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SUMMARY

Test data generation is one of the most technically challenging steps of testing soft-

ware, but most commercial systems currently incorporate very little automation for

this step. This paper presents results from a project that is trying to �nd ways to in-

corporate test data generation into practical test processes. The results include a new

procedure for automatically generating test data that incorporates ideas from sym-

bolic evaluation, constraint-based testing, and dynamic test data generation. It takes

an initial set of values for each input, and dynamically \pushes" the values through

the control-
ow graph of the program, modifying the sets of values as branches in the

program are taken. The result is usually a set of values for each input parameter that

has the property that any choice from the sets will cause the path to be traversed. This

procedure uses new analysis techniques, o�ers improvements over previous research

results in constraint-based testing, and combines several steps into one coherent pro-

cess. The dynamic nature of this procedure yields several bene�ts. Moving through

the control 
ow graph dynamically allows path constraints to be resolved immedi-

ately, which is more e�cient both in space and time, and more often successful than

constraint-based testing. This new procedure also incorporates an intelligent search

technique based on bisection. The dynamic nature of this procedure also allows certain

improvements to be made in the handling of arrays, loops, and expressions; language

features that are traditionally di�cult to handle in test data generation systems. The

paper presents the test data generation procedure, examples to explain the working

of the procedure, and results from a proof-of-concept implementation.
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INTRODUCTION

Software testing is an expensive and labor-intensive task. It has been estimated that software
testing accounts for up to 50% of software development [1, 2], and even more in safety-critical
systems. If most of software testing could be automated, the cost of software development could
be signi�cantly reduced. Because the entire input domain of the program (which in most cases is
e�ectively in�nite) cannot be exhaustively searched, formal coverage criteria are sometimes used to
decide what test inputs to use. Many test engineers and researchers believe that coverage criteria
make it more likely that the tester will �nd faults in the program and provide greater assurance
that the software is of high quality and reliability. Such criteria also provide rules for when to stop
as well as repeatability of the test process. Adequacy criteria are therefore de�ned for testers to
decide whether software has been adequately tested for a speci�c testing criterion [3].

In this paper, test requirements are speci�c software artifacts that must be satis�ed or covered.
As examples, reaching statements are the requirements for statement coverage, killing mutants are
requirements for mutation, and executing DU pairs are requirements in data 
ow testing [4]. A
testing criterion is a rule or collection of rules that impose requirements on a set of test cases2.
Test engineers measure the extent to which a criterion is satis�ed in terms of coverage, which is the
percent of requirements that are satis�ed.

One of the most di�cult and expensive technical problems of software testing is the actual
generation of test data values | which is traditionally done by hand. Test data generation is the
process of creating program inputs that satisfy some testing criterion. The problem of automatic
test data generation has been examined by a number of researchers. The general problem is
undecidable, thus research has focused on partial solutions and heuristics. Korel [5] gives a formal
description of the problem in terms of �nding inputs to execute a particular path in the program.
O�utt and DeMillo [6] described this problem in terms of killing a mutant. Test data generation
problems are normally based on some kind of adequacy criterion. Adequacy criteria are therefore
de�ned for testers to decide whether software has been adequately tested for a speci�c testing
criterion [3]. Test data generators can be categorized into three groups: structural-oriented test
data generators attempt to cover certain structural elements in the program [5, 6, 7, 8, 9, 10, 11, 12],
data speci�cation generators generate test data from a formal description of the input domain
[13, 14, 15], and random test data generators [16, 17, 18] create test data according to some
distribution of the inputs without satisfying any test criterion. Because the analysis of the software
is so complex, structural test data generators are intended to be used during unit testing. The
ideas that have been presented in the past have not come into general use because they were
not practical or cost-e�ective for real programs. This paper presents a new procedure for use in
structural-oriented generators. It attempts to generate test data for individual program units to
meet a testing criterion such as branch coverage, data
ow coverage, or mutation. The goal of this
research is to develop analysis methods that will be practical and cost-e�ective for real programs.

Structural-oriented test data generators typically use an abstract representation of the program
(such as a control 
ow graph) and some form of symbolic evaluation. Symbolic evaluation [19, 20, 21]
executes a program using symbolic values for variables instead of actual values. Symbolic evaluation
derives a path constraint (also called path condition), which is a constraint system that describes
conditions under which a path or set of paths is traversed. The path constraint must be satis�ed
for the path to be traversed; the path constraint is usually derived �rst, then an attempt is made to

2Note that this de�nition does not include all test criteria. For example, testing can be based on mean-time-to-
failure, which does not use test requirements or a coverage measure. Non-structural criteria are not considered in
this research.
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satisfy it. Although symbolic evaluation is a powerful analysis tool, it has several practical problems,
including aliasing, solving for indeterminate loops, and the size of the symbolic expressions.

Constraint-based test data generation
Previous work [6, 22] presented an approach to test data generation that uses control-
ow analysis,
symbolic evaluation, and information about mutants to automatically generate test data to satisfy
the mutation testing criterion [23, 24, 25]. This approach, called constraint-based testing (CBT),
uses a constraint satisfaction technique called domain reduction.

CBT su�ers from several shortcomings that prevent it from working in some situations and
hamper its applicability in practical situations. These include problems handling arrays, loops, and
nested expressions. Tools based on CBT (e.g., the Godzilla system [6]) occasionally fail to �nd test
cases, and for some programs fail a large percentage of the time. This is partly because of problems
with the technique, partly because of insu�ciently general approaches to handling expressions, and
partly because of unsophisticated search procedures.

Dynamic domain reduction test data generation
This paper presents a novel approach to test data generation, called the dynamic domain reduction
procedure, that addresses most of these problems. The dynamic domain reduction procedure (DDR)
is a new procedure that uses part of the CBT approach, and also draws from Korel's dynamic test
data generation approach [5, 26] and symbolic evaluation. It uses a direct \domain reduction"
method for deriving values, rather than function minimization methods as used by Korel [5, 11, 26]
or linear programming-like methods as used by Clarke [9]. Korel's dynamic method [26] executes
a program along one speci�c path by starting with a particular input. When a branching point
is reached, if the current inputs will cause the the appropriate branch to be taken, the inputs will
remain the same. If a di�erent branch is required, then the inputs are dynamically modi�ed to take
the correct branch using function minimization. Although the dynamic domain reduction process
presented here also works by choosing a speci�c path, there are no initial values, and the values
are derived in-process from initial input domains.

Note that this is not the same as dynamic symbolic evaluation [20, 27]. Dynamic symbolic
evaluation creates symbolic representations of results from executions on speci�c paths in a program.
Dynamic domain reduction creates sets of values that represent conditions under which a path will
be executed. Thus, the results of dynamic symbolic evaluation attempt to represent all possible
values that will execute a given path, while dynamic domain reduction only results in a small set
of possible values. While this is more limited, it is also more practical for real programs.

The solutions presented here allow the DDR procedure to succeed in many situations in which
others fail. Its dynamic nature, which combines analysis of the software with satisfaction of con-
straints and test data generation, allows better handling of arrays and expressions. DDR also in-
corporates a sophisticated back-tracking search procedure to partially solve a problem that caused
previous methods to fail. Unfortunately it is di�cult to compare the DDR procedure with other
techniques, because tools are not available for the few techniques that address this problem. Be-
cause of the historical basis, the DDR procedure will always work when CBT does, and also in
many cases when CBT does not.

The DDR procedure walks through the program control 
ow graph, generating test data along
the way. Each input variable is initially given a large set of potential values (its domain), and as
branches are taken in the control 
ow graph, the domains for the variables involved in the predicates
are reduced so that the appropriate predicates would be true for any assignment of values from the
domain. When choices for how to reduce the domains must be made, a search process is initiated
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and choices are systematically made to try to �nd a choice that allows the subsequent edges on
the path to be executed. When the procedure is �nished, the remaining values for the variables'
domains represent sets of test cases that will cause execution of the path. If any variable's domain
is empty, the search process failed, which indicates one of two things. One, the path is infeasible, so
no satisfying values could be found. Two, it was very di�cult to �nd values that execute the path.
This could be because the constraints were too complicated, or there are relatively few inputs that
will execute the path.

