
Inter-Class Mutation Operators for Java

Yu-Seung Ma
Division of Computer Science

Dept of EE and CS
Korea Adv Inst of Sci & Tech
ysma@salmosa.kaist.ac.kr

Yong-Rae Kwon
Division of Computer Science

Dept of EE and CS
Korea Adv Inst of Sci & Tech
kwon@salmosa.kaist.ac.kr

Jeff Offutt∗

Dept of Info and Soft Engr
SE Research Lab

George Mason University
ofut@ise.gmu.edu

Abstract

The effectiveness of mutation testing depends heavily on
the types of faults that the mutation operators are designed
to represent. Therefore, the quality of the mutation opera-
tors is key to mutation testing. Mutation testing has tradi-
tionally been applied to procedural-based languages, and
mutation operators have been developed to support most of
their language features.

Object-oriented programming languages contain new
language features, most notably inheritance, polymor-
phism, and dynamic binding. Not surprisingly, these lan-
guage features allow new kinds of faults, some of which are
not modeled by traditional mutation operators. Although
mutation operators for OO languages have previously been
suggested, our work in OO faults indicate that the previ-
ous operators are insufficient to test these OO language
features, particularly at the class testing level. This pa-
per introduces a new set of class mutation operators for
the OO language Java. These operators are based on spe-
cific OO faults and can be used to detect faults involving
inheritance, polymorphism, and dynamic binding, thus are
useful for inter-class testing. An initial Java mutation tool
has recently been completed, and a more powerful version
is currently under construction.

1. Introduction

Mutation testing, originally proposed in 1978 [17, 11], is
a fault-based testing technique that measures the effective-
ness of test cases. Mutation testing is based on the assump-
tion that a program will be well tested if all simple faults are
detected and removed. Simple faults are introduced into the
program by creating a set of faulty versions, calledmutants.
Test cases are used to execute these mutants with the goal

∗This work is supported in part by the U.S. National Science Founda-
tion under grant CCR-98-04111.

of causing each mutant to produce incorrect output. A test
case that distinguishes the program from its mutant is con-
sidered to beeffectiveat finding faults in the program. The
effectiveness of mutation testing, like other fault-based ap-
proaches, depends heavily on the types of faults that the mu-
tation system is designed to represent. Since mutation test-
ing uses mutation operators to implement faults, the quality
of the mutation operators is crucial to the effectiveness of
mutation testing.

Although mutation testing has a rich history, most
mutation operators have been developed for procedural
programs. Object-oriented (OO) programs tend to be
structured rather differently from conventional programs.
Method bodies of a well designed OO component are gen-
erally shorter than a conventional implementation and in-
teractions between methods of the class or other classes are
increased. Moreover, OO languages contain new features
such as encapsulation, inheritance, and polymorphism. In
previous research [23], we have found that these features
introduce the potential for new faults. Therefore, existing
mutation operators for procedural programming languages
are not sufficient for programs written in OO languages and
new OO-specific language operators are needed.

Some research has already been done on the develop-
ment of mutation operators for OO software. Kim et al.
developed a set of class mutation operators [15, 16], result-
ing in 13 class mutation operators for Java programs. These
operators were developed from the OO-specific language
features and were intended to be “selective” [19]. Cheval-
ley [4] has developed three additional class mutation op-
erators based on his programming experience. The faults
modeled by these operators are not general; they can be
application-specific or programmer-specific. Therefore, to
execute mutation testing with these operators, they should
be selected based on the characteristic of the program to be
tested. These previous attempts suffered from not having a
general fault model available. These previous OO mutation
operators do not handle several fault types and did not han-
dle all Java language features. We also assert that initial mu-

tation operators should not be selective, rather they should
be comprehensive. Selective mutation operators should be
chosen based on empirical evidence of the effectiveness op-
erators.

This paper presents a comprehensive set of class muta-
tion operators for Java that corrects the problems with pre-
vious Java operators. This includes previously developed
mutation operators, modifications to previously developed
mutation operators, and a number of new operators. Sec-
tion 2 of this paper discusses general issues involved in us-
ing mutation testing for object-oriented languages. Sections
4 and 5 describes the class mutation operators for Java and
relates this set of operators to previous sets. Finally, Sec-
tion 6 gives a summary and discusses plans for applying
these operators.

2. Using Mutation Testing to Test OO Software

A class is usually regarded as the basic unit of OO test-
ing. Harrold and Rothermel [12] define three levels of test-
ing: (1) intra-method testing, in which tests are constructed
for individual methods; (2)inter-method testing, in which
multiple methods within a class are tested in concert; and
(3) intra-class testing, in which tests are constructed for a
single class, usually as sequences of calls to methods within
the class. Gallagher and Offutt [10] addedinter-class test-
ing, in which more than one class is tested at the same time.
Following this terminology, we classify faults in classes as
occurring at the intra-method level, the inter-method level,
the intra-class level, and the inter-class level. Below, we
briefly describe each level in terms of faults and describe
some considerations for mutation testing.

• Intra-method Level Faults
Intra-method level faults occur when the functionality
of a method is implemented incorrectly. A method in
a class corresponds to the unit of the conventional pro-
gram testing. We assume that traditional mutation op-
erators for procedural programs [1, 8, 22] will suffice
for this level.

• Inter-method Level, Intra-class Level Faults
Inter-method and intra-class level faults are made at
the interactions between pairs of methods of a single
class or between pairs of methods that are not part of
a class construct in non-OO languages. Because meth-
ods are getting smaller and interactions among meth-
ods are increasingly encoding the design complexity
[27], integration testing is becoming more important.
Interface mutation [8] has been proposed to evaluate
how well the interactions between various units have
been tested. Interface mutation is an extension of mu-
tation testing and is applicable to software systems

composed of interacting units. The work in this paper
does not address this level of testing.

