
Graph Representation for Data Flow Coverage
Mario Concilio Neto, Roberto P. A. Araujo, Marcos Lordello Chaim

University of Sao Paulo
Sao Paulo, SP, Brazil

Email:{mario.neto,roberto.araujo,chaim@usp.br

Jeff Offutt
George Mason University

Fairfax, VA, USA
Email:offutt@gmu.edu

Abstract—Data flow testing helps testers design effective tests
by requiring the tests to execute sequences of statements from
definitions of variables to one or more subsequent uses. These
def-use associations are derived from graphs that model software
behavior. A “flow graph” that only includes paths that cover def-
use associations, and not other control flows, has been defined
elsewhere. Although these flow graphs have several advantages
over previous graphs, as computed, they omit some valid paths,
which are needed to use the graphs to discover subsumption
relationships and generate test data. These omissions lead to
errors in the results. This paper extends previous solutions by
presenting a graph that represents all paths that cover def-use
associations. The paper presents empirical data showing that this
graph can be generated at reasonable cost and efficiently applied
for data flow subsumption discovery.

Index Terms—Software testing, Data flow coverage, Graph
representation, Data structures

I. INTRODUCTION

Data flow testing (DFT) attempts to enable comprehensive
structural testing based on flows of data through software
[1]–[4]. Roughly speaking, it involves developing tests that
exercise (cover) every value assigned to a variable and its
subsequent references (uses). These pairs of definitions and
uses are called definition-use associations (DUA) and the paths
from defs to uses are called du-paths [3]. DFT uses both
control and data flow information to design tests. As a result,
data flow tests can exercise more situations than control flow
testing can. The intuition is that causing more values to reach
different uses can find more problems in the software and
increase confidence in its reliability.

Studies have shown that DFT can effectively detect faults
in programs [5], [6] and can verify the security of web
applications [7]. Hemmati [8] compared control flow crite-
ria (statement, branch, loop, and MCDC coverage) against
definition-use pair coverage with respect to their ability to
detect faults. They found that out of 274 faults in sizable
open-source programs, only 76 (28%) were found by control
flow coverage criteria. For those same faults, definition-use
pair coverage detected 79% of the faults not detected by
control flow criteria. Thus, DFT can help achieve and verify
software quality, which is especially important for mission-
critical systems.

To achieve high DFT coverage, a tester needs to develop
specific test cases to cover a large number of DUAs. Further-
more, some DUAs cannot be covered by any test case because

the underlying path is infeasible. Both tasks require human
intervention, which increases the cost of DFT.

Many approaches to reduce DFT’s cost have been created.
Some exploit the subsumption relationship among DUAs
[9], [10]. A test requirement (TR) tr1 (e.g., a DUA D1)
subsumes another test requirement tr2 (another DUA D2) if
every complete path that traverses tr1 also traverses tr2. The
minimal subset of TRs that subsumes every other TR is called
a spanning set and its elements are referred to as unconstrained
test requirements [9]. If a spanning set of DUAs could be
identified, testers would only need to satisfy the unconstrained
DUAs, saving time and effort. Jiang et al. [10] showed that
targeting unconstrained DUAs reduces the cost of input data
generation.

DFT cost can also be reduced by automatic input data
generation and feasibility analysis. Jiang et al. [10] and Vivanti
et al. [11] used meta-heuristic algorithms to find input data to
cover DUAs. Su et al. [12] use symbolic execution and model
checking to generate input data and to analyze the feasibility
of DUAs.

Several researchers proposed graph-based representations
and strategies to encode du-paths to help find subsumption
among DUAs [9], [10], [13] and explore paths for symbolic
execution [12]. However, some of these representations miss
sub-paths that might block the subsumption of DUAs or that
might allow a particular DUA to be covered by input data [9],
[10], [13]. Other strategies encode only control flow coverage
requirements, and do not trim invalid paths that have nodes
that redefine variables [12].

In this work, we extended one of the solutions [9], [13]
to include the missing paths and to correctly find the graph
representation of data flow coverage. The new graph repre-
sentation, called graphdua, includes all valid paths covering a
DUA. Furthermore, we show how to generate graphduas and
experimental data demonstrating that they are affordable for
software systems at scale and useful for data flow subsumption
discovery.

The paper is organized as follows. In the next section, we
introduce the basic concepts regarding DFT. A simple running
example of a graphdua is presented in Section III. Section IV
contains the formal definition and presents how to generate
the graphdua. Sections V and VI present the application of
graphduas in data flow subsumption and our experimental
assessment. Related work is discussed in Section VII and
conclusions are in Section VIII.