The next section introduces some background terminology and concepts, presents a formal
description of the test data generation problem, and describes the domain reduction procedure
used in CBT. The dynamic domain reduction procedure for generating test data is described under
A test data generation problem. A discussion of how arrays, loops, and expressions are handled
by the dynamic domain reduction is given under ARRAYS, LOOPS, AND EXPRESSIONS, and
results from a proof-of-concept test data generator are given under EVALUATION.

BACKGROUND

A basic block is a maximum sequence of program statements such that if any statement of the
block is executed, all statements in the block will be executed. Basic blocks contain only one entry
point and one exit point. A decision is a point in a program where control 
ow can diverge. IF, DO,
WHILE, GOTO and CASE statements are decision points. A junction is a point in the program where
control 
ows merge. For instance, the ENDIF of an IF statement is a junction.

A control 
ow graph (CFG) of a program is a directed graph that represents the control
structure of the program. Each node is either a basic block, a junction, or a decision node. The
edges represent potential control 
ow among nodes. A control path is a directed path from an
entry node to a terminal node of the CFG. A predicate is a boolean expression associated with
a decision node that determines which edge from the node will be traversed. A constraint is an
algebraic expression that restricts the space of program variables to certain domains. For example,
the constraint A > 0 describes the portion of the input domain where A is positive.

Paths can be represented by systems of constraints; one constraint for each predicate on the
control path. Although there can e�ectively be an in�nite number of paths in a program, one open-
ended constraint system (e.g., X > 0) can represent an in�nite number of paths by describing all
possible iterations of a loop. The predicates are initially expressed in terms of program variables;
since each of these program variables can be ultimately expressed in terms of the input variables
using assignment statements along the control path, it is possible to re-express the predicates as
constraints in terms of only the input variables.

If input data that satisfy the path constraint exist, the control path is also an execution path
and can be used to test the program. If the path constraint cannot be satis�ed, the control path is
said to be infeasible.

A test case is a set of input data that is used to evaluate the software. Test data generation
is the process of identifying a set of test data that satis�es a testing criterion. The domain of a
variable is the set of its possible values.

A constraint system is a hierarchical structure composed of expressions, constraints, and
clauses. An expression is composed of variables, parentheses, and programming language oper-
ators. Expressions are taken directly from the test program and derived from predicates within

4



decision statements and right-hand sides of assignment statements during symbolic evaluation. A
constraint is a pair of expressions related by one of the relational operators f>; <; =; �; �; 6=g.
Constraints evaluate to one of the binary values TRUE or FALSE and can be modi�ed by the nega-
tion operator NOT (:). A clause is a list of constraints connected by the two logical operators AND
(
V
) and OR (

W
). A conjunctive clause uses only the logical AND and a disjunctive clause uses only

the logical OR. A constraint system is considered to be a constraint or clause that represents one
complete test case. In this work, all constraint systems are kept in disjunctive normal form (DNF),
a list of conjunctive clauses connected by logical ORs.

A test data generation problem
This paper presents the test data generation problem in terms of reaching a particular node using
an arbitrary path. Executing a particular path is a special case of this presentation, and it is easily
extended to incorporate testing criteria such as data 
ow and mutation. Thus this paper treats
this problem in a very general way. Automatic test data generation tools work by searching for
values that satisfy individual test requirements for some criterion.

Let ng be a node in the CFG of a program P with input domain D; ng is called the goal node.
The test data generation problem is: �nd a program input t 2 D such that when P is executed
on t, ng will be reached. To express the speci�c path version of this problem, for a given path
p =< n1; n2; :::; ng >, t must cause that path to be executed. For mutation testing, the goal node
ng contains the statement that is mutated, and the additional requirement is imposed that after
ng is executed, the necessity condition must be true [6]. The necessity condition is the condition
that expresses what is necessary for a test case to kill the mutant. The test data generation
problem statement can also be extended to include data 
ow testing criteria. For example, the
all-uses data 
ow criterion [3] requires that each de�nition of a variable reach all possible uses
of that variable. Thus, the goal node ng in the test data generation problem becomes the node
that contains a de�nition of the variable x, and the requirement is added that after ng is reached,
the node containing the use of x (nu) must also be reached, with the further restriction that the
subpath from ng to nu must not contain another de�nition of x.

It should be noted that the test data generation problem is formally unsolvable. If we consider
the goal node to be a terminating statement, then this is a modi�ed version of the halting problem.
Nonetheless, this is a situation where partial solutions can be valuable to practicing engineers.

The CBT satisfaction procedure
Constraint-based testing was designed [6, 22] as a technique to develop test data for mutation
testing. CBT works by developing constraints to represent conditions under which mutants will be
killed, then solves those constraints to yield test case values.

The CBT approach uses four separate procedures to generate tests; one for constraints that
represent conditions under which a particular statement will be reached (reachability constraints),
another for constraints that represent conditions under which a mutant will be killed (necessity
constraints), a third that applies symbolic evaluation to rewrite the constraint systems to be in
terms of input variables, and a fourth to �nd test case input values that will satisfy the constraints
(constraint satisfaction). These procedures are described in detail elsewhere [6, 28] and have been
implemented in the test data generation tool Godzilla [25].

The constraint satisfaction procedure used by Godzilla is known as domain reduction [28] and
is based on the topological sort algorithm. The domain reduction procedure uses local information
in the constraint systems to �nd values for variables, then uses back-substitution to simplify the
remaining constraints in the constraint system. Initially, each variable is given a domain of values.
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This domain can be supplied by the tester or derived automatically from speci�cations or precon-
ditions. Each individual constraint is viewed as a statement that reduces the domain of values for
the variable(s) in the constraint. Constraints of the form x < c, where x is a variable, c a constant
and < a relational operator, are ground terms and are used to reduce the current domain of values
for x. Constraints of the form x < y, where both x and y are variables, are used to reduce the
domain of values for both x and y. More complicated constraints, where one or both sides are
expressions, are simpli�ed by back-substitution when values are selected.

When no additional simpli�cation can be done, a heuristic is employed to choose a value for
one of the remaining variables in the constraints. The variable chosen is the variable with the
smallest current domain. The value for this variable is chosen arbitrarily from its current domain
of values and is then back-substituted into the remaining constraints. This process is repeated until
all variables have been assigned a value. The expectation is that by choosing a variable with the
smallest current domain size, there is less chance of making a mistake (that is, choosing a value
that will cause a solvable constraint system to become unsolvable).

Each time a variable is assigned a value, the input space for the program is reduced by one
dimension. As the number of dimensions is reduced, the constraints in the system become progres-
sively simpler. Another way to state this is that each variable assignment implicitly introduces a
new constraint into the system of the form (x = c), where c is a constant. If chosen poorly, the
constraint system may no longer be feasible, and the procedure will have to make a new choice.
The underlying assumption is that because of the simple form of the test case constraints, these
dimension-reducing constraints will rarely make the region infeasible. Experience with Godzilla
[6, 22] has shown this assumption to be valid for most cases, although how often depends on many
factors that are speci�c to the program being analyzed. When a constraint system becomes infea-
sible because of a value chosen for a variable, CBT employs a very simple search procedure; a new
value is chosen for the same variable and the system is re-evaluated.

