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Abstract—Modern software engineers automate as many tests
as possible. Test automation allows tests to be run hundreds or
thousands of times: hourly, daily, and sometimes continuously.
This saves time and money, ensures reproducibility, and ulti-
mately leads to software that is better and cheaper. Automated
tests must include code to check that the output of the program
on the test matches expected behavior. This code is called the test
oracle and is typically implemented in assertions that flag the test
as passing if the assertion evaluates to true and failing if not.
Since automated tests require programming, many problems can
occur. Some lead to false positives, where incorrect behavior is
marked as correct, and others to false negatives, where correct
behavior is marked as incorrect. This paper identifies and studies
a common problem where test assertions are written incorrectly,
leading to incorrect behavior that is not recognized. We call these
tests blind because the test does not see the incorrect behavior.
Blind tests cause false positives, essentially wasting the tests. This
paper presents results from several human-based studies to assess
the frequency of blind tests with different software and different
populations of users. In our studies, the percent of blind tests
ranged from a low of 39% to a high of 95%.

Index Terms—Test automation; test oracle; assertions

I. INTRODUCTION

Software engineers have been automating tests for decades.
However, in the past 10 years, industry has been steadily
increasing its use of test automation [1]. This is driven partly
by efficiency advantages of automation [2], and partly by agile
processes such as test driven development [3], which require
tests to be automated. The underlying driver is, not surpris-
ingly, economics. Fail watch [4] analyzed English language
news articles for a year and found 606 recorded software
failures that impacted half the world’s population and cost
a combined $1.7 trillion US dollars.

An automated test is a software component that includes test
input values and test evaluation code, known as test oracles
(TO) [5], usually written as assertions. Automated tests execute
against the software under test (SUT) and report whether
the execution passed (the actual output was the same as the
expected output as encapsulated in the TO) or failed (the
behavior was incorrect). Automated tests run in build systems
that run daily, hourly, or continuously. Unfortunately, many
automated tests are incorrect. Some result in false positives,
where the test incorrectly reports the software passed. Others
result in false negatives, where the test incorrectly reports the
software failed. This paper reports on research investigating a
particular problem with false positives, where incorrect TOs
[6] do not notice a failure in the SUT.

A test oracle is incorrect if it sometimes reports the wrong
result. TOs can be incorrect for many reasons. This paper
focuses on a particular type of TO that is incorrect because it is
incomplete. This is a widespread but little studied problem that
we call blind tests. A blind test has an incorrect assertion such
that a portion of the output was not observed, leading to an
incorrect result. The incorrect result could be a false positive,
that is, the software produced at least one output value that was
incorrect, but the test assertion did not check that particular
output. The incorrect result could also be a false alarm, that
is, the test caused the program to behave correctly but the
expected output in the assertion did not include everything
that was in the actual output.

For example, consider the following Java statements:
String firstName = "Anita";
String lastName = "Borgg"; //faulty spelling
assertEquals("Anita Borg",

firstName+" "+lastName); //correct
assertEquals("Anita", firstName); //blind
assertEquals("Anita",

firstName+" "+lastName); //false alarm

The first assertion is correct and will reveal the misspelling in

lastName. The second does not check the last name, thus is
blind to the mistake. The third checks both firstName and
lastName in the actual output portion of the assertion, but
only includes the first name in the expected output, so raises
a false alarm even if the value for lastName is correct.

Assertions are simple and easy to implement for trivial
computations, but are more problematic even for modest
procedures. Consider sorting a simple numeric array, for
example “sort([5,3,4]).” Checking the entire output ar-
ray (“assertEquals([3,4,5], result);”) does not
scale to arrays with thousands of elements. The expense is
prohibitive, thus the automated test may only check part of
the output. Spot checking the first or last element will miss
many potential mistakes that may be buried in the middle of
the array. Even checking that the result is in correct order
will not find failures such as “[3,3,3]” and “[0,0,0]”.
Simple assertions are tempting to write and common even for
experienced testers, but always have the potential to be at least
partially blind. This paper focuses on blind tests that lead to
false positives.

This paper starts with background in test automation and
motivates the problem in section II. We then describe several
empirical evaluations of test oracles in section III, followed by
observations and results in section IV. Threats to validity are



discussed in section V, and related work in section VI. This
work opens the door to numerous future work directions as
discussed in section VII.

