An Industrial Case Study of Structural Testing Applied to
Safety-critical Embedded Software

Jing Guan Jeff Offutt Paul Ammann
Information and Software Information and Software Information and Software
Engineering Engineering Engineering

George Mason University
Fairfax, VA 22030, USA

jguan@gmu.edu

ABSTRACT

Effective testing of safety-critical real-time embedded soft-
ware is difficult and expensive. Many companies are hesi-
tant about the cost of formalized criteria-based testing and
are not convinced of the benefits. This paper presents the
results of an industrial case study that compared the nor-
mal testing at a company (manual functional testing) with
testing based on the logic-based criterion of correlated ac-
tive clause coverage (CACC). The evaluation was performed
during the testing of embedded, real-time control software
that has been deployed in a safety-critical application in
the transportation industry’. We found in our study that
the test cases generated to satisfy the CACC criterion de-
tected major safety-critical faults that were not detected by
functional testing. We also found that the cost required for
CACC testing was not necessarily higher than the cost of
functional testing. There were also several faults that were
found by the functional tests that were not found by CACC
tests.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; J.7 [Software Engineering]: Industrial con-
trol

General Terms

Measurement, Experimentation, Verification

Keywords

Software testing, embedded software, industrial case study

1To protect its confidentiality, the company is not allowing
publication of any details that could identify the product or
company. For the same reason, the first author’s professional
affiliation has been omitted.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

George Mason University
Fairfax, VA 22030, USA

offutt@ise.gmu.edu

George Mason University
Fairfax, VA 22030, USA

pammann@gmu.edu

1. INTRODUCTION

Embedded software is part of a larger hardware device
or other system. Although there are many types of embed-
ded software systems, much of it is used to control hard-
ware devices. Control embedded software is often real-time,
safety-critical, and deployed with little or no direct inter-
face to users. It is quite common for embedded software to
be built by companies whose primary focus is not software,
and reasonably common for embedded software to be built
by hardware engineers (most often electrical or mechanical).
This is sometimes required because embedded software usu-
ally requires extensive knowledge of the hardware devices
they are being embedded into.

Embedded software is sometimes tested in inefficient and
very expensive ways. Although use of simulation is com-
mon, it is by no means universal. Our experience includes
a professional career as an electrical engineer and software
engineer for companies that develop hardware devices with
embedded software (first author), significant consulting ex-
perience with embedded software (second author), and ex-
tensive experience educating professional software develop-
ers and testers in all segments of the industry (second and
third authors). In our experience, software testing of embed-
ded software is often done by hand, on the actual hardware,
and typically without the tester having guidance, knowledge
or access to software tool support. At the same time, the
typical safety requirements means that testing must be very
effective, so engineers wind up devoting huge amounts of
time to the testing. These observations are supported by a
recent survey of Swedish software companies by Grindal et
al. [7].

There are many reasons why testing is not more sophis-
ticated. One possible reason is that program managers are
unconvinced that sophisticated test criteria can help, and
suspicious that they will be too expensive or difficult to ap-
ply to “real” software outside of university labs. The goal
of this project was to ask whether a particular test crite-
rion can be useful and cost-effective in practice. This is
a practical industrial case study, not a rigorously controlled
experiment.

This paper presents a case study of testing real-time con-
trol software that is embedded into a safety-critical applica-
tion in the transportation industry’. Two sets of tests were

republish, to post on servers or to redistribute to lists, requires prior specific used. The manual tests that the engineers at the company

permission and/or a fee.
ISESE’'06 September 21-22, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-218-6/06/000%5.00.

