Quantitatively Measuring Object-Oriented
Couplings

JEFF OFFUTT offutt@gmu.edu
AYNUR ABDURAZIK aynur.abdurazik@gmail.com
Information and Software Engineering Department, George Mason University, Fairfaz,
VA 22030, USA

STEPHEN R. SCHACH srs@vuse.vanderbilt.edu
Department of FElectrical Engineering and Computer Science, Vanderbilt University,
Nashwille, TN 87235, USA

Abstract. One key to several quality factors of software is the way compo-
nents are connected. Software coupling can be used to estimate a number of
quality factors, including maintainability, complexity, and reliability. Object-
oriented languages are designed to reduce the number of dependencies among
classes, which encourages separation of concerns and should reduce the amount
of coupling. At the same time, the object-oriented language features change the
way the connections are made, how they must be analyzed, and how they are
measured. This paper discusses software couplings based on object-oriented re-
lationships between classes, specifically focusing on types of couplings that are
not available until after the implementation is completed, and presents a static
analysis tool that measures couplings among classes in Java packages. Data from
evaluating the tool on several open-source projects are provided. The coupling
measurement is based on source code, which has the advantage of being quan-
titative and more precise than previous measures, but the disadvantage of not
being available before implementation, and thus not useful for some predictive
efforts.

Keywords: object-oriented programming, quality analysis and evaluation, anal-
ysis, complexity measures, maintainability, test execution

1 Introduction

Software coupling has long been used to evaluate software. Specific ways to mea-
sure coupling have long been known for procedural software, but most measures
for object-oriented software have been based on design artifacts such as class
diagrams. This paper presents research that statically analyzes source code to
measure coupling in object-oriented software. Coupling is a metric for software,
thus the following paragraphs set this work in context and describe metrics terms
as used in this paper.

Coupling information can be obtained from design documents before imple-
mentation, or from the source after implementation. Both methods have advan-
tages and disadvantages. Obtaining coupling information before implementation

allows the information and measurements to be used in project planning, im-
plementation, and test preparation. Coupling information obtained from the
implementation can incorporate decisions and reflect changes made during the
implementation, giving more information and allowing measurements to be more
precise. This research project addresses post-implementation coupling measure-
ment.

This paper uses metrics and complexity terms as defined by IEEE standards.
The IEEE defines a quality factor to be an attribute of a program that affects
its quality [37,38]. These were called external attributes by Briand et al. [15].
Examples include maintainability, reliability, and complexity. Factors are often
qualities on which we wish to base a decision. Some can be measured directly
and some cannot. For example, Schneidewind defines a factor as “a type of met-
ric that provides a direct measure of a software quality” [60], implying that
he assumes factors can be measured. A quality metric is an attribute that can
be measured by one or more functions whose inputs are data obtained from
software artifacts (such as design documents, program source, or requirements
documents). These were called internal attributes by Briand et al. [15]. A mea-
surement is a specific function for computing values for a metric. Metrics often
represent information that is not directly relevant to the developers (such as
how many executable lines are in a program), but are used to estimate factors
that are directly relevant to developers (such as how hard it is to change the
program). A metric is said to be validated for a factor if it has been statistically
shown to accurately estimate the factor [60]. Only measurable factors can be
validated—we cannot show statistically what we cannot measure.

For example, the metric cyclomatic complexity uses the measurement M =
e —n + 2p (where e is the number of edges in the control flow graph, n is the
number of nodes, and p is the number of connected components) to estimate
the factor complezity of software [52] and as a test heuristic. Validating a metric
for a factor is impossible for factors that cannot be measured and extremely
difficult for those that can [60]. Thus factors have rarely been validated. One of
the more commonly used metrics is software coupling, which has been validated
for development time and error rate [28], number of likely faults [7,61], and
aspects of maintenance such as impact analysis [14], the cost of maintenance
[39], and the cost of making changes [25].

Coupling is a metric, or internal attribute, that was first introduced by
Stevens, Myers and Constantine [53,65]. Coupling measures information flow
among program components [21]. More coupling means that modules are more
related and harder to change, understand and repair. Empirical evidence has
been published that supports this theory for structured development [61, 67].

Coupling has often been estimated in qualitative terms, or if it is measured
at all, the measurements are based on information flow metrics [44, 34]. Despite
being widely used as a metric, it is difficult to measure coupling in ways that
are quantitative and precise. Most measurements for coupling are qualitative in
nature [25,26, 31,39, 61]. Some quantitative measurements are based on proce-

dural (non-object-oriented) software [25,28, 32,33, 54,61], and do not apply to
object-oriented software.

The concept of coupling has been adapted to object-oriented software by
Coad and Yourdon [18,19] and numerous metrics for object-oriented software
have been defined. Object-oriented languages introduce several new mechanisms
for coupling classes and methods, thus defining coupling is more complicated. As
pointed out by Briand et al. [15], the field does not have standard terminology
and formalisms for expressing metrics, so metrics are not fully operationally
defined and are thus ambiguous. This has made it difficult to relate different
coupling metrics and hard to understand how to use different coupling metrics
together. The unified framework defined in the paper by Briand et al. gives
fully operational metrics and provides a context in which new metrics and ways
to measure them can be defined. This paper uses their framework, focusing on
statically measuring coupling in the implementation source.

Most object-oriented coupling research has focused on usage dependencies
among classes. This information can be derived from static analysis of design doc-
uments, static analysis of implementation source, or dynamic (run-time) analysis
of implementation source. Dynamic issues have been addressed in the context
of testing [3, 4, 56], but work on measurement has started only recently [5]. This
paper focuses on static analysis of implementation source with some discussions
of extensions to dynamic analysis.

Most previous object-oriented coupling measures are based on high level de-
sign models such as statecharts and collaboration diagrams (now called “com-
munication diagrams”?!).

[12, 15,23, 69]. Deriving coupling metrics from design information allows the
metrics to be available before the program is written, thereby allowing the in-
formation to be used for predictive purposes. On the other hand, deriving cou-
pling metrics from static analysis of the source code allows the measurement to
be more precise and to reflect accurately the actual implementation. Although
code-based information cannot be determined as early as a post-design measure-
ment, coupling can be useful during maintenance, during test generation, and
to evaluate how much the software deviates from the design.

The tool presented in this paper is completely static; that is, it analyzes but
does not run the software. Arisholm [5] proposed the use of dynamic coupling
measures to quantify the flow of messages between objects at runtime. Although
dynamic coupling measures can capture some dependencies that static coupling
measures overlook, the dependencies they capture are not complete because they
depend on the specific executions used. Dynamic measurement could be inte-
grated with the measurement in this paper.

This paper looks specifically at object-oriented software, and uses the frame-
work by Briand et al. [15] to identify language characteristics that allow software
components to be connected in ways that non-object-oriented languages could
not. An original goal of object-oriented design was to improve maintainability.
Conversely, some aspects of object-oriented language features have a negative

! Online at http://www.uml.org/

impact on maintenance. One difficulty has been called the “complex interde-
pendency problem” [46]. Properly designed object-oriented software should have
simple classes and methods, but often exhibits complex relationships among the
classes. These relationships include inheritance, aggregation, association, class
nesting, dynamic object creation, member function invocation, polymorphism,
and dynamic binding relationships. These relationships introduce dependencies
on other classes that have not yet been fully analyzed and understood. For ex-
ample, the inheritance relationship implies that a derived class reuses data and
function members of a base class and hence depends on the base class.