II. BACKGROUND IN TEST AUTOMATION

This section introduces theoretical and practical concepts
in test automation. More details can be found in textbooks
[3], [7]. In test automation, controllability [8] refers to how
hard it is to get the right inputs to the desired location
in the program. When testing a Java method in isolation,
most inputs are through parameters, which can be controlled
directly. Thus, the method has fairly high controllability. When
testing a specific if -statement inside a large program through
its external UI, however, the tester must find input values that
eventually cause the program to reach that if -statement, and
the variables referenced in the test must have the appropriate
values. In this situation, controllability is usually low (making
test automation harder). Observability [8] refers to how hard
it is to see the results of a test. Again, when unit testing a
method, the return value and any values printed are easy to
observe. However, if the software writes to a database, controls
an external sensor, or changes a shared memory object in
a distributed web application, observability is harder. Many
theoretical and practical challenges of test automation are due
to low controllability, low observability, or both.

A. Components of a test case

Test cases are comprised of several pieces. Test inputs
are inputs needed to complete an execution of the system
under test (SUT) [7]. Test inputs are sometimes based on
test criteria or some other strategy that yields specific test
requirements. Test inputs might be sequences of method calls
to an object or subsystem, including all necessary objects,
parameters, and resources, or user-level inputs such as text
values or UI selections. The specifics depend on the software
under test, but the concepts are the same. Automated tests
must also include expected results, which are the results the
test produces if the program satisfies its intended behavior.
A test oracle (TO) compares the expected results with the
actual results to decide if a test passes. TOs are commonly
implemented as assertions in frameworks such as JUnit [9].
Consider the following example JUnit test. The integers ‘2’
and ‘3’ are test inputs, and the expected result is ‘5’. The TO
is the entire assertion, which directs JUnit to print the string
if the assertion returns false.

@Test public void testAdd()
{

assertTrue("testAdd incorrect",
5 == Calc.add(2, 3));

}

One goal of a test is to expose faults. Test inputs can trigger
a fault to result in an external failure, or incorrect behavior.
That is, a SUT fails when actual results do not match expected
results.

B. The RIPR model

The distinction between fault and failure led to the devel-
opment of the reachability, infection, and propagation model
in the 1980s [10], [11], [12], [13]. The use of assertions in
automated tests meant that the tests did not always check the
erroneous outputs, thus RIP was extended to include reveal,
making the RIPR model [14].

Figure 1 illustrates the standard RIPR model from the
testing field. TOs reveal faults by observing the final program
state, that is, outputs and visible values after execution. To
detect a fault, a test has to reach a faulty location, then
the faulty code must infect the internal program state with
incorrect values. An incorrect value must propagate to an
incorrect final state (a failure). We cannot check the entire
final output state, so TOs look at part of the final state
(observed). If the incorrect final state and the observed final
state intersect, then the test reveals the failure. If they do not,
then the test does not reveal the failure. That is, the test is
blind. Tests are expensive to design, create, automate, and run,
effort that is largely wasted when tests can’t see failures.

Fig. 1. The Reachability, Infection, Propagation, and Revealability Model

C. Testability

Freedman described testability as a property of an easily
testable program [8]. He described these properties as the
ability to generate finite numbers of non-redundant sets of test
cases that can easily locate faults in the program and do not
have input-output inconsistencies. He further defines domain
testability as the lack of input output inconsistency using two
concepts: controllability and observability.

A software component is said to be controllable if we can
produce desired outputs from specified inputs [8]. Controlla-
bility measures how easy it is to provide inputs to a software
component. Outputs that depend on environmental factors
such as humidity, temperature, or motion sensors decrease
controllability.

The ability to see the output is called observability [14],
[8]. When software creates output that is hard to observe,
for example, large data files, databases, signals to external
hardware devices, and messages to remote computers, this
is called an observability problem. Although widely known
in practice, observability problems have been inadequately
studied by researchers.

Writing correct oracles is hard for complicated software.
In our education and consulting, we have observed that even
experienced programmers and testers often make mistakes.



D. Challenges of creating test oracles

To write correct and complete TOs, programmers and
testers need to understand program requirements and correct
behavior. It is challenging to write oracles for software that
produce complicated outputs, and especially so if the output
is non-deterministic. Consider an example SUT that accepts a
collection of strings, then returns strings randomly, one at a
time, when asked. Given the example partial test below:

@Test public void threeRandoStrings()
{

rs.add("ICST");
rs.add("ICSE");
rs.add("FSE");
String rando = rs.getRandomValue();
// what assertion should be used?

