
The Journal of Systems and Software 147 (2019) 230–245

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Controversy Corner

Exoneration-based fault localization for SQL predicates

Yun Guo

a , Nan Li b , ∗, Jeff Offutt a , Amihai Motro

a

a Department of Computer Science, George Mason University, 4400 University Dr, Fairfax, Virginia 22030, United States
b Research and Development, Medidata Solutions, 350 Hudson Street, 9th Floor, New York 10014, United States

a r t i c l e i n f o

Article history:

Received 13 February 2018

Revised 24 September 2018

Accepted 25 October 2018

Available online 26 October 2018

Keywords:

Fault localization

Spectrum-based fault localization

Exoneration-based fault localization

SQL

WHERE clause

a b s t r a c t

Spectrum-based fault localization (SFL) techniques automatically localize faults in program entities (state-

ments, predicates, SQL clauses, etc.) by analyzing information collected from test executions. One applica-

tion of SFL techniques is to find faulty SQL statements in database applications. However, prior techniques

treated each SQL statement as one program entity, thus they could not find faulty elements inside SQL

statements. Since SQL statements can be complex, identifying the faulty element within a faulty SQL

statement is still time-consuming.

In our previous paper, we developed a novel fault localization method based on row-based dynamic

slicing and delta debugging techniques that can localize faults in individual clauses within SQL predicates.

We call this technique exoneration-based fault localization because it can exonerate “innocent” elements

and precisely identify the faulty element, whereas previous SFL techniques simply ranked all the elements

in an SQL statement based on suspiciousness.

This paper improves the exoneration-based fault localization technique with a new algorithm that

considerably reduces the execution time. We also conducted an empirical study that compared nine ex-

isting SFL techniques with the exoneration-based technique in localizing faulty clauses in SQL predicates.

Results indicate that the new exoneration-based technique surpasses the other techniques both in terms

of effectiveness and efficiency.

© 2018 Published by Elsevier Inc.

L

u

a

l

l

t

i

g

d

s

t

W

e

c

i

a

a
1. Introduction

A failure is an unexpected behavior on the part of soft-

ware and indicates a fault in the program (Ammann and Of-

futt, 2017). By themselves, failures do not provide enough infor-

mation to locate the root-cause fault. In an attempt to locate

faults, spectrum-based automatic fault localization (SFL) techniques

trace program execution during testing and analyze program en-

tities. The program entity being analyzed for possible faults is

a piece of program that can be at various levels of granularity.

Researchers have targeted statements (Jones and Harrold, 2005;

Abreu et al., 2007), predicates (Liblit et al., 2005; Liu et al., 2006),

and clauses (Guo et al., 2017) as program entities. Clearly, tech-

niques that address fine-grained program entities are more useful–

locating a faulty statement helps more than locating a faulty block

or procedure.

Although many papers have been published on automatically

localizing faults in general programs, only a few attempts have

been made to find faults in SQL queries. SQL (Structured Query
∗ Corresponding author.

E-mail addresses: yguo7@gmu.edu (Y. Guo), nli@mdsol.com (N. Li),

offutt@gmu.edu (J. Offutt), ami@gmu.edu (A. Motro).

t

s

https://doi.org/10.1016/j.jss.2018.10.037

0164-1212/© 2018 Published by Elsevier Inc.
anguage) is a declarative language used to access and manip-

late data in relational databases. It is widely used in database

pplications and was ranked as the most in-demand programming

anguage in 2016 (Bouwkamp, 2016). Unlike general programming

anguages such as JAVA or C#, SQL queries declare what informa-

ion the answer should contain, but do not specify how to compute

t. As a result, debugging SQL can be quite different from debug-

ing general programming languages.

Previous studies have attempted to apply SFL techniques to

atabase applications by treating an entire SQL query or an SQL

tructure (often of considerable size) as a program entity. In par-

icular, Nguyen et al. (2013) located faults in WHERE predicates . A

HERE predicate is a boolean expression that incorporates clauses ,

ach comparing the value of a cell to a constant or to another

ell. While these methods may suggest that an entire predicate

s faulty, they cannot locate the individual clause (or clauses)

t fault.

To find faulty clauses in WHERE predicates, we choose clauses

s program entities. In our previous paper (Guo et al., 2017), we

argeted six fault classes 1 , which define the categories of faults
1 Monperrus (2014) uses the term “defect class.” We use “fault class” to be con-

istent with the testing literature.

https://doi.org/10.1016/j.jss.2018.10.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.10.037&domain=pdf
mailto:yguo7@gmu.edu
mailto:nli@mdsol.com
mailto:offutt@gmu.edu
mailto:ami@gmu.edu
https://doi.org/10.1016/j.jss.2018.10.037

Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245 231

t

a

S

p

d

“

d

p

f

n

b

T

v

c

e

t

(

a

g

t

b

l

r

n

fi

s

o

n

a

o

L

e

s

o

S

w

O

p

l

s

e

t

e

b

i

n

T

w

a

f

e

b

c

l

f

t

p

t

m

i

g

S

r

S

w

2

s

s

s

2

2

c

b

e

t

m

e

i

d

a

d

t

S

s

fi

p

W

j

o

c

o

u

fi

i

a

o

d

o

t

t

b

t

t

2 For the purpose of this research, we believe CNF (conjunctive normal form) and

DNF (disjunctive normal form) are equivalent. We choose DNF because it is more

intuitive to us, as it resembles a circuit with switches.
hat can be localized by SFL techniques. The concrete fault classes

re defined in Section 2.1 . We developed an exoneration-based

FL technique to isolate individual faulty clauses within WHERE

redicates. This technique first uses row-based dynamic slicing to

iscover suspicious clauses in WHERE predicates and then removes

innocent” (not faulty) clauses using a technique inspired by delta

ebugging (Zeller and Hildebrandt, 2002). Thus, our technique can

recisely identify which clause is faulty as well as the type of the

ault. In contrast, the existing SFL techniques calculate suspicious-

ess scores for every program entity to indicate its likelihood of

eing faulty, and then rank them by their suspiciousness scores.

he rankings provide guidelines for locating the fault. However, de-

elopers still must analyze the ranked list to locate the fault.

Although our original approach was effective, it was not effi-

ient enough to be practically useful. The execution time increased

xponentially with the number of columns in the test database,

he number of test rows, and the complexity of the faulty query

as approximated by the number of clauses). This paper proposes

nd evaluates a novel algorithm that is much more efficient. The

eneral idea is to identify and remove equivalent test rows from

he exoneration process. The failing test rows are considered to

e equivalent if they are caused by the same faulty clauses. Since

arge databases can contain millions of rows, removing redundant

ows from the tests can increase speed. We compared the origi-

al exoneration-based technique to the newer version with the ef-

ciency algorithm. The results showed that the newer version is

ignificantly faster than the original version, and as effective.

We conducted a comprehensive empirical study that compared

ur novel exoneration-based technique with nine existing SFL tech-

iques. Five of the existing techniques are similarity-based (Jones

nd Harrold, 2005; Abreu et al., 2007; Naish et al., 2011) and the

ther four are statistics-based (Liblit et al., 2005; Wong et al., 2012;

iu et al., 2005; Zhang et al., 2011). These two categories use co-

fficient formulas or statistical methods to calculate suspiciousness

cores for every program entity. Because they were originally used

n program entities such as statements or predicates rather than

QL clauses, we modified them to apply to SQL clauses. Specifically,

e analyzed how to compute the suspiciousness score formulas.

ur experiments show that the exoneration-based technique out-

erforms the other approaches in both effectiveness (accuracy of

ocalizing faulty clauses) and efficiency (execution time).

This paper builds on previous work (Guo et al., 2017) that pre-

ented an exoneration-based fault localization technique that can

ffectively find faulty clauses in SQL predicates, and a categoriza-

ion of fault classes in SQL WHERE conditions. This paper greatly

xtends the previous conference paper with four significant contri-

utions:

1. A new algorithm that significantly improves the perfor-

mance of the exoneration-based technique.

2. An experimental comparison of the original and newer

exoneration-based fault localization techniques.

3. Modifications to nine existing SFL techniques to apply them

to SQL clauses.

4. An experimental comparison of our new exoneration-based

fault localization technique with nine other SFL techniques.

Some results were consistent with previous results when ap-

plied to other program entities such as statements, while

other results were different when applied to clauses.

The empirical comparison in this paper is also much larger than

n our previous paper (Guo et al., 2017), both in terms of the

umber of techniques compared and in the size of the subjects.

he previous paper compared our old exoneration-based technique

ith only two similarity-based techniques, whereas this paper uses

 new algorithm, and compares it with five similarity-based and

our statistics-based techniques. To the best of our knowledge, this
mpirical study is the first to compare similarity-based, statistics-

ased, and exoneration-based techniques for localizing faulty SQL

lauses. In addition, these experiments are conducted on much

arger subjects than previous studies. We used 450 subject queries

rom five databases including real faults from an industry applica-

ion, compared with only 180 queries from two databases in the

revious study.

The rest of the paper is organized as follows. Section 2 in-

roduces the nine existing SFL techniques and describes how we

odified them to apply to SQL clauses. Section 3 reviews our orig-

nal exoneration-based technique. Section 4 explains the new al-

orithm that improves the efficiency of the exoneration process.

ection 5 presents the empirical study, including the methodology,

esults, and an analysis. Related work is discussed in Section 6 , and

ection 7 summarizes the contributions and suggests some future

ork.

. Spectrum-based fault localization

This section first defines some fundamental concepts used in

pectrum-based fault localization in Section 2.1 . It then introduces

imilarity-based and statistics-based techniques, along with a de-

cription of how they are applied to clauses in Sections 2.2 and

.3 .

.1. Definitions and an SQL example

Program entities that are covered during test execution are also

alled program spectra (Souza et al., 2016). In general, spectrum-

ased fault localization techniques collect information during test

xecutions and use that information to identify program entities

hat appear to be suspicious. When the program entities are state-

ents, the information collected is whether the statements are ex-

cuted. When the program entities are predicates or clauses, the

nformation collected is whether they evaluated to true or false

uring execution. In this paper, the program entities to be ex-

mined are clauses in SQL predicates. Test cases are rows in a

atabase, thus we use the terms tests and rows interchangeably in

his paper.

An SQL query consists of SELECT, FROM, and WHERE clauses. A

ELECT clause isolates the columns to be retrieved. A FROM clause

pecifies the tables to retrieve the data from. A WHERE clause de-

nes conditions the rows retrieved must satisfy, with a Boolean

redicate. That is, a WHERE clause is a predicate prefixed with the

HERE keyword. All WHERE predicates can be transformed to dis-

unctive normal form (DNF) , which is a disjunction of conjunctions

f clauses 2 That is, a smaller predicate, a conjunctive predicate (CP),

onnects clauses with AND operators. CPs are connected with OR

perators. Each clause is of the form column opr constant or col-

mn opr column , where opr is a comparator. This paper focuses on

nding faulty clauses in WHERE predicates, because WHERE pred-

cates are more complicated than other elements of SQL queries

nd therefore are more prone to faults.

To identify which WHERE predicate is faulty, we need at least

ne failing test case that has an oracle. Test data are sets of

atabase rows R , where each row is a test case, denoted r i . Test

racles are based on the original requirements, written by the

esters, and embedded in automated tests, usually as assertions,

o determine if test cases are passing or failing. Test oracles can

e more or less general. Let’s call a general test oracle to be one

hat can determine whether any output is correct, and a specific

est oracle to be one that can only determine correctness for an

232 Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245

Fig. 1. Example incorrect SQL query.

Table 1

Example order table.

Orderid Year Price Discount ZipCode

1 2008 110 0 22102

2 2014 120 10 22102

3 2013 110 5 20017

4 2006 80 5 20017

5 2014 90 0 10 0 07

Table 2

Selected similarity-based techniques.

Order Name Suspiciousness formulas

1 Naish2 S(c) = c e f − c ep

T p +1

1 Wong1 S(c) = c e f

2 Kulczynski2 S(c) =

1
2

∗ (
c e f

T f
+

c e f

c e f + c ep
)

3 Ochiai S(c) =

c e f √

T f ∗(c e f + c ep)

4 Tarantula S(c) =

c e f /T f
c e f /T f + c ep /T p

1

a

2

c

N

C

a

t

n

t

2

t

m

a

v

t

t

t

I

b

m

n

n

w

a

r

L

w

f

t

(

d
individual test case. General test oracles are more difficult to cre-

ate than specific test oracles. But when there are hundreds or

thousands of test cases, devising one general test oracle can be

more cost-effective than writing a specific test oracle for each indi-

vidual test case. In database query testing, each row is considered

as a test case, so it is common to have thousands and even mil-

lions of test cases. Creating specific test oracle for so many test

cases is unrealistic, so general test oracles are widely used in in-

dustry. Thus, this research uses general test oracles.

In this research, the SQL query under test is applied to the

test cases (database rows R), which results in some rows being

returned (included) and others being excluded. The test oracles

determine whether a test case (a database row r i) is included or

excluded as expected. For example, if the test case passed and the

row was not returned, that means the row was expected to be

excluded, and was excluded. Or, if the test case failed and the row

was returned, that means it was expected to be excluded, but was

included. The test oracles categorize the test data into four groups:

R i : Rows expected to be included that are included (included).

R e : Rows expected to be excluded that are excluded (excluded).

R s : Rows expected to be excluded but are included (superflu-

ous).

R a : Rows expected to be included but are excluded (absent).

Rows R i and R e are passing rows and rows R s and R a are failing

rows . If either of the last two groups is not empty, then the SQL

is incorrect. Our previous paper (Guo et al., 2017) defined six fault

classes for the WHERE clause:

E1 : Incorrect constant (e.g., a string was misspelled or a deci-

mal point was misplaced).

E2 : Incorrect operator (e.g., > was used instead of ≥).

E3 : Incorrect column (a different column should have been

used).

E4 : Missing clauses (that should be present).