created (“manual functional testing - MFT”) were compared
with tests generated from the code to satisfy a high-end

logic-based criterion (CACC [1], similar to the masking form
of the well known MCDC [2]). This study compared CACC
testing with MFT and found that the CACC test cases de-
tected important faults that were not detected by manual
functional testing, and that would be very difficult to detect
by any other testing technique. On the other hand, several
faults were found by MFT that were not found by CACC.
Moreover, the cost of applying CACC in this study was
actually less than the cost of the manual functional tests
(omitting training of the tester). The cost result is less
convincing because of the very different way in which the
logic testing criterion was applied. More automation was
employed and simulation was used to reduce human effort.
Section 2 of this paper describes logic-based testing in gen-
eral and describes CACC in particular. Section 3 introduces
the industrial application we tested and describes the tests.
Section 4 presents the results from our case study and Sec-
tion 5 summarizes our conclusions and suggests future work.

2. STRUCTURALLOGIC-BASED TESTING

Logical expressions are common to almost every type of
software artifact, including program source code, finite state
machines, and formal specifications. Because they are so
common, easy to formalize, and easy to process automati-
cally, several test criteria have been defined that are based
on logical expressions. When logic-based testing is based
on program source code, it is called structural logic-based
testing. While logic coverage criteria have been known for
a long time, their use has been steadily growing in recent
years. One major cause for their use in practice has been
because the US Federal Aviation Administration (FAA) re-
quires that one of the logic coverage criteria, Modified Con-
dition Decision Coverage (MCDC) [3], be used for safety
critical parts of the avionics software in commercial aircraft
[5, 9]. A number of other criteria exist, some of which are
equivalent to MCDC and others of which are very similar. In
fact, a careful study of the published literature on the sub-
ject reveals that the same ideas have been repeated several
times in different contexts [2, 3, 4, 6, 8, 10, 11].

2.1 Correlated Active Clause Coverage

One such logic-based test criterion, introduced by Am-
mann and Offutt [1], is called Correlated Active Clause Cov-
erage (CACC). Its goal is to test individual clauses within
logical expressions and it yields tests that are identical to
tests developed to satisfy the masking form of MCDC [2].

CACC formalizes logical expressions in a common math-
ematical way. A predicate is an expression that evaluates to
a boolean value. A simple example is: ((a > b) V C) A p(z).
Predicates may contain boolean variables, non-boolean vari-
ables that are compared with relational operators, and calls
to functions that return a boolean value, all three of which
may be joined with one or more of the logical operators
negation (—), and (A), or (V), implication (—), exclusive or
(@), and equivalence («+). A predicate that does not contain
any of the logical operators is called a clause. The predicate
above has three clauses, (a > b), C, and p(z).

CACC is articulated in terms of test requirements. Test
requirements (TR) are specific elements of software artifacts
that must be satisfied or covered. Test requirements can
be described in terms of a variety of software artifacts, in-
cluding the source code, design components, specification
modeling elements, or even descriptions of the input space.

Test specifications are specific descriptions of test cases, of-
ten associated with or derived from test requirements.

These two terms allow a straightforward definition for a
test coverage criterion. A test criterion is a rule or collection
of rules that impose test requirements on a set of test cases.
That is, the criterion describes the test requirements in a
complete and unambiguous manner.

The intent of CACC is to force the tester to evaluate in-
dividual clauses as well as entire predicates. To test indi-
vidual clauses in such a way that they affect the predicate,
it is necessary to give specific values to the other clauses in
the predicate. Thus, we want the value of the predicate to
directly depend on the clause being tested. For convenience
of expression, the “clause that we want to test” is called the
magor clause.

Definition 1 Determination: Given a clause ¢; in
predicate p, called the major clause, c; determines p if the
remaining minor clauses c¢; € p, j # i, have values such that
changing the truth value of c; changes the truth value of p.

This definition explicitly does not require that the major
clause and the predicate have the same value (¢; = p).
This issue has been left ambiguous by previous definitions,
and similar criteria (including MCDC) have sometimes been
taught as requiring that the predicate and the major clause
must have the same value. This interpretation is not prac-
tical. When the negation operator is used, for example, if
the predicate is p = —a, it becomes impossible for the
major clause and the predicate to have the same value. Al-
gorithms for finding truth assignments to non-major (called
minor) clauses to ensure that the major clause determines
the value of the predicate have been published [1].