This research uses the complex interdependencies in object-oriented lan-
guages to define coupling types. The focus of this research is on inter-class cou-
plings rather than intra-class couplings. Intra-class couplings are the same for
both object-oriented and procedural software, have been well studied, and are
out of scope of this paper. The inter-class couplings are then used to define a
quantitative measurement for coupling in object-oriented software that is precise
and algorithmically computable. This measurement is based on static analysis
of the source implementation, which is more expensive than analyzing design
artifacts and occurs later, but yields more precise results. We have fully imple-
mented this measurement in an analysis tool for Java programs, Java Coupling
Analysis Tool (JCAT), and data from applying it to several large open-source
projects are included.

This paper proceeds by providing background on software coupling in Section
2, then presents our particular model of object-oriented coupling in Section 3.
Applying this theory to specific programming languages presents many practical
difficulties. Section 4 presents innovative solutions to these problems by defining
how the measure is computed in Java. Section 5 describes an automated tool
for measuring coupling. Data from applying this tool to open-source software
are given in Section 6, Section 7 discusses those data, and Section 8 provides
conclusions and discusses future work.

2 Software Coupling Background and Related Work

Research into how software components are coupled dates back to the late 1960s.
In 1974, a paper by Stevens, Myers and Constantine [65] and a book by Myers
[53] refined the concept of coupling by presenting well-defined, though infor-
mal and qualitative, levels of coupling. Because their levels were neither precise
nor prescriptive definitions, coupling could be determined only by hand, leaving
room for subjective interpretations of the levels. Other researchers [36, 44, 61,
67] have used coupling types or similar measures to evaluate the complexity of
software design and relate this complexity to the number of software faults. El
Emam et al. [24] established a correlation for predicting faulty classes in object-
oriented software that was based on a non-quantitative evaluation of coupling.
Fenton and Melton [26] developed a measurement theory that provides a basis
for defining software complexity and used hand-derived coupling measures to
demonstrate their theory. They enhanced previous work in coupling by incorpo-

rating the number of interconnections between modules into the measure and by
considering the effects on coupling of return values and reference parameters as
well as input parameters.

Historically, module coupling was used as an imprecise measure of software
complexity in procedural software. In 1991, Jalote said that coupling is “an
abstract concept and is as yet not quantifiable” [40]. Offutt and Harrold [54]
extended previous work to reflect type abstraction, and quantified coupling of
procedural software by developing a general software metric system that allows
coupling to be automatically measured. They offered precise definitions of the
coupling levels so that they can be determined algorithmically, incorporated the
notion of direction into the coupling levels, and accounted for different types of
non-local variables as found in modular, but non-object-oriented, programming
languages.

Jin and Offutt later used couplings as a basis for integration testing of pro-
cedural software [42,43]. Previous researchers in applying coupling to design
quality had a very fine grained notion of coupling, with up to twelve types, but
it was found that many were equivalent for testing purposes, so Jin and Offutt
included only four types. These were used to define formal integration testing
criteria that required testing to proceed through couplings from data definitions
to data uses.

Several researchers have defined object-oriented coupling types. In 1992, Chi-
damber and Kemerer [17] defined numerous metrics for object-oriented software
design, including some related to coupling. In 1994, Eder et al. [22] identified
three different types of relationships: interaction relationships between meth-
ods, component relationships between classes, and inheritance between classes.
These three relationships were used to classify different dimensions of couplings
according to strength of coupling. In 1995, Hitz and Montazeri [35] presented two
types of coupling: object level coupling, determined by the state of an object;
and class level coupling, determined by the state of an objects implementation.
They also proposed different coupling strengths. In 1997, Briand et al. [11] de-
fined coupling as interactions between classes. The strength of the coupling is
determined by the type of the interaction, the relationship between the classes,
and the direction of the interaction (its “locus of impact”).

This paper defines a coupling model, partially based on previous models as
summarized above, of different levels of coupling. Measure are defined on the
implementation source. Part of the challenge is in making the definitions precise
enough to be applied to static analysis of programs. The conceptual definitions
of the coupling types have to be defined for specific object-oriented language
features. The next section describes our object-oriented coupling model, fitting
it into the context of the framework by Briand et al. [15], and defining the
connections in ways that can be used for a quantitative measure.

3 A Model of Object-Oriented Coupling

Most of the material in this section applies generally to any object-oriented
language, but the tool developed for this research is specific to Java, and a few
concepts may need to be adapted to other object-oriented languages. Most of
the couplings defined here are the same or similar to those in other papers; the
major contributions are in Section 4, which presents techniques for applying the
theory and concepts of coupling to Java source, and Section 5, which describes
the static analysis tool that supports this research. Some of the previous types
of couplings have very little effect on coupling at the source level, so are not
used separately. For example, how a parameter is referenced inside a method
is not important, so the old types of “control parameter coupling” and “data
parameter coupling” are merged in one type, “parameter coupling.” The types
of coupling used in this research are:

1. Parameter coupling is any method call, possibly including parameters.

2. External/file coupling refers to classes that access the same external medium,
including external files.

3. Inheritance coupling occurs when one class is a subclass or descendant of
another. The coupling is made through inherited but not re-defined data
members of a superclass by its subclass. Figure 1 shows a class B and its
subclass A. B defines a data member b, and A inherits b from B. Accord-
ingly, classes B and A are inheritance coupled through b. (A number of
details for how to discern inheritance coupling in special case situations are
discussed in Section 4.)

4. Global coupling (which also has been called common, shared, and non-local)
refers to variables that are defined in one class and used in others. Modern
object-oriented languages such as C++ and Java have several access spec-
ifiers as well as storage class static, all of which affect global coupling.
Accordingly, this coupling type is expanded below.

Table 1 compares the coupling types that are used in this paper and in
the papers by Eder [22], Hitz and Montazeri [35], and Briand et al. [11]. The
terminology used in this paper is shown on the left, and the terms used in the
other papers are in the appropriate cells. Hitz and Montazeri did not explicitly
label the coupling types, so Table 1 simply shows an ‘X’ in the appropriate
column. The class-attribute and class-method types from Briand et al.’s paper
are not considered in this paper, so they are shown in last row in the table.

Some of the previous literature on coupling has discussed which types of
couplings are “better” or “worse,” based on qualitative analysis of the coupling
types. For example, it is widely believed that global coupling introduces more
possibilities for faults than other types of coupling, and students are usually
taught to prefer parameter coupling over global coupling. However, it is hard
to quantify these differences, and how much better one type of coupling is than
another may depend on the purpose of the coupling. The analysis in this paper
does not treat any one type of coupling as being better than another. Each type
is measured and presented independently.

Table 1. Coupling Types Compared

This paper Eder [22] Hitz & Montazeri [35]|Briand et al. [11]
Parameter coupling |interaction X method-method
control, stamp, data
External / interaction
File coupling external
Inheritance coupling|inheritance X inheritance
Global coupling interaction friendship (C++)
context, common (package in Java)
Not used X class-attribute
class-method

Three out of four of the coupling types have direction (called locus of impact
by Briand et al. [11]), which is used in the measurement and analysis. The
coupling direction is considered to be in the direction of the use, that is, if class
P uses Q, then P is coupled to Q. The rationale for this is that if a programmer
changes P, there can be no effect on Q. However, changes to Q can effect P,
possibly significantly.

For parameter coupling, the direction is assumed to be the direction of the
call. That is, if R calls S with a parameter, then R uses S and the coupling
is from R to S. If S returns a value, there is also coupling back to R (bi-
directional). External coupling occurs when two classes, A and B, both access
the same external device, say a printer. The coupling is considered to be between
A and B, so the coupling is bi-directional. If A inherits from B as in Figure 1,
then A is thought of as “using” elements of B, so the coupling direction is from
A to B. Finally, global coupling follows the definition and use pattern; if T uses
a variable x that is defined (given a value) in U, then the coupling is from T to
U.

B
public class B Strting
{...1}
public class A
extends B A
L) b

Fig. 1. Inheritance Coupling Example.