E5 : Superfluous clauses (that should be removed).

E6 : Composite faults with more than one single type.

E1 through E5 are single faults that satisfy complete and dis-

joint properties. They cover all possible single faults in clauses

(thus are complete). Clauses have three components: constants, op-

erators, and columns. E1 through E3 represent faults in each of the

three components. E4 and E5 are faults where the entire clause is

missing or unnecessary. These five fault types also apply to differ-

ent elements, so do not overlap (thus are disjoint). E6 (composite)

is added to allow for multiple faults in the same query. It can also

be used to explain faults that involve incorrect AND or OR oper-

ators. For example, if a AND b is incorrectly written as a OR b , that

can be interpreted as an unnecessary clause b that should be re-

moved (E5) and a missing clause b that should be added with an

OR (E4).

Two recent surveys summarize fault localization techniques and

their variants (Souza et al., 2016; Wong et al., 2016). Because of the

large number of techniques, we could not compare all techniques

surveyed. Thus, we focus on recent techniques that appear to have

had significant impact. All the similarity-based and statistics-based

techniques are similar in how they work. First, a suspiciousness

score is calculated for each program entity. A higher suspiciousness

score indicates that the program entity is more likely to be faulty.

The techniques then rank the program entities by their suspicious-

ness scores and return the ranked result. The SFL techniques are

discussed in the rest of this section.

We introduce a small running example to illustrate the SFL

techniques. Table 1 displays orders for a product where Orderid is

the primary key. Consider a request to find orders placed after year

2009 with price greater than $100, plus orders shipped to zip code
0 0 07 with no discount. Now assume that the programmer made

 mistake (E1 faults), retrieving instead orders placed after year

007 (with price greater than $100) plus orders shipped to zip

ode 10 0 08 (with no discount). Fig. 1 shows the incorrect query.

ote that the WHERE predicate is in DNF and incorporates two

Ps with a total of four clauses, CP1 (Year > 2007 and Price > 100),

nd CP2 (ZipCode = 10 0 08 and Discount = 0). The goal is to identify

he faulty clauses Year > 2007 and ZipCode = 10008 with SFL tech-

iques. The simple query in Fig. 1 is used as a running example

hroughout the paper.

.2. Similarity-based SFL

Coefficient formulas are used in statistics to measure the rela-

ionship between two variables. For example, the coefficient for-

ula x = 0 . 4 y describes a linear relationship between variables x

nd y . It can also be extended to indicate the similarity between

ariables. Similarity-based techniques use the coefficient formulas

o distinguish faulty program entities from correct program enti-

ies.

This study investigated five similarity-based techniques from

wo previous research papers (Xie et al., 2013; Le et al., 2013).

n a theoretical study, Xie et al. (2013) investigated 30 similarity-

ased techniques and concluded that five techniques should be

ore effective than the others. Xie et al. placed these five tech-

iques into two groups, ER1 and ER5, and showed that the tech-

iques in each group are equivalent. Consequently, for this study

e selected a representative from each group: Naish2 from ER1

nd Wong1 from ER5. To these we added Tarantula (Jones and Har-

old, 2005) and Ochiai (Abreu et al., 2007). In an empirical study,

e et al. (2013) compared the five theoretically superior techniques

ith Tarantula and Ochiai, finding that Ochiai was the most ef-

ective. We also added Kulczynski2 Naish et al. (2011) , which the

heoretical study showed to be better than Tarantula and Ochiai

though worse than the techniques in ER1 and ER5).

These five techniques are summarized in Table 2 . They are or-

ered according to the effectiveness claimed by Xie et al. (2013) :

Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245 233

Table 3

Suspiciousness score computation.

Clauses Individual rows Suspiciousness

1 2 3 4 5 Scores

1 Year > 2007

True � � � � 0.6

False � 0

2 Price > 100

True � � � 0.42

False � � 0.6

3 ZipCode = 10 0 08

True 0

False � � � � � 0.5

4 Discount = 0

True � � 1

False � � � 0

Test case result F P P P F

N

O

n

F

b

b

s

t

e

a

t

S

a

a

a

i

n

fi

f

u

r

o

w

S

b

(

t

t

r

T

t

2

t

s

2

W

s

p

w

s

w

t

W

2

c

e

2

b

c

m

o

r

i

j

E

E

χ

f

c

t

o

t

t

c

i

ϕ

ζ

b

f

t

p

ζ

l

2

t

F

b

i

e

t

C

F

I

r

f

T

=
C

t

i

aish2 and Wong1 are the most effective, followed by Kulczynski2,

chiai, and Tarantula (the names are also taken from that paper).

The suspiciousness formulas use four variables. T f is the total

umber of failing tests and T p is the total number of passing tests.

or a program entity c, c ef is the number of times c is executed

y the failing tests and c ep is the number of times it is executed

y the passing tests. Although these techniques were originally de-

igned to rank statements, Nguyen et al. (2013) applied Tarantula

o SQL predicates and calculated suspiciousness for true and false

valuations separately. This paper adopts the same methodology

nd applies these techniques to clauses. For a clause c , we compute

he suspiciousness score’s true evaluation S t (c) and false evaluation

 f (c). In S t (c), a clause is deemed to be “executed” only if it evalu-

tes to true. c ep is the number of passing tests that resulted in true

nd c ef is the number of failing tests that resulted in true. In S f (c),

 clause is deemed to be “executed” only if it evaluates to false. c ep

s the number of passing tests that resulted in false and c ef is the

umber of failing tests that resulted in false. We then calculate the

nal suspiciousness score as the sum S(c) = S t (c) + S f (c) .

Table 3 illustrates the computation of the suspiciousness score

or Tarantula using the running example from Fig. 1 . The columns

nder Individual Rows show the five rows from Table 1 . For each

ow, if a clause evaluates to true, then the True position is checked;

therwise, the False position is checked. The final row shows

hether the test case passed or failed. The column Suspiciousness

cores is computed from the formulas in Table 2 . The total num-

er of test cases is five, with T f = 2 (orders 1 and 5) and T p = 3

orders 2, 3, and 4). As an example, consider the true evalua-

ions of the clause Year > 2007. From the three rows that passed,

wo evaluated to true (2 and 3); hence, c ep = 2 . From the two

ows that failed, two evaluated to true (1 and 5); hence c e f = 2 .

herefore, S t (c) = (2 / 2) / (2 / 2 + 2 / 3) = 0 . 6 . Similarly, S f (c) = 0 . Al-

ogether, the suspiciousness score is S(c) = S t (c) + S f (c) = 0 . 6 .

.3. Statistics-based SFL

Statistics-based fault localization applies statistical models

o spectrum data and generates suspiciousness rankings. We

tudied four statistics-based techniques, Crosstab (Wong et al.,

012), Liblit et al. (2005) , SOBER (Liu et al., 2005), and Mann-

hitney (Zhang et al., 2011). Crosstab was originally applied to

tatements. As explained in Section 2.2 , Crosstab can also be ap-

lied to predicates or clauses. Liblit, SOBER, and Mann-Whitney

ere originally applied to logical predicates in program decision

tatements. Since clauses are essentially elementary predicates

ithout logical operator, these techniques can be directly applied

o clauses. In addition, they can also be applied to statements.
hen they were used to identify faulty statements (Zhang et al.,

011; Wong et al., 2012), the predicates were ranked first, and the

orresponding statements in top ranked predicates were consid-

red to be suspicious.

.3.1. Crosstab

Wong et al. (2012) used “crosstab” to refer to a cross tabulation-

ased analysis. Each statement is associated with a table that

ontains four variables that indicate the number of times the state-

ent is executed or not executed in passing and failing tests. Based

n the crosstab, it proposes a null hypothesis that the execution

esult is independent of whether the statement was covered. Then

t uses the chi-square test to see if the null hypothesis can be re-

ected. The chi-square statistical model is shown in Eq. 1 , where

 e f =

(c e f + c ep) ∗T f
T p + T f , E ep =

(c e f + c ep) ∗T p

T p + T f , E n f =

((T f −c e f)+(T p −c ep)) ∗T f
T p + T f , and

 np =

((T f −c e f)+(T p −c ep)) ∗T p

T p + T f .

2 (c) = (c e f − E e f)
2 /E e f + (c ep − E ep)

2 /E ep

+(T p − c ep − E np)
2 /E np + (T f − c e f − E n f)

2 /E n f (1)

χ2 (c) is then compared with the chi-square critical value χ2

ound in chi-square distribution table at a given level of signifi-

ance. If χ2 (c) > χ2 , the null hypothesis is rejected. It also means

hat the execution result depends on the statement coverage. In

ther words, the statement is associated with the fault. To evaluate

he degree of association between the statement and the execu-

ion result, the suspiciousness score, ζ (c), is calculated. ϕ(c), cal-

ulated in Eq. 2 , is then used to compute the suspiciousness ζ (c)

n Eq. 3 .

(c) =

c e f /T f

c ep /T p
(2)

(c) =

{

χ2 (c) / (T f + T p) if ϕ(c) > 1

0 if ϕ(c) = 1

−χ2 (c) / (T f + T p) if ϕ(c) < 1

(3)

Applying Crosstab to clauses is similar to applying similarity-

ased techniques. We calculate suspiciousness scores for true and

alse evaluations and get the final suspiciousness by summing

hem: ζ (c) = ζ t (c) + ζ f (c) . For clause c = Year > 2007, we com-

ute ζ t (c) = 0 and ζ f (c) = −0 . 16 . The final suspiciousness score

(c) = ζ t (c) + ζ f (c) = −0 . 16 . The suspiciousness score is calcu-

ated in a similar way for other clauses.

.3.2. Liblit

Liblit et al. (2005) assumes that predicates that evaluated only

o true in failing tests are more suspicious than other predicates.

or a predicate p , Liblit calculates a difference (Increase (p) in Eq. 6)

etween the probability of how likely p can fail tests (Context (p)

n Eq. 4) and the probability of how likely p can fail tests when

valuated to true (Failure (p) in Eq. 5). The predicate is suspicious if

he difference is large.

ontext(p) = P r (Crash | p obser v ed) (4)

 ailure (p) = P r (Crash | p obser v ed true) (5)

ncrease (p) = F ailure (p) − Context(p) (6)

When applying Liblit to a clause c , the definition of Increase (c)

emains the same as the definition of Increase (p). As example,

or clause c = Year > 2007, C ont ext(c) = P r (Crash | c obser v ed) =
 f / (T f + T p) = 2 / 5 = 0 . 4 ; F ailure (c) = P r (Crash | c obser v ed true)

 c t
ef

/ (c t
ef

+ c t ep) = 2 / 4 = 0 . 5 ; and Increase (c) = F ailure (p) −
 ont ext(p) = 0 . 1 . Similarly, Increase (c) is calculated for the other

hree clauses. Then, the clauses are ranked by the Increase (c) to

ndicate their suspiciousness.

234 Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245

Table 4

Evaluation bias.

Clause Individual row

1 2 3 4 5

1 Year > 2007 1 1 1 0 1

2 Price > 100 1 1 1 0 0

3 ZipCode = 10 0 08 0 0 0 0 0

4 Discount = 0 1 0 0 0 0

Test result F P P P F

m

s

a

m

e

L

t

i

n

i

R

F

u

K

c

3

e

s

r

s

c

a

(

b

3

t

fi

o

c

a

c

n

r

t

o

c

t

s

s

g

s

t

a

e

p

a

l

r

f

f

a

f
2.3.3. SOBER

SOBER (Liu et al., 2005) works by defining what it calls an eval-

uation bias , which estimates the probability that a predicate p will

evaluate to true during execution. Let n t be the number of times

a predicate p evaluates to true and n f be the number of times p

evaluates to false over a set of test executions. The evaluation bias,

π (p), is given by Eq. 7 . SOBER then calculates the distribution of

evaluation bias for p on passing tests and failing tests, denoted as

f (X | θp) and f (X | θ f). If the difference between f (X | θp) and f (X | θ f) is

large, p is suspicious. Eq. 8 calculates the similarity L (P) between

f (X | θp) and f (X | θ f) (Sim). SOBER then characterizes the distribu-

tions f (X | θp) and f (X | θ f) for passing and failing test evaluation bias

sets, using mean and variance and assuming normal distribution.

Eq. 9 computes the suspiciousness score S (P) from L (P). In Eq. 9 ,

σ p is the mean of the passing test evaluation bias set, m is the

number of test cases, and ϕ(Z) is the probability density function

of N(0,1) for the failing test evaluation bias set.

π(p) =

n t

n t + n f

(7)

L (P) = Sim (f (X | θp) , f (X | θ f)) (8)

S(P) = −log(L (P)) = log (
σp √

m ϕ(Z)
) (9)

When using SOBER for a clause c , if the clause evaluates to true ,

then n t is 1 and n f is 0, thus π (c) is 1. Similarly, when c evaluates

to false, π (c) is 0. The evaluation bias for the running example in

Fig. 1 is shown in Table 4 . For clause Year > 2007, the passing test

evaluation bias set f (X | θp) is {1,1,0} and the failing test evaluation

bias set f (X | θ f) is {1,1}. Applying Eq. 9 to the clause c , we get S(c) =
0 . 22 . The suspiciousness score S (c) is calculated in a similar way

for each clause.

2.3.4. Mann-Whitney

Zhang et al. (2011) observed that the evaluation bias for pred-

icates may not be distributed normally, so applied the non-

parametric statistic tests Wilcoxon and Mann-Whitney to compare

the similarity between f (X | θp) and f (X | θ f). Because Wilcoxon is

used for paired data and the evaluation bias of failing and pass-

ing tests are not paired, we used Mann-Whitney in this study.