1

II. BACKGROUND

Let P be a program mapped into a flow graph G(N,E, s, e),
where N is the set of nodes representing basic blocks, s is the
start node, e is the exit node, and E is the set of edges (n′,n),
such that n′ 6= n, and there is a potential transfer of control
from n′ to n. We refer to n′ as the origin node of the edge
and n as the target node of the edge (n′,n). A basic block
is a sequence of statements such that if the first statement is
executed, then all statements are executed in sequence. Note
that we assume one start node, corresponding to a single entry
point to the software unit being graphed, and one exit node. If
a method has multiple return statements, we add a special exit
node and edges from each node that includes a return statement
to the exit node. All flow graphs are directed graphs.

Figure 1 presents a program that sorts an array of integers
(originally from Marré and Bertolino [9]). The number before
each line of code indicates the node the line is associated with
in the control flow graph, shown in Figure 2.

A path is a sequence of nodes (ni, . . ., nk, nk+1, . . ., nj),
where i ≤ k < j, such that (nk, nk+1) ∈ E. A node nk is
said to be a predecessor of a node nk+1 if there exists an
edge (nk,nk+1) in E, and nk+1 is said to be a successor of
nk. A path is simple if all of its nodes are distinct with the
possible exception of the first and last nodes. A path (ni, . . .,
nk, nk+1, . . ., nj) is said to be complete if ni is the start node
and nj is the exit node.

The sub-graph SG(ni, nj), obtained from a graph G(N , E,
s, s), represents all paths from nodes ni to nj in G. Let ni

and nj be two nodes in G(N,E,s,e) such that ni reaches nj ;
that is, there is at least one path from ni to nj . The sub-graph
SG(ni, nj) of G between ni and nj is given by the directed
graph G′(N ′, E′, s′, e′)1, where:

1) ni and nj ∈ N ′ such that ni is the start node s′ and nj

is the end node e′

2) if there exists a path (ni, ni+1, . . ., nk, . . ., nj−1, nj) of
G, where i < k ≤ j, then nk ∈ N ′ and (nk−1, nk) ∈ E′

A sub-graph encodes all paths from node ni to node nj

such that ni and nj occur only once as first and last nodes
[14]. Figure 3 shows the sub-graph SG(1,8) obtained from the
flow graph described in Figure 2; it represents all paths from
node 1 to node 8.

Figure 4 shows the sub-graph SG(8,8) where the start and
exit nodes are both 8 (shown in light gray). In Figures 3 and
4, a sub-graph’s node is identified by a pair n(I) where n is
the node of the original flow graph G and I is the identifier
of the sub-graph.

Data flow testing requires that test cases exercise paths in a
program between locations where a value is assigned to a vari-
able (called definitions, or defs) and its subsequent references
(called uses). A variable can be used to compute a value or to
compute a predicate. Value computations are associated with
nodes and predicate computations are associated with edges.

1In this paper, a sub-graph is not a flow graph because its primary goal is
to represent paths. As a result, its edges are not necessarily associated with
control flow commands such as if and while as in a flow graph.

/ * 1 * / void s o r t (i n t a [] , i n t n)
/ * 1 * / {
/ * 1 * / i n t s o r t u p t o , maxpos , mymax , i n d e x ;
/ * 1 * / s o r t u p t o =1;
/ * 1 * / maxpos =1;
/ * 2 * / whi le (s o r t u p t o < n)
/ * 3 * / {
/ * 3 * / mymax = a [s o r t u p t o] ;
/ * 3 * / i n d e x = s o r t u p t o +1;
/ * 4 * / whi le (i n d e x <= n)
/ * 5 * / {
/ * 5 * / i f (a [i n d e x] > mymax)
/ * 6 * / {
/ * 6 * / mymax = a [i n d e x] ;
/ * 6 * / maxpos= i n d e x ;
/ * 6 * / }
/ * 7 * / i n d e x ++;
/ * 7 * / }
/ * 8 * / i n d e x = a [s o r t u p t o] ;
/ * 8 * / a [s o r t u p t o]=mymax ;
/ * 8 * / a [maxpos]= i n d e x ;
/ * 8 * / s o r t u p t o ++;
/ * 8 * / }
/ * 9 * / }

Figure 1. Example program Sort

Figure 2 gives the flow graph of the Sort program annotated
with definitions (def) and uses associated with nodes and
edges. A definition-clear (def-clear) path with respect to (wrt)
a variable X is a path where X is not redefined in any node in
the path, except possibly in the first and last nodes. A du-path
wrt to variable X is a def-clear path that is also a simple path.
A def-clear path wrt to X is a du-path that allows def-clear
side-trips; that is, the nodes between the first and last nodes
may occur several times as long as they do not redefine X .