• Inter-class Level Faults
Inter-class level faults include faults that occur due to
the object-oriented specific features such as encapsu-
lation, inheritance, polymorphism, and dynamic bind-
ing. Kim et al. [15, 16] and Chevalley [4] have in-
troduced class mutation operators to help detect faults
at this level. This paper uses a comprehensive list of
object-oriented faults to define inter-class level muta-
tion operators, using and extending the previous oper-
ators.

In this paper, we develop class mutation operators for
inter-class level faults in the language Java. They specif-
ically target features of the language that are used to in-
tegrate classes, including method calls, access, overload-
ing, inheritance, and polymorphism. Because the number
of language features are fewer, there are significantly fewer
mutants for inter-class faults than for intra-method faults,
which most mutation tools have targeted. Most of these mu-
tation operators will be the same in other OO languages, al-
though there are some features that are peculiar to Java. Be-
fore introducing the class level mutation operators for Java,
we examine the Java OO language features.

2.1. Java Object-oriented Specific Language Fea-
tures

Encapsulation is an abstraction mechanism to implement
information hiding. Information hiding is a design tech-
nique that attempts to protect certain aspects of the design
from specific parts of the implementation. Encapsulation
allows objects to restrict access to their member variables
and methods by other objects. Java supports four distinct
access levels for member variables and methods: private,
protected, public, and default (also called package). These
access levels are poorly understood by many programmers,
and often not carefully considered during design, so they
are a rich source of faults.

Java supports four distinct access levels for member
variables and methods:private , default (also called
package),protected , andpublic . Table 1 summarizes
these access levels. Aprivatemember is available only to
the class in which it is defined. If access is not specified,
the access level defaults topackage, which allows access
to classes in the same package, butnot subclasses in other
classes. Aprotectedmember is available to the class itself,
subclasses, and classes in the same package. Apublicmem-
ber is available to any class in any inheritance hierarchy or
package (the world).

Java does not support multiple class inheritance, thus ev-
ery class has only one immediate parent. A subclass inherits

2

Table 1. Java’s Access Levels

Same Same package Same package Different package Different package
Specifier Class subclass non-subclass subclass non-subclass
private Y n n n n
package Y Y Y n n
protected Y Y Y Y n
public Y Y Y Y Y

variables and methods from its parent and all of its ances-
tors. The subclass can use these members as defined, or
it can override the methods or hide the member variables.
Subclasses can add new variables and methods. Subclasses
can also explicitly use their parent’s variables and methods
using the keyword “super” (super.methodname();).
Java’s inheritance allows method overriding, variable hid-
ing, and class constructors.

Method overridingallows a method in a subclass to have
the same name, arguments and result type as a method in its
parent. Overriding allows subclasses to redefine inherited
methods. The child class method has the same signature,
but a different implementation.

Variable hidingis achieved by defining a variable in a
child class that has the same name and type of an inherited
variable. This has the effect of hiding the inherited variable
from the child class. This is a powerful feature, but it is also
a potential source of errors.

Class constructorsare not inherited in the same way
other methods are. To use a constructor of the parent, we
must explicitly call it using thesuperkeyword. The call
must be the first statement in the derived class constructor
and the parameter list must match the parameters in the ar-
gument list of the parent constructor.

One important thing to note is that ifsuperdoes not ap-
pear as the first statement of a constructor body, the Java
compiler inserts an implicit callsuper()to the constructor.
Thus, thedefault constructor (with no parameters) is in-
voked unless we specifically invoke a parameterized con-
structor for the parent.

Polymorphismrefers to the ability of two or more ob-
jects belonging to different classes to respond to the same
message in different class-specific ways. Java supports two
versions of polymorphism, attributes and methods, both of
which use dynamic binding. Each object has adeclared type
(the type in the declaration statement, that is, “Parent P;”)
and anactual type(the type in the instantiation statement,
that is, “P = new Child();”, or the assignment statement, “P
= Pold;”). The actual type can be from any type that is a
descendant of the declared type.

A polymorphic attributeis an object reference that can
take on various types. At any location in the program, the
type of the object reference can be different in different ex-

ecutions. Apolymorphic methodcan accept parameters of
different types by having a parameter that is declared of type
Object. Polymorphic methods are used to implementtype
abstraction(templates in C++ and generics in Ada).

Overloadingis the use of the same name for different
constructors or methods in the same class. They must have
different signatures, or list of arguments. Overloading is
easily confused with overriding because the two mecha-
nisms have similar names and semantics. Overloading oc-
curs with two methods in the same class, whereas overriding
occurs between a class and one of its descendants.

In Java, member variables and methods can be associated
with the class rather than with individual objects. Members
associated with a class are calledclassor static variables
andmethods. The Java runtime system creates a single copy
of a static variable the first time it encounters the class in
which the variable is defined. All instances of that class
share the same copy of the static variable. Static methods
can operate only on static variables; they cannot access in-
stance variables defined in the class. Unfortunately there is
some variation in the terminology. In this paper,instance
variablesare declared at the class level and are available
to objects,class variablesare declared withstatic , and
local variablesare declared within methods.

3. OO Specific Faults in Java

The mutation operators in this paper are designed to
model possible faults that arise from misuse of OO-specific
features. A number of previous papers [9, 2, 23, 16, 15, 4]
have investigated OO-specific faults.