Mann-Whitney is calculated for clauses in two steps. First, it

calculates evaluation bias sets V p for passing tests P and V f for

failing tests F , then ranks V p and V f . Then it creates ranking sets

R p and R f that have the rankings for V p and V f . For the clause

Year > 2007, V f is {1, 1} and V p is {1, 1, 0}. Among the five elements

in V f and V p , the rank of element 0 in V p is 1 and the rank of

each of the other elements is 2.25 3 Mapping the rank-values back

to the evaluation bias sets V p and V f , we get the rank-value sets

R f = { 2 . 25 , 2 . 25 } and R p = { 2 . 25 , 2 . 25 , 1 } . Second, Mann-Whitney
3 The average rank is calculated by adding 1 / (number of elements with the

same value) to its original rank. In this example, the average rank for element 1 is

2 + 1 / 4 = 2 . 25 .

p

1

c

c
easures the difference between R f and R p by enumerating all pos-

ible rank-value sets. Let m denote the number of elements in V p

nd n denote the number of elements in V f . Mann-Whitney enu-

erates all possible sets S i containing m elements from the m + n

lements of V p and V f . The total number of such sets is K =

(
n + m

m

)
.

et K l be the number of sets whose sum of rankings is less than

hat of R p , and K h be the number of sets whose sum of rankings

s greater than that of R p . The suspiciousness ranking for p is the

egative of the minimum of K l / K and K h / K in Eq. 10 . The larger R (p)

ndicates the predicate p is more suspicious.

 (p) = −min (K l /K, K h /K) (10)

or clause Year > 2007, m = 2 and n = 3 and K =

(
n + m

m

)
= 10 . This

nion of all elements from V p and V f is {2.25, 2.25, 2.25, 2.25, 1}.

 l = 0 and K h = 10 . Thus, R (p) = −min (K l /K, K h /K) = 0 . R (p) can be

alculated in a similar fashion for the other clauses.

. Original exoneration-based SFL

Unlike previous SFL techniques, which were applied to gen-

ral programs, we designed an exoneration-based technique that

pecifically targets faulty clauses in SQL predicates. This section

eviews our original technique. It consists of two steps, creating

lices of suspicious clauses in failing rows and exonerating inno-

ent clauses from the suspicious clauses. We implemented this

pproach in a tool, named Automated sqL predicaTe fAult localizeR

ALTAR). We will use ALTAR to refer to the original exoneration-

ased technique.

.1. Slicing

A slice refers to a set of program entities that are relevant

o computed values such as test results (Weiser, 1981). ALTAR

rst creates slices according to binary evaluations of clauses with

nly failing rows. Each clause is associated with a suspiciousness

ounter, which is initialized to zero. The failing rows are evaluated

gainst each clause and the suspiciousness is incremented if the

lause is identified as suspect. A clause with a positive suspicious-

ess counter is a suspicious clause .

First, users need to provide test oracles to distinguish failing

ows from passing rows. Each test oracle should be derived from

he requirements as accurately as possible. We write general test

racles so that ALTAR can efficiently process large numbers of test

ases (thousands or even millions). The test oracle recognizes rows

hat should be included by a correct query, and rejects rows that

hould be excluded. Thus, rows that are included in the query re-

ult and that satisfy the test oracle are placed into the included

roup (R i); rows that are excluded from the result and that do not

atisfy the oracle are placed into the excluded group (R e); rows

hat are included in the result but that do not satisfy the oracle

re placed into the superfluous group (R s), and rows that were

xcluded from the result but that did satisfy the test oracle are

laced into the absent group (R a).

Once the test oracle is created, clauses are sliced as follows. For

 correct query, a superfluous row should evaluate to false in at

east one clause in each CP. For an incorrect query, the superfluous

ow evaluates to true for all the clauses in at least one CP. There-

ore, in each CP that is “all-true,” every clause is suspect. Similarly,

or a correct query, an absent row should satisfy all the clauses in

t least one CP. For an incorrect query, the absent row evaluates to

alse in all CPs. Therefore, in each CP, all failing clauses are suspect.

We illustrate finding suspicious clauses with our running exam-

le from Fig. 1 and the incorrect predicate ((Year >2007) ∧ (P rice>

00)) ∨ ((ZipCode = 10 0 08) ∧ (Discount =0)) . We refer to the four

lauses in this predicate as C 1 , C 2 , C 3 , and C 4 . This predicate

onsists of two conjunctions: CP =C ∧C and CP =C ∧C . Row
1 1 2 2 3 4

Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245 235

Table 5

Finding suspicious clauses with slicing.

Clause Row eval. Suspiciousness

1 (R s) 5 (R a) Counter

C 1 Year > 2007 T 1

C 2 Price > 100 T F 2

C 3 ZipCode = 10 0 08 F 1

C 4 Discount = 0 0

O

s

o

b

n

s

C

s

c

t

3

f

t

c

p

i

b

t

c

p

m

t

t

w

a

a

s

i

a

i

c

i

s

c

c

o

m

i

t

w

w

1

c

c

t

(

t

t

l

o

m

C

Table 6

Superfluous row mutants.

Type Orderid Year Price Discount Zipcode Group

Original 1 2008 110 0 22,102 R s
Replacement 2 2014 120 10 22,102 R i
Mutant 1 2014 110 0 22,102 R i
Mutant 1 2008 120 0 22,102 R s

Table 7

Absent row mutants.

Type Orderid Year Price Discount Zipcode Group

Original 5 2014 90 0 10,007 R a
Replacement 4 2006 80 5 20,017 R e
Mutant 5 2014 80 0 10,007 R a
Mutant 5 2014 90 0 20017 R e

Fig. 2. Another SQL Query.

C

s

r

Y

u

t

O

m

R

c

t

t

m

p

c

t

i

p

r

c

f

3

i

c

c

w

A

T

l

r

t

t

i

s
rderid = 1 in Table 1 was classified as superfluous (R s), so it

hould have failed on at least one clause in each CP. It failed on

ne clause of CP 2 , but passed both clauses of CP 1 . Consequently,

oth clauses of CP 1 (C 1 and C 2) are suspect, and their suspicious-

ess counters are incremented. Similarly, row Orderid = 5 was clas-

ified as absent (R a), so it should have passed at least one of the

Ps. It failed both: It failed C 2 in CP 1 and it failed C 3 in CP 2 . Con-

equently both C 2 and C 3 are suspect, and their counters are in-

remented. Table 5 shows the clauses, the evaluation results, and

heir suspiciousness counters.

.2. Exoneration

The row-based slicing technique reduces the search domain

rom all clauses to a set of suspicious clauses. However, some of

he suspicious clauses identified in the slicing step may be inno-

ent. For example, the innocent clause C 2 is identified as a sus-

icious clause in Table 5 . The goal of exoneration is to remove

nnocent clauses. The exoneration technique of ALTAR is inspired

y delta debugging (Zeller and Hildebrandt, 2002). ALTAR mu-

ates (Ammann and Offutt, 2017) the failing rows by replacing

olumn values of a failing row with corresponding values from a

assing row, resulting in a mutant . The passing row used in the

utant is called a replacement row . ALTAR then checks whether

he mutant is also a passing row by using the test oracles. If so,

he columns of the mutated values are fault-inducing . A clause

ith a fault-inducing column is a blamed clause; the other clauses

re exonerated by decrementing their counters. If the counter of

 clause becomes 0, the clause is then considered innocent. As a

pecific example, consider a superfluous row (R s). We choose an

ncluded row (R i) that evaluates to true on the suspicious clauses

s the replacement row, and substitute column values of the fail-

ng row with the corresponding value from the replacement row to

reate mutant rows. The goal is to find a mutant that is correctly

ncluded (R i). The columns used to generate this mutant are con-

idered to be fault-inducing . Similarly, for an absent row (R a), we

hoose an excluded row (R e) that evaluates to false on the suspi-

ious clauses as the replacement row, and substitute column values

f the failing row with the corresponding value from the replace-

ent row to create mutant rows. The goal is to find a mutant that

s correctly excluded (R e). The columns used to generate this mu-

ant are considered to be fault-inducing .

We demonstrate the process of exonerating superfluous rows

ith an example. Returning to our running example from Fig. 1 ,

ith the predicate ((Year >2007) ∧ (P rice > 100)) ∨ ((Zipcode=
0 0 08) ∧ (Discount =0)) , the R s row Orderid =1 implicated the

lauses C 1 and C 2 . To determine which should be blamed, we

hoose the row Orderid =2 from group R i as a replacement because

his row evaluates to true on suspicious clauses (Year > 2007) and

 Price > 100). First, we mutate the column Year from C 1 by substi-

uting the value of Year from the replacement row. Then, we use

he test oracle to check the mutated row. If the mutated row be-

ongs to group R i , then C 1 is the correct suspect and C 2 is ex-

nerated. Otherwise, we mutate the column Price from C 2 . If the

utated row belongs to R i , then C 2 is the correct suspect and

 is exonerated. Table 6 shows the original and mutated rows.
1
olumn Group indicates the group of the rows, and column Type

hows if a row is an original row, a replacement row, or a mutated

ow. Mutated values are shown in bold font. Since the mutant on

ear is in group R i , we conclude that C 1 is responsible for the fail-

re of row 1 and exonerate C 2 .

Similarly, to exonerate suspected clauses in absent rows (R a),

he goal is to find a mutant in the excluded group R e . The R a row

rderid = 5 , which implicated C 2 and C 3 , is suspicious. To deter-

ine which is innocent, we choose the row Orderid =4 from group

 e as a replacement because this row evaluates to false on suspi-

ious clauses (Zipcode = 10 0 08) and (Price > 100). First, we mutate

he column Price from C 2 by substituting the value of Price from

he replacement row. Then, we use the test oracle to check the

utated row. If the mutated row is excluded (R e), then C 2 is sus-

ect and C 3 is exonerated. Otherwise, we mutate the column Zip-

ode from C 3 . If the mutated row belongs to group R e , then C 3 is

he correct suspect and C 2 is exonerated. Table 7 shows the orig-

nal, replacement, and mutated rows. Since the mutation on C 3 is

laced in R e , we conclude that C 3 is responsible for the failure of

ow 5 and exonerate C 2 .

After the exoneration process, the only positive suspiciousness

ounters are C 1 and C 3 (the counters for C 2 and C 4 are zero). The

aulty clauses have been identified accurately.

.3. Advanced approach

The basic approach is effective at detecting faults if the fail-

ng row is associated with one fault-inducing column. However, it

annot exonerate suspicious clauses when multiple fault-inducing

olumns are associated with the same failing row. We explain why

ith an example below. Fig. 2 shows another incorrect SQL query.

ssume there is an order (Orderid = 6), shown in the first row of

able 8 . The column Group shows the group to which the row be-

ongs. The column Type represents the original rows, replacement

ows, rows mutated for one column (Mutant1), rows mutated for

wo columns (Mutant2), and rows mutated for three columns (Mu-

ant3). The row Orderid = 6 is absent (R a) since it does not sat-

sfy the predicate in the incorrect query. The row-based slicing

tep identifies that the clauses (Year > 2010), (Zipcode = 10 0 08) ,

236 Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245

Table 8

Absent rows mutation with multiple fault-inducing columns.

Row# Type Orderid Year Discount Zipcode Group

1 Original 6 2010 0 10 0 07 R a
2 Replacement 4 2006 5 20017 R e
3 Mutant1 6 2006 0 10 0 07 R a
4 Mutant1 6 2010 5 10 0 07 R a
5 Mutant1 6 2010 0 20017 R a
6 Mutant2 6 2006 0 20017 R e
7 Mutant2 6 2006 5 10 0 07 R a
8 Mutant2 6 2010 5 20017 R a
9 Mutant3 6 2006 5 20017 R e

Algorithm 1 Exoneration algorithm for a superfluous row.

Require: A superfluous row s _ row , a replacement row, r _ row , a set

of suspicious conjunctive predicates, CPS, and the tables, T .

1: for each cp i ∈ CP S do

2: COL = all columns included in cp i
3: for k = 1 . . . size of COL do

4: Create mutants, MUT k , by replacing values of k-

combinations of COL on s _ row with r _ row

5: for each mut j ∈ MUT k do

6: if mut j ∈ R i then

7: mark the mutated columns in mut j as fault-

inducing

8: jump to next cp i

9: COL _ T = all columns in T

10: for k = 1 . . . size of COL _ T do

11: Create mutants, MUT _ ALL k , by replacing values of k-

combinations of COL _ T on s _ row with r _ row

12: for each mut j ∈ M UT _ ALL k − M UT k do

13: if mut j ∈ R i then

14: mark the mutated columns in mut j as fault-

inducing

15: jump to next cp i

Algorithm 2 Exoneration algorithm for an absent row.

Require: An absent row a _ row , a replacement row, r _ row , a set of

suspicious conjunctive predicates , CP S, and the tables, T .

1: for k = 1 . . . size of CPS do

2: Create mutants, MUT , by replacing values of k -combination

of CP S on a _ row with r _ row

3: for each mut j ∈ MUT k do

4: if mut j ∈ R e then

5: mark the mutated columns in mut j as fault-inducing

6: stop and exit

7: COL _ T = all columns in T

8: for k = 1 . . . size of COL _ T do

9: Create mutants, MUT _ ALL k , by replacing values of k -

combination of COL _ T on s _ row with r _ row

10: for each mut j ∈ M UT _ ALL k − M UT k do

11: if mut j ∈ R e then

12: mark the mutated columns in mut j as fault-inducing

13: stop and exit

n

c

i

s

f

b

c

t

t

n

i

a

a

c

a

b

n

c

A
and (Discount > 10) are suspicious, since they evaluate to false for

the Orderid = 6 row. To exonerate innocent clauses with the basic

approach, we create mutant rows (rows 3–5 in Table 8) by replac-

ing column values with those from the replacement row (row 2 in

Table 8). However, none of the mutated rows are excluded rows

(R e). The reason is that the Orderid = 6 row is associated with two

fault-inducing columns (Year and Zipcode), thus, mutating a sin-

gle column in the basic approach cannot identify fault-inducing

columns. Therefore, we must mutate multiple columns at the same

time. In Table 8 , rows 6–8 show the rows created by mutating two

columns of the three columns, Year, Discount , and Zipcode . Row 9

shows the mutant row when mutating all the three columns. Row

6 is in R e but Row 7 and 8 are not, therefore, Year and Zipcode

are fault-inducing columns. Row 9 is also in R e because the three

mutated columns include the two fault-inducing columns. Thus,

we do not exhaust all combinations. Instead, we stop when the

minimum set of fault-inducing columns is found. To find k fault-

inducing columns associated with a failed row, we need to check a

total of
∑ k

m =1 (
(

n
1

)
+

(
n
2

)
. . . +

(
n
m

)
) mutated rows.