Weaknesses of the CBT domain reduction procedure
The domain reduction constraint satisfaction procedure used in constraint-based testing has �ve
general problems. First, it requires the entire constraint system to be present before satisfaction
starts. The constraint systems are often large and use a lot of memory, and the design of the
symbolic evaluation and satisfaction software causes the constraint system to be copied many
times, imposing great memory demands on the system. This is a major limiting factor in terms of
the size of the programs that the Godzilla system can handle. An underlying cause of the problem
is the static nature of the algorithms | all of the constraints have to be computed before they
are analyzed. Second, since the domain reduction procedure randomly guesses values in its search
procedure, the search procedure is poorly organized and some values may be chosen more than
once. A third problem is that the domain reduction procedure has very simple expression handling
mechanisms. The general problem of �nding values for variables that will give the expression
a speci�c result has not been addressed in the literature. Most real world programs have more
complicated expressions, which the domain reduction procedure has to either skip or simplify into
a format that can be handled. This limits the scope of the programs that can be tested by the
procedure. Fourth, the domain reduction procedure has great di�culty with loops. Constraints are
generated to represent weakest preconditions going into and out of loops, but when the details of a
loop's execution a�ects the constraint systems, the symbolic information from the loop's execution
is lost. Finally, the domain reduction procedure views an array as one variable, and does not
di�erentiate values between individual elements in the array. This impacts the power of the test
data generation process on programs that make heavy use of arrays. Other types of aliasing are
not handled at all.
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THE DYNAMIC DOMAIN REDUCTION PROCEDURE

The dynamic domain constraint satisfaction procedure represents an advance over the static
domain procedure, by addressing the �ve problems discussed under Weaknesses of the CBT
domain reduction procedure. It uses constraints derived from the test program to progressively
reduce domains of variables until test data that satisfy these constraints are found. This method
�nds values by walking through the control 
ow graph, using one predicate at a time and reducing
domains of variables step by step.

The DDR procedure introduces several new techniques. First, it uses dynamic analysis. Static
analysis techniques analyze the software without any execution; the analysis is obtained strictly
from the source code. Dynamic analysis techniques rely on some sort of execution of the soft-
ware. In general, dynamic analysis techniques are more expensive, but are also able to provide
more information. The DDR procedure applies a kind of slicing technique [29, 30] by looking at
speci�c execution paths through the program. These paths are not fully executed, but executed
symbolically.

The second technique new to this paper is domain-based symbolic execution. This is di�erent
from traditional symbolic execution techniques [27, 31], which tried to compute a symbolic repre-
sentation of the output. Domain-based symbolic execution works in the other direction; it starts
with a symbolic representation of the input and walks through the program, modifying the inputs
so that they conform to the path that is taken. This is based on variable input domains, which
represent a possible set of values. Initially, a domain for an input variable contains all possible
values for the variable. Theoretically, this may be in�nite for numeric variables; in reality, the
domain is limited by the computer's word size. In its simplest form, a domain is represented by an
upper and lower bound (for example, MININT and MAXINT). As a path is symbolically executed,
the domains are reduced to re
ect decisions and computations; the new domains represent values
under which the current path will be taken. The initial upper and lower values for a variable may
be MININT and MAXINT, or the domain may be restricted based on program input speci�cations
or the test engineer's knowledge.

Of course, the values under which a particular path will be taken cannot be precisely deter-
mined. The set of values will either contain some values that will not execute the path, the set
will not contain some values that will execute the path, or both. The approach taken is to be
conservative, that is, we prefer to have values such that the path will be taken for every value, even
though there are some values that will execute the path that will not be included. The third new
technique is introduced to handle situations when important values that will execute a path are
not included. When the procedure makes choices for values to exclude, the choices may lead to
situations where later constraints cause domains to become empty, and values cannot be generated.
When this happens, a backtrack search process is used to make di�erent choices.

The fourth new technique is introduced to handle complicated expressions. Expressions are
always di�cult for test case generators to handle, and previous automatic test data generation
tools have either ignored expressions or solved for expressions by generating values randomly. The
essential problem is, given an expression and a value, to �nd a set of values for the variables in the
expression such that when evaluated, the expression has the required value. This paper introduces
a domain-symbolic expression handling technique that does two things. First, it takes domains for
values at the leaves of an expression tree and propagates those domains up through the operations
to derive a domain for the entire expression. Second, it takes a (modi�ed) domain for an expression
and propagates the domain down through the operations to derive domains for the base variables
that are consistent with the domain for the entire expression.
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Before applying the dynamic domain procedure, the predicates and constraints in the test
program must be put into the following forms: (1) predicates must be in disjunctive normal form,
and (2) constraints and expressions are put in a canonical form where constants are always on the
right.

Overview of the dynamic domain constraint satisfaction procedure
The dynamic domain procedure is quite di�cult to clearly describe. We proceed by �rst giving
a high level overview of the procedure, followed by a small illustrative example, then a detailed
description that uses a textual description of a 
owchart. Finally, several more examples are given
to illustrate some of the subtle aspects of the algorithm.

DDR starts with several pieces of information about the test procedure: a control 
ow graph
(CFG), two nodes representing the initial and goal nodes, and initial domains for all input variables.
The �rst step is that a �nite set of paths from the initial to the goal node is determined. Then each
path is analyzed in turn. The path is traversed, and symbolic evaluation is used to progressively
reduce the domains of values for the input variables. When choices must be made that do not
directly re
ect the symbolic evaluation, a search process is used to split the domain of some variable
in an attempt to �nd a set of values that allow the constraints to be satis�ed. The procedure
proceeds until the goal node is reached and all input variables have current domains that can still
be evaluated, or all paths have been unsuccessfully searched.

Example 1
Assume a program function mid (x, y, z) that determines the middle value of three integers. A
C version of the function and its control 
ow graph are shown in Figure 1. The predicates are shown
on their associated edges, and the assignment statements are shown beside the nodes. Assume that
the initial domains of input variables x, y and z are given as follows:

x: < -10 .. 10 >
y: < -10 .. 10 >
z: < -10 .. 10 >

Assume that the goal node Ng is node 10, the exit node. To generate test cases for Ng, a
control path in the CFG needs to be selected. If path 1-2-3-5-10 (shown in dashed lines) is chosen,
then three predicates are encountered on edges 1-2, 2-3 and 3-5.

The procedure starts on node 1. Since node 1 is a decision node, the predicate on edge 1-2 (y
< z) is used to reduce the domains for y and z. The domains for x and y are split at 0 (0 is called
the \split point"), leaving the domain for y to be < -10 .. 0 > and for z to be < 1 .. 10 >. This
is interpreted to mean that all possible values of y are less than all possible values of z. Thus, this
represents a portion of the input space that will take this branch. Note that this also eliminates
part of the valid input space. The best way to understand this is graphically. Figure 2 shows the
valid values for the original domains and the constraint (y < z) on the left, and the regions with a
split point of 0, then of -5, to the right.

After traversing edge 1-2, the decision node 2 is reached. The predicate on edge 2-3 is (x � y)
and is used to reduce the domains for variables x and y. The split point is chosen to be -5, leaving
the domain for x to be < -5 .. 0 > and for y to be < -10 .. -5 >. That is, all possible values for x
are greater than or equal to all possible values for y.

Next, edge 3-5 is traversed, and the constraint (x < z) is used to reduce the domains for x and
z. The split point chosen is 2, leaving the domain for x to be < -5 .. 2 > and for z to be < 3 ..
10 >. That is, all possible values for x are less than all possible values for z. The domains of each
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int mid (x, y, z)
int x, y, z;

f
int mid;

mid = z;

if (y < z)

f
if (x < y)

mid = y;

else if (x < z)

mid = x;

g
else

f
if (x > y)

mid = y;

else if (x > z)

mid = x;

g
return (mid);

g

mid = z

y < zy >= z

x < yx >= y

mid = ymid = y

x > z

mid = x

x < z

mid = x

Return(mid)

1

2

3

5

6

7 8

9

x > y
x <= y

10

4

Figure 1: Function Mid and its Control Flow Graph

y

z

−10 10

10

−10

y < z

Graphical view of domain
with (y < z) region highlighted.

y

z

−10 10

10

−10

y < z

y

z

−10 10

10

−10

y < z

−5

−5

Graphical view of domain
if split point −5 is chosen.

Graphical view of domain
if split point 0 is chosen.

Figure 2: Graphical View of Domains Before and After Splitting
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input variable after each constraint has been used are as follows:

x y z
1. Start: < -10 .. 10 > < -10 .. 10 > < -10 .. 10 >
2. y < z: < -10 .. 10 > < -10 .. 0 > < 1 .. 10 >
3. x � y: < -5 .. 10 > < -10 .. -5 > < 0 .. 10 >
4. x < z: < -5 .. 2 > < -10 .. -5 > < 3 .. 10 >

After all constraints have been used, a test case is chosen arbitrarily from within the input
domains. For example, one valid test case is (x=0, y=-10, and z=8). In some cases, a poor
split point may be chosen and a later predicate cannot be satis�ed. When this happens, the
backtracking search procedure is used to choose a di�erent split point. This is elaborated in the
detailed discussion below and illustrated in Example 2.

