interface
mutation operators do the following:

• Change a calling method by modifying the values that
are sent to a called method.

• Change a calling method by modifying the call.

• Change a called method by modifying the values that
enter and leave a method. This should include param-
eters as well as variables from a higher scope (class
level, package, public, etc.).

• Change a called method by modifying statements that
return from the method.

Delamaro, Maldonado and Mathur defined the following
five interface mutation operators for C as part of the Pro-
teum system [9, 10]. They are summarized here and defined
in detail in the Proteum papers.
1. IPVR—Integration Parameter Variable Replacement
2. IUOI —Integration Unary Operator Insertion
3. IPEX—Integration Parameter Exchange
4. IMCD —Integration Method Call Deletion
5. IREM —Integration Return Expression Modification

Object-Oriented Mutation Operators . Languages that
include features for inheritance and polymorphism also of-
ten include features for information hiding and overload-
ing. Thus, mutation operators to test those features are
usually included with the OO operators, even though these
are not usually considered to be essential to call a language
“object-oriented.” The following operators are used in the
muJava system [26] and defined in detail in the muJava pa-
pers [24, 25].
1. AMC —Access Modifier Change
2. HVD—Hiding Variable Deletion
3. HVI —Hiding Variable Insertion
4. OMD—Overriding Method Deletion



5. OMM —Overridden Method Moving
6. OMR—Overridden Method Rename
7. SKD—Super Keyword Deletion
8. PCD—Parent Constructor Deletion
9. ATC—Actual Type Change
10. DTC—Declared Type Change
11. PTC—Parameter Type Change
12. RTC—Reference Type Change
13. OMC—Overloading Method Change
14. OMD—Overloading Method Deletion
15. AOC—Argument Order Change
16. ANC—Argument Number Change
17. TKD —this Keyword Deletion
18. SMC—Static Modifier Change
19. VID —Variable Initialization Deletion
20. DCD—Default Constructor Delete

5 Grammar-based Testing Using Models

The general term “model-based” is applied to languages
that describe software in abstract terms. This includes for-
mal specification languages such as Z, SMV, OCL, etc., and
informal specification languages and design notations such
as statecharts, FSMs, and other UML diagram notations.
Such languages are becoming more widely used, partly be-
cause of increased emphasis on software quality and partly
because of the widespread knowledge of the UML.

To our knowledge, terminal symbol coverage and pro-
duction coverage (grammar coverage) have been only ap-
plied to one type of specification language: algebraic spec-
ifications [1, 13, 14, 19]. Algebraic specifications are not
widely used, so this paper does not cover this topic.

5.1 Model & Spec-Based Mutation

Mutation testing can also be a valuable method at the
specification level [2, 8]. In fact, for certain types of speci-
fications, mutation testing is actually easier at the specifica-
tion level. We address one such type of specification in this
section, namely specifications expressed as finite state ma-
chines. Model-based mutants should bevalid with respect
to the grammar.

A finite state machine is a graphG, with a set of states
(nodes), a set of initial states (initial nodes), and a transition
relation (the set of edges). When finite state machines are
used, sometimes the edges and nodes are explicitly identi-
fied, as in the typical bubble and arrow diagram. Sometimes
the finite state machine is more compactly described in the
following way.

1. States are implicitly defined by declaring variables
with limited ranges. The state space is then the Carte-
sian product of the ranges of the variables.

A. Original Version
 B. Mutated Version
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Figure 3. Finite State Machine for SMV Specifi-
cation.

2. Initial states are defined by limiting the ranges of some
or all of the variables.

3. Transitions are defined by rules that characterize the
source and target of each transition.

The following example in the language SMV from Am-
mann and Black [2] clarifies these ideas. We describe a
machine with a simple syntax, and show the same machine
with explicit enumerations of the states and transitions.