CACC uses determination by requiring that major clauses
determine the value of the predicate. In the following defi-
nition, P is a set of predicates that are derived from some
program artifact such as the program source, an FSM, or a
formal specification. C} is the set of clauses in P.

Definition 2 Correlated Active Clause Coverage
(CACC): For each p € P and each major clause ¢; € Cp,
choose minor clauses c;, j # i so that ¢; determines p. TR
has two requirements for each c¢;: c¢; evaluates to true and c;
evaluates to false. The values chosen for the minor clauses
¢j must cause p to be true for one value of the magjor clause
¢; and false for the other, that is, it is required that p(c; =
true) # p(c; = false).

Consider the example p = a A (b V ¢). For clause a to
determine the value of p, the expression bV ¢ must be true,
which can be done in one of three ways: b true and c false,
b false and c true, and both b and ¢ true. So, it would be
possible to satisfy Correlated Active Clause Coverage with
respect to clause a with the two test requirements: {(a =
true, b = true, ¢ = false), (a = false, b = false, ¢ =
true)}. There are other possible sets of test requirements
with respect to a, as enumerated in the following partial
truth table. There are nine possible truth assignments that
will satisfy CACC for a, by choosing one test requirement
from rows 1, 2 and 3, and another from rows 5, 6 and 7.

CESREICRER I3
SR IFERERE e

e e

QA

O UWwW N =

Although no commercial tool is available, most of the
steps for applying CACC can be automated. Predicates
can be extracted automatically, truth assignments could be
found for minor clauses for determination, and truth as-
signments could be found for the major clauses to satisfy
CACC. The step of finding values for inputs to result in
the necessary truth assignments for clauses is more difficult
to automate. The case study reported in this paper applied
CACC to predicates derived from the program source.

3. THE TARGET SYSTEM AND TESTS

The control system used in this case study is a very com-
plicated collection of interacting state machines and algo-
rithms that was completed and deployed in 2003. It inter-
acts with a number of hardware devices, including a battery,
generator, several sensors and a wireless communicator. The
software uses several kinds of interrupts to perform real-time
control.

The control system has five different modes and manages
different actions in each mode. For example, after the con-
trol system is powered on, the system enters Mode M1. Cer-
tain conditions cause the system to switch from one mode
to another.

The software was written in C by the first author as part of
her work assignment as a full-time employee of the company,
and consists of 12 files and 90 functions (> 3000 LOC).
The software contains 70 predicates. 50 predicates had one
clause, 17 predicates had two, and 3 predicates had three
clauses. The software used was a complete, pre-production
version.

Generally speaking, functional testing derives test cases
from the software requirements specification. The manual
functional tests were created by a test engineer at the com-
pany. They were created by hand, following a design vali-
dation test plan. In our study, the company testers applied
functional testing in their usual way, running tests directly
on the target hardware. That is, they were run without us-
ing simulation. This paper refers to this process as “manual
functional testing,” or “MFT.”

CACC was applied to the predicates that appeared in the
program source. No tool was available to support the con-
struction of CACC tests, so they were created by hand anal-
ysis of the software. Arbitrary values were also selected by
hand to satisfy the required truth assignments. These pred-
icates resulted in 134 CACC tests. Following is an example
of how test cases were designed to satisfy the CACC crite-
rion. One predicate has three clauses (the variable names
have been change because of company confidentiality re-
quirements):

((A < 144) && (B < 270) && (C < 880))

Table 1 lists the test requirements needed to satisfy CACC
coverage and the resulting truth value of the predicate. Rows
1 and 2 contain test requirements for clause (A < 144), rows

A <144 | B< 270 | C < 880 | Pred

| ol bo| —
G
S
| = =] =
| | | —

Table 1: Example of test requirements to satisfy
CACC.