Detailed description of the procedure
Figure 3 shows the overall 
ow of operations within the dynamic domain reduction procedure. In
the diagram, bubbles represent inputs to and outputs from the procedure, rectangles represent
process steps, and diamonds represent branches in the execution. Three inputs are needed: the
initial value domains of the input variables; the control 
ow graph of the program; and the starting
node N1 and goal node Ng.

FindPath selects a set of paths P from N1 to Ng. Which paths, how many, and how the paths
are chosen depends on the testing criterion being applied. A path-coverage testing technique might
choose a single, complete path. If a data 
ow criterion is used, Ng will be a node that contains a
def, and any path from N1 to Ng can be selected. In this case, FindPath will return a �nite set of
paths. There may be loops, so FindPath is expected to select from among the theoretically in�nite
number of paths represented by the loops.

The IsPEempty? decision checks whether all paths in the path set P have been searched. If all
paths in P have been checked and test data have not been found, the procedure fails; either there
is no feasible path from N1 to Ng or a test case that will execute a feasible path is too di�cult to
�nd. The SelectOnePath procedure selects a current subpath Pi to traverse, and removes it from
the path set P so that it will not be chosen again.

The rest of the procedure walks through the CFG along Pi, attempting to �nd a test case that
will execute it. If the current node is a decision node (IsNodeADecision?) then the constraint
associated with the appropriate outgoing branch is used to reduce the corresponding variable do-
mains. If the current node is not a decision node, then the statements associated with this node
are symbolically evaluated, which also may modify the variable domains.

ReduceDomains is the key step in the dynamic domain reduction procedure. The predicates
(from the yes branch from IsNodeADecision? in Figure 3) or information from symbolic evaluation
(from the no branch) is used to form new constraints. These constraints are then used to update
the current domains for all variables that appear in the constraints.

When a constraint of the form x < y is encountered, it cannot be fully determined how to
reduce the value domains for x and y. For example, suppose the domains for x and y are both
(1 :: 100) and the constraint x > y is encountered. CBT would have chosen an arbitrary value
from within the domain for one of the variables, then adjusted the domain of the other variables
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Figure 3: The Dynamic Domain Reduction Procedure
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accordingly. So if the value for x was chosen to be 25, the domain for y would become (0 :: 24).
In DDR, this situation spawns a search procedure using GetSplit. GetSplit is a novel algorithm
that modi�es the domains for two variables in a constraint so that (1) the new domains satisfy the
constraint, and (2) the size of the two domains are balanced. So in the x > y example, the �rst
attempt would be to make the domain for x to be (51 :: 100), and for y, (0 :: 50).

GetSplit, shown in Figure 4, encodes the major heuristics for selecting test case values and
is the key to the searching process. When two variables or expressions have a relation de�ned by a
constraint, there are two cases, de�ned by the relationships between the two variables' domains. If
the two domains de�ne non-intersecting sets of values, then the constraint is already either satis�ed,
or is infeasible. If the two domains de�ne sets of values that intersect, then some of the values can
satisfy the constraint, and some cannot. The purpose of GetSplit is to modify the two domains
such that the constraint is satis�ed for all pairs of values from the two domains.

GetSplit accepts two domains and a searching index, and �nds new domains such that the
constraint will be true for all values in the new domains. Initially, a value in the two domains is
chosen to be a point at which the two domains are split. This split point is chosen such that the
two domains are non-intersecting, and each domain is reduced by approximately the same amount.
Sometimes a split point may be chosen that is invalid in the sense that the resulting domains
are incompatible with constraints that are derived later. If the split that is chosen causes a later
constraint to be infeasible, GetSplit is used to search for a better split. During the search process,
the split point is successively reevaluated using bisection | the split point is moved halfway in one
direction, then the other, and so on until (1) the choice succeeds in allowing a test case to be found,
(2) all choices have been exhausted, or (3) a predetermined constant number of choices have been
made (to avoid an in�nite search).

The inputs to GetSplit are domains for two expressions (LeftDom and RightDom) and an
integer that indicates what iteration of the search is being performed (SrchIndx = 1, 2, 3, ...).
Each expression has a domain for the left side of the expression (LeftDom.Bot .. LeftDom.Top) and
a domain for the right side (RightDom.Bot .. RightDom.Top). A split point is found based on the
given domains, and returned to the caller to reduce the domains. The algorithm uses four cases
that depend on the relationships between LeftDom and RightDom.

The four cases are presented algorithmically in Figure 4, but are perhaps clearer pictorially.
Figure 5 shows the same four cases, in the same order they appear in the GetSplit algorithm.
In the �rst case, the domain of the left expression is wholly contained in the domain of the right
expression, and in the second case, the right expression is wholly contained in the left. In the last
two cases, the domains overlap, but neither is contained in the other. Note that if the two domains
do not overlap, GetSplit is not needed.

For example, LeftDom = (-20 .. 20), RightDom = (-40 .. 30), and SrchIndx = 1 satis�es the
�rst case where (RightDom.Bot < LeftDom.Bot) and (RightDom.Top > LeftDom.Top). So SrchPt =
1/2, and SplitPoint = (LeftDom.Top - LeftDom.Bot)*srchPt + LeftDom.Bot = (20 - (-20))/2 +
(-20) = 0. Thus, the domains would be changed to be: LeftDom = (-20 .. -1) and RightDom = (0 ..
30) (assuming integer arithmetic). On the other hand, if SrchIndx = 5, then SrchPt = 3/8, and
SplitPoint = (20 - (-20)) * (3/8) + (-20) = -5. This would cause the domains to be changed to
be: LeftDom = (-20 .. -6) and RightDom = (-5 .. 30).

After the domains have been reduced by the ReduceDomains algorithm, the status of the
domains are reevaluated. If the new domain values satisfy the predicate, the procedure either goes
to the next node, or if the current node is the goal node, the procedure is �nished. If there are
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algorithm GetSplit (LeftDom, RightDom, SrchIndx)

precondition LeftDom and RightDom are initialized appropriately

and SrchIndx is one more than the last time GetSplit was called

with these domains for this expression.

postcondition split value >= (LeftDom.Bot AND RightDom.Bot) and

split value <= (LeftDom.Top AND RightDom.Top)

input LeftDom: left expr's domain with Bot and Top values

RightDom: right expr's domain with Bot and Top values

output split -- a value that divides a domain of values into two subdomains.

BEGIN
-- Compute the current search point.

-- srchPt = (1/2, 1/4, 3/4, 1/8, 3/8, ...)

Choose exp such that 2exp <= SrchIndx <= 2exp + 1
srchPt = (2exp � (2 � (2exp � 1)� 1))=2exp

-- Try to equally split the left and right expression's domains.

IF (LeftDom.Bot >= RightDom.Bot AND LeftDom.Top <= RightDom.Top)

split = (LeftDom.Top - LeftDom.Bot)*srchPt + LeftDom.Bot

ELSE IF (LeftDom.Bot <= RightDom.Bot AND LeftDom.Top >= RightDom.Top)

split = (RightDom.Top - RightDom.Bot)*srchPt + RightDom.Bot

ELSE IF (LeftDom.Bot >= RightDom.Bot AND LeftDom.Top >= RightDom.Top)

split = (RightDom.Top - LeftDom.Bot)*srchPt + LeftDom.Bot

ELSE -- LeftDom.Bot <= RightDom.Bot AND LeftDom.Top <= RightDom.Top

split = (LeftDom.Top - RightDom.Bot)*srchPt + RightDom.Bot

END IF
RETURN split

END GetSplit

Figure 4: The GetSplit Algorithm { Computes the Next Search Point For the Two

Input Domains.
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Figure 5: Cases for the GetSplit Algorithm

any variables left with domains containing more than one value, it is certain that any value from
within the domain will satisfy the test requirement, and a value can be chosen arbitrarily.