MODULE main
#define false 0
#define true 1
VAR

x, y : boolean;
ASSIGN

init (x) := false;
init (y) := false;
next (x) := case next (y) := case

!x & y : true; x & !y : false;
!y : true; x & y : y;
x : false; !x & y : false;
true : x; true : true;

esac; esac;

There are two variables, each of which can have only
two values (boolean), so the state space is of size2 ∗ 2 = 4.
There is one initial state, as defined in the twoinit state-
ments underASSIGN. The transition diagram is shown
in Figure 3 (A). Transition diagrams for SMV can be de-
rived by mechanically following the specifications. For
example, assume the above specification is in the state
(true, true). The next value forx will be determined by
the “x : false ” statement.x is true, so its next value
will be false. Likewise,x & y is true, so the next value
of y will be true. Thus, the state following(true, true) is
(false, true).

In our context, there are two particularly important as-
pects of such a structure.

1. Finite state descriptions can capture system behavior at
a very high level – suitable for communicating with the



end user. Finite state machines are incredibly useful
for the hardest part of testing, namely system testing.

2. The verification community has built powerful anal-
ysis tools for finite state machines. These tools
are highly automated (in contrast to typical theorem
provers). Further, these tools produce explicit evi-
dence, in the form of counterexamples, for properties
that do not hold in the finite state machine. These
counterexamples can be interpreted as test cases. Thus,
it is easier to automate test case generation from finite
state machines than from program source.

5.2 Mutations and Test Cases

Mutating the syntax of state machine descriptions is very
much like mutating program source. Mutation operators
must be defined, and then they are applied to the descrip-
tion.

One example is theConstant Replacementoperator,
which replaces each constant with other constants. Given
the phrase!x & y : false in thenext statement for
y , replace it with!x & y : true . The machine for
this mutant is shown in Figure 3 (B). The new transition is
drawn as an extra thick arrow and the replaced transition is
shown as a crossed out dotted arrow.

Generating a test case to kill this mutant is a little dif-
ferent from with program-based mutation. We need a se-
quence of states that is allowed by the transition relation of
the original state machine, but not by the mutated state ma-
chine. Such a sequence is precisely a test case that kills the
mutant.

Finding a test to kill a mutant of a finite state machine ex-
pressed in SMV can be automated using amodel checker.
A model checker takes two inputs. The first is a finite state
machine, described in a formal language such as SMV. The
second is a statement of some property, expressed in atem-
poral logic. Temporal logics can be used to express only
properties that are true “now,” and also properties that will
(or might) be true in the future. The following is a simple
temporal logic statement for the mutant in Figure 3:

The original expression,!x & y : false
in this case, isalways the same as the mutated
expression,!x & y : true .

For the given example, this statement is false with re-
spect to a sequence of states allowed by the original ma-
chine if and only if that sequence of states is rejected by the
mutant machine. In other words, such a sequence in ques-
tion is a test case that kills the mutant. If we add the follow-
ing SMV statement to the (unmutated) machine in Figure
3:

SPEC AG (!x & y) −→ (y = false)

The model checker will obligingly produce the desired
test sequence:

/* state 1 */ { x = 0, y = 0 }
/* state 2 */ { x = 1, y = 1 }
/* state 3 */ { x = 0, y = 1 }
/* state 4 */ { x = 1, y = 0 }

Some mutated state machines are equivalent to the orig-
inal machine. Model checkers are exceptionally well
adapted to deal with this. The key theoretical reason is
that a model checker has a finite domain to work in, and
hence the equivalent mutant problem is decidable (unlike
with program code). In other words, if the model checker
does not produce a counterexample, weknowthat the mu-
tant is equivalent.

6 Grammar-Based Input Testing

The last type of mutation testing that is included in this
paper is based on grammars that formally define the syntax
of the inputs to a program, method, or software component.
For example, a language’s grammar defines the inputs of its
compiler, and the XML schema defines the inputs of a XML
parser [23, 30, 31]. This section explains how to apply mu-
tation to grammars that define the input space of a program
or program component to generate tests.