(
n
m

)
represents all

combinations that contain m columns from n columns.

Another limitation of the basic approach is that it cannot detect

fault-inducing columns when they are not included in the pred-

icate. For example, a faulty clause Mod i f ied _ d ate > 2014 mistak-

enly used column Modified_date instead of column Created_date .

The basic approach cannot detect that Created_date should have

been used since it is not included in the predicate and will never

be used to create mutants. Therefore, we have to traverse the com-

binations of all columns in the table regardless of whether they are

used in the predicate to find fault-inducing columns.

To solve the two issues in the basic approach above, we ex-

tend the basic approach to an advanced approach. The advanced

approach iterates the combinations of all columns to address two

issues: (1) a row associated with multiple fault-inducing columns,

and (2) fault-inducing columns that do not exist in the predicate.

Because the combination of all columns include any one combi-

nation of columns, the advanced approach covers the basic ap-

proach. Next, we present our advanced approach for exonerating

suspicious clauses in Algorithms 1 and 2 , for both superfluous and

absent rows.

Exonerating suspects implicated by superfluous rows.

Algorithm 1 is used to analyze superfluous rows. Algorithm 1 has

four inputs: a superfluous row, s_row , a replacement row, r_row , a

set of suspicious conjunctive predicates, CPS , and the tables used

in the query, T . For a superfluous row, suspicious CPs evaluate

to true and all the clauses in each suspicious CP evaluate to

true. Thus, all clauses in each suspicious CP are initially marked

as suspicious. Each suspicious CP must contain faults, however,

some suspicious clauses may be innocent. The goal is to exonerate

innocent clauses from each suspicious CP. Thus, for each suspicious

CP, we first mutate columns in the existing clauses. For one CP,

we create mutants, MUT k , by replacing values of k -combinations

of n columns in the suspicious row s _ row from the replacement

row r _ row, where n is the number of columns included in that CP,
um _ c, and k varies from 1 to n. k -combination mutants have all

ombinations that contain k columns from n columns. If a mutant

s an included row (R i), then fault-inducing columns are found. We

top and exonerate suspicious clauses that do not contain those

ault-inducing columns by decreasing their suspiciousness counter

y one. We continue the same process for the next CP.

If none of the mutants is in R i , then the predicate does not

ontain any fault-inducing columns. To find them, we create mu-

ants, MUT _ ALL k , from k -combinations of n columns, where n is

he number of all the columns included in table T , denoted as

um _ al l _ c, and k varies from 1 to n . We go through all the remain-

ng mutants after subtracting MUT k from MUT _ ALL k , checking if

ny of them belong to R i . If a mutant is in R i , the mutated columns

re fault-inducing in that CP. The suspicious clauses do not contain

olumns that can be exonerated and their suspiciousness counters

re decreased by one. The fault-inducing columns identified should

e included as missing clauses in that CP. Thus, the suspicious-

ess counters for missing clauses that contain the fault-inducing

olumns are increased by one.

Exonerating suspects implicated by absent rows.

lgorithm 2 is used to analyze absent rows. Algorithm 2 has

Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245 237

f

o

t

e

s

s

r

t

i

t

b

C

k

C

w

a

t

e

c

f

n

1

i

I

s

o

i

s

c

b

c

i

4

t

r

4

2

p

r

o

c

f

c

a

a

n

c

x

p

e

p

f

a

i

i

s

c

e

4

A

f

i

c

w

c

l

l

n

fi

t

b

r

r

U

i

s

S

e

T

a

fi

t

f

c

p

s

l

C

d

r

a
our inputs: an absent row, a_row , a replacement row, r_row , a set

f suspicious conjunctive predicates, CPS , and the tables used in

he query, T . For an absent row, every CP is suspicious because

very CP evaluates to false. Clauses that evaluate to false in a

uspicious CP are suspicious. Unlike superfluous rows where all

uspicious CP must contain faults, some suspicious CPs in absent

ows may be innocent. Moreover, if a CP is found to contain faults,

hen all suspicious clauses in that CP must be faulty. The goal

s to exonerate innocent CPs as well as all suspicious clauses in

he innocent CPs. Therefore, Algorithm 2 iterates over CP com-

inations, instead of traversing column combinations for each

P as in Algorithm 1 . Algorithm 2 creates mutants, MUT k , from

 -combinations of n CPs, where n is the number of all suspicious

Ps, denoted as num _ cp, and k varies from 1 to n . In each mutant,

e replace the values of all columns included in suspicious clauses

t the same time. If a mutant is in R e , the CPs that have the mu-

ated columns are fault-inducing. Other CPs are innocent. We stop,

xonerate innocent CPs and clauses, and exit the program.

If none of the mutants are in R e , then the predicate does not

ontain any fault-inducing columns. We create mutants, MUT _ ALL k ,

rom k -combinations of n columns, where m varies from 1 to the

umber of columns of T , denoted as num _ al l _ c, and k varies from

 to n . We go through all the remaining mutants after subtract-

ng MUT k from MUT _ ALL k , checking if any of them belong to R e .

f a mutant is in R e , the mutated columns are fault-inducing. This

tep is very similar to the step in line 10 to 15 in Algorithm 1 . The

nly difference is that Algorithm 1 checks if the mutated row is

n R i , while Algorithm 2 checks if the mutated row is in R e . The

uspiciousness counters for the clauses that have fault-inducing

olumns are increased by one. The fault-inducing columns should

e included as missing clauses in a missing CP. Thus, the suspi-

iousness counters for the missing clauses in the missing CP are

ncreased by one.

. New exoneration-based SFL

Section 4.1 describes the efficiency problem that ALTAR encoun-

ered and Section 4.2 presents a significantly more efficient algo-

ithm.

.1. Efficiency problem

The existing SFL techniques described in Sections 2.2 and

.3 rank all program entities by suspiciousness score. ALTAR ap-

lies the exoneration algorithms to remove innocent clauses and

eturns a result that is more precise than the results returned by

ther SFL techniques. However, the original exoneration algorithm

an be extremely inefficient. Our previous paper (Guo et al., 2017)

ound that in an extreme case ALTAR took up to 25 minutes to lo-

alize faults with 234,244 failing tests. In contrast, Tarantula used

round 30 seconds, although it was much less effective.

We use five variables to study the complexity of ALTAR:

1. Number of columns in all the query tables (c).

2. Number of suspicious CPs (b).

3. Number of suspicious clauses in each suspect CP (n i , i =
1 , . . . , b).

4. Number of superfluous rows (s).

5. Number of absent rows (a).

In addition, we categorize the faults into two types:

1. IN Faults: all fault-inducing columns are used in the predi-

cate.

2. NIN Faults: some fault-inducing columns are NOT used in
the predicate. l
For superfluous rows exonerated by Algorithm 1 , the IN faults

re found in lines 2–8, and the complexity is in the range (
∑ b

i =1 (s ·
 i) ,

∑ b
i =1 (s · 2 n i)). The NIN faults are found in lines 9–15, and the

omplexity is in the range (
∑ b

i =1 (s · 2 n i) , s · ∑ b
i =1 (2 n i + 2 x i)), where

 i is the number of fault-inducing columns associated with the su-

erfluous row in a suspect CP b i . The worst case scenario is that

ach superfluous row is associated with all c columns in each sus-

ect CP. If that happens, the complexity is s · b · 2 c .

For absent rows exoneration in Algorithm 2 , the IN faults are

ound in lines 1–6, where the complexity is in the range (a · b,

 · 2 b). The NIN faults are found in lines 7–13, and the complexity

s in the range (a · 2 b , a · (2 b + 2 x)), where x is the number of fault-

nducing columns associated with the absent row. The worst case

cenario is that each absent row is associated with c fault-inducing

olumns. If that happens, the complexity is a · 2 c .

Although the worst cases are likely to be rare, the potential for

xponential running time clearly makes ALTAR impractical.

.2. Redundant test case elimination

From the above analysis we learned that the complexity of

lgorithms 1 and 2 is impacted by three factors: First, the NIN

aults are more expensive than IN faults. Second, the complexity

ncreases with the number of fault-inducing columns x . Third, the

omplexity increases with the number of failing rows s and a .

The first two factors are associated with the nature of the fault,

hile the third is related to the testing database size. It is diffi-

ult to control the fault since the fault is unknown during fault

ocalization. On the other hand, large databases can have a very

arge number of failing rows, possibly millions. Thus reducing the

umber of failing rows has the potential to greatly improve the ef-

ciency. By examining Algorithms 1 and 2 , we found a way to op-

imize them by identifying and eliminating redundant failing rows.

Two failing tests are considered equivalent if they are caused

y the same faulty clauses. Therefore, eliminating one of the two

ows does not affect the exoneration result. We identify equivalent

ows with three conditions:

• S1: They belong to the same group: either superfluous R s or

absent R a .
• S2: The slices created by the two test rows have the same

suspicious clauses.
• S3: The fault-inducing columns identified by the two test

rows are the same.

We developed Algorithm 3 on top of ALTAR, and call it ALTAR2.

nlike ALTAR, ALTAR2 eliminates redundant failing tests from be-

ng processed during exoneration. Algorithm 3 has two general

teps. First, it clusters the failing tests based on conditions S 1 and

 2 (lines 2 through 8). Second, it eliminates redundant tests by

valuating condition S 3 (lines 9 through 16). For each cluster c , AL-

AR2 arbitrarily selects a test t . Then Algorithm 1 or Algorithm 2 is

pplied to exonerate the corresponding suspicious clauses, SC t , and

nd its fault-inducing columns, f t (line 12). The algorithm next

akes each other test i in the same cluster, c , and mutates it with

 t . If a mutated test i passes, the test satisfies the condition S 3 and

an be eliminated from the cluster. The algorithm continues the

rocess until c is empty.

We illustrate the algorithm with the faulty SQL in Fig. 1 . As-

ume a new Order table with four rows, as shown in Table 9 . The

ast two columns in Table 9 show the row’s Group and Suspicious

lauses , as identified by slicing. The first two failing rows, with Or-

erid 1 and 5, are the same as from Table 1 . The other two failing

ows have Orderids 6 and 7.

First, we group the rows into clusters based on conditions S 1
nd S 2 . The rows with the same Group and Suspicious Clauses be-

ong to the same cluster. Orderid 1 and 6 should be grouped into

238 Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245

Algorithm 3 The ALTAR2 algorithm.

Require: Failing tests T

1: Initialize an empty set C for clusters

2: for each t ∈ T do

3: Slice t to get suspicious clauses, SC t
4: for each c ∈ C do

5: if ((c.group == t.group) && (c.SC == SC t)) then

6: Add t to c

7: else

8: Create a new cluster c and add c to C

9: for each c ∈ C do

10: while c is not empty do

11: Select an arbitrary test t from c

12: Exonerate suspicious clauses of t and find its fault-

inducing columns f t
13: for each other test i ∈ C do

14: Create a mutant, MUT i , by mutating f t in i

15: if MUT i passes then

16: Delete i from c

Table 9

New order table.

Orderid Year Price Discount ZipCode Group Suspicious Clauses

1 2008 110 0 22,102 R s C 1, C 2

5 2014 90 0 10,007 R a C 2, C 3

6 2008 120 0 22,105 R s C 1, C 2

7 2006 135 0 10,008 R a C 2, C 3

Table 10

Mutated rows.

Orderid Year Price Discount ZipCode Group

1 2014 110 0 22,102 R i
5 2014 90 0 20017 R e
6 2014 120 0 22,105 R i
7 2006 135 0 20017 R e

c

t

f

d

s

h

t

t

5

i

n

p

5

e

p

w

5

i

c

t

S

f

g

n

e

L

t

O

o

i

d

M

W

f

t

2

e

s

t

m
one cluster, and Orderid 5 and 7 should be grouped into another.

Next, we pick Orderid 1 from the first cluster and execute the ex-

oneration process to identify its fault-inducing column. The exon-

eration process described in Table 6 shows that we mutated the

row with Orderid 1 twice and found the fault-inducing column,

Year . We then use the fault-inducing column to mutate the other

rows in the same cluster (Orderid 6). Table 10 shows the mutated

rows. Since the mutated rows for Orderid 6 is in group R i (pass-

ing), S 3 is satisfied. Therefore, we can conclude that row Orderid

6 is equivalent to row Orderid 1 and should be eliminated. Simi-

larly, we apply the same process to the second cluster, which con-

tains Orderid 5 and Orderid 7. The exoneration process identifies

the fault-inducing column for the Orderid 5 row to be Zipcode , as

shown in Table 7 . Then, we mutate the Zipcode column in row Or-

derid 7. The mutated row is in group R e (passing), thus S 3 is also

satisfied. Row Orderid 7 is equivalent to row Orderid 5 and should

be eliminated.

The original ALTAR algorithm needed to exonerate each of the

four failing rows, and each exoneration created two mutants be-

cause there are two suspicious clauses. Thus, it generated eight

mutants in total. The new ALTAR2 algorithm creates clusters for

the failing rows, then only needs to exonerate one failing row from

each cluster to find fault-inducing columns. Only two mutants are

generated in each exoneration. In our example, rows Orderid 1 and

Orderid 5 are exonerated, and each is mutated twice. After finding

the fault-inducing column in each cluster, ALTAR2 uses it to mu-

tate the remaining rows in the same cluster to determine if they

are equivalent to the exonerated row. Since only the fault-inducing
olumn needs to be mutated, rather than all columns involved in

he suspicious clause, ALTAR2 only needs to generate one mutant

or each remaining row. In our example, rows Orderid 6 and Or-

erid 7 are mutated only once. This means ALTAR only generates

ix mutants, 25% fewer than the original ALTAR. When a database

as thousands or tens of thousands of test rows, the total execu-

ion time can be reduced significantly. For some of our tests, ALTAR

ook 30 minutes, while ALTAR2 needed less than 10 seconds.