The fault model by Offutt et al. [23] defines faults in
terms of the language syntax, and therefore is used for defin-
ing mutation operators. However, their fault model was re-
stricted to subtype inheritance, thus we incorporate other
faults used for mutation operators by Kim et al. and Cheval-
ley [4, 15, 16]. The faults that we consider are briefly pre-
sented below; more details are given in the papers.

• Offutt et al.’s faults [23]
– state visibility anomaly
– state definition inconsistency (due to state vari-

able hiding)

3

– state definition anomaly (due to overriding)
– indirect inconsistent state definition
– anomalous construction behavior
– incomplete construction
– inconsistent type use

• Kim’s faults [15, 16]
– overloading methods misuse
– access modifier misuse
– staticmodifier misuse

• Chevalley and Firesmith [4, 9]
– incorrect overloading methods implementation
– superkeyword misuse
– thiskeyword misuse
– faults from programming experience

4. Mutation Operators for Java

We classify the class mutation operators into six groups,
based on the language feature that is affected. The first four
groups are based on language features that are common to
all OO languages. The fifth group includes language fea-
tures that are Java-specific, and the last group of mutation
operators are based on common OO programming mistakes.

1. Information Hiding (Access Control)
2. Inheritance
3. Polymorphism
4. Overloading
5. Java-Specific Features
6. Common Programming Mistakes

Our strategy was to first analyze the list of potential OO
faults, then design mutation operators to test for those faults.
Several operators were taken from previous research into
OO mutation analysis, and the relationships between our
operators and the previous operators are detailed in the next
section. In the following subsections, we first describe each
operator informally, then give an example mutant that can
be created from the operator.

4.1. Information Hiding (Access Control)

In our experience in teaching OO software development
and consulting with companies that rely on OO software,
we have observed that access control is one of the most
common sources of mistakes among OO programmers. The
semantics of the various access levels are often poorly un-
derstood, and access for variables and methods is often not
considered during design. This can lead to careless deci-
sions being made during implementation. It is important to
note that poor access definitions do not always cause faults
initially, but can lead to faulty behavior when the class is
integrated with other classes, modified, or inherited from.

Java provides four access levels: public, private, pro-
tected, and, if left unspecified, package. The mutation op-
erator AMC is used to test for access control faults.

• AMC – Access modifier change: The AMC operator
changes the access level for instance variables and methods
to other access levels. The purpose of the AMC operator
is to guide testers to generate test cases that ensure that ac-
cessibility is correct. This mutant can only be killed if the
new access level denies access to another class or allows ac-
cess that causes a name conflict. Because the ability to kill
this mutant depends on other characteristics of the software,
many of these mutants can be expected to be equivalent.

Original Code AMC Mutants

public Stack s; ∆ private Stack s;
∆ protected Stack s;
∆ Stack s;

4.2. Inheritance

Although a powerful and useful abstraction mechanism,
incorrect use of inheritance can lead to a number of faults.
We define five mutation operators to try to test the vari-
ous aspects of using inheritance, covering variable hiding,
method overriding, the use ofsuper, and definition ofcon-
structors.

Overriding can cause instance variables that are defined
in a subclass to hide member variables of the parent. This
powerful feature can cause an incorrect variable to be ac-
cessed. Thus it is necessary to ensure that the correct vari-
able is accessed when variable overriding is used, which is
the intent of the IHD and IHI mutation operators.

• IHD – Hiding variable deletion: The IHD operator
deletes a declaration of an overriding, or hiding variable.
This causes references to that variable to access the variable
defined in the parent (or ancestor). This mimics a common
mistake that programmers make. This mutant can only be
killed by a test case that is able to show that the reference to
the parent variable is incorrect.

Original Code IHD Mutant

class List{ class List{
int size; int size;
...

} }
class Stack extends List{ class Stack extends List{

int size; ∆ // int size;
...

} }

• IHI – Hiding variable insertion: The IHI operator in-
serts hiding member variables to hide the parent’s version
of a variable. This mutant can only be killed by a test case
that is able to show that the reference to the overriding vari-
able is incorrect.

4

Original Code IHI Mutant

class List{ class List{
int size; int size;
...

} }
class Stack extends List{ class Stack extends List{

∆ int size;
...

} }

• IOD – Overriding method deletion: The ability of a sub-
class to override a method declared by an ancestor allows a
class to modify the behavior of the parent class. When there
is more than one method of the same name, it is important
for testers to ensure that a method invocation actually in-
vokes the intended method.

The IOD operator deletes an entire declaration of an
overriding method in a subclass so that references to the
method uses the parent’s version. This mutant is killed by a
test case that is able to show that the behavior of the parent’s
method is incorrect.

Original Code IOD Mutant

class Stack extends List{ class Stack extends List{
...
Push (int a){ ... } ∆ // Push (int a){ ... }

} }

• IOP – Overridden method calling position change:
Sometimes, an overriding method in a child class needs
to call the method it overrides in the parent class. This
may happen if the parent’s method uses a private variablev,
which means the method in the child class may not modify
v directly. However, an easy mistake to make is to call the
parent’s version at the wrong time, which can cause incor-
rect state behavior. The IOP operator moves calls to over-
ridden methods to the first and last statements of the method
and up and down one statement.