}

What should be checked in an assertion? Correct behavior
could be any of the three strings, so perhaps the assertion
could check whether rando is equal to any of the three
strings. However, that still would not ensure the strings
are returned randomly. Checking for randomness requires
some complex math—the test method would need to call
getRandomValue() many times and check whether the
distribution of strings returned is truly random. Such assertions
are hard to think of, hard to design, and hard to code.

III. EMPIRICAL EVALUATIONS OF TEST ORACLES

Our first question about blind test oracles is how common
are they? Beyond their frequency, we seek to understand what
causes tests to be blind. Answers to these questions will help
find solutions to the problem. We have carried out several
studies of test oracles to try to quantify, analyze, and categorize
blind tests. Partners in industry and attendees of Google’s Test
Automation Conference [15] have frequently expressed that
poor TOs are a major problem in test automation. In a 2010
keynote presentation, Patrick Copeland of Google claimed
poor TOs was one of the most significant causes of wasted
effort in testing [16]. During previous research with automated
tests [14], we found that almost a third of the tests in our study
were blind.

For this research, we ask the following research questions
about blind tests:

• (RQ1) What percentage of tests are blind?
• (RQ2) Do some groups of testers write more blind tests

than other groups?

A. Methodology

We collected three separate sets of data on this question,
using different subject testers, different object programs, and
with different guidance for creating test input values. In each,
we started with a program module to test (the SUT) and asked
engineers to create automated tests. The SUTs had a known
collection of software faults.

We introduce the concept of a complete test oracle (CTO) to
be a test oracle that checks the entire output space of the SUT.
While a CTO may be too large to always be practical, this does

give us a ground truth for the test—if the test caused a failure,
the CTO is guaranteed to reveal that failure. In general, CTOs
may need to include files on disk, databases, internal state
variables, etc. In our studies, we narrowed the output space to
focus on just the console output of the program. We replaced
the engineer-written TO of each test with our own CTO. We
then compared the result of executing the test with the original
TO against the result with the CTO. If the original test did not
reveal a failure, but the modified test did, then the TO in the
original test was blind.

B. Study 1: Preliminary analysis

Table I shows data from a preliminary study that was
primarily focused on automating the creation of test input
values [14]. The tests were designed and implemented by
hand from UML statecharts that described the behavior of
the software. More details are in the previous paper. Out of
a total of 93 automated tests that reached a fault, caused an
infection in the program state, and propagated to the output
state, only 65 of the TOs revealed the failure. That is, 28
tests were successful in that they caused a failure, but their
TOs incorrectly reported that the test passed. Put another way,
30.11% of the failure-finding tests were ignored because the
TOs were incorrect.

Not only is this a surprisingly high percentage of faulty
TOs, but when broken out by groups, the success rate was
surprising. Row UG in table I represents undergraduate stu-
dents, FG represents full-time graduate students with no work
experience, PG represents full-time software engineers who
are also part-time graduate students, and FT represents full-
time software testers. In our preliminary study, the testers
who wrote the most successful TOs are the least experienced
(undergraduate students), while the testers who wrote the
most faulty TOs are the most experienced—full-time software
testers.

These preliminary results, while based on only a small data
set, were intriguing enough to convince us to investigate more
thoroughly. Thus, we expanded this study with more subjects.

C. Study 2: Students in a fourth year testing class

The second study assigned students to write tests for a 100
line method they were already familiar with.

1) Subject and program selection: For this empirical
study1, we needed subjects who were familiar with the RIPR
model and could write JUnit tests. Therefore, we collected
tests written by 48 undergraduate students at our university
who were taking a senior-level course in software testing. All
were either Computer Science or Software Engineering majors
and had studied the RIPR model in class. Approximately
one-third of the students had some experience as software
engineering interns in local companies.

The goal of the study was to compare and assess the quality
of test assertions, so we needed all participants to write tests
for the same program. The program was based on a quiz

1All experimental object programs, including faults, and tests are available
in our experimental repository: https://github.com/Keshina/BlindTest



TABLE I
STUDY ONE: TESTS THAT CAUSED FAILURE BUT DID NOT SEE THE FAILURE

tests that caused
failure tests that revealed % tests that revealed caused failure, did

not reveal % did not reveal

Total 93 65 69.89 28 30.11
UG 30 26 86.67 4 13.33
FG 25 19 76.00 6 24.00
PG 21 12 57.14 9 42.86
FT 17 8 47.06 9 52.94

scheduling Java application used to schedule retakes of weekly
quizzes in their class. Students enter the course number, then
pick from a list of retake times available within the following
two weeks. The list includes the date, time, location, and quiz
id for each available quiz. The list of retake times form part of
the input space and is read from two XML files. The students
are then prompted to enter their name and the quiz id. The
software saves these inputs to schedule a retake. Figure 2
shows the example initial screen2. Students wrote tests for
a 100 line method within this program that prints the list of
available retakes.