. Experiments

We compared the nine fault localization techniques described

n Section 2 with our original technique, ALTAR, and our new tech-

ique, ALTAR2. This section presents research questions, subjects,

rocedure, results, and analysis.

.1. Techniques selected

The eleven techniques we compared fall into three general cat-

gories. ALTAR and ALTAR2 are equivalently effective, so we com-

ared their efficiency, but only compared ALTAR2’s effectiveness

ith the other nine techniques.

1. Similarity-based: Naish2, Wong1, Kulczynski2, Ochiai, Taran-

tula.

2. Statistics-based: Crosstab, Mann-Whitney, SOBER, Liblit.

3. Exoneration-based: ALTAR and ALTAR2.

.2. Objectives

Our experiment addressed four research questions when apply-

ng SFL techniques to clauses:

• RQ1: Can the techniques be rank-ordered in terms of effec-

tiveness?
• RQ1.1: What is the most effective technique overall?
• RQ1.2: What is the most effective similarity-based

technique?
• RQ1.3: What is the most effective statistics-based

technique?
• RQ2: Which is the most efficient technique overall?

Effectiveness is defined in terms of accuracy of finding faulty

lauses. Efficiency is defined in terms of execution time. The de-

ailed metrics are described in Section 5.4 .

The effectiveness is critical to fault localization techniques.

everal research papers have compared the effectiveness of dif-

erent fault localization techniques as applied to general pro-

rams. Xie et al. (2013) theoretically showed that five tech-

iques are the most effective if we assume 100% statement cov-

rage. However, this assumption is often not true in practice.

e et al. (2013) studied seven similarity-based techniques with

est suites that were less than 100% adequate, and found that

chiai was the most effective, and more effective than the the-

retically best formulas. Our study is different; we are study-

ng predicates and clauses in SQL queries, so statement coverage

oes not apply. Zhang et al. (2011) compared Liblit, SOBER, and

ann-Whitney and found Mann-Whiteney was the most effective.

ong et al. (2012) compared Crosstab with Liblit and SOBER, and

ound that Crosstab was more effective. We compared ALTAR with

wo similarity-based techniques, Tarantula and Ochiai (Guo et al.,

017), and found ALTAR to be more effective. This paper is the first

xperiment to compare exoneration-based techniques with both

imilarity-based and statistics-based techniques.

The efficiency of most similarity-based and statistics-based

echniques are very close. The techniques differ in coefficient for-

ulas or statistical models used, so the time complexities are very

Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245 239

Table 11

Test subject databases.

Databases Tables Columns Rows

(Average) (Total)

AdventureWorks 68 14 759,241

DBinventory 19 14 234,837

Employees 6 5 3,919,015

Mdbal 127 18 749,743

Polling_etl 9 10 211,681

s

T

c

w

d

t

o

m

s

5

v

w

P

p

o

a

e

d

t

o

q

c

a

F

c

i

c

t

T

fi

m

t

r

i

i

t

r

f

D

f

s

M

f

c

o

Table 12

Real faults.

Database E1 E2 E3 E4 E5 E6 Total

DBinventory 6 7 5 9 6 2 35

Mdbal 8 4 5 3 3 2 25

Polling_etl 12 8 5 4 2 3 34

Sum 26 19 15 16 11 7 94

t

o

R

5

c

t

i

m

o

t

b

c

t

v

A

t

n

a

a

a

c

m

P

R

H

t

s

s

f

w

C

H

a

p

c

o

n

s

c

W
imilar For example, when Wong et al. compared Crosstab with

arantula (Wong et al., 2012), the time difference on the most

omplex program in their study was less than 0.15 seconds.

We are able to explore efficiency more accurately because

e use a much larger set of tests than previous studies. The

atabases we use have millions of rows. Each database row is a

est, so we have millions of tests, compared with only hundreds

f tests in previous studies. RQ2 also helps us compare the perfor-

ance of ALTAR2 with ALTAR, a problem identified in our previous

tudy.

.3. Experimental subjects

We selected five subject databases. Two were used in our pre-

ious paper (Guo et al., 2017), and three were new. Adventure-

orks 4 (AW) and employees 5 (EMP) are open source databases.

olling_etl (PEL), Dbinventory (DB), and Mdbal databases are pro-

rietary databases owned by the first two authors’ companies. Part

f our agreement to use them in an experimental setting is that we

re prohibited from disclosing certain details about the databases,

specially their contents. The structures and sizes of the subject

atabases are shown in Table 11 . Columns is averaged over all the

ables in the relevant database.

We defined three sets of queries to examine the scalability

f the techniques on queries with different complexities. Simple

ueries have three to five clauses, moderate queries have six to eight

lauses, and complex queries have nine to twelve clauses. We cre-

ted correct queries to use as subjects to evaluate our technique.

or each database, we created five correct queries of each level of

omplexity. That is, we created 5 (queries) ∗ 3 (levels of complex-

ty) ∗ 5 (databases) for a total of 75 total correct queries. Then, to

reate incorrect queries, we created six faulty versions of each of

he 75 correct versions (one for each fault type E1 through E6).

his resulted in a total of 450 incorrect queries. Note that the first

ve faulty versions (E1–E5) create single faults, whereas E6 creates

ultiple faults. So in total we have 75 incorrect queries with mul-

iple faults and 375 incorrect queries with single faults. The cor-

ect queries served as controls in the experimental study, and the

ncorrect queries were used for fault localization.

To the best of our knowledge, this is the largest study of local-

zing faulty clauses in terms of the size of databases, the number

he queries, and the complexity of the queries.

For AW and EMP, we obtained correct queries from their tuto-

ial examples and manually constructed faulty variations by modi-

ying the correct versions. For industrial application databases PEL,

B, and Mdbal, we extracted 94 naturally occurring faulty queries

rom industry applications and manually created the rest. Table 12

hows the number of real faults in each fault class. Polling_etl and

dbal had more faults of type E1, while DBinventory had more

aults of type E4. We cannot conclude which fault class is the most

ommon in general, since it varies with application. However, we

bserve that there are relatively few composite faults (E6) in all
4 github.com/lorint/AdventureWorks- for- Postgres .
5 github.com/datacharmer/test _ db .

e
hree industrial databases (only 7%). This compares with 75 of 450,

r 16.6%, of the faults in our study being composite.

We implemented ALTAR2 and the other ten techniques in a

uby application, and made it available on github 6 .

.4. Procedure and metrics

We ran the experiments on a MacBook Pro-with two Intel i7

ores and 16 GB of RAM. For each faulty query, we ran the eleven

echniques, recording the execution time and faults found.

Similarity-based and statistic-based techniques return a rank-

ng of all program entities as the fault localization result. Thus,

ost prior research measured the effectiveness by the percentage

f lines of code examined before reaching the faulty program en-

ity over the total lines of code. We could not adopt this metric

ecause the exoneration-based techniques precisely returns faulty

lauses without a ranking.

Instead, we calculated the harmonic mean from information re-

rieval (Manning et al., 2008) to measure the effectiveness. Two

ariables are used to calculate the harmonic mean: Expected and

ctual. Expected is the set of expected faulty clauses and Actual is

he set of actual clauses identified by the fault localization tech-

ique. Precision (P) and recall (R) are calculated based on Expected

nd Actual , and P is the proportion of reported clauses that are

ctually faulty (Eq. 11). R is the proportion of faulty clauses that

re actually reported (Eq. 12). We combined the precision and re-

all with their harmonic mean H (Eq. 13). The higher the harmonic

ean, the more effective an SFL technique is at localizing faults.

 =

| Actual ∩ Expected |
| Actual | (11)

 =

| Actual ∩ Expected |
| Expected | (12)

 =

2 · P · R

P + R

(13)

The harmonic mean calculation can also be used to evaluate

he effectiveness of rankings computed by similarity-based and

tatistics-based techniques. The only difference is that the Actual

et is computed as clauses that have no lower ranking than the

aulty clause. For example, for a predicate with a faulty clause C 3 ,

here the ranking is C 2 , C 4 , C 3 , C 1 , Actual is C 2 , C 4 , C 3 , because

 1 is ranked lower than C 3 . For this case, P =

1
3 , R = 1 , and H =

1
2 .

owever, if a technique assigns the same suspiciousness score to

ll clauses, then H = 0 . This would mean the technique was com-

letely ineffective because the ranking is not able to identify which

lause is more likely to be faulty.

The exoneration-based techniques can localize multiple faults in

ne execution. However, similarity-based and statistics-based tech-

iques are designed to identify one fault at one time. When using

imilarity or statistics-based techniques to find multiple faults, we

omputed a suspiciousness ranking for all the clauses under test.

e first fixed a faulty clause with the highest rank. We then ex-

cuted the technique again to fix the next faulty clause with the
6 https://github.com/carolfly86/altar .

https://www.github.com/lorint/AdventureWorks-for-Postgres
https://www.github.com/datacharmer/test
https://www.github.com/carolfly86/altar

240 Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245

Table 13

Effectiveness com parison between ALTAR2 and similarity-based SFLs .

Database ALTAR2 Naish2 Wong1 Kulczynski2 Ochiai Tarantula

Avg Sdv Avg Sdv Avg Sdv Avg Sdv Avg Sdv Avg Sdv

AW 0.97 0.12 0 0 0 0 0.51 0.33 0.47 0.32 0.52 0.35

DB 0.99 0.05 0 0 0 0 0.38 0.30 0.36 0.24 0.37 0.26

Emp 0.98 0.13 0 0 0 0 0.49 0.31 0.49 0.32 0.50 0.32

Mdbal 0.95 0.15 0 0 0 0 0.45 0.34 0.45 0.33 0.48 0.37

PEl 0.97 0.12 0 0 0 0 0.53 0.37 0.53 0.36 0.49 0.33

Single Fault 0.97 0.13 0 0 0 0 0.48 0.35 0.46 0.34 0.47 0.35

Composite Fault 0.97 0.06 0 0 0 0 0.49 0.25 0.48 0.25 0.49 0.24

Overall Avg 0.97 0.12 0 0 0 0 0.45 0.33 0.46 0.32 0.47 0.33

Overall Avg 0.97 0.12 0 0 0 0 0.58 0.31 0.55 0.30 0.57 0.31

(excluding E4)

Table 14

Effectiveness comparison between ALTAR2 and statistics-based SFLs .

Database ALTAR2 SOBER Liblit Mann-Whitney Crosstab

Avg Sdv Avg Sdv Avg Sdv Avg Sdv Avg Sdv

AW 0.97 0.12 0.51 0.34 0.48 0.34 0.25 0.30 0.46 0.34

DB 0.99 0.05 0.49 0.33 0.43 0.32 0.14 0.23 0.49 0.33

Emp 0.98 0.13 0.57 0.36 0.47 0.31 0.23 0.30 0.41 0.29

Mdbal 0.95 0.15 0.53 0.36 0.43 0.33 0.18 0.30 0.36 0.30

PEl 0.97 0.12 0.54 0.36 0.39 0.29 0.23 0.29 0.56 0.37

Single Fault 0.97 0.13 0.53 0.37 0.44 0.33 0.27 0.29 0.46 0.35

Composite Fault 0.97 0.06 0.50 0.24 0.46 0.25 0.32 0.25 0.41 0.25

Overall Avg 0.97 0.12 0.53 0.35 0.44 0.32 0.21 0.29 0.45 0.33

Overall Avg 0.97 0.12 0.64 0.32 0.53 0.31 0.25 0.26 0.55 0.26

(excluding E4)

d

f

O

t

h

t

i

a

s

c

t

t

M

L

t

t

n

f

A

i

t

l

5

c

o

n

T

M

w

K

p

n

highest rank in this run. We repeated the process until all the

faults were fixed. Other researchers have tried to parallelize debug-

ging (Jones et al., 2007; Högerle et al., 2014). These techniques par-

tition test cases into fault-focusing clusters, and localize faults in

parallel using the clusters. They can be used with our exoneration-

based techniques as well as other SFL techniques, and would be a

valuable future research direction.

Assume N faulty clauses. For a similarity or statistics-based

technique, effectiveness is the averaged harmonic mean

∑ N
i =1 a

i

N ,

where a i is the harmonic mean of the i th execution. The efficiency

is the total time for N iterations (excluding the time spent on fix-

ing the faults manually)
∑ N

i =1 t
i , where t i is the execution time of

the i th iteration.

5.5. Effectiveness

This section presents the results on effectiveness for each SFL

technique and the statistical comparison results. We then ana-

lyze the issues that impacted effectiveness for each technique in

Sections 5.5.3 through 5.5.6 .

5.5.1. Results

Tables 13 and 14 show the effectiveness of the ten techniques.

Note that the exoneration-based techniques ALTAR and ALTAR2

have identical effectiveness, so we omit ALTAR data in both tables

and use ALTAR2 to represent both exoneration-based techniques.

The first column shows the five databases. Table 13 compares AL-

TAR2 with the five similarity based techniques, and Table 14 com-

pares ALTAR2 with the four statistics-based techniques. For each

subject, Tables 13 and 14 show the mean (Avg) and standard de-

viation (Sdv) of the effectiveness on the queries for each tech-

nique. The Single Fault rows show the effectiveness on queries

with single faults and the Multi Fault rows show the effective-

ness on queries with single faults. We can see that the effec-

tiveness for localizing single and multi-faults are not significantly
ifferent for all techniques. Overall Avg shows the mean of the ef-

ectiveness on all the queries in the five databases. The last row,

verall Avg (excluding E4) , shows the mean and standard devia-

ion of the effectiveness on all the queries except the queries that

ave E4 faults. We excluded E4 faults because ALTAR2 was the only

echnique that found any of the E4 faults. We explore this further

n Section 5.5.4 .