6.1 Grammar Input-Based Testing

Consider a program that processes a sequence of de-
posits and debits, where each deposit is of the form
deposit account amount and each debit is of the form
debit account amount. The input structure of this pro-
gram can be described with the regular expression:
(deposit account amount | debit account amount)∗

This regular expression describes any sequence of de-
posits and debits. The regular expression input description
is still fairly abstract, in that it does not say anything about
what anaccount or anamount looks like. One input that
can be derived from this grammar is:

deposit 739 $12.35
deposit 644 $12.35
debit 739 $19.22

Undergraduate CS courses teach how to build finite au-
tomata (graphs) that capture the effects of regular expres-
sions. These can be used with graph coverage criteria. Al-
though regular expressions suffice for some programs, oth-
ers require more expressive grammars. The prior example
was specified in grammar form in Figure 1 in Section 2.



<books>
<book>

<ISBN>0471043281</ISBN>
<title>The Art of Software Testing</title>
<author>Glen Myers</author>
<publ>Wiley</publ>
<price>50.00</price>
<year>1979</year>

</book>
</books>

Figure 4. Simple XML message for books.

The graph that would represent even this simple example
is quite large with all the details; it has nine states and eleven
edges. Tests are derived from grammars by systematically
replacing nonterminals with productions, as shown in the
example in Section 2.

Of course, it often happens that an informal description
of the input syntax is available, but a formal grammar is
not. This means that the tester is left with the engineering
task of formally describing the input syntax. This process
is extremely valuable, and will often expose ambiguities
and omissions in the requirements and software. Thus, this
step should be carried out early in development, definitely
before implementation and preferably before design. Once
defined, it is sometimes helpful to use the grammar directly
in the program for execution-time input validation.

6.1.1 XML example

TheeXtensible Markup Language (XML)is used to describe
program inputs (among other things). XML describes and
encodes data for transmission. XML usestags, which are
textual descriptions of data enclosed in angle brackets (‘<’
and ‘>’). A simple example XML message for books is
shown in Figure 4. This example is used to illustrate the use
of grammar testing on software that uses XML messages.
The example lists a book, with tag names “books,” “book,”
“ISBN,” etc.

XML documents can be constrained by grammar defi-
nitions written inXML Schemas. For example, a schema
for the books example can specify that each message has an
unbounded number of “book” tags and put restrictions on
some of the tags. First, the “title,” “author,” “publ,” “price”
and “year” fields may be mandatory but the “ISBN” is op-
tional. Additionally, the “price” data element can be of type
decimal (numeric) with two digits after the decimal point.
Two data elements, “ISBN” and “year,” can be defined in
a more structured way using type definitions, for example,
four numeric digits for the year and 10 numeric digits for
the ISBN.

Given an XML schema, the criteria defined in Section
2.1 can be used to derive XML messages that serve as test
inputs. Following the production coverage criteria would
result in two XML messages for this simple schema, one

that includes the optional ISBN and one that does not.

6.2 String Mutation Input-Based Testing

Programs should reject invalid inputs, and this function-
ality needs to be tested. Invalid inputs often cause the soft-
ware to behave in surprising ways, which malicious parties
can use to their advantage. This is how the classic “buffer
overflow attack” works. Similarly, a key step in certain
web-based browser attacks is to provide a string input that
contains malicious HTML, Javascript, or SQL. Software
should behave “reasonably” with invalid inputs. “Reason-
able” behavior may not always be defined, which is a sig-
nificant reason why it should be tested.

Invalid inputs can be created by mutating input gram-
mars. When mutating grammars, the mutants are the tests
and we createvalid andinvalid strings. There isno ground
string, so the notion of killing mutants does not apply to
mutating grammars. Several mutation operators for gram-
mars are defined below. Unlike previous operators, these
have not appeared in the literature before and so more de-
tails are given.
1. Nonterminal Replacement: Every nonterminal symbol
in a production is replaced by other nonterminal symbols.

