
IEEE Software / Sounding Board
Jan-Feb 2013, 30(1):96

Putting the Engineering into Software Engineering
Education

Jeff Offutt

I recently read a paper about software engineering research,1 and once again discovered that its author,

Lionel Brand, had published “my” ideas before I wrote them. Thankfully, his writing often stimulates

further thinking, and this was no exception. His visionary thoughts on software engineering research started

me thinking, but in terms of software engineering education rather than research.

Briand wrote about the “paradox of being both highly relevant and increasingly underfunded and

discredited.” Personally, I’ve found that software engineering research gets more respect every year,

although the funding is abysmally low, at least in the US. This article argues that software engineering is

not given enough relevance or support in higher education.

Research and Education

I’ve been a researcher in software engineering for more than 25 years, but I’ve also been an educator. I

taught my first software engineering course as a graduate student in 1985, a standard undergraduate survey

course. I joined my current university, George Mason, in 1992, partly because it had a full MS program in

software engineering that was distinct from computer science. I’ve led this large successful program since

2003 and helped create software engineering concentrations in our PhD program (2000) and in our

undergraduate applied computer science program (2010). Along the way, I’ve created over a dozen new

software engineering courses, many of which had never been taught anywhere and had to be designed

without adequate textbooks or other materials. This wealth of experience in software engineering education

lets me see things differently from many of my colleagues.

Briand wrote a phrase that I’ve said many times: “Software engineering isn’t a branch of computer

science; it’s an engineering discipline relying in part on computer science, in the same way that mechanical

engineering relies on physics.” Some of my colleagues respond by saying “well, of course,” but many

traditional CS professors think it’s almost heretical. In this old-fashioned view, software engineering has

always been part of computer science and always will be. But things change. This analogy has been 100

percent convincing to my colleagues in civil engineering, electrical engineering, and other traditional

engineering disciplines.

Differentiating Software Engineering from Computer Science

If software engineering isn’t a branch of computer science, then we must ask practicing software engineers

what they need to know that they don’t learn in CS degrees. Most computer science undergraduate students

take one software engineering class, typically with a week or two spent on each phase in the traditional

waterfall lifecycle model. A lot of the semester is devoted to process theory. It’s worth noting that in

modern software engineering projects, the traditional waterfall model is almost never used, and the ideas

about process change constantly—often much faster than textbooks or instructors’ knowledge. Moreover,

as David Parnas asserts, process must be shown, not taught, by mentoring young engineers through actual

projects.2

This answers what CS students learn about software engineering, but what useful knowledge are they

not learning? It turns out that this is an easy question with lots of answers: usability, testing, security,

design modeling, project management, quality control, standards, architecture, embedded applications,

evolution, web applications, ethics, and so on. The list constantly changes. Yes, CS students learn a little

about some of these topics—for example, they spend about one week on testing in a semester-long class.

But is a week really enough for an activity that consumes well over 50 percent of the effort in large

software engineering projects?3

I like to ask my students a question: What is your expected job title when you graduate? If they know

anything about the computing field, they don’t say “computer scientist.” Most answer correctly, “software

engineer.” Isn’t it just a little strange that we prepare software engineers by teaching them computer

science? This fact alone should obviously imply that we either need computer science programs to include

more software engineering or more software engineering degrees. After all, nobody would argue that

students study physics to become mechanical engineers!

Although both approaches would be an improvement, I believe that CS education shouldn’t change to

include more software engineering. Rather, I agree that they should continue to diverge.

Software Engineering Is Engineering, Not Science

Can you imagine mechanical engineering being part of physics? Can you imagine ME faculty performing

research within the physics department? Can you imagine an ME program flourishing within the confines

of a physics department? You probably can’t, but that’s where it originated.

Over a century ago, universities had departments and programs in physics and some taught really

practical applications in physics, such as how to use principles from physics to build bridges, dams, cars,

airplanes, and electrical circuits. Over time, physics fissioned into fields now known as mechanical

engineering, civil engineering, electrical engineering, mining engineering, aerospace engineering, and a

host of others. The process continues, but from our 21st century perspective, it’s now obvious that

engineering fields are different pedagogically and should be taught differently from physics. It’s equally

obvious that the hundreds of thousands of engineering students should take three or four courses in physics

and even more in math. This is why my employer, George Mason University, has a successful and long-

lasting MS program in software engineering and, more recently, a BS concentration in software

engineering.

So how exactly does software education differ from computer science education? The most obvious is in

topics; the list in the earlier paragraph is much of what we should teach in software engineering programs.