Table 13 shows that Naish2 and Wong1 were the least effective

mong the five similarity-based techniques, although they were

hown to be theoretically the most effective Xie et al. (2013) . Kul-

zynski2, Ochiai, and Tarantula had similar effectiveness. We check

he statistical significance of the differences below. Table 14 shows

hat SOBER was the most effective statistics-based technique and

ann-Whitney was the least effective. The effectiveness of SOBER,

iblit, and Crosstab are relatively close, so we compare them sta-

istically below.

Tables 13 and 14 show that ALTAR2 was the most effective

echnique overall. None of the similarity and statistical-based tech-

iques had effectiveness greater than 0.55, whereas the lowest ef-

ectiveness score for ALTAR2 was 0.95. The standard deviation of

LTAR2 was also much lower than the other techniques, indicat-

ng that ALTAR2 performed consistently over all queries. We can

hus answer RQ1.1: ALTAR2 was the most effective technique at

ocalizing faults in clauses among all 11 techniques.

.5.2. Statistical comparison

To complete the answer to RQ1, we use statistical analysis to

ompare techniques with similar effectiveness. We use the paired

ne-tailed t -test because we had enough queries (450) to assume

ormal distributions. We did not need to statistically compare AL-

AR2 because it was so much more effective than the others.

ann-Whitney, Naish2, and Wong1 were excluded because they

ere much less effective. We studied the remaining six techniques:

ulczynski2, Ochiai, Tarantula, Crosstab, SOBER, and Liblit. The hy-

otheses are shown below. X and Y can be any of the six tech-

iques, giving a total of 15 pairs.

Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245 241

Table 15

Hypothesis testing results.

Pairs (X-Y) p-score H 0 Rejected? μd

Tarantula-Ochiai 0.076 N –

Tarantula-Kulczynski2 0.39 N –

Tarantula-SOBER 0.0 0 03 Y –0.053

Tarantula-Liblit 0.025 Y 0.033

Tarantula-Crosstab 0.0897 N –

Ochiai-Kulczynski2 0.001 Y –0.020

Ochiai-SOBER 0.0 0 01 Y –0.066

Ochiai-Liblit 0.18 N –

Ochiai-Crosstab 0.7927 N –

Kulczynski2-SOBER 0.0 0 02 Y –0.046

Kulczynski2-Liblit 0.0043 Y 0.039

Kulczynski-Crosstab 0.2493 N –

SOBER-Liblit 0.0 0 01 Y 0.086

SOBER-Crosstab 0.0017 Y 0.072

Liblit-Crosstab 0.524 N –

s

t

t

f

s

u

(

w

w

“

s

i

e

s

t

t

W

a

s

c

c

e

t

t

W

t

c

m

i

i

5

r

D

c

u

c

s

e

5

t

c

c

t

b

l

(

e

o

m

d

i

c

t

c

5

t

i

H

a

i

s

t

f

e

t

t

c

a

t

b

c

t

t

l

f

T

t

f ep c + c
Null hypothesis (H 0):

There is no significant difference between technique X and

technique Y in terms of effectiveness

Alternative hypothesis (H 1):

There is significant difference between technique X and

technique Y in terms of effectiveness

Table 15 shows the p-score for each pair of techniques at the

ignificant level of α = 0 . 05 . If p-score is less than α (0.05), then

he hypotheses H 0 is rejected. The H 0 Rejected? column uses “N ”

o indicate H 0 is not rejected (technique X is not significantly dif-

erent from Y), and “Y ” to indicate H 0 is rejected (technique X is

ignificantly different from Y). When H 0 is rejected, the μd col-

mn shows the average of differences between technique X and Y

 μd = a v g(x i − y i)). A positive μd value indicates that technique X

as more effective, and a negative value means that technique X

as less effective. When H 0 is not rejected, μd shows “-,” meaning

not applicable.”

In summary, among the similarity-based SFLs, Kulczynski2 was

lightly more effective than Ochiai, but there were no difference

n the other pairs. Thus, these three techniques had similar

ffectiveness. Therefore, we can answer RQ1.2 that Kulczyn-

ki2, Tarantula, and Ochiai were the most effective among

he similarity-based SFLs. Somewhat surprisingly, the techniques

hat were found to be theoretically the best (Naishi2 and

ong1) (Xie et al., 2013) were the least effective. We can also

nswer RQ1.3, that SOBER was the most effective among the

tatistics-based SFLs, and Liblit and Crosstab were not signifi-

antly different in terms of effectiveness.

The effectiveness of Liblit and Crosstab was close to that of Kul-

zynski2, Tarantula, and Ochiai. Thus, they are considered to be

quivalent in effectiveness.

Now, we can answer RQ1. The final order of effectiveness for

he ten techniques is: ALTAR2 > SOBER > (Kulczynski2 = Taran-

ula = Ochiai = Liblit = Crosstab) > Mann-Whitney > (Naish2 =
ong1).

The following subsections describe types of issues that affected

he effectiveness of all the techniques: (1) an issue that is spe-

ific to the exoneration-based technique, (2) issues that are com-

on to all similarity-based and statistics-based techniques, (3)

ssues that are specific to the similarity-based techniques, and (4)

ssues that are specific to the statistics-based techniques.

.5.3. An issue that is specific to the exoneration-based technique

Exoneration-based techniques might not localize faults accu-

ately when multiple faulty clauses have the same columns.

uring the exoneration process, ALTAR2 identifies a fault-inducing

olumn and associates it with the clauses that contain that col-
mn. If multiple clauses have the same fault-inducing columns, it

annot determine which clause is innocent and may report that all

uch clauses are faulty. This situation is very rare, thus, the overall

ffectiveness of ALTAR2 is still very high.

.5.4. Issues common to all similarity-based and statistics-based

echniques

Similarity-based and statistics-based techniques can only rank

lauses that are included in the predicate under test. Thus, they

annot find missing clauses (fault type E4 in Section 2.1). In con-

rast, ALTAR2 can accurately report not only the missing clauses

ut also associated fault-inducing columns. Tables 13 and 14 (the

ast row) show that the similarity and statistics-based techniques

except Naish2, Wong1, and Mann-Whitney) are about 10% more

ffective when applied to SQLs that do not have E4 faults.

Another important point that reduces the effectiveness of previ-

us SFL techniques is that they were designed for general program-

ing languages. These SFL techniques work because they identify

ifferences between which program locations were reached by fail-

ng and passing tests. However, for SQL analysis, all rows are exe-

uted by all clauses in the predicate equally. Thus, the previous SFL

echniques do not accurately localize faulty clauses in SQL predi-

ates.

.5.5. Issues specific to similarity-based techniques

Similarity-based techniques rely on a coverage-based assump-

ion, that is, program entities that are executed more frequently

n failing tests than in passing tests are more likely to be faulty.

owever, this assumption does not hold when program entities

re clauses. When executing a predicate with a test, all the clauses

n the predicate are executed. Thus, the clauses are executed the

ame number of times in both failing and passing tests. We derive

he suspiciousness formulas below to analyze their effectiveness.

Recall that we defined four variables for the similarity-based

ormulas in Section 2.2 , c ef , c ep , T f , and T p . In addition, for the true

valuation of a clause c , c t
e f

is the number of times c evaluates to

rue in a failing test and c t ep is the number of times c evaluates to

rue in a passing test. Likewise, for the false evaluation of a clause

 , c
f

e f
is the number of times c evaluates to false in a failing test

nd c
f
ep is the number of times c evaluates to false in a passing

est. T f is the total number of failing tests and T p is the total num-

er of passing tests. T f and T p are constants for all clauses, while

t
e f

, c t ep , c
f

e f
, and c

f
ep are variables. The sum of the total number of

imes when c evaluates to true and false in failing tests is equal

o the total number of failing tests. That is, c t
e f

+ c
f

e f
= T f . Simi-

arly, the sum of the total number of times c evaluates to true and

alse in passing tests is equal to the total number of passing tests.

hat is, c t ep + c
f
ep = T p .

With the above T f and T p equations, we derive the formulas for

he five similarity-based techniques as follows:

• Naish2:

S(c) = S(c) t + S(c) f = c t e f + c f
e f

− c t ep

T p + 1

− c f ep

T p + 1

= T f − T p / (T p + 1) (14)

• Wong1:

S(c) = S(c) t + S(c) f = c t
e f

+ c f
e f

= T f (15)

• Kulczynski2 :

S(c) =

1

2

∗ (
c t

e f

T f
+

c t
e f

c t
e f

+ c t ep

+

c f
e f

T f
+

c f
e f

c f
e f

+ c f ep

)

=

1

2

∗ (
c t

e f
+ c f

e f

T
+

c t
e f

c t + c t
+

c f
e f

f f
) (16)
e f e f ep

242 Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245

C

Table 16

Efficiency results (in seconds).

Query types Time (avg.) # of rows (avg.)

ALTAR2 ALTAR MW Others Failing All

Simple 2.77 84.72 24.34 9.29 2631 808,062

Moderate 2.22 102.78 27.74 10.83 799 790,389

Complex 3.41 117.40 34.38 14.37 955 455,254

Single Fault 2.24 56.37 23.73 9.08 1305 676,941

Composite Faults 5.88 336.53 84.48 24.67 2315 721,187

Overall 2.81 97.44 64.37 11.50 1462 683,825

0

r

b

t

t

f

a

i

i

a

o

T

5

t

b

5

t

L

e

o

f

w

e

t

n

t

t

W

g

w

c

q

b

o

w

t

5

b

a

w

e

q

b

q

f
• Ochiai :

S(c) =

c t
e f √

(T f) ∗ (c t
e f

+ c t ep)
+

c f
e f √

(T f) ∗ (c f
e f

+ c f ep)

(17)

• Tarantula :

S(c) =

c t
e f

/T f

c t
e f

/T f + c t ep /T t
+

c f
e f

/T f

c f
e f

/T f + c f ep /T t
(18)

Eqs. 14 and 15 show that the derivation results for Naish2

and Wong1 are constants, since T f and T p are constants. Thus,

Naish2 and Wong1 gave identical ranks to all clauses. Therefore,

their effectiveness was 0 for all the queries. Tarantula, Kulczynski2,

and Ochiai were able to rank the clauses, because they contain

variables c t
e f

, c
f

e f
, c t ep , and c

f
ep . However, it is not obvious which

formula is more effective. The experiment results also show the

effectiveness of these three techniques were not significantly

different. In previous studies, Xie et al. (2013) proved that

Nashi2 and Wong1 are the theoretically best on statements,

with the assumption that the tests covered all statements. But

Le et al. (2013) showed that inadequate tests can affect their ef-

fectiveness. Nashi2 and Wong1 were very ineffective on clauses in

our study, suggesting that program entities affect the effectiveness

as well. The SFL techniques designed for statements may not be

effective when applying to clauses.

5.5.6. Issues specific to statistics-based techniques

Now we analyze the four statistics-based techniques.

Crosstab: Section 2.3 explained that Crosstab is similar to the

similarity-based techniques, with the only difference being the sta-

tistical model used. The final suspiciousness was calculated for

each clause by adding two suspiciousness scores for true and false

evaluations. The statistical comparison in Section 5.5.2 shows that

the effectiveness of Crosstab was not significantly different from

that of Tarantula, Ochiai, and Kulczynski2.

Liblit: The assumption of the Liblit model is that program enti-

ties that evaluate to true in failing tests are likely to be faulty. We

derive the Liblit formulas for a clause c in Eqs. 19–21 .

ontext(c) = P r (Crash | c obser v ed)

= T f / (T f + T p) (19)

F ailure (c) = P r (Crash | c obser v ed true)

= c t e f / (c t e f + c t ep) (20)

Increase (c) = F ailure (c) − Context(c)

= c t e f / (c t e f + c t ep) − T f / (T f + T p) (21)

If Increase (c) is large, c is likely to have faults. Since T f and T p
are constant, Increase (c) relies on c t

e f
and c t ep . That means the sus-

piciousness of c correlates to the number of failing tests and pass-

ing tests when c evaluates to true . However, this model does not

consider what happens when c evaluates to false. Thus, Liblit was

not able to identify faulty clauses that evaluate to false.

SOBER and Mann-Whitney: Both SOBER and Mann-Whitney

compare the distribution of evaluation bias in failing and passing

tests. But they calculate the similarity of the distributions differ-

ently. Zhang et al. (2011) found that Mann-Whitney was found to

be more effective than SOBER. However, our experiments found the

opposite.

As explained in Section 2.3 , the evaluation bias π (c) for a given

test row is either 1 or 0. So V f and V p consist of all 1s, all 0s, or

a mix of 1s and 0s. In Mann-Whitney, if V p is all 1s or V f is all
s, then K h is 0 because there are no sets with a higher sum of

ankings than V p . Similarly, if V p is all 0s or V f is all 1s, then K l is 0

ecause there are no sets with a lower sum of rankings than V p . In

he above four situations, the calculated R (p) must be 0 according

o Eq. 10 . Such situations are in fact quite common. Among the

our clauses in Table 4 , three clauses have R (p) = 0 . If all clauses in

 predicate satisfy this condition, then they all get 0 as R (p), which

s essentially an ineffective ranking result. We also observed this

n our experiment, where Mann-Whitney gave the same ranks to

ll the clauses in 58% of the subject queries, thus resulting in 58%

f 0 effectiveness. In contrast, SOBER was able to rank the clauses.

herefore, Mann-Whitney was less effective than SOBER.

.6. Efficiency

We now turn to the efficiency of the techniques, first presenting

he raw results, then comparing with manual debugging, followed

y a discussion.