Original Code IOP Mutant

class List{ class List{
...
void SetEnv() void SetEnv()

{size = 5; ...} {size = 5; ...}
} }

class Stack extends List{ class Stack extends List{
...
void SetEnv(){ void SetEnv(){

super.SetEnv(); ∆ size = 10;
size = 10; ∆ super.SetEnv();

} }
} }

• IOR – Overridden method rename: The IOR opera-
tor is designed to check if an overriding method adversely
affects other methods. Consider a methodm() that calls an-
other methodf(), both in a classList. Further, assume that
m() is inherited without change in a child classStack, but
f() is overridden inStack. Whenm() is called on an ob-
ject of typeStack, it calls Stack’s version off() instead of
List’s version. In this case,Stack’s version off() may have
an interaction with the parent’s version that has unintended
consequences. The IOR operator renames the parent’s ver-
sions of these methods so that the overriding cannot affect
the parent’s method. These mutants can only be killed by a
test case that causes different behavior when the overriding
(child’s) version is not called.

Original Code IOR Mutant

class List{ class List{
...
void m(){... f(); ... } ∆ void m(){... f’(); ... }
void f() { ... } ∆ void f’() { ... }

} }

class Stack extends List{ class Stack extends List{
...
void f() { ... } void f() { ... }

} }

• ISK – superkeyword deletion: If a subclass hides an
instance variable of one of its ancestors, it can still refer-
ence the hidden variable by using thesuperkeyword. The
subclass can also usesuperto invoke a parent’s version of a
method that has been overridden.

The ISK operator deletes occurrences of thesuperkey-
word so that a reference to the variable or the method goes
to the overriding instance variable or method. The ISK op-
erator is designed to ensure that hiding/hidden variables and
overriding/overridden methods are used appropriately.

Original Code ISK Mutant

class Stack extends List{ class Stack extends List{
...
int MyPop(){ int MyPop(){

...
return val*super.num; ∆ return val*num;

} }
} }

• IPC – Explicit call of a parent’s constructor deletion:
Although constructors are not inherited the way other meth-
ods are, a constructor of the superclass is invoked when sub-
classes are instantiated. When we create new objects of a
derived class, the default constructor (no arguments) for the
parent class is automatically called first, then the construc-
tor of the derived class is called. However, the subclass can

5

use thesuperkeyword to call a specific parent class con-
structor. This is usually done to pass arguments to one of
the parent class’s non-default constructors.

The IPC operator deletessuperconstructor calls, causing
the default constructor of the parent class to be called. To
kill mutants of this type, it is necessary to find a test case
for which the parent’s default constructor creates an initial
state that is incorrect.

Original Code IPC Mutant

class Stack extends List{ class Stack extends List{
...
Stack (int a){ Stack (int a){

super (a); ∆ // super (a);
...

} }
} }

4.3. Polymorphism and Dynamic Binding

Object references can have different types with different
executions. That is, object references may refer to objects
whose actual types differ from their declared types. The ac-
tual type can be of any type that is a subclass of the declared
type. Polymorphism allows the behavior of an object refer-
ence to differ depending on the actual type. Therefore, it is
important to identify and exercise the program with all pos-
sible type bindings. The polymorphism mutation operators
are designed to ensure this type of testing.

• PNC –newmethod call with child class type:The PNC
operator changes the instantiated type of an object refer-
ence. This causes the object reference to refer to an object
of a type that is different from the declared type. In the
example below, classA is the parent of classB.

Original Code PNC Mutant

A a; A a;
a = new A(); ∆ a = new B();

• PMD – Member variable declaration with parent class
type: The PMD operator changes the declared type of an
object reference to the parent of the original declared type.
The instantiation will still be valid (it will still be a descen-
dant of the new declared type). To kill this mutant, a test
case must cause the behavior of the object to be incorrect
with the new declared type. In the example below, classA
is the parent of classB.

Original Code PMD Mutant

B b; ∆ A b;
b = new B(); b = new B();

• PPD – Parameter variable declaration with child class
type: The PPD operator is the same as the PMD, except
that it operates on parameters rather than instance and local
variables. It changes the declared type of a parameter object
reference to be that of the parent of its original declared
type. In the example below, classA is the parent of classB.

Original Code PPD Mutant

boolean equals (B o){ ... } ∆ boolean equals (A o){ ... }

• PRV – Reference assignment with other compatible
type: Object references can refer to objects of types that
are descendants of its declared type. The ORR operator
changes operands of a reference assignment to be assigned
to objects of subclasses. In the example below,obj is of
type Object, and in the original code it is given an object
of typeString. In the mutated code, it is given an object of
typeInteger.

Original Code OAC Mutant

Object obj; Object obj;
String s = “Hello”; String s = “Hello”;
Integer i = new Integer(4); Integer i = new Integer(4);
obj = s; ∆ obj = i;

4.4. Method Overloading

Method overloading allows two or more methods of the
same class to have the same name as long as they have dif-
ferent argument signatures. Just as with method overriding,
it is important for testers to ensure that a method invoca-
tion invokes the correct method with appropriate parame-
ters. Five mutation operators are defined to test various as-
pects of method overloading.

• OMR – Overloading method contents change:The
OMR operator is designed to check that overloaded meth-
ods are invoked appropriately. The OMR operator replaces
the body of a method with the body of another method that
has the same name. This is accomplished by using the key-
word this.

Original Code OMR Mutant

class List{ class List{
...
void Add (int e){} void Add (int e){}
void Add (int e, int n){ void Add (int e, int n){

... ... ∆ this.Add(e);
} }

} }

• OMD – Overloading method deletion: The OMD op-
erator deletes overloading method declarations, one at a

6

time in turn. If the mutant still works correctly without
the deleted method, there may be an error in invoking one
of the overloading methods; the incorrect method may be
invoked or an incorrect parameter type conversion has oc-
curred. The OMD operator ensures coverage of overloaded
methods, that is, all the overloaded methods must be in-
voked at least once.