A =140, B = 250, C = 800
A =140, B = 250, C = 900
A =140, B = 300, C = 800
A =145, B = 250, C = 800

=Wl —

Table 2: Test values to satisfy CACC.

1 and 3 contain test requirements for clause (B < 270), and
rows 1 and 4 contain test requirements for clause (C < 880),

Table 2 lists the test case values that were selected to
satisfy the test requirements from Table 1.

One common problem with testing embedded control sys-
tems is that it is very difficult to control all the param-
eters that affect the system. For example, the software
reads twenty analog inputs from an eight channel Analog-
To-Digital converter, which means several analog inputs may
share one common channel. An analog MUX chip is used
to control the analog-to-digital converter to switch among
different analog inputs in one single channel. The switch-
ing time is usually less than 1 milli-second, which makes it
impossible for the tester to identify or control the specific
analog input to the microprocessor.

There is also a limitation on one variable (here called P).
Because of hardware limitations, it was only possible to set
P to be up to 85 during testing, but P could get as high as
120 in field usage.

These problems were solved during CACC testing by sim-
ulation. All the analog inputs from hardware can be re-
placed with simulation software statements that explicitly
set the needed values. For example, the software interfaces
with the hardware to read a value for P with the following
statement:

P = ((analogP * x/1024 - 0.25) * 125/2) * y + z;

This was simulated during testing by modifying the pro-
gram:

P = 120;

A number of timer counter values were used as test values
in CACC testing, but timers are set by the real-time timer
interrupt routines during execution. To monitor the timer
test values as well as make the system run in real time,
we output the timer counter values to a computer screen
through a serial port, then supplied the next inputs at the
appropriate time.

The CACC tests were run on the target hardware in a sim-
ulation environment, which provided the software with in-
puts and collected results, including output messages. Each
test case was run via a test script that set the initial condi-
tions of the system, called the simulation program, launched
the software, and displayed the results. Additional routines
were written to allow the tester to start the software in a
particular mode, choose the next test case, and run in “nor-
mal mode.”

Fault MFT CACC
F1 X
F2 X
F3 X
F4
F5
F6
F7
F8
F9

F10
F11
F12
F13
F14
F15
F16
Fi7
F18
F19

KK PR R A A A

PR PR PR R R R R K

Table 3: Faults found by MFT and CACC.

4. CASE STUDY AND RESULTS

This section describes the MF'T and CACC testing results,
and discusses the implications of the results in regards to the
relationship between CACC coverage and software safety.
Data from the difficulty of satisfying the CACC criterion is
also provided. Table 3 gives an abstract summary of the 19
faults found by the two sets of tests.

4.1 Manual Functional Testing

A test engineer performed the manual functional testing
directly on the target hardware. Simulation was not used
and the results were checked by hand. FEight faults were
found. All the failures were detected by visual inspections
of the behavior of the hardware. Faults F1, F2 and F3
were found by both types of tests. Faults F'4 and F'5 were
related to user interface issues that were not addressed by
the CACC tests. Faults F6, F'7 and F8 were found by
running the hardware for a long period of time. Structural
tests based on source are seldom effective at finding these
types of faults. They are usually addressed only by system
level tests based on domain knowledge of the application.

4.2 CACC Testing

The CACC tests found three of the same faults that MFT
found (F'1, F2, and F'3), plus eleven additional faults. Faults
F9 and F'10 were logic mistakes in multi-clause predicates
and seem very unlikely to have been found by any crite-
rion less stringent than CACC (or MCDC). Faults F'11 and
F12 were in the software design, F'13 could not be found
without simulation, and F'14 through F'19 required analy-
sis of outputs that were difficult or impossible to observe
without using simulation. At least one of the faults related
to multi-clause predicates, F'9, was safety related and could
easily have caused a catastrophic failure during operation,
possibly involving loss of life.