.6.1. Results

We found that the five similarity-based techniques had almost

he same execution time as three of the statistic-based techniques:

iblit, SOBER, and Crosstab. Over 99% of the time was spent on ex-

cuting tests and collecting runtime information. The computation

f suspiciousness rankings took very little time. Thus, the time dif-

erence among these techniques was very small. This is consistent

ith Wong et al.’s results (Wong et al., 2012). ALTAR2 is the most

fficient among all eleven techniques; Mann-Whitney took more

ime than the other eight similarity- and statistics-based tech-

iques due to the non-parametric statistical model; and ALTAR was

he least efficient. Therefore, Table 16 gives time in seconds for all

he techniques, combined into four groups, ALTAR2, ALTAR, Mann-

hitney (MW), and the other SFL techniques (Others).

The Types column of Table 16 shows the queries in different

roups: simple queries, moderate queries, complex queries, queries

ith single faults, and queries with multiple faults. The Time (avg.)

olumn shows the time on average to localize faulty clauses in a

uery in each group. The # of Rows (avg.) column shows the num-

er of failing rows and all rows executed for a query in each group

n average. ALTAR2 averaged 2.8 seconds across the 450 queries,

hich is much faster than the other techniques. Thus, the answer

o RQ2 is that ALTAR2 is the most efficient technique.

.6.2. Comparing SFL with manual debugging

We conducted a small study to compare SFL with manual de-

ugging to determine if manual debugging is comparable to the

utomated SFL techniques in efficiency. We invited a developer

ho has sufficient background knowledge and working experi-

nce with the MDbal database schema to manually debug some

ueries. He was given the requirements and three faulty queries ar-

itrarily selected from each of the simple, moderate, and complex

uery groups. The manual debugging time on average to find the

aulty clauses was 52 seconds for simple queries, 9.4 minutes for

Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245 243

m

t

M

t

b

c

5

r

b

t

a

t

T

m

W

s

t

T

c

l

h

t

f

O

t

d

a

e

c

t

i

a

w

c

s

a

o

r

o

p

t

b

t

f

i

r

r

a

o

C

T

f

t

p

O

b

W

O

r

5

t

d

f

t

q

t

p

t

a

S

d

f

t

f

t

n

r

s

n

w

r

o

l

H

c

s

m

a

a

b

T

w

l

m

6

f

W

n

t

t

t

d

s

c

s

w

d

s

e

v

s

c

t

o

i

o
oderate queries, and 5.56 minutes for complex queries, whereas

he ALTAR2 techniques took less than 5 seconds for all queries.

ost of the manual effort was comparing the requirements with

he queries. This small study demonstrated that the manual de-

ugging was much slower comparing to ALTAR2, thus we did not

onduct further experiments on manual debugging.

.6.3. Analysis and discussion

Suppose a predicate has k clauses, n test rows, p passing test

ows, and f failing rows. For the similarity-based and statistics-

ased techniques, k clauses are executed against n rows, with the

ime complexity of O (n ∗k). For k clauses, suspiciousness scores

re calculated with a similarity coefficient formula or a statis-

ical model in O (k). Then the scores are sorted in O (k ∗log (k)).

he total time complexity is O (n ∗ k + k + k ∗ log(k)) . When n is

uch larger than k , the complexity is dominated by n ∗k . Mann-

hitney is more complex because it computes suspiciousness

cores for the combinations of p out of n , instead of k . The to-

al time complexity for Mann-Whitney is O (n ∗ k +

(
n
p

)
+ k ∗ log(k)) .

he computation can be substantial when n is large. Thus, the

omplexity of Mann-Whitney is dominated by
(

n
p

)
when n is

arge.

ALTAR consists of two steps: slicing and exoneration. ALTAR2

as an additional redundant row elimination step. Comparing to

he other nine SFL techniques, ALTAR2 and ALTAR only processes

ailing rows f . Thus, the time complexity of the slicing step is

 (f ∗k) for ALTAR and ALTAR2. Regarding the time complexity of

he exoneration step, the best case and the worst case can be very

ifferent. The best case happens when a faulty clause is associ-

ted with a single fault-inducing column. In this case, the exon-

ration process only checks the s columns used in the suspicious

lauses. In the worst case, multiple faults are associated with mul-

iple fault-inducing columns, where all columns c in the tables

n the predicate are fault-inducing. In this scenario, the exoner-

tion process must check all
∑ c

k =1

(
c
k

)
= 2 c − 1 combinations. The

orst case can only happen when (1) the predicates contain all

olumns in the tables, and (2) all columns are fault-inducing. It

eems likely that this situation would be extremely rare, especially

s databases get large. ALTAR processes each failing row for ex-

neration, thus the time complexity for exoneration step is in the

ange (O (f ∗s), O (f ∗2 c)). The total complexity of ALTAR is in the range

(O (f ∗ k + f ∗ s) , O (f ∗ k + f ∗ 2 c)) .

ALTAR2 applies a redundant row elimination step after the ex-

neration step. We use e to denote the number of the actual rows

rocessed in the exoneration and redundant row elimination. Then

he complexity of elimination is in the range of (f,
∑ f

i =1
i) . In the

est case, it eliminates all remaining failing rows after exonerating

he first row. In the worse case, each elimination only removes one

ailing row. The time complexity of the exoneration process is sim-

lar to ALTAR except only e rows are exonerated, and it is in the

ange (O (e ∗s), O (e ∗2 c)). The total complexity of ALTAR2 is in the

ange (O (f ∗ k + f + e ∗ s) , O (f ∗ k + e ∗ f + e ∗ 2 c)) . The number of

ctual rows e is only a fraction of the number of failing rows f . In

ur study, the average of e was four and average of f was 1462.

onsequently, the complexity of ALTAR2 is much smaller than AL-

AR. In our experiments, both ALTAR and ALTAR2 found 91% of the

aults in the best-case exoneration scenarios. In the other cases,

he impact of O (e ∗2 c) on ALTAR2 is not significant, while the im-

act of O (f ∗2 c) on ALTAR is dramatic. Although we can neglect

 (e ∗2 c) for ALTAR2 and conclude the complexity is dominated

y O (f ∗k), we cannot neglect O (f ∗2 c) for ALTAR.

In summary, the time complexities of ALTAR2, ALTAR, Mann-

hitney, and the others are dominated by O (f ∗k), O (f ∗ k + f ∗ 2 c) ,

 (n ∗k), and O (
(

n
p

)
) . Since O (f ∗ k) < O (n ∗ k) < O (

(
n
p

)
) < O (f ∗ k +

f ∗ 2 c) , our analysis is consistent with the observed efficiency

esults.
.7. Threats to validity

An external threat is that the subjects may not be representa-

ive. We ameliorated the threat by selecting five databases from

ifferent sources, two from open source repositories and three

rom industry. To increase diversity, we selected some queries from

he original database domains and manually constructed additional

ueries with different complexities.

Another external threat is that the implementation of the ten

echniques could have affected the results. We were careful to im-

lement them exactly as described in the papers, and designed

ests to ensure they worked as expected.

One construct validity threat is how we created faults. We used

 combination of natural faults and manually constructed faulty

QL queries. Using a different source of faults could have led to

ifferent results. Our faulty queries include five different individual

aults as well as composite faults. Compared to other fault localiza-

ion empirical studies, we considered more types of faults.

Another internal threat is the measurement of execution time

or similarity-based and statistics-based techniques to localize mul-

iple faults. Similarity-based and statistics-based techniques can-

ot identify multiple faults with one run, and thus need to be

epeated several times. We used the “perfect bug detection” as-

umption (Wong et al., 2016) to calculate the number of restarts

eeded for fixing all the faults. That is, we assume the faulty clause

ith the highest ranking can always be identified and fixed in each

un, and the fault localization process will then be restarted with

ne less fault. So the number of times we need to restart the fault

ocalization process is equivalent to the number of faulty clauses.

owever, this assumption may not hold in reality. Given an inac-

urate ranking where the faulty clause is not ranked as the most

uspicious, programmers need to spend more time examining and

odifying the clauses from the top of the ranking until they arrive

t the faulty clause. In other cases, the programmers may not be

ble to correctly fix the fault. As a result, the fault localization may

e restarted more times than the actual number of faulty clauses.

he efficiency of similarity-based and statistics-based techniques

ould be even worse than observed in the experiment. Neverthe-

ess, this would not have affected our result that ALTAR2 is the

ost efficient technique.

. Related work

Spectrum-based fault localization (SFL) uses dynamic in-

ormation from test execution. Souza et al. (2016) and

ong et al. (2016) categorized fault localization tech-

iques differently, em phasizing different f eatures of

he techniques. Our paper uses Souza et al.’s defini-

ion of SFL, in which any technique that uses informa-

ion from test execution is spectrum-based. Souza et al.

escribed two major categories of SFL: similarity-based and

tatistic-based. Although they are similar, they use different suspi-

iousness formulas. Our exoneration-based approach is somewhat

imilar to the program state-based techniques in Wong et al.’s

ork (Wong et al., 2016). A program state-based technique is delta

ebugging Zeller and Hildebrandt (2002) , which compares program

tates in passing tests with those in failing tests. Although the

xoneration-based approach was inspired by delta debugging, it is

ery different from the prior techniques that used delta debugging,

uch as by Jeffrey et al. (2008) and Zhang et al. (2006) . They still

alculate suspiciousness scores for all program entities, whereas

he exoneration-based approach eliminates innocent entities and

nly reports faulty entities.

We focused on SFL techniques that were frequently compared

n prior papers. We did not evaluate artificial intelligence-based

r model-based techniques. Some techniques require graphs or

244 Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245

m

b

K

o

n

7

o

c

p

o

c

p

n

n

e

n

i

s

t

p

e

w

t

b

t

a

S

A

(

C

R

A

A

A

B

C

G

H

H

H

J

J

models to be built from source code, which are not applicable to

SQL clauses.

Perez et al. (2014) presented a technique to increase the effi-

ciency of code fault localization. They based their technique on

Ochiai. Instead of computing the suspiciousness for each line of

code, their technique computes the suspiciousness at a coarse level

(for example, at a module level), and gradually refines the suspi-

cious coarse-level element into the most suspicious detailed-level

software components. Perez et al.’s technique assumes that the un-

derlying fault localization algorithm (Ochiai) is equally effective at

any given granularity level. Our experiment showed that Ochiai is

not effective at the clause level of granularity, and in preliminary

trials, we also found no evidence that Ochiai works equally effec-

tively at multiplve levels of granularity.

We compared prior studies on SFL with ours in four as-

pects, program entities, types of techniques, program domains,

and test oracles. Most prior SFL studies used statements as pro-

gram entities, such as Naish et al. (2009) , Le et al. (2013) , and

Kim and Lee (2014) . Liu et al. (2005) , Liblit et al. (2005) , and

Zhang et al. (2011) used predicates as program entities. Sarah

et al. (Clark et al., 2011), Nguyen et al. (2013) , Saha et al. (2011) ,

and Akhter and Embury (2012) targeted predicates in embedded

SQLs. This paper and our prior study (Guo et al., 2017) are the first

to go to the detailed level of clauses as program entities. Previous

SFL techniques did not describe how test oracles were constructed,

so we cannot compare the impact of different types of test oracles.

In those papers, the only assumption was that test oracles existed

that could correctly distinguish passing and failing test cases. Our

approach requires general test oracles, which, although more dif-

ficult that specific test oracles, is practical in situations like ours

where we have thousands or millions of test cases.

Naish et al. (2009) compared 11 similarity-based techniques on

statements assigned with weights. They found the most effective

technique varies in the number of faults. Le et al. (2013) empir-

ically compared Tarantula and Ochiai with the theoretically most

effective techniques. They found Ochiai to be the most effective.

Kim and Lee (2014) compared 32 similarity-based techniques and

classified them into three groups, analyzing the characteristics of

each group. Zhang et al. (2011) compared similarity-based and

statistics-based techniques, finding that non-parametric statistics-

based techniques were the most effective. Wong et al. (2012) com-

pared Crosstab with SOBER and Liblit, concluding that Crosstab

was more effective. Our study is the first to compare similarity-

based, statistics-based, and exoneration-based techniques. More-

over, prior studies showed that many similarity-based techniques

are similar in effectiveness, and the theoretically best techniques

may not perform as well in practice when statement coverage is

not achieved. We leveraged these conclusions by using the tech-

niques that others found to be the most effective in our study.

Most empirical studies used general programs as experiment

subjects such as the Siemens suite. A few studies used database

and data-centric applications with embedded SQL queries (Clark

et al., 2011; Nguyen et al., 2013; Saha et al., 2011; Akhter

and Embury, 2012). SFL has also been applied to spreadsheets.

Data dependence graphs are constructed based on relationships

among the cell data. Hofer et al. (2013) compared Ochiai with a

spectrum-enhanced dynamic slicing approach (SENDYS) (Hofer and

Wotawa, 2012), and a constraint-based debugging approach

(Abreu et al., 2012), finding that Ochiai and SENDYS were more

effective. We focus on clauses in SQLs used in data-centric applica-

tions. In addition, the subject databases and faulty queries in our

experiment are much larger than in previous studies.

Mutation analysis was previously used to localize faults and de-

tect failures in SQL queries. MUtation-baSEd (MUSE) (Moon et al.,

2014) mutates the program under test (PUT) to find the faulty

statement. Our approach differs from MUSE in that we do not
utate the PUT (in our case PUT is the SQL predicate),

ut rather, we mutate the test data in failing test cases.

aminski et al. (2011) showed that using TRF-TIF logic mutation

perators can effectively detect failures in SQL queries, but does

ot address fault localization.

. Conclusion and future work

To find faulty clauses in SQL predicates, we previously devel-

ped an exoneration-based technique, ALTAR, and defined the fault

lasses that our technique can detect (Guo et al., 2017). As op-

osed to existing SFL techniques, which rank every program entity,

ur exoneration-based technique can precisely localize the faulty

lause and identify the fault type.