Java supports four distinct access levels for member variables and methods:
private, default (also called package), protected, and public. Table 2 sum-

marizes these access levels. A private member is available to only the class in
which it is defined. If access is not specified, the access level defaults to package,
which allows access to classes in the same package. A protected member is avail-
able to the class itself, classes in the same package, and all descendants including
those outside of the package. A public member is available to any class in any
inheritance hierarchy or package (the world).

Table 2. Java’s Access Levels

Same Same package Different package|Different package
Specifier |Class|subclass or non-subclass subclass non-subclass
private Y N N N
package Y Y N N
protected| Y Y Y N
public Y Y Y Y

Additionally, variables can be static (class) or instance. Static variables
are shared among all objects of the class and instance variables have a unique
copy for each object. The type of coupling varies by both access and variable
definition. Specifically, static variables can be accessed whenever the class name
is available, whereas instance variables can be accessed only through appropriate
object references. Therefore, the coupling that arises from instance variables is
less broad in scope than coupling from static variables.

The following list describes the resulting three pairs of combinations that
make global coupling possible. Variables with private access specifiers cannot be
accessed by any class other than the owner, so cannot appear in coupling.

1. public static global coupling is “true global” in the traditional sense,
that is, the variables are shared by all objects in the software system. public
instance global coupling, on the other hand, is more limited. When two
or more methods have access to the same instance of an object reference,
then they share access to the object. Accordingly, the object is shared by
some, but not all methods in the system.

2. package static global coupling refers to classes in the same package
that can share variables defined in any class in the package. package instance
global coupling is more limited. When two or more methods in classes in
the package have access to the same instance of an object reference, then
they share access to the object. The methods could be in the same class
or different classes. Accordingly, the object is shared by some, but not all
methods in the package.

3. protected global coupling is the same as package coupling except ac-
cess is extended to subclasses that are not in the same package. protected
static global coupling refers to classes in the same package or subclasses
that can share variables defined in any class in the package. protected
instance global coupling describes methods inside the package or sub-

class that have access to the same object reference and that refer to the same
variable.

Different strategies are required to identify each coupling type and subtype.
However, once identified, all the global coupling types can be considered identi-
cally. That is, the distinctions are at the definition and implementation level, not
at the conceptual level. It is likely, however, that the different global coupling
types will impact maintenance and reliability differently.

4 Analyzing Source Code to Find Couplings

Extracting coupling information from the implementation is very different from
extracting coupling information from design artifacts. Obtaining coupling infor-
mation before implementation allows the information and measurements to be
used in project planning, implementation, and test preparation. Coupling infor-
mation obtained from the implementation can incorporate decisions and reflect
changes made during the implementation, giving more information and allowing
measurements to be more precise. Most researchers have thought about coupling
conceptually and at design and modeling levels. The definitions that exist for
coupling, therefore, tend to be fairly generic in terms of implementation. Much
as design decisions have to be refined when programmers implement the design
in specific language features, the coupling definitions need to be refined to ac-
commodate the exact behavior of the specific language features. If we tried to
define coupling to accommodate all these behaviors, we would probably start to
lose sight of the forest for the trees, and also need to define coupling separately
for each language. Thus, this section refines the generic coupling definitions to
apply to specific language features.

Part of the challenge is in making the definitions precise enough to be ap-
plied to static analysis of programs. As an example, whether a programmer uses
another class’s identifier as a return value is entirely an implementation deci-
sion, and whether that constitutes coupling (and of what type) is something
that would not be articulated in coupling definitions or the designs. The indi-
vidual discussions in this section represent in-depth analysis of coupling types
and language features. Numerous decisions had to be made, and these decisions
are documented in detail by explaining how to extract couplings from program
source code.

By analyzing the source code, we are able to use more information and com-
pute a more precise measurement of coupling. In purely numeric measures, more
precision usually equates to more digits of accuracy. With the coupling mea-
sure, the precision available from looking at the source code allows for a more
detailed analysis, allowing us to find differences in coupling that are subtle or
impossible to measure from design documents. For readers who are already inti-
mately familiar with object-oriented programming, much of this analysis will be
familiar. We include sufficient detail for our analysis to be repeatable and fully
computable.

The four coupling types from Section 3 are determined by information that is
usually not available at the design level, so must be computed from the program
source code. Doing so, however, is difficult because some of the relationships
appear only implicitly. The information must be extracted from the software
by an analysis tool. Programming languages have subtle complexities that make
finding coupling information more difficult than might be expected. Accordingly,
the theoretical ideas in Section 3 must be refined to a more concrete level. Some
calls are implicit instead of explicit, there are several types of global variables and
uses, and the effect of inheritance with regard to coupling is not obvious. This
subsection discusses the subtle decisions that were made to determine coupling,
some that are generic, and others that are influenced by or unique to the language
(in this case, Java). Examples in this section are taken from actual open-source
software, mostly the parser generator tool ANTLR (ANother Tool for Language
Recognition) [58].

4.1 Occurrences of parameter coupling

In Java, parameter coupling occurs through only method and constructor calls.
This research refines the generic definition of parameter coupling to be the oc-
currence of an invocation of a call to a method or constructor through an object
or class.

Java allows two explicit types of method calls, instance and static, and one
implicit type, through a constructor. If a method in class A explicitly calls
method m() in class B through an object instance (b.m()), this represents
parameter coupling between A and B. An explicit static call occurs when class
A calls a public static method m() in class B (that is, B.m()). An implicit
constructor call is made when a variable of type B is defined and instantiated in
class A, for example, B b = new B(). All three of these types are considered
to be parameter coupling in this research, even if no actual parameter value is
passed in and no value is returned.

The three types of parameter coupling are summarized as:

1. B b = new B(); // implicit, constructor
2. b.m(); // explicit, through an object reference
3. B.m(); // explicit, static

As said in Section 1, the primary focus of this research is on parameter
couplings between different classes (inter-class) as opposed to couplings between
methods in the same class (intra-class). The effects of intra-class couplings are
very different from the effects of inter-class couplings. Intra-class coupling has no
direct impact on the external system, although it can have an indirect impact. If
the class is viewed as a black box, then intra-class coupling is invisible. Therefore,
intra-class coupling is used for entirely different problems and out of scope of this
project. Inter-class parameter coupling has the potential to propagate problems
from within one class to other classes, especially during maintenance and reuse.

10

4.2 Variations of global, inheritance, and external coupling

Global coupling is a kind of inter-class coupling that refers to the coupling that
takes place through variables that are defined in one class and used in oth-
ers. These variables will typically have public or protected/package access
specifiers. public variables represent a traditional, or true global coupling as de-
scribed in Section 3, if the variable is static, otherwise it is a global coupling with
an object reference. All of these variations must be detected.

Inheritance coupling refers to the coupling that is related to the inheritance
between pairs of classes. The coupling takes place through attributes and meth-
ods that are inherited and used by a subclass but that are not re-defined. If a
subclass does not actually use anything from its superclass, or if it re-defines
everything it uses, this is not considered to be inheritance coupling.

In Java, the inheritance relation is established through the keywords extends
and implements. Therefore, an implementation can detect an inheritance cou-
pling between two classes or interfaces if one class extends from another class
or implements one or more interfaces, or if an interface extends from another
interface.

Section 3 defined external coupling as access to an external device by two
or more classes. In other words, external coupling happens when two classes
share something that is outside the application that owns the classes. Exter-
nal resources can include files on a hard disk, printers, or other shared devices.
The challenge in designing an algorithm to analyze coupling is to find out the
unique interfaces between these resources and the application. Specifically, dif-
ferent classes or applications may use the same resource, but refer to them with
different names. Binding to a physical device may be done at the OS level, not the
program. This is necessary for symbolically linked files and devices with multiple
names. If there is no unique interface, then all interfaces must be enumerated.