2) Program requirements: The students used this program
for the class, so were familiar with its behavior. The version
we provided had known faults. We describe key requirements
here, but omit some details for brevity. The course features
weekly quizzes, and students are allowed to take an alternate
version of a quiz within two weeks for 80% of the possible
grade.

• Requirement 1: Students can only retake a quiz within
14 days from the date of first attempt. The 14-day period
is counted from the date and time of the in-class quiz.
The two week retake period can be extended if there is
a break week during that period.

• Requirement 2: The application shows retake opportuni-
ties available within the next two weeks from the current
date and time. The application also prints a message
indicating the last day of the period (for example, “To-
day is THURSDAY, FEBRUARY 28. Currently schedul-
ing quizzes for the next two weeks, until THURSDAY,
MARCH 14”).

• Requirement 3: A skip week is a week with no classes,
such as spring break. There are no retake opportunities
or quizzes during skip weeks.

• Requirement 4: If there is a skip week within the next two
weeks, the software extends the “currently scheduling”
period by an additional week.

• Requirement 5: If there is a skip week within the next
two weeks, the software extends the retake period to
three weeks. For example, for a quiz originally given on
February 19, if February 20 through February 27 is a skip
week, the last retake date is extended from March 5 to
March 12.

2The actual scheduler is a web application, but students were given a
command line version to allow for students who had not programmed Java
servlets.

• Requirement 6: If a skip week is coming up, the ap-
plication informs the student there will be no retakes or
quizzes during that week. This message is shown between
the last retake option before the break and the first retake
option after the break.

3) Known faults: The program had five known faults, all
of which occurred naturally when the program was developed.
The subjects had access to the program requirements, but were
not told the software had faults. The faults are as follows:

1) The faulty method only checked if the last day of the
two week scheduling period is in the skipped week, but
does not check if the current day is in the skipped week
or if there is a skip week between the current day and the
last day of the period. This fault violates requirements
1, 2, and 4.

2) The last retake day for a quiz is not extended when there
is a skip week between the in-class quiz and the last
retake day for that quiz. This fault violates requirements
1 and 5.

3) A retake is available on the 14th day after the in-class
quiz, but after the quiz time. That is, the retake is
available for 14 days plus several hours. This violates
requirement 1.

4) The message about skipped week is printed between the
wrong retake options. This violates requirement 6.

5) The application prints retake opportunities during the
skip week. This violates requirement 3.

4) Data collection: The Java program was given to the
students and they submitted their JUnit tests electronically. The
students wrote their tests in teams of three or four students;
we consider each team to be one subject. We collected 137
automated tests from 23 subjects. The subjects were unaware
of the study being conducted and the collected data were de-
identified before analysis to ensure anonymity. The quality of
the tests, including the test oracles, was not measured as part
of their grades.

5) Test evaluation: To ensure we could associate each
failure with its triggering fault, each fault was embedded into
a separate version of the program. Thus we had six versions
of the program. We also created complete test oracles (CTOs)
that checked the entire output state of the program. We used
the CTOs to create second versions of each test. The CTO
versions of the tests have the property that if the test resulted
in a failure they are guaranteed to reveal the failure, even if
the original test’s oracle did not.



***********************************************************
University quiz retake scheduler for class Software Testing

***********************************************************

You can sign up for quiz retakes within the next two weeks.
Enter your name (as it appears on the class roster),
then select which date, time, and quiz you wish to retake
from the following list.