This is a very broad mutation operator that could result
in many strings that are not only invalid, they are so far
away from valid strings that they are useless for testing.
If the grammar provides specific rules or syntactic restric-
tions, some nonterminal replacements can be avoided. This
is analogous to avoiding compiler errors in program-based
mutation. For example, some strings represent type struc-
tures and only nonterminals of the same or compatible type
should be replaced.

Consider the example in section 2. The productiondep
::= "deposit" account amount can be mutated
to create the following three productions:

dep ::= "debit" account amount
dep ::= "deposit" amount amount
dep ::= "deposit" account digit

Which can result in the corresponding tests:
debit 739 $12.35
deposit $19.22 $12.35
deposit 739 1

2. Terminal Replacement: Every terminal symbol in a pro-
duction is replaced by other terminal symbols.

Just as with terminal replacement, some terminal re-
placements may lead to strings that are not in the orig-
inal grammar. Recognizing replacements that yield in-
valid strings depends on the grammar that is being mu-
tated. For example, the productionamount ::= "$"
digit + "." digit 2 can be mutated to create the fol-
lowing three productions:



amount ::= "." digit + "." digit 2

amount ::= "$" digit + "$" digit 2

amount ::= "$" digit + "1" digit 2

Which can result in the corresponding tests:

deposit 739 .12.35
deposit 739 $12$35
deposit 739 $12135

3. Terminal and Nonterminal Deletion: Every terminal
and nonterminal symbol in a production is deleted.

For example, the productiondep ::= "deposit"
account amount can be mutated to create the follow-
ing three productions:

dep ::= account amount
dep ::= "deposit" amount
dep ::= "deposit" account

Which can result in the corresponding tests:

739 $12.35
deposit $12.35
deposit 739

4. Terminal and Nonterminal Duplication: Every terminal
and nonterminal symbol in a production is duplicated.

This is sometimes called the “stutter” operator.
For example, the productiondep ::= "deposit"
account amount can be mutated to create the follow-
ing three mutated productions:

dep ::= "deposit" "deposit" account amount
dep ::= "deposit" account account amount
dep ::= "deposit" account amount amount

Which can result in the corresponding tests:

deposit deposit 739 $12.35
deposit 739 739 $12.35
deposit 739 $12.35 $12.35

Just as with program-based mutation, some inputs from
a mutated grammar rule are still in the grammar. The exam-
ple above of changing the rule

dep ::= "deposit" account amount
to be

dep ::= "debit" account amount
yields an “equivalent” mutant. The resulting input,debit
739 $12.35 , is valid, although the effects are (sadly)
quite different for the customer. If the idea is to generate in-
valid inputs exclusively, some way must be found to screen
out mutant inputs that are valid. Although this sounds much
like the equivalence problem for programs, there is a small
but significant difference. Here the problem is solvable and
can be solved by creating a recognizer from the grammar,
and checking each string as it is produced.

Many programs are supposed to accept some, but not all,
inputs from some larger language. For example, a web-
based program might restrict its inputs to a subset of HTML.
In this case, we have two grammars: the full grammar, and a
grammar for the subset. In this case, the most useful invalid
tests to generate are those that are in the first grammar, but
not in the second.

7 Conclusions

The traditional view of mutation analysis is that it is a
method for modifying programs according to specific rules
to help create high quality tests. This paper points out that
mutation is one instantiation of a very general form of test-
ing, which we callgrammar-based testing. Given a gram-
mar description of a software artifact, mutation operators
can be defined to create alternate versions of artifacts. These
alternate versions (mutants) can either be valid according to
the grammar or invalid. They can be created directly from
the grammar or by modifying a ground string (such as a
program).

This re-definition of mutation has three benefits. First, it
allows mutation to be described in a more simple way and
understood more readily. Second, it is easier to develop new
applications of mutation analysis. it makes it easier to apply
mutation analysis to new contexts. Essentially, we can in-
stantiate the concept onto new grammar-based artifacts in a
seamless way. The third benefit is left for future work, that
of ensuring that existsing techniques are complete accord-
ing to the generic criteria in Section 2.
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