4.3 Discovering actual types and dynamic binding

When analyzing the software for coupling, the analyzer must first discover the
types of each reference. This is simple for direct references to names. However,
when a reference is made through an object reference (o.b or o.m()), we must
first find the type of o. Inheritance and dynamic binding means that the type
of o cannot be determined statically, because it can change during execution.
Consider the following example:

throw new TokenStreamIOException (((CharStreamIOException)cse).io);

Class CharStreamIOException inherits from class CharStreamExcep-
tion, which in turn inherits from Exception. So the variable cse is of type
CharStreamException, and the variable io is defined in the class Excep-
tion, which is part of the Java class library. This confusing case brings up the
question: does the following example constitute global coupling?

11

catch (CharStreamException cse)

{
if (cse instanceof CharStreamIOException)
{
throw new TokenStreamIOException
(((CharStreamIQOException)cse).i0);
}
else
{
throw new TokenStreamException(cse.getMessage());
}
}

To accurately decide if this example constitutes global coupling, the ac-
tual type of cse must be found. The actual type at the two throw() state-
ments can be inferred because of the instanceof test. If cse is of actual type
CharStreamlIOException, then the first throw() is reached. Otherwise the
second throw() is reached. That is, if cse is of actual type CharStreamEx-
ception (the second throw()), this is a global coupling, but if cse is of actual
type CharStreamIOException (the first throw()), the coupling is not global.

The actual type must first be determined to decide if a throw() statement
represents global coupling. In general, the actual type cannot be determined
statically, as shown by Alexander and Offutt [3, 4]. They defined the polymorphic
call set to be the set of methods to which a specific method call could refer.

The analysis in this research uses a simpler analysis technique than com-
puting the polymorphic call set. The actual type of a variable depends on the
Java language statements new and instanceof, and any type casting . When
a variable reference a.b is found, the type of a is found through one of several
sources. It may be a variable that is defined in the current class, a parameter
that is passed to the current method, a variable defined in an ancestor class,
or a variable that is defined in the method. Type casting confuses the issue be-
cause the type of the object reference changes during execution of the statement.
Consider the following example:

(A)((€)d-v())-g())-m

Here A and C are class types, d and m are variables that are instances of
classes, and v() and g() are method calls. A call to method v() through the
variable d (“d.v()”) returns an instance of class C or one of C’s descendants.
The return value is cast to be of type C (“((C)d.v())”). A call to method g()
through this returned instance (“((C)d.v()).g()”) returns an instance of class A
or one of A’s descendants, which is cast to be of type A (“(A)((C)d.v()).g()”).
Finally, m is a variable that is defined in class A. (Yes, this is terrible program-
ming style, but unfortunately some programmers use it. We did not make this
example up!)

12

With this kind of code, we assume that the final type, after all casting, is the
actual type of the reference. Accordingly, any coupling is through the class that
represents the actual type. This is a simple assumption, though the parsing is
quite complicated.

4.4 Issues with nested coupling

Nested coupling occurs when a class references an attribute from its parent class,
and a definition for the attribute appears in the parent’s parent or another
ancestor. The question is whether the class is coupled with its parent, or with
the class where the attribute is defined. Figure 2 shows an example of nested
coupling.

Al ternati veBl ock

Lookahead

bl k. exi t Cach[bl k. exi t LookaheadDept h] &
cont ai nsEpsilon();

+cont ai nsEpsi | on()

/ *
/
ockW t hl npl i edExi t Pat
/ Bl ockW t hi mpl i edExi t Pat h
#exi t LookaheadDepth : int
JavaCodeGener at or #exit Cache : Lookahead]]
-blk : OneO MoreBl ock *

OneOr Mor eBl ock

Fig. 2. Example of Nested Coupling in ANTLR,

Class JavaCodeGenerator is coupled with class OneOrMoreBlock, because
it is aggregated with OneOrMoreBlock and uses the exitCache and exitLooka-
headDepth attributes. However, exitCache and exitLookaheadDepth are phys-
ically defined in the parent class of OneOrMoreBlock, BlockWithImplied Ex-
itPath.

This leaves the question: is JavaCodeGenerator coupled with OneOrMore-
Block, or with BlockWithImpliedExitPath? Our analysis is based on the possi-
ble effects of changes to the program. If BlockWithImpliedExitPath is changed,
that might affect JavaCodeGenerator, so the coupling should be with the class
that actually defines the variables. Therefore, JavaCodeGenerator’s use of ex-
itCache and exitLookaheadDepth creates a coupling with both BlockWith-
ImpliedExitPath and OneOrMoreBlock.

13

Note that this analysis cannot be done without the source; the design models
do not contain enough information. This is an example of why the coupling mea-
surement described in this paper is considered to be more precise than design-
based measurements.

5 A Tool for Measuring Coupling

We have built the Java Code Analysis Tool (JCAT) to analyze the structure and
components of Java source-code packages and identify couplings among classes.
JCAT identifies the coupling types defined in Section 3 using the techniques
described in Section 4.

JCAT is a source code static analysis tool that was developed in Java and
collaborates with several software applications, including a Java Parser that is
generated by ANTLR [58], Excel, and Access. Figure 3 shows the JCAT system
context diagram, which shows data flows between the main application and the
other entities and abstractions with which it communicates.

JCAT accepts the absolute pathname of a Java source-code package (Java
Source in Figure 3) as input, then uses JavaParser to generate abstract syn-
tax trees (AST Files) for each source code file in the package. JavaParser is
generated by the ANTLR system [58] from the Java grammar. ANTLR helps
to build abstract syntax trees (ASTs) by providing grammar annotations that
indicate what tokens are to be treated as subtree roots, which are leaves, and
which should be ignored with respect to tree construction.

Next, JCAT extracts information from the AST Files about class defini-
tions, variable definitions, variable uses, method definitions, parameters and pa-
rameter uses, and method calls for each class. The intermediate results are saved
in a database (Access Database). After all ASTs are processed, JCAT finds
couplings via SQL queries. The computed coupling metrics are formatted into
tabular forms and saved into ASCII Text File and Excel Spreadsheet.

5.1 JCAT user interface

Figure 4 shows JCAT’s main screen, which has seven tabs. The Main tab
(shown) lets the user enter a package to be analyzed, select the desired coupling
types, choose the presentation format of the computed couplings, and determine
where to save the computation results. The user can either enter the pathname
of the target Java source-code package or browse to the target.

The user can select which couplings to compute by choosing from the check-
boxes; any subset or all four can be chosen. The Record radio box gives the
user the option of choosing between finding the existence of or computing the
number of occurrences of couplings between two classes. The Names option
tells JCAT to show the existence of a coupling between two classes by giving the
coupling name, and the Binary option just shows whether coupling exists with
the number “1.” The intent is that the Binary option will simplify integration

14

Java Sour ce

ASCII File »
L \\ reads from
writes in gets path &
filename \\
\
records in invokes generates
JCAT » JavaParser
/
Excel pe
Spreadsheet) reads J/
records in /" \writes in
/
4
AST Files
Access
Database

Fig. 3. JCAT Context Diagram

with other tools and the Names option will be clearer to human users. If Count
is chosen, JCAT computes all the instances of couplings for each coupling type.

The Save to radio box allows the user to save the coupling results to either
an ASCII text file or a spreadsheet. The table rows and columns both represent
Java class file names and each table entry has the coupling information between
the two files. Finally, the Run button starts the computation, and the Exit
button terminates JCAT.

After the target Java source-code package is analyzed, the Parameter, Ex-
ternal/file, Common/global/shared, and Inheritance tabs show the pa-
rameter, external, global, and inheritance couplings. The All Couplings tab
shows all couplings together in one table. The Total tab shows the total num-
ber of each coupling for each class and for the whole package.