Two faults were a result of late changes in the specifica-
tions that were not implemented in all appropriate locations
in the software. Fault F'9 is outlined here—in abstract form
because of company confidentiality requirements.

In normal operation, the unit goes to different modes
based on two inputs—here called I1 and I2. A specific value
for variable X puts the unit into mode M1, while a value
of another variable Y puts the unit into mode M2. The
following decision encodes this operation:

Decision Block 1:

if (X >= 50)
modeM1();

else if (Y > 18)
modeM2() ;

else if (Y <= 18)
modeM3() ;

In another location in the program, the unit wakes up
from sleep mode to normal operation at the same X decision
point (50):

Decision Block 2:

if ((X < 50) && (Y <= 18))
modeM3() ;

Once the system goes to normal operation, it makes deci-
sions based on Decision Block 1.

After the initial implementation, the design was changed
to use 45 as the decision point instead of 50, resulting in the
following change within Decision Block 1:

if (X >= 45)
modeM1 () ;

The software fault was that Decision Block 2 was not
updated with the change to 45. In the manual functional
tests, when 45 was applied to the sleeping unit, Y was also
greater than 18, so the unit was correctly woken up. But
it was woken because of the value of Y, that is, the clause
involving X was not well validated. Then when Decision
Block 1 was reached, 45 put the unit into mode M1, so
the tester erroneously concluded that the predicates were
correct. This fault is very unlikely to be caught unless a
test criterion that explicitly forces multiple clauses to be
tested independently is used.

Two other faults, F'11 and F'12, were a direct result of mis-
takes in the design specification. For example, in operation
mode, a digital-to-analog converter is loaded with the value
P to adjust the output voltage for battery charging. The
software changes the output voltage by increasing a variable
P based on the predicate “((Q >= 14.7) && (P < 880)).”
The specification said to initialize P to 900, which in turn
sets the value of @) to 10.5, and then the value for @ should
be increased slowly to 14.7 by decreasing P. When @ gets
to 14.7, P should be much less than 880, so the condition
can be satisfied and the voltage is adjusted. However, when
another variable R < 10.5, @ is immediately set to 14.7. If
this happens at the beginning of the process, right after P
is initialized to 900, the clause (P < 880) will not be satis-
fied, and then the value for @ will not be decreased. This
fault could cause the unit to keep on increasing above the
required limit, resulting in high voltage that would damage
the battery. During MFT, a fully charged battery was used
to supply voltage, so the fault was not detected. The CACC
tests, on the other hand, required individual clauses to be
evaluated, forcing the fault to be found.

An interesting result is that a number of faults were found
that could not have been observed without using simulation.

As an example, the software constantly samples a sensor.
The variable that stores this number is declared as an un-
signed char. By using simulation in CACC testing, it was
found that the value could be over 255, which could cause it
to “roll over” to 0, in which case the software would make a
wrong decision based on this incorrect input. Manual func-
tional testing never created this condition, so the fault was
not detected. In fact, this fault could only be created on the
actual hardware during a catastrophic crash, which could
not be caused during the company’s manual functional test-

ing.

4.3 CACC Coverage and Software Safety

Based on the number of faults detected by CACC testing,
including at least one that was safety critical, we conclude
that CACC testing improved the safety of the software. At
the same time, CACC coverage required a lot of test cases
— more than the company’s MFT did.

Some features of the software were not included in the
software specification and therefore manual functional tests
were not generated. CACC testing was based on the imple-
mentation, and therefore can help verify the completeness
of the specification.

Timers are crucial factors in safety-critical real-time em-
bedded software. Incorrect timer events can cause the sys-
tem to behave inconsistently. Some timing errors were hard
to detect by manual functional testing without simulation.
CACC testing has the ability to track the value of every
timer used in the software.