Today is THURSDAY, FEBRUARY 28.
Currently scheduling quizzes for the next two weeks,
until THURSDAY, MARCH 14
RETAKE: THURSDAY, FEBRUARY 28, at 10:00 in Mason Hall

1) Quiz 4 from TUESDAY, FEBRUARY 19
2) Quiz 5 from TUESDAY, FEBRUARY 26

RETAKE: TUESDAY, MARCH 5, at 15:00 in EB 5321
3) Quiz 4 from TUESDAY, FEBRUARY 19
4) Quiz 5 from TUESDAY, FEBRUARY 26
5) Quiz 6 from TUESDAY, MARCH 5

RETAKE: WEDNESDAY, MARCH 6, at 15:30 in EB 4430
6) Quiz 5 from TUESDAY, FEBRUARY 26
7) Quiz 6 from TUESDAY, MARCH 5

RETAKE: THURSDAY, MARCH 7, at 10:00 in Mason Hall
8) Quiz 5 from TUESDAY, FEBRUARY 26
9) Quiz 6 from TUESDAY, MARCH 5

Fig. 2. Quiz retake scheduler screen

We ran each test, and its alternate, on each faulty version
and the original program (137*2*6 = 1644 executions). We
instrumented the program to track whether each test reached,
infected, propagated, and revealed the failure. Comparing
results of an original test with its CTO version let us identify
tests that caused failure but did not reveal.

D. Study 3: More undergraduate students

Our third study used a different group of undergraduate
students who took the same senior-level testing course in a
different semester. The subjects were similar and the procedure
the same as in study 2, however this study used a different
object program.

The object was a small calendar program that prints a month
in calendar format given two integers representing a month and
a year. The output created from the inputs “10 2019” is shown
in figure 3.

October 2019
S M Tu W Th F S

1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Fig. 3. Calendar output

We hand-seeded five faults, as described below. The pro-
gram requirements and the implementation are much simpler

than the quiz retake scheduler. As such, we expected students
to infect, propagate, and reveal the faults with greater fre-
quency.

1) Seeded faults: We seeded the following five faults into
the program.

1) Fault 1: The program had no input validation, and threw
run-time exceptions if non-integer values were entered,
or if a month value less than 1 or greater than 12 was
entered. Negative values for the year return reasonable
results, although the program does not switch to a Julian
calendar if a year before 1582 is entered. (This fault was
naturally occurring.)

2) Fault 2: In the leap year calculation, the predicate
"((year%4 == 0) && (year%100 != 0))"

was changed to
"((year%4 == 0) || (year%100 != 0))"

3) Fault 3: We changed the number of days in August from
31 to 30.

4) Fault 4: In the computation for which day of the week
a particular date falls on, we changed the number of
months from 12 to 10.

5) Fault 5: We changed the number of days in February in
leap years from 29 to 30.

2) Data collection and test evaluation: In this study, we
used the same process as in study 2 in section III-C. We
collected 184 tests from 30 subjects and embedded each
fault into a separate program. This required 184*2*6 = 2208



TABLE II
STUDY TWO (STUDENTS): NUMBER OF TESTS THAT REACHED EACH

CONDITION IN THE RIPR MODEL FOR THE FIVE FAULTS–137 TOTAL TESTS

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Total
Reachability 83 78 78 80 78 397
Infection 5 4 4 3 11 27
Propagation 5 4 4 3 11 27
Reveal 2 2 0 1 3 8

TABLE III
STUDY TWO (STUDENTS): FREQUENCY OF PROPAGATING FAILURES THAT

WERE REVEALED

Propagated Revealed % of tests that re-
vealed after propa-
gation

% of tests that
did not reveal after
propagation

Fault 1 5 2 40.00% 60.00%
Fault 2 4 2 50.00% 50.00%
Fault 3 4 0 0.00% 100.00%
Fault 4 3 1 33.33% 66.67%
Fault 5 11 3 27.27% 72.73%
Average 5.4 1.6 29.62% 70.38%

executions.

E. Study 4: Professionals at a software engineering company

Our third study used engineers at a local software company.
They included a mix of developers and full time testers, who
volunteered their time without compensation. Most were early-
career professionals 5 to 7 years out of college. All had college
degrees in computer science or software engineering. We used
the same Java program as in study 2 and shared the same
requirements with the testers. The professionals wrote the
JUnit tests in small teams of 1 to 5. We collected 14 automated
tests from 5 subjects. Unlike the previous students study, the
subjects were aware a study was being conducted. The data
were anonymized before being analyzed. The rest of the study
was the same as study two.

IV. OBSERVATIONS AND RESULTS

The quality of the test oracles from our student subjects in
study 2, as shown in tables II and III, was even lower than in
the preliminary study. Out of the 137 tests, an average of 79.4
reached the faulty location, between 3 and 11 tests caused the
fault to infect the program state and propagate to output, and
fewer than 4 tests revealed the faulty behavior. Fault #3 was
not revealed by any test. It’s also interesting to note that all
infections propagated to output, that is, no faults were masked.