Original Code OMD Mutant

class Stack extends List{ class Stack extends List{
...
void Push (int i){ ... } ∆ // void Push (int i){ ... }
void Push (float i){ ... } void Push (float i){ ... }

} }

• OAO – Argument order change: The OAO operator
changes the order of the arguments in method invocations,
but only if there is an overloading method that can accept
the new argument list. If there is one, the OAO operator
causes a different method to be called, thus checking for a
common fault in the use of overloading.

Original Code OAO Mutant

s.Push (0.5, 2); ∆ s.Push (2, 0.5);

• OAN – Argument number change: The OAN opera-
tor changes the number of the arguments in method invo-
cations, but only if there is an overloading method that can
accept the new argument list. Again, this helps ensure that
the programmer did not invoke the wrong method. When
new values need to be added, they are the constant default
values of primitive types or the result of the default con-
structors for objects.

Original Code OAN Mutants

s.Push (0.5, 2); ∆ s.Push (2);
∆ s.Push (0.5);
∆ s.Push ();

4.5. Java-Specific Features

Java includes a few object-oriented language features
that do not occur in all OO languages. This group of four
operators attempt to ensure correct use of these features.

• JTD – this keyword deletion: The JTD operator deletes
uses of the keywordthis. Within a method body, uses of the
keywordthis refers to the current object. Typically, meth-
ods can refer directly to the object’s instance variables by
name. However, sometimes a member variable is hidden by
a method parameter that has the same name, sothismust be
used. The JTD operator checks if the member variables are
used correctly if they are hidden by a method parameters
by replacing occurrences of “this.X” with “ X” when “X” is
both a parameter and an instance variable.

Original Code JTD Mutant

class Stack{ class Stack{
int size; int size;
...
void setSize (int size){ void setSize (int size){

this.size=size; ∆ size=size;
} }

} }

• JSC –staticmodifier change:The JSC operator removes
thestaticmodifier to change class variables to instance vari-
ables, and it adds thestaticmodifier to change instance vari-
ables to class variables. It is designed to validate behavior
of instance and class variables.

Original Code JSC Mutant

public static int s = 100; public int s = 100;
private String name; ∆ public static String name;

• JID – Member variable initialization deletion : Instance
variables can be initialized in the variable declaration and in
constructors for the class. The JID operator removes the ini-
tialization of member variables in the variable declaration
so that member variables are initialized to the appropriate
default values of Java. This is designed to ensure correct
initializations of instance variables.

Original Code JID Mutant

class Stack{ class Stack{
int size = 100; ∆ int size;
...
Stack(){} Stack(){}

} }

• JDC – Java-supported default constructor create:
Java createsdefaultconstructors if a class contains no con-
structors. The JDC operator forces Java to create a default
constructor by deleting the implemented default construc-
tor. It is designed to check if the user-defined default con-
structor is implemented properly.

Original Code JDC Mutant

class Stack{ class Stack{
...
Stack(){} ∆ // Stack(){}

} }

4.6. Common Programming Mistakes

This category of mutation faults attempts to capture typi-
cal mistakes that programmers make when writing OO soft-
ware. These are related to use of references and using meth-
ods to access instance variables.

7

• EOA – Reference assignment and content assignment
replacement:Object references in Java are always through
pointers. Although pointers in Java are typed, which is con-
sidered to help prevent certain types of faults, there are still
mistakes that programmers can make. One common mis-
take is that of using an object reference instead of the con-
tents of the object the pointer references. The EOA oper-
ator replaces an assignment of a pointer reference with a
copy of the object, using the Java convention of aclone()
method. Theclone()method duplicates the contents of an
object, creating and returning a reference to a new object.

Original Code EOA Mutant

List list1, list2; List list1, list2;
list1 = new List(); list1 = new List();
list2 = list1; ∆ list2 = list1.clone();

• EOC – Reference comparison and content comparison
replacement: The EOC operator considers another com-
mon mistake with objects and object references. Compar-
isons of object references check whether the two references
point to the same data object in memory. To support the
comparison of the contents of objects, Java suggests the
convention of anequals()method, which should take an
object of typeObjectas a parameter and return aboolean
value; true if the parameter has the same value as the refer-
ence object. This mutation operator targets faults program-
mers can easily make when confusing the reference of an
object and its state.

Original Code EOC Mutant

Fract f1 = new Fract (1, 2); Fract f1 = new Fract (1, 2);
Fract f2 = new Fract (1, 2); Fract f2 = new Fract (1, 2);
boolean b = (f1==f2); ∆ boolean b = (f1.equals(f2));

• EAM – Accessor method change:Because private in-
stance variables cannot be accessed outside of an object’s
own methods, good OO programming practice calls for
providing public accessor and modifier methods by which
clients of an object can effectively manipulate selected pri-
vate instance variables. These are informally known as
“get” and “set” methods, and by convention, use the vari-
able name preceded by “get” or “set” (getVariableName()).
One of the problems with this convention is that classes with
multiple instance variables may wind up having many meth-
ods with very similar names. As a result, programmers eas-
ily get them confused.

The EAM operator changes an accessor method name
for other compatible accessor method names, wherecom-
patible means that the signatures are the same except the
method name. To kill this mutant a test case will have to
produce incorrect output as a result of calling the wrong
method.

Original Code EAM Mutant

point.getX(); ∆ point.getY();

• EMM – Modifier method change: The EMM operator
does the same as EAM, except it works with modifier meth-
ods (“set”) instead of accessors.