If the new domain values do not satisfy the constraint (Do current domains satisfy the
constraints?), the search process is triggered. The procedure goes back to the most recent decision
node in Pi (Is there a previous decision node in Pi?) and tries to satisfy the predicate
again using a di�erent split point. If there have been too many attempts to �nd a feasible split point
at the most recent decision node (more than K split attempts with GetSplit?), the procedure
goes to the previous decision node in the CFG (K is a prede�ned constant). If there are no previous
decision nodes to evaluate, the procedure gives up on this path and goes to the next path in P.

The next two subsections present two examples that illustrate the operation of the dynamic
domain reduction procedure. The examples are chosen to be small enough to �t within a paper, but
the procedure works on arbitrary predicates. The �rst shows how the dynamic domain constraint
satisfaction procedure is used to successfully reduce the input domains and to generate test data.
The second illustrates a case when the reduced domain does not satisfy later constraints, so the
domains have to be re-chosen at a previous decision node. Neither of these examples contain loops
or arrays; this discussion is deferred until later.

Example 2
The function Value in Figure 6 takes three integer inputs A, B, and C, and returns an integer, V.
Assume that the path 1-2-4-6-8 (shown in dashed lines) is selected and the initial domains of the
input variables are:

A: < 0 .. 20 >
B: < 10 .. 40 >
C: < 0 .. 100 >

Node 1 is a decision node and branch 1-2 has the predicate (A < B). The split point chosen is
15, leaving the domain for A to be < 0 .. 14 > and for B to be < 15 .. 40 >. This forces all possible
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int Value (A, B, C)
int A, B, C;
f

int V;
V = 0;
if (A < B)
f

C = 16 ;
if (A < C)

V = A + 30 ;
else

V = A;
g
else
f

C = 30 ;
V = C + B + A ;

g
return (V);

g

1

2 3

5

6 7

8

V=0

A<B
A>=B

C=30

A<C

V=A+B+C

V=A V=A+30

Return(V)

A>=C

C=16

4

Figure 6: Function Value and its Control Flow Graph

values for A to be less than all possible values for B. Node 2 is a basic block node containing the
assignment C = 16, therefore the variable C is given a value 16, and its domain is modi�ed to be
< 16 .. 16 >. That is, C's domain now contains only one value.

The next node, 4, is a decision node, and the branch 4-6 is to be traversed. The constraint
associated with this branch is (A � C). Unfortunately, the domain for A is currently < 0 .. 14 >,
so A cannot be greater than or equal to C, and the branch is currently infeasible. This means that
the split point chosen at the previous decision node 1 was a poor choice, and another split point
must be calculated.

The domains for A, B, and C are reset to their initial values, and the procedure returns to
node 1. This time, the split point for the constraint (A < B) is chosen to be 12, leaving the domain
for A to be < 0 .. 12 > and for B to be < 13 .. 40 >. Again, A cannot be greater than or equal to
C, so the procedure returns to node 1.

The third time, the split point for the constraint (A < B) is chosen to be 17, leaving the
domain for A to be < 0 .. 17 > and for B to be < 18 .. 40 >. These domains allow the constraint
(A > C) to be satis�ed when the edge 4-6 is reached. The split point for (A > C) is 16, A's domain
becomes < 17 .. 17 >, and C's domain remains < 16 .. 16 >. The value for B can be generated
by arbitrarily choosing data from its domain. Thus, a test case such as (A=17, B=25, C=16) will
execute the path 1-2-4-6-8.

ARRAYS, LOOPS, AND EXPRESSIONS

Arrays and loops are language features that are traditionally di�cult to handle in test data
generation systems. They have an inherently dynamic nature, and thus are di�cult to resolve

15



using purely static analysis. Most testing systems (such as Godzilla [6], Atac [32], and Asset
[33, 3]) have to make simpli�cations for arrays, usually by treating a reference to any element as a
reference to all elements in the array. Pointers are often treated in a similar way | references are
either not resolved and the objects of the pointers are ignored, or a reference through a pointer is
considered to be a reference to the entire object. The problems with arrays and pointers are really
problems with aliasing and dynamic reference resolution. Aliasing refers to the situation when
two names refer to the same address location. Dynamic reference resolution refers to the situation
when the address location of a reference cannot be determined statically. If the references can be
resolved, aliasing is a much simpler problem to handle, but if the names cannot be resolved, it is
impossible to deterministically recognize aliasing.

Loops and arrays
Loops are often either ignored or simpli�ed. For example, Godzilla handles loops by only consid-
ering entry and exit conditions; the number of iterations of the loop is ignored. Although these
simpli�cations work well in many cases, they obviously do not always work. A major innovation of
this research is that it employs a partially dynamic procedure to facilitate handling of arrays and
loops.

The dynamic domain reduction procedure allows references to be fully resolved during ex-
ecution. Each element in an array can then be treated as a distinct variable. To do this, the
index of an array is used as an expression, and then used to di�erentiate each element of the array
and perform domain reduction on these elements the same way as the other variables. Pointers
are also handled as variables when we read pointers as expressions and �nd their corresponding
domains. Although the dynamic procedure allows references to be resolved deterministically, this
entails making decisions about pointer de-referencing and array indexing.

The dynamic domain reduction procedure handles loops in a novel way. Most existing tech-
niques handle loops by discovering all possible paths from the given start node to the goal node. If
there is a loop structure in the control 
ow graph, the loops must be unrolled and the number of
paths between these two nodes is potentially in�nite. Therefore, constraints on the decision nodes
and control variables of the loop structures need to be checked and updated to decide which path
to take. This method is obviously not e�cient because among all the possible paths found, many
do not satisfy the loop constraint and have to be thrown away.

In the dynamic domain reduction procedure, loops are handled dynamically. Instead of �nding
all possible paths, the procedure �nds all the paths that contain at most one loop structure. It then
marks those decision nodes that a�ect whether another iteration of the loop is made. Then as the
path is traversed, when the decision node is encountered, the loop constraint and control variables
are checked dynamically to decide whether to continue with another iteration or to exit the loop.
If the control variable satis�es the constraint, another iteration is carried out and the loop control
variable is updated, otherwise the procedure exits the loop and continues traversing the path on
the node after the loop. This eliminates the need for loop unrolling, which allows more realistic
programs to be handled.

Example 3
As an example, consider the program function BSearch shown in Figure 7. The predicates are
shown on their associated edges, and the assignment statements are shown by the nodes. Assume
that the initial domains of input variables N and A are:

N: < -10 .. 10 >
A[i]: < -10 .. 10 > 8i; 1 � i � Len(A)
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int BSearch (A, N)
int N, A();

f
int i;

for i = 1 to Len (A)

f
if (N == A(i))

return (i);

endif;

g
return (-1);

g

i > Len(A)i <= Len(A)

i = i+1Return(i) Return(−1)

N == A(i)

1

2

3

4 5 6

i = 1

N !=
A(i)

Figure 7: Function BSearch and its Control Flow Graph

Assume that the goal path is: 1-2-3-5-2-3-5-2-3-4. The subpath of 1-2-3 introduces no change
to the input variables, and the value of i is 1. To take the branch from node 3 to 5, the predicate
N 6= A(i) must be true. i is 1, therefore the �rst element of A is changed using GetSplit:

A(1) 6= N =) A(1): < -10 .. 0 >
N: < 1 .. 10 >

The next time through the loop, we have the same predicate, but i is 2, thus:

A(2) 6= N =) A(2): < -10 .. 4 >
N: < 5 .. 10 >

The �nal time through the loop, the branch from 3 to 4 is taken, thus the predicate N = A(i)
must be true. i is 3, thus:

A(3) = N =) A(3): < 5 .. 10 >
N: < 5 .. 10 >

with the additional notation that A(3) and N are now \aliased", that is their domains should be
exactly the same. This means that if one is later changed, the other will also be changed, and when
actual values are chosen at the end, the same values will be chosen for both variables.