Table III breaks out the percentage of tests that caused a
failure (propagated an infected state) and that also revealed
the failure. At the high end was fault #2, for which failures
were revealed half the time, and at the low end was fault #3,
for which none of the four failures were revealed.

In testing, a test is considered to be successful if it causes
the software to fail. Yet, overall in this study, 70% of the
“successful” tests did not reveal the failures that they found—
that is, they were blind.

Study 3 used a simpler program with more straightforward
behavior. It was based on an assignment from an introductory

TABLE IV
STUDY THREE (STUDENTS): NUMBER OF TESTS THAT REACHED EACH

CONDITION IN THE RIPR MODEL FOR THE FIVE FAULTS–184 TOTAL TESTS

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Total
Reachability 175 113 113 113 113 627
Infection 63 28 6 13 54 164
Propagation 63 27 6 13 54 163
Reveal 63 18 3 5 27 116

TABLE V
STUDY THREE (STUDENTS): FREQUENCY OF PROPAGATING FAILURES

THAT WERE REVEALED

Propagated Revealed % of tests that re-
vealed after propa-
gation

% of tests that
did not reveal after
propagation

Fault 1 63 63 100.00% 0.00%
Fault 2 27 18 66.67% 33.33%
Fault 3 6 3 50.00% 50.00%
Fault 4 13 5 38.46% 61.54%
Fault 5 54 27 50.00% 50.00%
Average 32.6 23.2 61.03% 38.97%

programming course. Unlike the quiz retake scheduler, calen-
dar only reads two integer inputs, and does not read or write
to an external file. The logic is also less complicated and the
faults were less “subtle,” that is, a higher percentage of input
values would result in failure.

Thus it is not surprising that more tests caused a failure, and
that a higher percentage of tests revealed the failures (61%).

The results from professional software engineers were less
encouraging. Table VI shows that a higher percentage of tests
reached the faults (86%), and a higher percentage created
an infected program state and propagated to incorrect output
(20%). Yet only one test for one fault revealed the failure that
it caused. As with Table III, Table VII shows the percentage
of failure-causing tests that revealed. In this study 95% of
the tests that caused failure were blind. As in the preliminary
study, the students in studies 2 and 3 created better test oracles
than the professionals in study 4.

Taken together, these studies are clear and convincing that
blind tests are a major problem for test automation. Many tests
are wasted because their test oracles are incorrect. Not only
does this waste valuable resources, but we lose the ability to
improve our software by correcting the faults. That is, our
software is less reliable.

We cannot be certain why students’ tests consistently per-
formed better than professionals’ tests. Our working theory
is that test automation has only recently been widely taught
at universities (often in early programming courses). Thus

TABLE VI
STUDY FOUR (PROFESSIONALS): NUMBER OF TESTS THAT REACHED EACH
CONDITION IN THE RIPR MODEL FOR THE FIVE FAULTS–14 TOTAL TESTS

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Total
Reachability 14 12 11 11 12 60
Infection 4 2 2 2 4 14
Propagation 4 2 2 2 4 14
Reveal 0 0 0 0 1 1



TABLE VII
STUDY FOUR (PROFESSIONALS): FREQUENCY OF PROPAGATING FAILURES

THAT WERE REVEALED

Propagated Revealed % of tests that re-
vealed after propa-
gation

% of tests that
did not reveal after
propagation

Fault 1 4 0 0% 100%
Fault 2 2 0 0% 100%
Fault 3 2 0 0% 100%
Fault 4 2 0 0% 100%
Fault 5 4 1 25% 75%
Average 2.8 0.2 5% 95%

current students learned test automation with both theory and
practice, while many professionals learned JUnit syntax on
the job without deep study. This is pure speculation, however,
and we hope that further work can shed more light on this
question.

A. Root causes of blind tests

After identifying blind tests, we analyzed the root cause for
why each test missed its failure. We then grouped them into
four categories. We describe them, with examples, below.