This paper significantly extends our previous conference pa-

er (Guo et al., 2017) in four ways. First, we propose a

ew algorithm to address the efficiency problem of the origi-

al exoneration-based technique. Second, we evaluated the new

xoneration-based technique, ALTAR2, finding that ALTAR2 was sig-

ificantly more efficient than all other SFL techniques in find-

ng faulty clauses. Third, we analyzed the applicability of nine

imilarity-based and statistics-based techniques when program en-

ities are clauses. Fourth, we conducted a considerably larger ex-

eriment than in prior studies to compare three major SFL cat-

gories, similarity-based, statistics-based, and exoneration-based,

ith a total of ten techniques. We concluded that ALTAR2 was both

he most effective and efficient at finding faults in SQL queries.

In the future, we hope to improve effectiveness and efficiency

y exploring parallel debugging techniques. We also plan to use

he exoneration-based technique to find faults in JOIN, GROUP BY,

nd other SQL clauses. We are also working on automatic repair of

QL queries.

cknowledgment

This work was partly funded by The Knowledge Foundation

KKS) through the project 20130085 : Testing of Critical System

haracteristics (TOCSYC).

eferences

breu, R. , Riboira, A. , Wotawa, F. , 2012. Constraint-based debugging of spreadsheets.
In: 15th Iberoamerican Conference on Software Engineering (CIbSE), pp. 1–14 .

breu, R. , Zoeteweij, P. , van Gemund, A.J.C. , 2007. On the accuracy of spec-
trum-based fault localization. In: Testing: Academic and Industrial Conference

Practice and Research Techniques - MUTATION. Windsor, UK, pp. 89–98 .

khter, J.M. , Embury, S.M. , 2012. Diagnosing faults in embedded queries in database
applications. In: Joint EDBT/ICDT Workshops. Berlin, Germany, pp. 239–244 .

Ammann, P. , Offutt, J. , 2017. Introduction to software testing, 2nd Cambridge Uni-
versity Press, Cambridge, UK . ISBN 978–1107172012

ouwkamp, K., 2016. The 9 most in-demand programming languages of 2016. On-
line, Coding Dojo Blog. last access: September 2017. http://www.codingdojo.

com/blog/9- most- in- demand- programming- languages- of- 2016/ .

lark, S.R. , Cobb, J. , Kapfhammer, G.M. , Jones, J.A. , Harrold, M.J. , 2011. Localizing SQL
faults in database applications. In: 26th IEEE/ACM International Conference on

Automated Software Engineering (ASE). Lawrence, KS, USA, pp. 213–222 .
uo, Y. , Motro, A. , Li, N. , 2017. Localizing faults in SQL predicates. In: Tenth Interna-

tional Conference on Software Testing, Verification, and Validation (ICST). Tokyo,
Japan, pp. 1–11 .

ofer, B. , Riboira, A. , Wotawa, F. , Abreu, R. , Getzner, E. , 2013. On the empirical eval-

uation of fault localization techniques for spreadsheets. In: 16th International
Conference on Fundamental Approaches to Software Engineering. Rome, Italy,

pp. 68–82 .
ofer, B. , Wotawa, F. , 2012. Spectrum enhanced dynamic slicing for better fault lo-

calization. In: 20th European Conference on Artificial Intelligence. Montpellier,
France, pp. 420–425 .

ögerle, W. , Steimann, F. , Marcus, F. , 2014. More debugging in parallel. In: Proceed-
ings of the 2014 IEEE 25th International Symposium on Software Reliability En-

gineering (ISSRE). IEEE, Naples, Italy, pp. 133–143 .

effrey, D. , Gupta, N. , Gupta, R. , 2008. Fault localization using value replacement. In:
International Symposium on Software Testing and Analysis (ISSTA), pp. 167–178 .

ones, J.A. , Bowring, J.F. , Harrold, M.J. , 2007. Debugging in parallel. In: Proceedings
of the 2007 International Symposium on Software Testing and Analysis (ISSTA).

ACM, London, United Kingdom, pp. 16–26 .

https://doi.org/10.13039/100003077
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0004
http://www.codingdojo.com/blog/9-most-in-demand-programming-languages-of-2016/
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0011

Y. Guo, N. Li and J. Offutt et al. / The Journal of Systems and Software 147 (2019) 230–245 245

J

K

K

L

L

L

L

M

M

M

N

N

N

P

S

S

W

W

W

X

Z

Z

Z

Y

f

t

f

v

S

E

D

r

i

b

a

a

I

h

s

o

a

D

H

n

S

f

i

i

2

C

S

m

a

I

D

H

i

i

p

S

g

m

n

ones, J.A. , Harrold, M.J. , 2005. Empirical evaluation of the Tarantula automatic fault-
-localization technique. In: 20th IEEE/ACM International Conference on Auto-

mated Software Engineering. Long Beach, CA, USA, pp. 273–282 .
aminski, G. , Praphamontripong, U. , Ammann, P. , Offutt, J. , 2011. A logic mutation

approach to selective mutation for programs and queries. Inform. Softw. Tech-
nol. Els. 53 (10), 1137–1152 . Special issue from the Mutation 2009 Workshop.

im, J. , Lee, E. , 2014. Empirical evaluation of existing algorithms of spectrum based
fault localization. In: The International Conference on Information Networking

2014 (ICOIN2014). Phuket, Thailand, pp. 346–351 .

e, T.-D.B. , Thung, F. , Lo, D. , 2013. Theory and practice, do they match? A case
with spectrum-based fault localization. In: 2013 IEEE International Conference

on Software Maintenance, pp. 380–383 .
iblit, B. , Naik, M. , Zheng, A.X. , Aiken, A. , Jordan, M.I. , 2005. Scalable statistical bug

isolation. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, Chicago, IL, USA, pp. 15–26 .

iu, C. , Fei, L. , Yan, X. , Han, J. , Midkiff, S. , 2006. Statistical debugging: a hypothesis

testing-based approach. IEEE Trans. Softw. Eng. 32, 831–848 .
iu, C. , Yan, X. , Fei, L. , Han, J. , Midkiff, S.P. , 2005. Sober: Statistical model-based bug

localization. In: 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, Lisbon, Portugal, pp. 286–295 .
anning, C.D. , Raghavan, P. , Schütze, H. , 2008. Introduction to information retrieval.

Cambridge University Press .

onperrus, M. , 2014. A critical review of “Automatic patch generation learned from
human-written patches”: Essay on the problem statement and the evaluation of

automatic software repair. In: 36th International Conference on Software Engi-
neering. Hyderabad, India, pp. 23–242 .

oon, S. , Kim, Y. , Kim, M. , Yoo, S. , 2014. Ask the mutants: Mutating faulty programs
for fault localization. In: Seventh International Conference on Software Testing,

Verification, and Validation (ICST). Cleveland, USA, pp. 153–162 .

aish, L. , Lee, H.J. , Ramamohanarao, K. , 2009. Spectral debugging with weights and
incremental ranking. In: 2009 16th Asia-Pacific Software Engineering Confer-

ence. Batu Ferringhi, Penang, Malaysia, Malaysia, pp. 168–175 .
aish, L., Lee, H.J., Ramamohanarao, K., 2011. A model for spectra-based software

diagnosis. ACM Trans. Softw. Eng.Methodol. 20 (3) . 11:1–11:32. doi: 10.1145/
20 0 0791.20 0 0795 .

guyen, H.V. , Nguyen, H.A. , Nguyen, T.T. , Nguyen, T. , 2013. Database-aware fault lo-

calization for dynamic web applications. In: 29th IEEE International Conference
on Software Maintenance (ICSM), pp. 456–459 .

erez, A. , Abreu, R. , Riboira, A. , 2014. A dynamic code coverage approach to maxi-
mize fault localization efficiency. J. Syst. Softw. 90 (C), 18–28 .

aha, D. , Nanda, M.G. , Dhoolia, P. , Nandivada, V.K. , Sinha, V. , Chandra, S. , 2011.
Fault localization for data-centric programs. In: 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of Software Engineering

(ESEC/FSE). New York, USA, pp. 157–167 .
ouza, H. A., Chaim, M. L., Kon, F., 2016. Spectrum-based software fault localization:

A survey of techniques, advances, and challenges. Submitted for publication, last
access January 2018. https://arxiv.org/abs/1607.04347 .

eiser, M. , 1981. Program slicing. In: 5th International Conference on Software En-
gineering. IEEE Press, Piscataway, NJ, USA, pp. 439–449 .

ong, W.E. , Debroy, V. , Xu, D. , 2012. Towards better fault localization: a
crosstab-based statistical approach. IEEE Trans. Syst. Man Cybernet. Part C (Appl.

Rev.) 42 (3), 378–396 .

ong, W.E. , Go, R. , Li, Y. , Abreu, R. , Wotawa, F. , 2016. A survey on software fault
localization. IEEE Trans. Softw. Eng. 42, 707–740 .
ie, X. , Chen, T.Y. , Kuo, F.-C. , Xu, B. , 2013. A theoretical analysis of the risk eval-
uation formulas for spectrum-based fault localization. ACM Trans. Softw. Eng

.Methodol. 22 (4) . 31:1–31:40
eller, A. , Hildebrandt, R. , 2002. Simplifying and isolating failure-inducing input.

IEEE Trans. Softw. Eng. 28 (2), 183–200 .
hang, X. , Gupta, N. , Gupta, R. , 2006. Locating faults through automated predi-

cate switching. In: 28th International Conference on Software Engineering. ACM,
New York, NY, USA, pp. 272–281 .

hang, Z. , Chan, W.K. , Tse, T.H. , Yu, Y.T. , Hu, P. , 2011. Non-parametric statistical fault

localization. J. Syst. Softw. 84 (6), 885–905 .

un Guo is a lead site reliability engineer at Cvent. Her research fields include SQL
ault localization and automated program repair. She is passionate about bridging

he gap between academia and industry. She received PhD in Computer Science
rom Volgenau School of Engineering at George Mason University in 2018. Her ad-

isor was Dr. Jeff Offutt and Dr. Amihai Motro. She received her M.S. in Computer

cience from George Mason University in 2011. Before that, she received a B.E. in
lectronic Engineering from Xi’an Jiaotong University in 2008.

r. Nan Li is a lead software engineer in test at Medidata Solutions. He leads the
esearch on big data testing, model-based testing, mutation testing, and mobile test-

ng. He has also been developing several tools used for big data testing, model-

ased testing, and mutation testing. He serves on program committees for ICST, FSE,
nd MUTATION and will co-chair ICST 2019 industry track. He has been serving as

 reviewer for multiple leading journals and conferences including CSUR, TSE, JSS,
ST, SoSyM, STVR, ICST, and FSE. He won the 2015 Medidata Innovator Award and

olds one patent. Li received a BE in Software Engineering from Beihang Univer-
ity in 2006 and received the PhD in Information Technology with concentration

n software engineering from George Mason University in 2014. He is on the web

t: https://nli-mdsol.github.io/ .

r. Jeff Offutt is a Professor of Software Engineering at George Mason University.

e has published over 175 refereed research papers (h-index of 61), and invented
umerous widely used test techniques. Offutt is editor-in-chief of Wiley’s journal of

oftware Testing, Verification and Reliability, co-founded the IEEE International Con-
erence on Software Testing (ICST), and co-authored Introduction to Software Test-

ng. He was awarded GMU’s Teaching Excellence Award, Teaching With Technology,

n 2013, was a GMU Outstanding Faculty member in 20 08, 20 09, and 2018, and his
014 software engineering education paper was chosen by ACM as a notable paper.

urrent projects include the SPARC educational project, muJava, Testing of Critical
ystem Characteristics (TOCSYC) and PILOT projects at University of Skovde, auto-

atic repair of SQL queries, testing mobile and web applications, test automation,
nd usable security. Offutt received the PhD in Computer Science from the Georgia

nstitute of Technology in 1988. He is on the web at https://cs.gmu.edu/ ∼offutt/ .

r. Amihai Motro is a Professor of Computer Science at George Mason University.
e holds a B.Sc. degree in mathematics from Tel Aviv University, a M.Sc. degree

n computer science from the Hebrew University of Jerusalem, and a PhD degree
n computer and information science from the University of Pennsylvania, and was

reviously on the faculty of the Computer Science Department at the University of
outhern California His areas of interests include database management, data inte-

ration, cooperative databases, virtual enterprises, information retrieval, and infor-

ation services. In these areas he published more than 100 papers in major jour-
als and conferences and was the recipient of several research grants.

http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0022
https://doi.org/10.1145/2000791.2000795
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0026
https://arxiv.org/abs/1607.04347
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30235-8/sbref0033
https://nli-mdsol.github.io/
https://cs.gmu.edu/~offutt/

	Exoneration-based fault localization for SQL predicates
	1 Introduction
	2 Spectrum-based fault localization
	2.1 Definitions and an SQL example
	2.2 Similarity-based SFL
	2.3 Statistics-based SFL
	2.3.1 Crosstab
	2.3.2 Liblit
	2.3.3 SOBER
	2.3.4 Mann-Whitney

	3 Original exoneration-based SFL
	3.1 Slicing
	3.2 Exoneration
	3.3 Advanced approach

	4 New exoneration-based SFL
	4.1 Efficiency problem
	4.2 Redundant test case elimination

	5 Experiments
	5.1 Techniques selected
	5.2 Objectives
	5.3 Experimental subjects
	5.4 Procedure and metrics
	5.5 Effectiveness
	5.5.1 Results
	5.5.2 Statistical comparison
	5.5.3 An issue that is specific to the exoneration-based technique
	5.5.4 Issues common to all similarity-based and statistics-based techniques
	5.5.5 Issues specific to similarity-based techniques
	5.5.6 Issues specific to statistics-based techniques

	5.6 Efficiency
	5.6.1 Results
	5.6.2 Comparing SFL with manual debugging
	5.6.3 Analysis and discussion

	5.7 Threats to validity

	6 Related work
	7 Conclusion and future work
	 Acknowledgment
	 References