5.2 JCAT software design and implementation

JCAT has two packages, coupling and query. The coupling package is responsible
for accepting the input, parsing the Java source code, formatting the coupling
result for presentation, and exporting the results to an output file and user
interface. It uses the query package by invoking methods from its classes to
extract coupling information.

JCAT considers five independent categories of information to detect coupling,
all statically available in the source code:

1. How are classes related to each other structurally? (e.g., association, aggre-
gation, or inheritance)

15

& Java Coupling Analyzer =101 x|

¥ Parameterl External.l'FiIeI Common/GlobalEhared | Inheritance | Al Couplingsl Totall

List of Files in this Package:

Erter an Open Source Package Matne Browwse |

¥ Parameter ¥ E:xternalFile
W Commaon/globalizhared ¥ Inheritance

v & Couplings

Record: ' MNames & Einary ' Court
Save to: % ascii Fils " Excel Spreadshest
Rur Exit

Fig. 4. The Main User Interface of JCAT.

2. How are the public and protected variables used? (e.g., locally or in other
classes)

3. How are the public and protected method/constructors used?
4. What is the scope of a variable or a method?

5. If there is an external device used by the system, is the external device shared
among classes in the package?

JCAT has several algorithms for identifying the above information based on
the generation and use of static structure information, as discussed in Section 3.
JCAT has been tested with packages of various sizes, and the coupling measures
have been verified by hand. The largest package that we have used with JCAT
has 421 classes, 2863 methods, 12680 lines of executable code, and JCAT needed
about 25 minutes on a PC running Windows XP. There is no theoretical upper
limit on the number of classes that JCAT itself can handle.

16

6 Coupling Measures from Open-Source Software

We used JCAT to measure the couplings in 11 open-source projects of various
sizes. These projects were developed in Java and the source files were downloaded
from their project web sites.

Of these 11 projects, nine were downloaded from the Apache software foun-
dation website. Jakarta Servlet? contains the code for the implementation classes
of the Java Servlet and JavaServer Pages (JSP) APIs (packages javax.servlet,
javax.servlet.http, javax.servlet. jsp, and javax.servlet.jsp.tagext).
Tomcat? is a servlet container for Java Servlets and JSPs. It provides a Java
virtual machine and associated elements to give a complete Java runtime envi-
ronment, and also provides web server software to make the environment acces-
sible on the Web. Tomcat Catalina is the Servlet container portion of Tomcat
and Tomcat Jasper is the JSP engine used by Tomecat.

ANTLR? is a language tool that provides a framework for constructing rec-
ognizers, compilers, and translators from grammatical descriptions containing
Java, C#, or C++ actions. We used ANTLR to generate JCAT’s Java parser.

TulipChain® is a specialized web browser, link checker, and editor that
presents the contents in an explorer view.

Velocity® is a Java-based template engine. It permits web page designers to
reference methods defined in Java code. Web designers can work in parallel with
Java programmers to develop web sites according to the Model-View-Controller
(MVC) model, allowing web page designers to focus on creating a well-designed
site, and programmers to focus on writing well-designed software. Velocity sep-
arates Java from the HTML, making the web site more maintainable and pro-
viding an alternative to JSPs and PHPs.

Tapestry” is an open-source and all-Java framework for creating web appli-
cations in Java.

Table 3 shows the projects and the descriptive summary of the results. For
each project, JCAT calculated the occurrences of each of the four types of cou-
pling. The second column gives the number of classes (NOC) in each project,
the third column gives the number of lines of code (LOC), and the third column
gives the number of public variables (pvar). The next three pairs of columns
provide data for parameter, global, and inheritance coupling. In each, the first
sub-column gives the total number of couplings of that type in the package
and the second sub-column gives the ratio of total coupling counts to the num-
ber of classes. The acronyms PCC, ECC, GCC, and ICC represent parameter,
external, global, and inheritance coupling counts, respectively. Because global
coupling has traditionally been of special concern on the part of developers, it

2 Online at: http://cvs.apache.org/viewcvs.cgi/jakarta-servletapi-5/

3 Online at: http://jakarta.apache.org/tomcat/

* Online at: http://www.antlr.org/download.html

5 Online at: http://ostermiller.org/tulipchain/

5 Online at: http://jakarta.apache.org/velocity/

" Online at: http://linux.cs.lewisu.edu/apache/jakarta/tapestry/source/3.0-beta-1/

17

is broken out in the column labeled GCC/TCC, which gives the percentage of
global coupling to the total coupling counts. None of these packages exhibited
any external couplings, so it is omitted from Table 3.

Table 3. Coupling Measures of Eleven Open-Source Software Packages, In-
cluding 3 Versions of Jakarta Servlet

Project Size Param Global Inheritance GCC/
Name NOC| LOC [pvar| PCC [PCC/NOC | GCC [GCC/NOC [ICC [ICC/NOC | TCC
Jakarta 42 576 | 32 17 0.40 2 0.05 15 0.36 6%
Servlet

(v152(5.0.9))

Jakarta 42 558 | 32 14 0.33 1 0.02 15 0.36 3%
Servlet

(v152(5.0.12))

Jakarta 40 819 | 45 24 0.60 10 0.25 17 0.43 20%
Servlet

(v154)

Tomcat 348 | 28,887 (3201|1953 5.61 321 0.92 158 0.45 13%
Catalina

(v5.0.12)

Tomcat 79 110,451 (106 | 224 2.84 8 0.10 18 0.23 3%
Jasper2

(v5.0.12)

ANTLR 197 116,673 | 218 | 3881 19.70 1879 9.54 135 0.69 32%
TulipChain 27 3636 | 66 | 142 5.26 8 0.30 11 0.41 5%
Velocity 30 1216 | 38 46 1.53 5 0.17 17 0.57 7%
Tapestry 421 | 12,680 | 70 | 1605 3.81 59 0.14 337 0.80 3%
(Framework)

Tapestry 100 2403 | 17 52 0.52 12 0.12 21 0.21 14%
(Contrib)

Tapestry 99 3200 | 51 | 251 2.54 29 0.29 32 0.32 9%
(Example-

vlib)

Min Value 27 558 | 17 14 0.33 1 0.02 11 0.21 3%
Max Value 421 | 28,887 | 320 | 3881 19.70 1879 9.54 337 0.80 32%

The last two rows in Table 3 show the minimum and the maximum values
for each column. Figure 5 shows how the values are distributed for each of the
measurements in a “normalized box-plot” graph. Because the ranges of the values
varied so much, the numbers from each column in Table 3 are normalized to the
range 0 to 100. Each box represents the 50% of the values in the middle, and
the lines above and below the boxes extend to the highest and lowest value.

18

The stars represent outlier values. For example, consider the number of classes
(NOCQC). The absolute values ranged from 27 to 421, and are normalized to the
range 6.4 to 100. Half the values are in the box, or the range 10 to 42, and the
mean is 19.

100% X X X X X R
80%
z> B
|
960%
© L
© 40%] - = |
20% - 2 S
- | =
vl I — I o I — I I I
gce/ ICC/ GCcC/
NOC LOC pvar PCC pcc/noc GCC NOC ICC NOC Tce

Fig. 5. Normalized Box Plot for Data in Table 2.

7 Analysis and Discussion

This section analyzes and discusses the data in Table 3. Several general observa-
tions are made. The amount of coupling across softwares system varies greatly,
and coupling sometimes increases as software systems go through maintenance.
Finally, there are a number of correlations between our coupling measure and
size measures of the packages.