1) Code reuse: We found one cause of blind tests to
be code reuse. Some testers reused test assertions
from a previous test, but without appropriate changing
the assertion for the new test. Other testers reused
the implemented source code when putting expected
outputs into the test oracle. If testers reuse assertion
without carefully analyzing the new test inputs, it is
easy to create blind tests.
For example, one fault in the Calendar application
incorrectly assigned 30 days to August instead of 31.

int[] days = { 0, 31, 28, 31, 30, 31, 30,
31, 30, 30, 31, 30, 31 };

Some testers also used 30 instead of 31 while creating
tests, essentially copying the expected output from the
actual output. Thus they had the expected output as:
expectedOutput = " S M Tu W Th F S\n" +

" 1 2 3\n" +
" 4 5 6 7 8 9 10 \n" +
"11 12 13 14 15 16 17 \n" +
"18 19 20 21 22 23 24 \n" +
"25 26 27 28 29 30 \n";

2) Misunderstood program requirements: Some tests were
blind because the tester misunderstood what the correct
program behavior should be. Although these test oracles
may have observed the correct part of the output space,
the assertions were written with incorrect behaviors.
For example: Requirement 4 in study 2 states that if
there is a skip week within the next two weeks, the
software should display an extended retake period. A
tester coded the following into a test:

• startSkip = "2019-3-1";
• endSkip = "2019-3-7";
• expectedOutput = "Today is THURSDAY,

FEBRUARY 28. Currently scheduling quizzes

for the next two weeks, until THURSDAY,
MARCH 14."

• actualOutput = "Today is THURSDAY, FEBRUARY
28. Currently scheduling quizzes for the
next two weeks, until THURSDAY, MARCH 14";

• assertEquals(expectedOutput,actualOutput);

Since the program’s output matched the expected output,
the test was considered to have passed. Unfortunately,
the tester misunderstood the point of the skip week. The
correct output should have been:

• correctOutput = "Today is THURSDAY,
FEBRUARY 28. Currently scheduling quizzes
for the next two weeks, until THURSDAY,
MARCH 21";

As a result, the test was incorrectly marked as passing.
3) Technical inexperience: We also observed that testers

sometimes were not familiar enough with the program-
ming language or the testing tool. Programmers who had
difficulty understanding the code and did not understand
how the test assertions worked had difficulty setting
up test inputs and writing test assertions. This led to
the creation of test oracles that either did not observe
the output space correctly or observed an unimportant
section of the output space. This problem was not
unique to students; but also happened with professional
developers and testers.
The subject programs used in studies 2, 3, and 4 print
to standard output (using the Java out.println method).
Printed output can be captured using the System
Rules API or the ByteArrayOutputStream class,
but some testers did not know how, did not capture
outputs correctly, and thus did not see failures. For
example, one tester rewrote the Calendar program so
that instead of printing the output, it returned a string as
an output. Another tester simply wrote no assertions at
all, so missed all failures.

4) Lack of testing knowledge: We found that some subjects
were confused about how to design a test oracle, and
thus created blind tests. For example, some tried to
validate the implemented code instead of verifying its
correctness through testing. In fact, they assumed the
implemented code was correct and the goal of testing is
to make sure that it works without crashing.
For example: one fault in Calendar was that it assigned
the number of days in February to be 30 instead of 29
in leap years.

if (month == 2 && isLeapYear(year))
days[month] = 30;

Some of our testers copied the assertions from the output
of the incorrect program:

expectedOutput = " S M Tu W Th F S\n" +
" 1 2 \n" +
" 3 4 5 6 7 8 9 \n" +
"10 11 12 13 14 15 16 \n" +
"17 18 19 20 21 22 23 \n" +
"24 25 26 27 28 29 30 \n";



V. THREATS TO VALIDITY

This section summarizes threats to validity and what we did
to mitigate them. Some subjects might not have known, or not
fully understood the RIPR model, leading to incomplete tests.
Since this study relies on the model to assess test quality, we
mitigated this threat by recruiting subjects who were familiar
with the RIPR model. On average, just 71% of the total test
cases reached each fault. The remaining 29% did not reach a
fault, thus could not be analyzed for test oracle quality.

The overall number of subjects and test cases is another
threat to validity. The study required quite a bit of hand
analysis, including creating the complete test oracles and
determining why some test oracles did not succeed. This
limited the total number of subjects and test cases that could be
used. A follow-up study that took a simpler approach would be
less precise, but might be able to analyze more tests. Another
potential threat is the programming language. We used Java,
and it is possible that the results might be different with other
programming languages.

Although we gave subjects detailed specifications of the ap-
plication under test, it is possible that some did not understand
the expected behavior.