The software that was tested has a complex logic mecha-
nism requiring precise, full understanding and customized
testing. Testing complicated logic can be more effective
when tests are based on the implementation, because the im-
plementation often includes details that were omitted from
the specification.

4.4 Difficulty of Achieving CACC

The CACC tests were generated by the first author, who
carefully kept track of the time spent designing and generat-
ing the tests. Note that no tools were used to help determine
coverage and this was the experimenter’s first experience in
applying CACC testing outside of the classroom. That is,
this time can be considered an “upper bound” on the time
needed in practice. The experimenter spent three hours ex-
tracting the logic predicate, six hours designing the CACC
test cases, ten hours generating test scripts, seven hours run-
ning tests and six hours analyzing test results. This was a
total of thirty-two hours used to achieve CACC coverage.
Because all steps were done by hand, this can be considered
an upper limit of the time. Tool support and experience
could cut the amount of time used.

Another noteworthy part of the data was in the number
of predicates, which is directly related to the cost of apply-
ing CACC. The software had a total of 70 predicates, each
of which had to be analyzed. It should be clear that pred-
icates with more clauses are harder to construct tests for
than predicates with few clauses. In fact, satisfying CACC
on predicates with only one clause is equivalent to satisfy-
ing branch coverage. Of those 70 predicates, 50 (71.4%) had
only one clause. Another 17 (24.2%) had only two clauses,
and only 3 predicates had three clauses (4.3%). These num-
bers certainly make the cost of satisfying CACC less than
what a test manager might fear. On the other hand, simpler

techniques such as branch testing and multiple condition
testing (testing all combinations of truth values for predi-
cates) may well be just as effective on predicates with fewer
clauses. We have observed similar percentages in larger
counts of open source software, leading us to believe that
it is possible that multi-clause predicates are relatively few.
This assumption is implicitly made by the commercial tool
Agitator, which automatically generates tests to satisfy full
multiple condition testing.

Manual functional testing was carried out by an experi-
enced tester at the company, who took two days to validate
the test plan, and four days to run all the tests, for a total
of 48 hours. This time was increased by stress testing. For
example, one test was to check if the hardware goes into
sleep mode after running in one of the operation modes for
fifteen hours. In MFT, the tester had to spend fifteen hours
to observe if the unit behaved correctly. In CACC testing,
a test case with a similar goal was run by initializing this
operation timer to be 14 hours 55 minutes. The test then
finished in 5 minutes.

Despite the fact that project managers will often say that
“criteria-based testing takes too much time,” this study
found that CACC testing used significantly less time than
MFT.

4.5 Discussion of Validity

It is naturally harder to control for experimental valid-
ity in an industrial case study. This research was an in-
depth study, but only used one software application from
one company. Therefore it is at best risky to draw general
conclusions (external validity). However, our intent was to
modestly determine whether CACC can be useful and cost-
effective in an industrial setting, which does not require ex-
ternal validity. We have no data about whether this testing
method will work equally well on different or larger software
applications, but can think of no reason why it would not.

The study unavoidably had two independent variables,
the method used to generate tests (MFT and CACC) and
the method used to execute tests (on the hardware and
with simulation). This is common with industrial case stud-
ies. The experiment cannot be completely designed a priori;
researchers must accept the current situation. The effects
were separated as much as possible in our analysis. Of the 11
faults that CACC found and MFT did not, five could have
been found with or without simulation. So even if MF'T also
used simulation, they would probably not have been found.
It is possible that the MFT tests would have found some of
the other six faults, but we cannot be sure. Even so, this
does not affect the general conclusions.

We addressed internal validity and reduced bias in several
ways. The same software was tested by both sets of tests
and different people created and ran both tests. The MFT
tester had more experience than the CACC tester, which
introduced a slight bias against CACC, thereby strength-
ening the internal validity of the results.