Original Code EMM Mutant

point.setX (2); ∆ point.setY (2);

5. Summary and Comparison with Previous
Mutation Operators

The operators in this paper are based on previous re-
search that developed a fault model for object-oriented soft-
ware. The goal was to develop mutation operators that can
detect faults in this list. This section describes the relation-
ships between the faults described in Section 3 and our mu-
tation operators and the relationships between our operators
and previous operators.

Table 2 relates the fault types and our mutation operators.
All faults are covered, and some required multiple muta-
tion operators. Conversely, some of the mutation operators
cover more than one fault.

A number of the faults could be detected by previously
defined mutation operators. Kim et al. [15, 16] defined 13
“class mutation operators”. Two of Kim’s operators mu-
tate exception handling mechanisms, EHC and EHR. Al-
though these are valid mutation operators, we do not con-
sider exception handling to be strictly dependent on an
object-oriented language, so do not consider them for our
work. These operators should be used at the method testing
level. Kim’s POC operator changes the order of parameters,
in effect, deleting a method and creating a new overloaded
method. This new method is unlikely to be used during
testing, which means the net result would be the same as
the OMR mutation operator.

Chevalley [4] introduced three operators. All three of
these should help detect faults from our list, so they have
been incorporated into our list.

Table 3 relates our object-oriented mutation operators
and the previously defined mutation operators; the previ-
ous operators prefixed with a “K-” are from Kim’s list and
those prefixed with a “C-” are from Chevalley’s. When our
mutation operators correspond to previous mutation opera-
tors, we use new names to ensure a standard naming con-
vention. Several of our operators are similar to previous
operators, but with some changes. The symbol? next to op-
erator names indicates that there are some differences be-
tween ours and theirs. The CRT operator of Kim includes
several types of changes, so it actually corresponds to sev-
eral of our mutation operators. Chevalley’s MNC operator

8

Table 2. Relation Between Faults and Operators

Faults Class Mutation Operators
State visibility anomaly IOP
State definition inconsistency (due to state variable hiding) IHD, IHI
State definition anomaly (due to overriding) IOD
Indirect inconsistent state definition IOD
Anomalous construction behavior IOR, IPC, PNC
Incomplete construction JID, JDC
Inconsistent type use PID, PNC, PPD, PRV
Overloading methods misuse OMD, OAO, OAN
Access modifier misuse AMC
staticmodifier misuse JSC
Incorrect overloading methods implementation OMR
superkeyword misuse ISK
this keyword misuse JTD
Faults from common programming mistakes EOA, EOC, EAM, EMM

applies toall methods, and it seems unlikely that program-
mers would make this mistake so generally. Thus, the MNC
corresponds to our EAM and EMM, that is, restricting the
changes to class accessor and modifier methods.

6. Cost and Future Work

One of the factors that has prevented mutation testing
from being adopted for unit (method) level testing is that
of cost. Mutation systems have been slow, requiring thou-
sands of program executions for even small methods. The
execution time is primarily a function of the number of mu-
tants and various techniques have been proposed to reduce
the number of mutants and to decrease the execution time
per mutant. Mutation operator sets for procedural languages
such as Fortran and C have led toO(V ar ∗ Ref) mutants,
whereV ar is the number of variables andRef the number
of references [19]. Selective mutation was able to reduce
this to O(Ref). In the following, we explore the cost of
object-oriented mutation testing, then discuss construction
of a mutation tool and future empirical work with the tool.

6.1. Number of Mutants

The number of mutants for each category of mutation
operators is considered separately. LetV be the number
of member variables for a class andM be the number of
methods. LetRM be the number of overriding methods,
CV be the number of object references ofpolymorphic type,
that is, object references whose type can vary, andCR be
the number of uses of polymorphic type objects. LetLM be
the number of overloading methods,AM be the number of
accessor and modifier methods, andCAM be the number
of calls to accessor and modifier methods.

Information Hiding (Access Control). The number of
mutants =O(V + M).

Inheritance. Let S be the number of occurrences of the
keywordsuper. The number of mutants =O(V +RM +S).

Polymorphism and Dynamic Binding. The number of
mutants is the number of object references whose type can
vary dynamically times the number of uses of those object
references. The number of mutants =O(CV × CR).

Overloading. Let CLM be the number of calls to an
overloading method. The number of mutants =O(CLM ×
CV × LM + LM2).

Java-Specific. LetT be the number of occurrences of the
keywordthis. The number of mutants =O(V + M + T).

Common Programmer Mistakes. The number of mu-
tants =O(AM × CAM).

Which formula dominates depends on the characteristics
of individual programs. Nevertheless, we suggest a simpli-
fication to a few dominating terms by the following analy-
sis. It can safely be assumed that the keywordssuperand
this are used rarely, thus terms involving Java-specific and
inheritance mutation operators are unlikely to dominate. It
is likely that the two largest values will be the number of
instance variables and methods (V andM), howeverV and
M are only involved in additive terms, so it is unlikely that
they will dominate the number of mutants. If a program has
many overloading methods and calls to them, the mutants
from the overloading category may dominate.CLM and
CV are almost certainly going to be small when compared
with LM , thus theLM2 term will dominate in this case.

Finally, we consider the mutation operators for common
programmer mistakes. This number of accessors and mod-
ifiers (AM) will certainly vary depending on the program.
However, accessors and modifiers account for most of the
methods in many Java classes, thus this will be a large
number and we expect this term to dominate (O(AM ×

9

Table 3. Mutation Operators for Inter-Class Testing

Operators Description Previous
AMC Access modifier change K-AMC
IHD Hiding variable deletion K-HFR
IHI Hiding variable insertion K-HFA
IOD Overriding method deletion K-OMR
IOP Overridden method calling position change
IOR Overridden method rename
ISK superkeyword deletion
IPC Explicit call of a parent’s constructor deletion
PNC newmethod call with child class type K-ICE
PMD Instance variable declaration with parent class type K-CRT ?