7.1 Coupling Ranges

The amount of couplings in the 11 products of Table 3 varies considerably. For
example, the average parameter coupling per class (PCC/NOC) ranges from .33
for Jakarta Servlet 5.0.12 to 19.70 for ANTLR. Global coupling (GCC/NOC)
ranges from a low of .02 for Jakarta Servlet 152(5.0.12) to a high of 9.54, also
in ANTLR. The variation for inheritance coupling per class (ICC/NOC) is less,
only from .21 in Tapestry (Contrib) to .80 in Tapestry (Framework). The ratio
of global coupling to total coupling (GCC/TCC) also varies greatly, from a low
of 3 percent in Tapestry (Framework) and in Tomcat (Jasper2) to 32 percent in
ANTLR. Based on these numbers, we would anticipate that it would be more
difficult to make changes to ANTLR than to the other projects. Indeed, the
developer agreed® and has recently redesigned ANTLR to reduce the amount of
global coupling.

8 The developer, Terence Parr at University of San Francisco, explained via email that
version 2 had significant problems, which recently motivated him to write version 3.

19

7.2 Coupling Increases with Version Number

Consider the data for the three versions of the same project, Jakarta Servlet.
Although the number of classes shrank from 42 to 40, the amount of coupling
increased. In particular, the relative percentage of global coupling increased dra-
matically, from 6 percent of the total coupling to 20 percent. Although the num-
ber of lines of code also increased, many design experts would view the increased
use of global coupling as a negative trend.

This result agrees with a previous study [59], which observed an increase in
global coupling with version number in 365 versions of Linux. However, Linux
is written largely in C, not Java. The importance of implementation language is
discussed in the next subsection.

7.3 Java Global Coupling Is Intentional

In the C programming language, the default access is public. In C++4, the
default access of methods and attributes is private, but the default access of
structs is public. Also, access modifiers appear before an entire group of dec-
larations in C++4, so attributes that are added carelessly to a class header file
might accidentally become publicly available if there is a public access modifier.
Accordingly, in some languages, global coupling can arise simply out of ignorance
or carelessness.

In Java, however, the default access is package. Consequently, global coupling
in a Java project can arise only if the designers or programmers explicitly insert
it into the project.

This contrasts somewhat with the earlier study of Linux [59], which is im-
plemented largely in C. It is possible that at least some global coupling might
have arisen accidentally. In contrast, every instance of global coupling in the
sub-column of Table 3 headed GCC must have been explicitly inserted into the
code, including the 321 instances of global coupling in Tomcat Catalina and the
1,879 instances in ANTLR. This is a considerable amount of global coupling and
must be considered a medium- to long-term threat for Tomcat and ANTLR.

7.4 Correlations between Coupling Measures and Size

An obvious question about the data in Table 3 is whether the differences in
couplings are entirely due to size or something else. Accordingly, we examined
the data to look for correlations. As a start, we applied the Anderson-Darling
test of normality [63] to each column of Table 3.

Parametric statistics uses statistical significance testing based on sampling
distributions. If we understand how a variable is distributed in a population,
then we can predict how in repeated samples of equal size, this variable will
behave in terms of how it is distributed. However, this parametric statistical sig-
nificance testing does not apply if the underlying distribution is not normal [62].
Because none of the data in our study are even remotely normally distributed,

20

non-parametric statistics such as Spearman’s rank correlation [47] have to be
employed.

We calculated the Spearman rank correlation between the quantities shown in
Table 3. The results are shown in Table 4. Not surprisingly, there was statistically
significant correlation at the 95 percent level of confidence between the number
of lines of code (LOC) and the number of instances of each type of coupling
(PCC, GCC, and ICC). That is, the more code, the more coupling. We observe
that this does not mean we can use LOC to infer the amount of coupling.

Table 4. Correlations in Terms of Spearman Rank Correlation R Values

Spearman Rank | NOC | LOC | PCC | GCC | ICC | TCC | GCC /
Correlation TCC
NOC 1.000 | 0.597 | 0.542 | 0.603 | 0.792 | 0.542 0.173
LOC 1.000 | 0.982 | 0.875 | 0.767 | 0.982 | 0.218
PCC 1.000 | 0.834 | 0.767 | 1.000 0.173
GCC 1.000 | 0.558 | 0.834 0.547
1CC 1.000 | 0.767 | -0.032
TCC 1.000 0.173
GCC/TCC 1.000

We turn now to the Spearman rank correlation between the number of classes
(NOC) and the other variables. The correlation between NOC and LOC and
between NOC and the number of instances of parameter coupling (PCC) was
not statistically significant at the 95 percent level of confidence. Contrariwise,
the correlation between NOC and the number of instances of global (GCC)
and inheritance (ICC) coupling was indeed statistically significant (as indicated
in bold). The fact that the data indicate that NOC was not correlated with
parameter couplings is interesting. This lack of correlation leads us to deduce
that, for the sample of 11 open-source Java projects we examined, parameter
coupling is primarily used within classes (where we did not count), whereas
global and inheritance coupling is primarily used among classes.

8 Conclusions and Future Work

This paper presents techniques for measuring couplings in object-oriented re-
lationships between classes, specifically focusing on types of couplings that are
not available until after the implementation is completed, and presents a static
analysis tool that measures couplings among classes in Java packages. The mea-
surement incorporates object-oriented language features and is based on static
analysis of the software source code. Deriving coupling information from design
documents allows the information to be available earlier (pre-implementation)
and is therefore more useful for predictive purposes, whereas deriving coupling
information from source code allows the information to be more precise and re-

21

flects decisions made during implementation that are not specified in the design
documents.

The paper divides object-oriented couplings into four types. Source code pat-
terns for these four couplings types have been identified and analysis techniques
developed. The tool gives us the ability to gather and analyze data to study
the impact of these types of coupling. It is widely believed that high coupling
negatively impacts maintenance, and this tool can be used to validate or refute
this belief. In addition, we can decide if different types of coupling are more
problematic than others.

Coupling has been validated against several quality factors for procedural
programs. The tool presented in this paper will allow the same validations to be
attempted with object-oriented software.

In the future, we plan to use the coupling measurement presented in this
paper to support numerous specific software engineering activities. Most of these
are maintenance related, thus post-implementation measurements are useful.

An ongoing study is to correlate coupling with defects in new versions of the
software. That is, when software is modified, are defects more likely to appear
in parts of the program that exhibit high coupling? This information will allow
maintenance programmers to try to avoid changing potentially problematic por-
tions of the program, and help regression testers focus their efforts after changes
are made.

The class integration and test order (CITO) problem is that of deciding the
order in which software classes should be integrated into the complete system
[13, 45,49, 66]. We have already used the precise information available from code-
based couplings to improve existing solutions to the CITO problem [1, 2].

The change impact analysis problem is that of deciding how much of an
impact, or ripple effect, a proposed change to a software system will have on the
rest of the system [8-10, 16, 20, 55, 64, 68]. Code-based coupling metrics will allow
a more precise, quantitative, way to solve the change impact analysis problem.

The software design quality assessment problem is that of evaluating the
overall design of a software system [21,27,50,53,57]. The code-based coupling
metric can be used to evaluate implementations directly, to evaluate how well an
implementation conforms to a design, and to determine whether software design
patterns are present in the implementation.

Stability refers to the extent to which the structure of a design is preserved
as it goes through successive maintenance versions [6, 29, 30,41]. Elish recently
looked for correlations between couplings and stability by measuring changes be-
tween versions of software [30,48, 70]. The changes examined were classes added,
classes deleted, and classes changed (all changes were treated the same way). He
found a correlation between the number of added and deleted modules and the
number of errors reported in the subsequent version, but did not find a corre-
lation between changes. It seems likely that the reason no correlation between
changes was found was because all changes were measured as being the same,
that is, the measurement was too imprecise to observe the difference. By looking

22

at the code itself, our measure has more precision and has the potential to give
a deeper analysis of the changes.