At this point, the dynamic part of the procedure is �nished, and values can be chosen arbitrarily
from the remaining domain. The dynamic nature of this procedure allows each element of an array
to be viewed separately, and which element is being referred to is decided deterministically.
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Expressions
Expressions are notoriously di�cult to handle during symbolic evaluation, and even harder during
test case generation. In fact, we have not been able to �nd a published description of a method
that successfully �nds values to satisfy complicated expressions. The essential problem is, given
an expression and a value, to �nd a set of values for the variables in the expression such that
when evaluated, the expression has the required value. In e�ect, we want to \de-evaluate" the
expression. Previous research papers in automatic test data generation have either not discussed
how the problem is solved or solved it by repeatedly generating random values until the expression
yields the correct value. This method is slow and often fails.

The ExprDomain algorithm, shown in Figure 8, works with the Update algorithm in Figure
9 to address this problem. ExprDomain accepts an expression to evaluate and a Domain Data
Store (DDS), which stores domains for variables and expressions. ExprDomain uses the domains
to symbolically evaluate the expression. Update attempts to \de-evaluate" an expression, so that
the value of the expression is consistent with a given domain. The problem is somewhat relaxed
because of the dynamic nature of the DDR procedure. Speci�cally, we do not need to �nd variable
value assignments for a speci�c value, rather, we need variable value assignments that are consistent
with the domain of values needed by the expression. In addition, the values must be consistent
with the current domains of the variables involved in the expression.

Since expressions are de�ned recursively, ExprDomain runs recursively until domains for each
variable are found. ExprDomain proceeds by determining the domains of the variables and constants
at the leaves of the expression and then propagating these domains up by applying the operations.
When changes are necessitated by decisions made when evaluating the constraints, Update is called
after ExprDomain to propagate the changes back down to the leaves of the expressions. An expres-
sion could be an algebraic expression containing several variables, or it could be a single variable
or constant. The process will be the same except that the domains for algebraic expressions need
expression evaluation techniques.

Example 4
As an example of expression handling, assume the following expression and associated domains:

A + B
A: < 0 .. 20 >
B: < 10 .. 50 >

The \WHEN EXPRESSION" case is taken in Figure 8, with L = A, R = B, and aop = '+'. When
ExprDomain is called recursively within the WHEN "+" case, exprdom.Top is assigned A.Top +
B.Top = 20 + 50 = 70, and exprdom.Bot is assigned A.Bot + B.Bot = 0 + 10 = 10. Thus,
ExprDomain returns the domain < 10 .. 70 >.

Now let us consider a more complicated expression:
(A + B) * (C - D)
A: < 0 .. 20 >
B: < -50 .. 50 >
C: < 10 .. 50 >
D: < 30 .. 100 >

When ExprDomain is called, the \WHEN EXPRESSION" case is taken, with L = A + B, R = C -
D, and aop = '*'. The WHEN "*" case checks all four combinations of L.Bot*R.Bot, L.Bot*R.Top,
L.Top*R.Bot, and L.Top*R.Top, and uses the maximum of the four for the top, and the minimum
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algorithm ExprDomain (Expr, TmpDDS) : Domain

precondition The variable's domains exist.

postcondition The output exprdom is feasible, that is, exprdom.Top >= exprdom.Bot.

input Expr: an expression

TmpDDS: Domain Data Store

output exprdom: an expression domain with Bot and Top values as bounds

declare L: left side of Expr

R: right side of Expr

aop: arithmetic operator in Expr

tmpBot, tmpTop: var to temporarily hold Bot and Top values

BEGIN

CASE (Expr)

WHEN CONSTANT:

exprdom.Bot = exprdom.Top = constant

RETURN exprdom

WHEN (VARIABLE)

exprdom.Top = Topn in this var's domain in DDS

exprdom.Bot = Bot1 in this var's domain in DDS

RETURN exprdom

WHEN (EXPRESSION)

L = GetLExpr (Expr)

R = GetRExpr (Expr)

aop = GetAop (Expr)

CASE (aop)

WHEN "+":

exprdom.Top = ExprDomain (L, TmpDDS).Top + ExprDomain (R, TmpDDS ).Top

exprdom.Bot = ExprDomain (L, TmpDDS).Bot + ExprDomain (R, TmpDDS ).Bot

WHEN "-":

exprdom.Top = ExprDomain (L, TmpDDS).Top - ExprDomain (R, TmpDDS ).Bot

exprdom.Bot = ExprDomain (L, TmpDDS).Bot - ExprDomain (R, TmpDDS ).Top

WHEN "*": -- Must check all 4 combinations because of negative numbers.

exprdom.Top = MAX (ExprDomain (L, TmpDDS).Bot * ExprDomain (R, TmpDDS).Bot,

ExprDomain (L, TmpDDS).Bot * ExprDomain (R, TmpDDS).Top,

ExprDomain (L, TmpDDS).Top * ExprDomain (R, TmpDDS).Bot,

ExprDomain (L, TmpDDS).Top * ExprDomain (R, TmpDDS).Top)

exprdom.Bot = MIN (ExprDomain (L, TmpDDS).Bot * ExprDomain (R, TmpDDS).Bot,

ExprDomain (L, TmpDDS).Bot * ExprDomain (R, TmpDDS).Top,

ExprDomain (L, TmpDDS).Top * ExprDomain (R, TmpDDS).Bot,

ExprDomain (L, TmpDDS).Top * ExprDomain (R, TmpDDS).Top)

WHEN "/":

tmpTop = ExprDomain (R, TmpDDS).Top

tmpBot = ExprDomain (R, TmpDDS).Bot

IF (tmpTop == 0) -- Avoid division by zero.

tmpTop = -1

END IF

IF (tmpBot == 0)

tmpBot == 1

END IF

exprdom.Top = ExprDomain (L, TmpDDS).Top / tmpBot

exprdom.Bot = ExprDomain (L, TmpDDS).Bot / tmpTop

END CASE

IF (exprdom.Top < exprdom.Bot)

exprdom = Flip (TmpDDS, Expr, exprdom)

END IF

Add (TmpDDS, Expr, exprdom)

RETURN exprdom

END CASE

END ExprDomain

Figure 8: The ExprDomain Algorithm { Finds a Possible Domain For an Expression.
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of the four for the bottom. This case analysis is required to handle negative values3.

For the A + B expression, the domain < -50 .. 70 > is returned. The right side expression
illustrates the Flip procedure. When ExprDomain is called on C - D, the domain < -20 .. -50 >
is initially computed. Because the top is now less than the bottom, Flip is called to make this
domain < -50 .. -20 >.

After the left and right side expressions are computed, exprdom.Top = MAX (2500, 1000,
-3500, -1400) = 2500, and exprdom.Bot = MIN (2500, 1000, -3500, -1400) = -3500. Thus,
ExprDomain returns the domain < -3500 .. 2500 >.

Downward propagation of expression domains
Update is used to propagate changes to an expression's domain back down the expression tree to
the variables. It is a recursive procedure that attempts to \balance" changes to a domain between
the two sides of the expression. Not all of Update is shown; for brevity, only the part that relates to
expressions is included in this paper. Full details are available in the technical report [34]. Update
implements an inherently nondeterministic procedure; that is, for a given expression and domain,
there are many left and right domains that could result in the domain. Its decisions are designed
to mirror ExprDomain by being as close as possible to an inverse function.

Example 5
As an example of the Update procedure, assume that the �nal domain from example 4, < -
3500 .. 2500 >, was changed to < -500 .. 500 >. When Update is called, Bot < 0 and Top
� 0, so the third branch in the \*" case is taken. ldomain.Bot = -SquareRoot (Abs (Bot))
= -22.3, ldomain.Top = MIN (FLOOR (SquareRoot (Abs (Bot))), FLOOR (Top / SquareRoot
(Abs (Bot)))) = 22.3, rdomain.Bot = - MIN (FLOOR (SquareRoot (Abs (Bot))), FLOOR (Top
/ SquareRoot (Abs (Bot)))) = -22.3, and rdomain.Top = SquareRoot (Abs (Bot)) = 22.3.
So the new domains are < -22 .. 22 > for both A + B and C - D.