PPD Parameter variable declaration with child class type K-CRT ?

PRV Reference assignment with other compatible type
OMR Overloading method contents change
OMD Overloading method deletion K-VMR
OAO Argument order change K-AOC
OAN Argument number change K-AND
JTD this keyword deletion
JSC staticmodifier change K-SMC
JID Member variable initialization deletion
JDC Java-supported default constructor create
EOA Reference assignment and content assignment replacementC-RAC
EOC Reference comparison and content comparison replacementC-RCC
EAM Accessor method change C-MNC ?

EMM Modifier method change C-MNC ?

CAM))). Chevalley [5] found that over 30% of their mu-
tants were of this category, lending some support to this the-
ory.

Analytical predictions of the number of mutants has been
historically difficult. Several formulae were claimed to rep-
resent the number of mutants for unit testing and the most
commonly mentioned was(N2) in the number of lines. A
linear regression model on the Mothra Fortran mutation op-
erators [19] found that the the actual number of mutants is
O(V als∗Refs), as claimed by Budd [3]. This history leads
us to surmise that our preliminary analysis must be checked
empirically before being accepted.

6.2. Mutation Tool

There are many aspects of generating mutation systems
for class level testing of OO software that are more compli-
cated than for procedural mutation systems. To apply many
of the OO operators, we need to extract OO-specific infor-
mation from the source code. For example, the IOD opera-
tor replaces an overriding method with the parent’s overrid-
den method. The mutation system needs to know the parent
class and if the parent class has a method of the same name.

On the other hand, Java systems have a significant advan-
tage – reflection. Javareflectionis a technique for deriving

name and signature information about classes directly from
their bytecode, and then changing the behavior of a pro-
gram according to another program called a meta-program
[18, 26]. We developed our Java mutation tool follow-
ing Chevalley’s approach [5], which uses OpenJava [25],
a compile-time reflective system. Figures 1 and 2 show the
two main interfaces to this tool. Figure 1 shows the abil-
ity to generate the different types of mutants, and Figure 2
shows the ability to generate tests and run the mutants.

The reflection approach suffers from lack of efficiency;
the source code is mutated so each mutant must be recom-
piled. We are currently developing a more powerful version
of the tool using Javassist [6, 7]. Javassist is a load-time re-
flective system, and can directly mutate the bytecode. This
significantly reduces the cost of mutation testing, and the
new tool should be competitive with the cost of applying
mutation using mutant schemata [24].

6.3. Effectiveness of the Operators

There are several issues that need to be considered to
evaluate the usefulness and effectiveness of the OO class
level mutation operators. First is the issue of equivalent
mutants. Equivalent mutants do not affect the semantics
of the program, therefore they are useless for mutation test-

10

Figure 1. GUI for generating mutations

ing. However, the problem of detecting equivalent mutants
is undecidable, and efforts to detect equivalent mutants have
had mixed results [13, 21]. An upcoming experiment will
help determine whether some operators generate too many
equivalent mutants. Second, some operators can generate
mutants that are easily killed. Although mutants make sim-
ple syntactic changes to the program, their semantic impacts
can vary greatly. The impacts of OO operators on the se-
mantics can vary from affecting the method to the seman-
tics of the entire class. For example, the IOD operator swaps
overriding methods with its parent’s. The effect of IHD, on
the other hand, extends over the whole class because it han-
dles instance variable, which determine the class state. It is
possible that some of these mutation operators will create
mutants that are too easily killed. Finally, the mutation op-
erators need to be evaluated in terms of their effectiveness
of detecting faults in OO programs.

We are currently experimenting to evaluate the fault-
finding effectiveness of the mutation operators. Initial re-
sults on small examples indicate that, as expected, the AMC
operator creates the most mutants. Also, the AMC and
JSC operators produced a lot of equivalent mutants, and
the PNC, PMD, PPD and IHI operators produced equiva-
lent mutants when overriding was present. Future work will
elaborate on these very preliminary indications and should
help us refine the set of mutation operators.

It is also possible that techniques such as weak muta-
tion can be used [14, 20, 28]. However, a subtle point is
that weak mutation is complicated by the information hid-
ing that is inherent in OO software. Because internal data
states are often less visible, weak mutation for OO software
may well allow mutants to be killed much easier than for

Figure 2. GUI for generating a test case and exe-
cution result

procedural software, which could lead to less effective tests.

6.4. Summary

This paper presents a comprehensive set of mutation op-
erators to test for faults in the use of object-oriented features
of Java. These mutation operators are based on an exhaus-
tive list of OO faults, which gives them a firm theoretical
basis. As a result, they correct several problems with the
Java OO mutation operators that were previously published
[4, 15, 16]. These mutation operators are designed with an
emphasis on the integration aspects of Java to supportinter-
classlevel testing, and will help testers find faults with the
use of language features such as access control, inheritance,
polymorphism and overloading. Thus, this provides a way
to improve the reliability of OO software.

The mutation operators are designed and expressed
specifically for the Java language. This is necessary be-
cause mutation operators must take the semantics of a pro-
gramming language into account. However, most of them
can be easily adapted to other object-oriented programming
languages, and we have tried to separate operators that are
peculiar to Java into their own category.