5. CONCLUSIONS

This paper presents results from an industrial case study
of logic-based testing applied to safety-critical embedded
software, and compared the logic-based tests with tests cre-
ated by testers at the company using manual functional test-
ing. The intent was to determine whether a high-end logic-
based test criterion could be successful in a practical in-

dustrial setting. The specific logic-based test criterion used
was correlated active clause coverage (CACC). Tests to sat-
isfy the CACC criterion found several significant faults that
were not found by MFT. Our analysis indicates that some of
these faults were unlikely to have been detected with weaker
test criteria. Thus, we assert that this study is strong evi-
dence that high-end logic-based test criteria can successfully
increase the reliability of industry software.

Automation and simulation was also found to be necessary
to find faults. It should also be noted that CACC by itself
is clearly not enough for industrial use; as pointed out in
Section 4.1, five faults were found by MFT that were not
found by the CACC tests. Finally, because of the close
connection between the hardware and the software, testing
real-time embedded software requires knowledge of both the
software and hardware.

Structural logic-based testing criteria are not often used
in practice; this case study gives evidence that they can be
useful and cost effective for safety-critical embedded soft-
ware. We hope that the positive results on this real-world
example will help convince software developers that struc-
tural, criteria-based testing are economically beneficial.

These results are based on one application, and in the
future it would certainly be helpful to repeat similar stud-
ies on other software applications in other environments.
Ideally, a rigorous, carefully designed and controlled exper-
iment on multiple industrial software applications would be
carried out. However this kind of study is very difficult, ex-
tremely expensive, and vanishingly rare. Data for practical
applications of theoretical engineering ideas usually must be
accumulated over a period of time by multiple researchers
in multiple studies. Only then can software development
managers be confident that the techniques in question will
be worth the investment.

6. ACKNOWLEDGMENTS

We would like to anonymously thank the company for
giving us access to their software and results. A brief extract
of this work appeared as a fast abstract at ISSRE 2003.

7. REFERENCES

[1] P. Ammann, J. Offutt, and H. Huang. Coverage
criteria for logical expressions. In Proceedings of the
14th International Symposium on Software Reliability

(10]

(11]

Engineering, pages 99-107, Denver, CO, November
2003. IEEE Computer Society Press.

J. Chilenski and L. A. Richey. Definition for a
masking form of modified condition decision coverage
(MCDC). Technical report, Boeing, Seattle, WA,
1997. http://www.boeing.com /nosearch/mcdc/.

J. J. Chilenski and S. P. Miller. Applicability of
modified condition/decision coverage to software
testing. Software Engineering Journal, 9(5):193-200,
September 1994.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34-41, April
1978.

A. Dupuy and N. Leveson. An empirical evaluation of
the MC/DC coverage criterion on the HETE-2
satellite software. In Proceedings of the Digital
Aviations Systems Conference (DASC), October 2000.
K. Foster. Error sensitive test case analysis. I[EEE
Transactions on Software Engineering, 6(3):258-264,
May 1980.

M. Grindal, J. Offutt, and J. Mellin. On the testing
maturity of software producing organizations. In
Testing: Academia & Industry Conference - Practice
And Research Techniques (TAIC / PART 2006),
Windsor, UK, August 2006. IEEE Computer Society
Press.

J. Offutt, S. Liu, A. Abdurazik, and P. Ammann.
Generating test data from state-based specifications.
Software Testing, Verification, and Reliability,
13(1):25-53, March 2003.

RTCA-DO-178B. Software considerations in airborne
systems and equipment certification, December 1992.
S. A. Vilkomir and J. P. Bowen. Reinforced
condition/decision coverage (RC/DC): A new criterion
for software testing. In Proceedings of ZB2002: 2nd
International Conference of Z and B Users, pages
295-313, Grenoble, France, January 2002.
Springer-Verlag, LNCS 2272.

E. Weyuker, T. Goradia, and A. Singh. Automatically
generating test data from a boolean specification.
IEEE Transactions on Software Engineering,
20(5):353-363, May 1994.