Software engineering education also must focus on multiple quality attributes—not just efficiency, but

reliability, scalability, security, availability, maintainability, and usability. Good engineering is also about

making the right tradeoffs based on contextual requirements, which CS students aren’t taught. Parnas

emphasized that engineering students should learn applications and how to build complete products, as

opposed to how to confirm known facts and extend knowledge.2

Another aspect that differentiates software engineering is that it needs to include non-computing topics

other than CS. Software is part of larger systems, so we need systems engineering. Software is developed

by teams, so we need project management. Software must be high quality, so we need statistical quality

control. Deeper differences can affect not just what we teach but how we teach. Traditional CS courses

emphasize single solutions, developed by students working alone, and evaluated primarily by efficiency.

This approach doesn’t work for engineering.

Three Principles for Teaching Software Engineering

Computer science, with its strong roots in mathematics, is usually taught using “convergent thinking,”

meaning problems have one answer and successful students should tend toward that answer. Engineering,

however, especially software engineering, needs divergent thinking, where multiple answers are possible

and the most successful students should find a solution that’s unique when compared with other students’

solutions. Divergent thinking is encouraged by assigning problems that have many solutions.

In CS, traditionalists become adamant supporters of “individual learning,” discouraging cooperation at

all costs. This is partly because instructors worry about plagiarism, not surprising since computers make it

so very easy to copy. Thus a side effect of spending so much energy discouraging cheating is that we

alienate the educational empowering benefits of collaboration and social processes. Practical software

engineering is an extremely collaborative discipline, and I’ve found that software engineering students are

best taught with collaborative learning. Students should be encouraged to work together, to solve problems

together, and to learn together. Instead of focusing exclusively on discouraging plagiarism, we should

encourage students to learn more by learning together. Students learn more through collaboration than

competition!

Computer science projects and homework assignments tend to be assessed on a uniform scale that

measures every student’s work with the same yardstick. But in engineering, especially software

engineering, the notion of what will succeed often varies depending on the context, including users, market,

platform, and release date. This suggests that we, as educators, should use differentiated assessments.

Instead of every student trying to accumulate exactly the same points for the same requirements, we could

offer a menu of potential features and attributes for students to choose from, each of which accumulates

some number of points.

The Path Forward

Clearly, if software engineering is really the “best job,”4 and employment is continuing to increase

throughout the great recession with no end in sight, universities must shift from a computer “science” focus

to a software engineering focus. Universities should create more undergraduate software engineering

degrees. If that’s not possible, undergraduate CS programs should add more software engineering—a one-

semester course is clearly insufficient. Physics is still going strong, and society still needs physicists. But

what’s the ratio of engineers to physicists—100 to 1? 1,000 to 1?

Also, when we teach software engineering, we must remember that divergent thinking and collaborative

learning are essential abilities for practicing engineers, and differentiated assessment is essential for

teaching software engineering. I’ve successfully used all of these techniques in my classes, and so can you.

As software engineering continues to move out of the shadow of CS to establish itself as a separate,

independent discipline, industry will be more satisfied with our graduates, and companies will create more

high-quality software. Don’t we owe this to society?

Acknowledgments
I’m grateful to Lionel Briand, Rich LeBlanc, Paul Ammann, and Stephanie Offutt for helping me refine my thinking on

this topic.

References

 1. L. Brand, “Embracing the Engineering Side of Software Engineering,” IEEE Software, vol. 29, no. 4, 2012, pp.

93–96.

 2. D. Parnas, “Software Engineering Programs Are Not Computer Science Programs,” IEEE Software, vol. 16, no.

6, 1999, pp. 19–30.

 3. B. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

 4. Y. Klugerman, “Software Engineer Ranked Best Job for 2011,” Brain Track, Jan. 2011;

www.braintrack.com/college-and-work-news/articles/software-engineer-ranked-best-job-for-2011-11010502.

Jeff Offutt is professor and director of the software engineering MS program at George Mason University.

He was awarded the George Mason University Teaching Excellence Award, Teaching With Technology,

in 2013, was named a GMU Outstanding Faculty member in 2008 and 2009, received the Best Teacher

Award from GMU’s Volgenau School of Engineering in 2003, and coauthored the textbook Introduction to

Software Testing (Cambridge University Press, 2008). Offutt is co-editor in chief of Wiley’s Software

Testing, Verification, and Reliability and one of the founders of the IEEE International Conference on

Software Testing, Verification, and Validation. Contact him at offutt@gmu.edu.