Current methods that are used for these activities are often qualitative in
nature and rely on substantial judgment from engineers. Our coupling measure-
ment is based on source-level analysis, and can lead to more precision and better
results. Experimental evaluation using JCAT can eliminate the estimation and
subjective inputs. Basing the class integration and testing on couplings may lead
to a safer and more efficient ordering. These coupling measures should be good
indicators of the impacts of changes. The coupling measures above may not fully
capture all the code-visible dependencies that are important for impact analysis,
so they may need to be extended. The level of coupling analysis in this work will
yield more detailed and precise ways to assess the quality of design, hopefully
leading to a stronger scientific basis for evaluating designs.

In the future, we also hope to investigate how frequently the different varia-
tions of global coupling appear . It seems likely that the different global coupling
types will impact maintenance and reliability differently. This type of analysis
could guide developers toward better designs by helping them consider on which
variations of global coupling to concentrate. JCAT currently does not differen-
tiate among the different variations of coupling.

The JCAT tool is only a beginning. One possibility is to use it to evaluate
the importance of different types of coupling. One possible method would be
to use multiple linear regression to investigate the importance of each coupling
type for predicting things such as likelihood of defects and effort required for
maintenance.

When we wrote this paper, we did not consider the possibility of using another
class’s ID as a return value (called component coupling by other researchers [22,
51]). We are currently incorporating this type of coupling into the tool.

In conclusion, we believe that the techniques for measuring coupling pre-
sented in this paper can be used to improve software quality in a number of
different ways. The extensions proposed at the end of this section may be even
more useful.

Acknowledgments This work was sponsored in part by the National Science
Foundation under grant number CCR-0097056. Offutt and Abdurazik were spon-
sored in part by National Institute of Standards and Technology (NIST), Soft-
ware Diagnostics and Conformance Testing Division (SDCT) in support of its
standards and conformance testing program. Thanks to Terence Parr, the de-
veloper of ANTLR, for the tool and for quick answers to our pushy questions.

References

1. Aynur Abdurazik and Jeff Offutt. Coupling-based class integration and test order.
In Workshop on Automation of Software Test (AST 2006), pages 50-56, Shanghai,
China, May 2006.

23

10.

11.

12.

13.

14.

15.

16.

17.

18.

Aynur Abdurazik and Jeff Offutt. Using coupling-based weights for the class inte-
gration and test order problem. The Computer Journal, pages 1-14, August 2007.
DOI: 10.1093/comjnl/bxm054.

Roger T. Alexander and Jeff Offutt. Analysis techniques for testing polymorphic
relationships. In Proceedings of the Thirtieth International Conference on Technol-
ogy of Object-Oriented Languages and Systems (TOOLS USA ’99), pages 104-114,
Santa Barbara CA, August 1999. IEEE Computer Society Press.

Roger T. Alexander and Jeff Offutt. Criteria for testing polymorphic relation-
ships. In Proceedings of the 11th International Symposium on Software Reliability
Engineering, pages 15-23, San Jose CA, October 2000. IEEE Computer Society
Press.

Erik Arisholm. Dynamic coupling measures for object-oriented software. In Pro-
ceedings of the Fighth IEEE Symposium on Software Metrics (METRICS02),
pages 33-42. IEEE, June 2002.

J. Bansiya. Evaluating framework architecture structural stability. ACM Comput-
ing Surveys, 32(1), March 2000.

Victor Basili, Lionel Briand, and Walclio Melo. A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751-761, October 1996.

. Haider Zuhair Bilal and Sue Black. Computing ripple effect for object oriented

software. In Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE), Nantes, France, July 2006.

Sue Black. Computing ripple effect for software maintenance. Journal of Software
Maintenance: Research and Practice, 13(4):263, July-August 2001.

Shawn A. Bohner and Robert S. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, Los Alamitos, California, 1996.

Lionel Briand, Prem Devanbu, and Walcelio Melo. An investigation into coupling
measures for C++. In Proceedings of the Nineteenth International Conference on
Software Engineering, pages 412-421, Bostom, MA, May 1997. IEEE Computer
Society Press.

Lionel Briand, J. Feng, and Yvan Labiche. Using genetic algorithms and coupling
measures to devise optimal integration test orders. In Proceedings of the 14th
International Conference on Software Engineering and Knowledge Engineering,
pages 43-50, Ischia, Italy, 2002. IEEE Computer Society Press.

Lionel Briand, Yvan Labiche, and Yihong Wang. An investigation of graph-based
class integration test order strategies. IEEE Transactions on Software Engineering,
29(7):594-607, July 2003.

Lionel Briand, Jiirgen Wiist, and Hakim Lounis. Using coupling measurement
for impact analysis in object-oriented systems. In Proceedings of the 1999 IEEE
Conference on Software Maintenance, pages 475-482, Oxford, UK, August 1999.
Lionel C. Briand, John W. Daly, and Jiirgen K. Wiist. A unified framework for
coupling measurement in object-oriented systems. IEEFE Transactions on Software
Engineering, 25(1):91-121, January/February 1999.

Lionel C. Briand, Jiirgen Wiist, and Hakim Lounis. Using coupling measurement
for impact analysis in object-oriented systems. In Proceedings of the IEEE Inter-
national Conference on Software Maintenance (ICSM), Oxford, UK, 1999. IEEE
Computer Society Press.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476-493, June 1992.

P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice-Hall, Englewood
Cliffs NJ, 1991.

24

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice-Hall, Englewood
Cliffs NJ, 2nd edition, 1991.

J. S. Collofello and D. A. Vennergrund. Ripple effect analysis based on semantic
information. In AFIPS Conference Procceddings (NCC), volume 56, pages 657-82.
ACM SIGSOFT/SIGPLAN, 1987.

L. L. Constantine and E. Yourdon. Structured Design. Prentice-Hall, Englewood
Cliffs, NJ, 1979.

J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in object-oriented
systems. Technical report, University of Klagenfurt, 1994.

Mahmoud Elish. A case study on structural characteristics of object-oriented de-
sign and its stability. In Proceedings of the 23rd IASTED International Multi-
Conference: Software Engineering, Innsbruck, Austria, February 2005.

Khaled El Emam, Walcelio Melo, and Javam C. Machado. The prediction of faulty
classes using object-oriented design metrics. The Journal of Systems and Software,
56(1):51-62, July 2001.

Andreas Epping and Christopher M. Lott. Does software design complexity af-
fect maintenance effort? In Proceedings of the 19th NASA Software Engineering
Laboratory Workshop, Goddard Space Center, December 1994.

N. Fenton and A. Melton. Deriving structurally based software measures. The
Journal of Systems and Software, 12(3):177-886, July 1990.

N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous & Practical Ap-
proach. PWS Publishing Company, Boston, Massachusetts, 2nd edition, 1997.
Elaine Ferneley. Coupling and control flow measures in practice. Journal of Systems
and Software, 51(2):99-109, 2000.

D. Grosser, H. Sahraoui, and P. Valtchev. Predicting software stability using case-
based reasoning. In Proceedings 17th IEEFE International Conference on Automated
Software Engineering, pages 295-298, Edinburgh, UK, September 2002.

D. Grosser, H. Sahraoui, and P. Valtchev. An analogy-based approach for pre-
dicting design stability of Java classes. In Proceedings 9th International Software
Metrics Symposium, pages 252-262, Sydney, Australia, September 2003.

M. Jazayeri H. Gall, K. Hajek. Detection of logical coupling based on product
release history. In Proceedings of the 1998 IEEE Conference on Software Mainte-
nance, pages 190-198, Bethesda, MD, November 1998.

Gregory A. Hall, Wenyou Tao, and John C. Munson. Measurement and validation
of module coupling attributes. Software Quality Journal, 13:281-296, 2005.