Finally, we observed that some of the students did not put
out as much effort as might be hoped. This probably affected
the quality of the test inputs more than the quality of the test
oracles, the true target of the study.

VI. RELATED WORK

Bertolino et al. acknowledged test oracle efficiency and
effectiveness as one of the challenges in software testing
and urged further research in the topic [17]. More recently,
Ma’ayan studied 112 Java repositories and documented prob-
lems with their unit tests [18]. Tests that mask the existence of
faults are unreliable and often useless. A flaky test is one type
of unreliable test [19], [20], [21]. In this paper, we identify
blind tests as another type of unreliable test. Vahabzadeh et
al. conducted an empirical study of faults in open source test
code [22]. They studied faults that were reported and fixed in
the code repository, but did not identify additional faults. They
used the term “silent horror test bugs” to describe tests that
incorrectly passed (a subset of our blind tests). However, since
these are the hardest faults to identify (why look at a passing
test?), and Vahabzadeh et al. only looked at faults that were
found and fixed, they were not able to measure the prevalence
of blind tests.

Several tools and metrics have been introduced to help
testers develop better test assertions. Xie et al. developed
a tool, Orstra, to improve automatically generated unit test
suites by automatically generating test assertions through re-
gression [23]. Song et al. proposed an eclipse plugin, UnitPlus,
which recommends relevant methods to check variable state
while writing test assertions [24]. Staats et al. proposed an
oracle creation method that ranks variables based on their
fault finding capability and monitors those through tests [25].
Loyola et al. proposed a similar approach for automatic oracle
creation by selecting a set of variable to be monitored based

on the interactions and dependencies observed among the
variables [26]. Schuler et al. demonstrated that test oracle
quality is an important factor in gauging test quality [27]. They
introduced the concept of checked coverage as a measure of
test oracle quality. Checked coverage looks at the statement
that contributes to results assessed by the test oracle.

Zhi et al. reported a case study on the inadequacy of test
assertions [28] with results that generally agree with ours.
Our study differs from their study in several ways: (1) They
analyzed tests found in three open source projects, whereas
this study is done on tests written by developers. (2) They used
mutation operators to generate faults whereas we used both
real-life faults that existed naturally in the program and hand-
seeded faults. (3) They used mutation location and statement
coverage to determine if the fault was found. We used a more
precise method—whether the test reported failure on the fault.

Xie and Memon [29] analyzed GUI tests, finding that
oracles that check the entire state can detect more faults. They
used manually seeded faults.

Staats et al. [30] define oracle soundness for a program, test
case, and oracle as: if an oracle is true for a program with a
test case, the specification holds for the program when running
the test case. However, this is not always true, as the oracle
might observe a subset of the program output or final program
state and miss some failures.

Similar to test adequacy criterion proposed by Koster et
al. [31], our study judges the quality of a test based on its
soundness. A key difference is that Koster et al. looked at
whether tests checked all the affected variables or not; whereas
this study checks whether a test hits all four steps in the RIPR
model to determine if a test is good enough or not. In our
study, if a test reaches the fault, creates an error state, and
propagates it to output, yet the test assertion cannot reveal it,
then the quality of test is considered to be poor.

VII. CONCLUSIONS AND FUTURE WORK

The most important conclusion about this study is that blind
tests are very common. This leads to waste and inefficiency,
and contributes to the billions of dollars lost every year on
faulty software [4]. Although not as widely studied as flaky
tests [32], blind tests may be a more common problem.

We are continuing to identify and classify root causes of
blind tests. The list in section IV-A is a strong starting point,
but as yet incomplete.

As we continue to grow our understanding of blind tests, we
will address the problem in three directions. First will be to
educate software engineers, including developers and testers,
as to how to properly write effective test oracles. We expect
to develop educational materials and evaluate their value on
students as well as professional software engineers.

Next, we plan to develop techniques to automatically detect
TO problems. This will be done with both static and dynamic
analysis. Static analysis techniques such as slicing can be used
to identify parts of the output domain that can be modified by
specific test inputs. If those output values are not checked, the
TO could be blind. CTOs can be generated dynamically and



used sporadically. CTOs are normally too expensive to use
every time a test is run, but they could be used occasionally
to compare with the existing TO. If the outputs differ, the TO
probably has blind spots.

Finally, we hope to adapt automatic program repair (APR)
techniques to test oracles. This context is smaller than general
APR and much of what a test oracle should check can be
determined through analysis techniques such as slicing and
data flow.
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