Then Update is called recursively for A + B with the domains < -22 .. 22 >. This results in
the domains A: < -11 .. 11 > and B: < -11 .. 11 >. Update is also called recursively for C
- D with the domains < -22 .. 22 >, which results in the domains C: < 22 .. 44 > and D: <
22 .. 44 >. Thus, the modi�cation to the expression's domain is used to modify the domains for
the constituent variables.

Limitations
The DDR procedure currently has several limitations. This research has not yet addressed the
interprocedural case, speci�cally, where a desired test path may extend through several procedures.
Although we plan to explore inter-procedural test data generation in the future, the memory and
execution requirements may simply be too high for structural-based coverage automatic test data
generation. Currently, this is intended to be a unit testing technique. Thus far, dynamic domain
reduction has only been applied to numeric software. This is primarily a limitation of the current
proof-of-concept implementation (described in the next section), not the technique. Since the
implementation must be able to handle all operations on all data objects, we restricted ourselves
to numeric operations. There is no theoretical reason why appropriate extensions could not be
made to handle other operations. Finally, the aliasing problem has still not been fully addressed.
Although the solution for arrays works well, the proof-of-concept implementation does not fully
handle pointers, so the ability to handle pointers has not been evaluated. Because the analysis is

3Note that the algorithm calls ExprDomain recursively four times for each bottom and top. This is of course
ine�cient, and the implementation uses temporary variables throughout the ExprDomain function to avoid repeated
calls.
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algorithm Update (Expr, Bot, Top, TmpDDS)

precondition Top >= Bot

postcondition All domains of expr and var in TmpDDS are feasible,

which is Topi >= Boti for all vars' subdomains,

and Top >= Bot for all exprs' domains.

input Expr: an expression

Bot: a bottom value of Expr's domain

Top: a top value of Expr's domain

TmpDDS: Domain Data Store

output TmpDDS: an updated DDS

return Boolean

declare L: left side of Expr

R: right side of Expr

aop: arithmetic operator in Expr

rdomain: right expr's domain with Bot and Top

ldomain: left expr's domain with Bot and Top

s: subdomain

BEGIN

L = GetLExpr (Expr)

R = GetRExpr (Expr)

aop = GetAop (Expr)

CASE (aop)

WHEN "+": -- Divide the domains in half.

ldomain.Bot = rdomain.Bot = Bot/2

ldomain.Top = rdomain.Top = Top/2

WHEN "-":

-- There is a general form to get the domains of LExpr and RExpr:

-- ldomain.Bot = Top + n*(Top - Bot)/2,

-- ldomain.Top = (Top-Bot)/2 + Top + n*(Top - Bot)/2,

-- rdomain.Bot = (Top-Bot)/2 + n*(Top - Bot)/2,

-- rdomain.Top = Top - Bot + n*(Top - Bot)/2,

-- (where n = ... -3, -2, -1, 0, 1, 2, 3, ...)

-- For this algorithm, n=0; in the implementation n is varied as part of a search process.

ldomain.Bot = Top

ldomain.Top = (Top-Bot)/2 + Top

rdomain.Bot = (Top-Bot)/2

rdomain.Top = Top -Bot

WHEN "*":

IF (Top � 0 AND Bot � 0)

IF (CheckStatus (TmpDDS, Expr).flipped == TRUE)

ldomain.Top = rdomain.Top = - SquareRoot (Bot)

ldomain.Bot = rdomain.Bot = - SquareRoot (Top)

ELSE

ldomain.Top = rdomain.Top = SquareRoot (Top)

ldomain.Bot = rdomain.Bot = SquareRoot (Bot)

ELSE IF (Top < 0 AND Bot < 0)

ldomain.Top = ABS (Top)

ldomain.Bot = 1

rdomain.Top = -1

rdomain.Bot = Bot/ABS (Top)

ELSE IF -- Bot < 0 AND Top � 0

ldomain.Bot = - SquareRoot (ABS (Bot))

ldomain.Top = MIN (FLOOR (SquareRoot (ABS (Bot))),

FLOOR (Top/SquareRoot (ABS (Bot))))

rdomain.Bot = - MIN (FLOOR (SquareRoot (ABS (Bot))),

FLOOR (Top/SquareRoot (ABS (Bot))))

rdomain.Top = SquareRoot (ABS (Bot))
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WHEN "/":

-- There is a general form to get the domains of LExpr and RExpr:

-- ldomain.Bot = (Top+1)/(Bot+1) * Bot**(i+1) * Top**i,

-- ldomain.Top = Bot**i * Top**(i+1),

-- rdomain.Bot = Bot**i * Top**i,

-- rdomain.Top = (Top+1)/(Bot+1) * Bot**i * Top**(i+1),

-- (where n = ... -3, -2, -1, 0, 1, 2, 3, ...)

-- For this algorithm, n=0; in the implementation n is varied

-- as part of a search process.

ldomain.Bot = (Top+1)/(Bot+1) * Bot

ldomain.Top = Top

rdomain.Bot = 1

rdomain.Top = (Top+1)/(Bot+1) * Top

END CASE

IF (ldomain.Top < ldomain.Bot)

ldomain = Flip (TmpDDS, L, ldomain)

IF (rdomain.Top < rdomain.Bot)

rdomain = Flip (TmpDDS, R, rdomain)

RETURN (Update (L, ldomain.Bot, ldomain.Top, TmpDDS) AND

Update (R, rdomain.Bot, rdomain.Top, TmpDDS))

END Update

Figure 9: The Update Algorithm { Propagates Expression Domains Back Down To

Variables.

done dynamically, all pointers (and therefore pointer aliasing) will be resolved \on-the-
y", so it
is expected that pointer aliasing will not be a problem. Aliasing through parameters arises during
inter-procedural testing [35, 36], but not in the case of unit testing.

PRESENT STATUS

To observe the e�ectiveness of the dynamic domain reduction procedure on C programs, we have
constructed a proof-of-concept tool. The tool currently does not handle pointers and the expression
handling is limited to expressions that use numeric operators. The results focus on two questions:
(1) does the dynamic domain reduction procedure work, and (2) does it work better than constraint-
based testing? For the �rst question, test cases were automatically generated to satisfy the all-uses
criterion, and for the second, test cases generated by the tool were directly compared with test cases
generated by Godzilla. We know of no other tools that use structural-based coverage information
to generate test cases.

All-uses evaluation
To evaluate the DDR procedure's capability to generate test cases, test cases were automatically
generated to cover the all-uses data 
ow criterion for a number of program units. The coverage
was measured using Bellcore's Atac [32].

Results are shown in Table 1. The number of functions and basic blocks in each program are
provided, the total number of decisions, and the percent of decisions covered by dynamic domain
reduction. The total number of DU-pairs required to achieve all-uses coverage, and the number of
DU-pairs that are infeasible are also given. The last column gives the percent of DU-pairs that
were covered by dynamic domain reduction, not including the infeasible DU-pairs. The infeasible
DU-pairs were determined by hand analysis. For these programs, the DDR procedure was able to

22



cover almost every decision and DU-pair, even in the presence of loops and arrays. Generating the
test cases took a few milliseconds for each; most of the execution was in creating the CFGs, and
the time to generate tests was swamped by the time to execute and check the results. We know of
no other automatic test data generator that can achieve a high degree of coverage for all-uses.

% Decisions Infeasible % DU-Pairs
Program Functions Blocks Decisions Covered DU-Pairs DU-Pairs Covered

Stats 4 70 32 100 154 15 92
Twenty-four 2 143 66 100 545 45 93
Conversions 8 523 247 97 1150 97 94
Binom 6 444 217 99 1110 151 93
Operators 4 1025 650 98 1438 233 97
Bub 1 9 5 100 29 1 100
Euclid 1 6 2 100 10 1 100
Insert 1 13 6 100 29 1 100
Mid 1 11 10 100 30 0 100
Quad 1 9 2 100 15 0 93
Trityp 1 31 34 100 101 14 99
Warshall 1 12 7 100 44 2 100

Table 1: All-uses Data.
Coverages are percentages of feasible paths.