Mark Harman, Margaret Okunlawon, Bala Sivagurunathan, and Sebastian Danicic.
Slice-based measurement of coupling. In IEEE/ACM ICSE workshop on Process
Modelling and Empirical Studies of Software Evolution (PMESSE’97), pages 28—
32, Boston, Massachusetts, May 1997.

S. Henry and D. Kafura. Software structure metrics based on information flow.
IEEE Transactions on Software Engineering, 7(5):510-518, 1981.

M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented
systems. In Proceedings of the International Symposium on Applied Corporate
Computing, pages 412—421, Monterrey, Mexico, October 1995.

D. H. Hutchens and V. R. Basili. System structure analysis: Clustering with data
bindings. IEEE Transactions on Software Engineering, 11(8):749-757, August
1985.

IEEE. Standard Glossary of Software Engineering Terminology. Institute of Elec-
trical and Electronic Engineers, New York, 1990. ANSI/IEEE Std 610.12-1990.
IEEE. Standard for a Software Quality Metrics Methodology. Institute of Electrical
and Electronic Engineers, New York, 1998. ANSI/IEEE Std 1061-1998.

25

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Darrel Ince. Software Development: Fashioning the Baroque. Oxford University
Press, Oxford, England, 1988.

P. Jalote. An Integrated Approach to Software Engineering. Springer-Verlag, New
York NY, 1991.

M. Jazayeri. On architectural stability and evolution. In Reliable Software
Technlogies-Ada-FEurope 2002, pages 13-23. Springer-Verlag, Lecture Notes in
Computer Science, 2002.

Zhenyi Jin and Jeff Offutt. Integration testing based on software couplings. In
Proceedings of the Tenth Annual Conference on Computer Assurance (COMPASS
95), pages 13-23, Gaithersburg MD, June 1995. IEEE Computer Society Press.
Zhenyi Jin and Jeff Offutt. Coupling-based criteria for integration testing. Software
Testing, Verification, and Reliability, 8(3):133-154, September 1998.

D. Kafura and S. Henry. Software quality metrics based on interconnectivity. The
Journal of Systems and Software, 2:121-131, 1981.

David Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima. Class firewall, test order,
and regression testing of object-oriented programs. Journal of Object-Oriented
Programming, 8(2):51-65, 1995.

David Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, Chris Chen, Young-Si
Kim, and Young-Kee Song. Developing an object-oriented software testing and
maintenance environment. Communications of the ACM, 38(10):75-88, October
1995.

Russell Langley. Practical Statistics Simply Ezplained. Dover Publications, New
York, 1971.

W. Li, L. Etzkorn, C. Davis, and J. Talburt. An empirical study of object-oriented
system evolution. Information and Software Technology, 42(6):373-381, 2000.
Brian A. Malloy, Peter J. Clarke, and Errol L. Lloyd. A parameterized cost model
to order classes for class-based testing of C++ applications. In Proceedings of
the 14th International Symposium on Software Reliability Engineering, Denver,
Colorado, 2003. IEEE Computer Society Press.

Robert C. Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall, Upper Saddle River, NJ, 2003.

J. May, G. Hughes, and N. Shaban. Formal coupling of software components. In
Fifteenth Annual UK Performance Engineering Workshop, pages 35—44. Research
Press, 1999.

T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2(4):308-320, December 1967.

G. Myers. Reliable Software Through Composite Design. Mason and Lipscomb
Publishers, New York NY, 1974.

Jeff Offutt, Mary Jean Harrold, and P. Kolte. A software metric system for module
coupling. The Journal of Systems and Software, 20(3):295-308, March 1993.

Jeff Offutt and Li Li. Algorithmic analysis of the impact of changes to object-
oriented software. In Proceedings of 1996 IEEE Conference on Software Main-
tenance, pages 171-184, Monterey, CA, November 1996. IEEE Computer Society
Press.

Alex Orso and Mauro Pezze. Integration testing of procedural object oriented
programs with polymorphism. In Proceedings of the Sizteenth International Con-
ference on Testing Computer Software, pages 103-114, Washington DC, June 1999.
ACM SIGSOFT.

M. Page-Jones. The Practical Guide to Structured Systems Design. YOURDON
Press, New York, NY, 1980.

26

58. Terence Parr. ANother Tool for Language Recognition, 1997.
http://www.antlr.org, last access March 2008.

59. Stephen R. Schach, Bo Jin, David R. Wright, Gillian Z. Heller, and A. Jefferson
Offutt. Maintainability of the Linux kernel. IEE Proceedings, Special Issue on
Open Source Software Engineering, 149(1):18-23, February 2002.

60. N. F. Schneidewind. Methodology for validating software metrics. IEEE Transac-
tions on Software Engineering, 18(5):410-422, May 1992.

61. R. W. Selby and V. R. Basili. Analyzing error-prone system structure. IEEE
Transactions on Software Engineering, 17(2):141-152, February 1991.

62. Inc StatSoft. Electronic Statistics Textbook. StatSoft (online), Tulsa, OK, 2006.
http://www.statsoft.com/textbook/stathome.html.

63. M. A. Stephens. EDF statistics for goodness of fit and some comparisons. Journal
of the American Statistical Association, 69(347):730-737, September 1974.

64. W. Stevens, G. Meyers, and L. Constantine. Structured design. IBM Systems
Journal, 13(2):115-139, 1974.

65. W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM
Systems Journal, 13(2):115-139, 1974.

66. Kuo-Chung Tai and F. J. Daniels. Test order for inter-class integration testing
of object-oriented software. In The Twenty-First Annual International Computer
Software and Applications Conference (COMPSAC ’97), pages 602-607, Santa Bar-
bara CA, August 1997. IEEE Computer Society.

67. D. A. Troy and S. H. Zweben. Measuring the quality of structured designs. The
Journal of Systems and Software, 2:112-120, 1981.

68. F. G. Wilkie and B. A. Kitchenham. Coupling measures and change ripples in
C++ application software. Journal of Systems and Software, 52(2-3):157-164,
2000. Maintenance, OO, Metrics.

69. Franck Xia. On the concept of coupling, its modeling and measurement. Journal
of Systems and Software, 50(1):75-84, January 2000.

70. S. S. Yau and J. S. Collofello. Some stability measures for software maintenance.
IEEE Transactions on Software Engineering, 6(6), November 1980.

Jeff Offutt is Professor of Software Engineering at George Mason University.
His current research interests include software testing, analysis of Web applica-
tions, object-oriented software, and software maintenance. He has published over
100 refereed research papers and the textbook Introduction to Software Testing
(Campbridge University Press, 2008). Offutt is the editor-in-chief of Wiley’s
Software Testing, Verification and Reliability journal, and on editorial boards
for EmSE, SoSyM, and SQJ. He received the Best Teacher Award from the
School of Information Technology and Engineering in 2003. Offutt received a
PhD degree from the Georgia Institute of Technology.

Aynur Abdurazik received the BEng degree in Computer Engineering from
Beijing University of Posts and Telecommunications, Beijing, China, the MS de-
gree in Software Engineering from George Mason University, and the PhD degree
in Computer Science from George Mason University. Her research interests are
in the area of software engineering, including object-oriented software analysis
and testing.

27

Stephen R. Schach is an Associate Professor in the Department of Elec-
trical Engineering and Computer Science at Vanderbilt University, Nashville,
Tennessee. Steve is the author of over 130 refereed research papers. He has
written twelve software engineering textbooks, including Object-Oriented and
Classical Software Engineering, Seventh Edition (McGraw-Hill, 2007). He con-
sults internationally on software engineering topics. Steve’s research interests
are in empirical software engineering and open-source software engineering. He
obtained his PhD from the University of Cape Town.

28