The most essential theoretical component of a mutation
system is that of the mutation operators, thus we have inves-
tigated this part of the problem first. However, this theory is
not useful until it is followed up by the empirical work. We
are currently beginning the experiment to investigate such
questions as do these operators help find faults in OO soft-
ware and should this set of operators be refined, reduced, or
expanded. Past work [19] suggested that mutation should

11

try to only use operators that tend to produce mutants that
have semantically small faults. Our future empirical work
will have that as a goal.

References

[1] H. Agrawal, R. A. DeMillo, R. Hathaway, Wm. Hsu, Wynne
Hsu, E. W. Krauser, R. J. Martin, A. P. Mathur, and E. H.
Spafford. Design of mutant operators for the C programming
language. Technical Report SERC-TR-41-P,Software Engi-
neering Research Center, Purdue University, March 1989.

[2] R. V. Binder. Testing object-oriented software: A survey.
Journal of Testing, Verification and Reliability, 6(3/4):123–
262, 1996.

[3] T. A. Budd. Mutation Analysis of Program Test Data. PhD
thesis, Yale University, New Haven CT, 1980.

[4] Philippe Chevalley. Applying mutation analysis for object-
oriented programs using a reflective approach. InProceed-
ings of the 8th Asia-Pacific Software Engineering Conference
(APSEC 2001), Macau SAR, China, December 2001.

[5] Philippe Chevalley and Pascale Thevenod-Fosse. A mutation
analysis tool for Java programs.Journal on Software Tools
for Technology Transfer (STTT), September 2001.

[6] S. Chiba. Javassist – A reflection-based programming wizard
for Java.Proceedings of OOPSLA ’98 Workshop on Reflec-
tive Programming in C++ and Java, October 1998.

[7] S. Chiba. Javassist WWW page.
http://www.csg.is.titech.ac.jp/ chiba/javassist/, 2001.

[8] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur.
Interface mutation: An approach to integration testing.
IEEE Transactions on Software Engineering, 27(3):228–
247, March 2001.

[9] D.G. Firesmith. Testing object-oriented software.In
Proc. Technology of Object-Oriented Languages and Sys-
tems, March 1993.

[10] L. Gallagher and A. J. Offutt. Integration testing of object-
oriented components using finite state machines.Subnmited
for publication, 2002.

[11] R. G. Hamlet. Testing programs with finite sets of data.The
Computer Journal, 20(3):232–237, August 1977.

[12] Mary Jean Harrold and Gregg Rothermel. Performing data
flow testing on classes.Second ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE’94), pages
494–505, March 1994.

[13] R. M. Hierons, M. Harman, and S. Danicic. Using program
slicing to assist in the detection of equivalent mutants.Soft-
ware Testing, Verication and Reliability, 9(4):233–262, De-
cember 1999.

[14] W. E. Howden. Weak mutation testing and completeness
of test sets. IEEE Transactions on Software Engineering,
8(4):371–379, July 1982.

[15] S. Kim, J. Clark, and J. McDermid. Assessing test set ade-
quacy for object oriented programs using class mutation.28
JAIIO: Symposium on Software Technology, Sept. 1999.

[16] S. Kim, J. Clark, and J. McDermid. Class mutation: Mu-
tation testing for object-oriented programs.OOSS: Object-
Oriented Software Systems, October 2000.

[17] R. J. Lipton, R. A. DeMillo, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer.IEEE
Computer, 11(4):34–41, April 1978.

[18] Sun Microsystems. Java reflection WWW page.
http://java.sun.com/j2se/1.4/docs/guide/reflection/index.html,
2001.

[19] A. J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf.
An experimental determination of sufficient mutation op-
erators. ACM Transactions on Software Engineering and
Methodology, 5(2):99–118, April 1996.

[20] A. J. Offutt and S. D. Lee. An empirical evaluation of
weak mutation. IEEE Transactions on Software Engineer-
ing, 20(5):337–344, May 1994.

[21] A. J. Offutt and J. Pan. Detecting equivalent mutants and the
feasible path problem.The Journal of Software Testing, Ver-
ification, and Reliabili ty, 7(3):165–192, September 1997.

[22] A. J. Offutt, J. Payne, and J. M. Voas. Mutation op-
erators for Ada. Technical report ISSE-TR-96-09, De-
partment of Information and Software Systems Engineer-
ing, George Mason University, Fairfax VA, March 1996.
http://www.ise.gmu.edu/techrep/.

[23] Jeff Offutt, Roger Alexander, Ye Wu, Quansheng Xiao, and
Chuck Hutchinson. A fault model for subtype inheritance
and polymorphism. InProceedings of the 12th International
Symposium on Software Reliability Engineering, pages 84–
93, Hong Kong China, November 2001. IEEE Computer So-
ciety Press.

[24] Jeff Offutt and Roland Untch. Mutation 2000: Uniting the
orthogonal. InProceedings of Mutation 2000: Mutation
Testing in the Twentie th and the Twenty First Centuries,
pages 45–55, San Jose, CA, October 2000.

[25] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. Open-
Java: A class-based macro system for Java.Reflection
and Software Engineering, LNCS 1826:117–133, June 2000.
Heidelberg, Germany.

[26] Paul Tremblett. Java reflection.Dr. Dobb’s Journal, January
1998. http://www.ddj.com/articles/1998/9801/.

[27] Norman Wilde and Ross Huitt. Maintenance support for
object-oriented programs.Transactions on Software Engi-
neering, 18(12):1038–1044, Dec. 1992.

[28] M. R. Woodward and K. Halewood. From weak to strong,
dead or alive? An analysis of some mutation testing issues.
In Proceedings of the Second Workshop on Software Testing,
Verification, and Analysis, pages 152–158, Banff Alberta,
July 1988. IEEE Computer Society Press.

12