Of course, these are relatively small programs, but it should be emphasized that DDR is
designed to work on program units, not integrated software systems. Since the DDR procedure
does not address the issue of inter-procedural testing, no claims can be made about its e�cacy on
integrated software modules or components. However, we have tried to choose a variety of subject
functions and subroutines. Of course, the knowledge needed to choose a statistically representative
sample is not available at this time, but the coverage results are good enough to merit consideration.

Constraint-based testing comparison
This section presents results from an empirical comparison of DDR with CBT. There are several
practical di�erences between the new DDR tool and the constraint-based testing tool Godzilla that
must be handled in any empirical comparison. The DDR tool tests programs in the language C,
and generates test cases to satisfy data 
ow criteria. Godzilla, on the other hand, tests Fortran
programs and generates test cases to satisfy mutation. To handle the language issue, Fortran
programs were translated into C. Care was taken to use as direct a translation as possible so as
not to introduce any variance into the results by using di�erent programs. The control 
ow graphs,
executable statements, and DU-pairs are exactly the same for all pairs of programs.

To get a valid comparison, test data were needed to satisfy the same criterion. Since both
mutation and all-uses data 
ow subsume statement coverage, both tools can be used to satisfy
statement coverage. Thus, statement coverage was used. Godzilla was used to generate test cases
for statement coverage by only satisfying the reachability constraints, ignoring necessity constraints.
The coverage of both sets of test cases was measured using Atac on the C versions of the program.

Results are shown in Table 2. The numbers of basic blocks in the programs are shown,
followed by the percent of basic blocks covered by the CBT test cases and by the DDR test cases.
As can be seen, the dynamic domain reduction procedure generated test cases that covered all
blocks in all cases, and constraint-based testing missed a number of blocks, particularly in the
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larger programs. In previous research [22], it was found that when values were generated purely
randomly, block coverage of 70% to 80% was typically obtained, so it is clear that the DDR test
cases had signi�cantly more coverage than the CBT test cases. Hand analysis showed that the
di�erences in coverage was due to two things. One was the fact that CBT treats all elements in an
array as a single element, whereas DDR is able to treat array elements individually. The second
was that the CBT-based tool ran out of memory and crashed on several occasions (particularly
with the bigger procedures of Conversions, Binom, and Operators).

Program Basic Blocks CBT Coverage % DDR Coverage %

Stats 70 81 100
Twenty-four 9 81 100
Conversions 523 79 100
Binom 444 80 100
Operators 1025 84 100
Bub 9 100 100
Euclid 6 91 100
Insert 13 100 100
Mid 11 100 100
Quad 11 100 100
Trityp 31 84 100
Warshall 12 100 100

Table 2: Comparison with Constraint-based Testing.

Coverages are given in percentages.
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Execution time
Algorithmic analysis of algorithms that are this complicated is exceedingly di�cult. The execution
time of the DDR procedure depends upon the number of decisions in the program (D), the number
of paths (P), and the constant K. Moreover, if the the DDR procedure has to go through K
attempts at each decision point, then that is K split attempts at the �rst decision, then K splits
at the second decision for every attempt at the second decision, and so on, for a total of KD split
attempts. So the running time is �(P �KD).

Although the worst-case running time is exponential, the worst case can seldom be expected
to be achieved in practice. This upper bound will almost never be reached, and whether it is
depends on aspects of the program that we have no idea how to quantify or measure. A more
useful measure is the amount of time it takes for the tool to run. Neither of the CBT and DDR
proof-of-concept tools were built with the idea of e�ciency in mind, so they are not particularly
e�cient. Nevertheless, a comparison is useful. When generating test data, it took the CBT tool
from a low of 9 seconds for the smallest procedure (Euclid), to over 12 hours for the largest set of
procedures (Operators). For Operators, the tool had to be manually run several times on subsets
of the constraints, because it kept running out of memory and crashing. For the DDR tool, it took
from 5 seconds (with Euclid) to over 30 minutes for Operators, and never ran out of memory. Any
of these data sets would take days, if not weeks, to generate by hand.

Even at this, the time to generate test cases is completely swamped by the time to execute
the test cases (over 10 hours for Operators), which in turn is swamped by the time to manually
check the result of each test case individually. In practical software testing, the dominant time
is typically that of checking the outputs of test cases. Thus, the execution time of a DDR-based
automatic test data generator can be expected to be only a tiny part of the time for the whole test
process.

CONCLUSIONS

This paper presents a new method for automatically generating test data to test program units.
It uses elements from previous test data generation methods and o�ers novel solutions to prob-
lems they encountered. The dynamic domain reduction procedure incorporates elements from the
constraint-based testing domain reduction procedure, symbolic evaluation, and the dynamic test
data generation approach. It integrates constraint satisfaction, symbolic evaluation, and a novel
search process into one dynamic process. As compared with previous automatic test data gen-
eration procedures, we believe that the dynamic domain reduction procedure can be expected to
be more likely to �nd a test case when a test case exists, and that implementations can be more
e�ective and e�cient. In this approach, array indexes can be calculated symbolically at the same
time that values are being found, allowing the test data generation to overcome previous di�culties
with arrays. In addition, the dynamic nature allows a space savings over previous methods, because
the large constraint systems do not have to be stored and manipulated in their complete form.

The search process uses a new technique, domain splitting, to make choices at certain steps
in the process. This allows 
exibility in the values being chosen, and allows an e�cient search
procedure (based on bisection) to be used, which in turn increases the chances for success. This
process also allows complicated expressions to be handled uniformly, as described previously. The
algorithms developed for DDR are too numerous and long to all be presented here; they can be
found in a technical report [34].

This paper also presents results from a proof-of-concept implementation of the DDR procedure.
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On small programs, the procedure comes very close to completely satisfying the all-uses data 
ow
criterion, and performs better than constraint-based testing for statement coverage. We know of
no other automatic test data generator that can achieve a high degree of coverage for all-uses. This
procedure can also work for procedures that are too big for existing techniques.

Of course, any technique for automated test data generation has inherent limitations. Some of
the problems of arrays and loops are formally undecidable and cannot be completely solved. But
this technique uses more information about such constructs than previous methods, and requires
signi�cantly less space, allowing more test cases to be automatically generated. In the empirical
study, it was found that arrays and loops were handled both more accurately and more e�ciently
than with the constraint-based approach. This paper also makes no claims about optimality. Test
data generation is an extremely complex problem and it can only be hoped to �nd partial solutions
that are general and robust enough to work most of the time in the real world.

Future work
One common problem in test data generation is that of detecting infeasible paths. This shows up in
various testing criteria in di�erent forms | in mutation it is part of the equivalent mutant problem,
and in data 
ow testing the term infeasible DU-pairs has been used [3]. The problem was considered
directly by Jasper et al. [37] and Goldberg et al. [38] in the context of branch testing. O�utt and Pan
[39] presented a technique for detecting equivalent mutants that is based on recognizing infeasible
systems of constraints. Whereas the DDR procedure will fail in the presence of infeasible paths,
the fact that the path is infeasible is not explicitly known. We hope to modify the results of Pan's
thesis to work with the DDR procedure to explicitly recognize most infeasible paths (and infeasible
DU-pairs).

Most of the work in automated test data generation has been intra-procedural rather than
inter-procedural. One implication of this fact is that the generators are useful for unit testing, but
generally do not perform well for integration or system testing. We believe that the DDR procedure
could be applied in a limited manner to inter-procedural problems. Because the constraint systems
are analyzed and disposed of in-process, the combinatorial explosion of constraints that happens
with traditional techniques can be avoided. Hopefully, this will allow test data to be generated
inter-procedurally, during module and integration testing.

This research is part of a long term project to provide practical, powerful automated test
environments to testers, so that highly reliable software can be produced at reasonable cost. We
envision an eventual system that provides almost complete automation to the tester. This type
of system would allow a programmer to submit a software module, and after a few minutes of
computation, respond with a set of test cases that are assured of providing the software with
a very e�ective test, and a set of outputs that can be examined to �nd failures in the software.
Furthermore, these input-output pairs can be used as a basis for debugging when failures are found.
It is hoped that eventually the unit testing process will become part of compilation.
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