A sub-graph can be determined in such a way that it contains
only def-clear paths wrt a variable X between two nodes ni

and nj . The def-clear sub-graph SG(ni, nj , X) wrt variable
X of G between nodes ni and nj is given by the directed
graph G′(N ′, E′, s′, e′), where:

1) ni and nj ∈ N ′ such that ni is the start node s′ and nj

is the end node e′

2) if there exists a def-clear path (ni, ni+1, . . ., nk, . . .,
nj−1, nj) wrt variable X , where i < k ≤ j, then nk ∈ N ′

and (nk−1, nk) ∈ E′

A sub-graph SG(ni, (nj , nk),X) of G comprising all def-
clear paths wrt variable X between node ni and edge (nj , nk)
can be analogously defined (see Section IV-D).

Data flow testing criteria require that definition-use associa-
tions (DUAs) be covered. The triple D = (d, u, X) represents
a data flow testing requirement involving a definition in node
d and a use in node u of variable X such that there is a def-
clear path wrt X from d to u. Likewise, the triple D = (d, (u′,
u), X) represents the association between a definition and a
use of a variable X in edge (u′, u). In this case, a def-clear
path (d,. . .,u′,u) wrt X should exist.

The all uses criterion [3] requires that all uses be executed

2

Figure 2. Annotated flow graph for Sort

Figure 3. Sub-graph SG1

Table I
ALL USES TEST REQUIREMENTS FOR PROGRAM SORT

All uses
(1,3, a) (1,(2,3), sortupto) (3,(4,8), index) (6,8, mymax)

(1,(5,6), a) (1,(2,9), sortupto) (3,(5,6), index) (7,(4,5), index)
(1,(5,7), a) (1,3, sortupto) (3,(5,7), index) (7,(4,8), index)

(1,6, a) (1,8, sortupto) (3,6, index) (7,(5,6), index)
(1,8, a) (1,8, maxpos) (3,7, index) (7,(5,7), index)

(1,(2,3), n) (3,(5,6), mymax) (3,8, index) (7,6, index)
(1,(2,9), n) (3,(5,7), mymax) (6,8, maxpos) (7,7, index)
(1,(4,5), n) (3,8, mymax) (6,(5,6), mymax) (7,8, index)
(1,(4,8), n) (3,(4,5), index) (6,(5,7), mymax) (8,3, a)
(8,(5,6), a) (8,(5,7), a) (8,6, a) (8,8, a)

(8,(2,3), sortupto) (8,(2,9), sortupto) (8,3, sortupto) (8,8, sortupto)

at least once. Specifically, the set of paths executed by the
test cases of a test set T must include a def-clear path for
each DUA (d, u, X) or (d, (u′, u), X). A test set with such
a property is said to be adequate for the all uses criterion
for program P since all required DUAs were covered. Table I

shows the all uses test requirements for the example program
Sort.

III. ALL PATHS COVERING A DUA

Suppose that we want to determine all complete paths that
cover DUA (8,6, a) (shown in boldface in Table I). This is
needed to find input data to cover the association. We next
show informally how graphdua(8,6, a), which encodes all
these paths, is determined.

A. Reaching the definition

To cover (8,6, a), the input data must first cause the program
to reach the definition node (node 8). Several paths reach the
definition node 8.

Figure 2 shows that [1,2,3,4,8] is the shortest path to reach
node 8. Other reaching paths include [1,2,3,4,5,6,7,4,8] and
[1,2,3,4,5,7,4,8]. Figure 3 presents a sub-grah that represents
all paths from the start node 1 to node 8. In Figure 3 (sub-graph
SG1) nodes are identified by a pair n(1) where 1 identifies the
sub-graph SG1 and n is the original node from the original
flow graph.

B. Visiting the definition multiple times

Now that we have found paths to reach the def at node 8,
the next step is to reach the use at node 6 by traversing a
def-clear path wrt variable a from node 8 to node 6. Suppose
the path [8,2,3,4,5,7,4,5,7,4,8] is traversed before node 6 is
reached. This path visits the definition at node 8 twice before
reaching the use at node 6. Depending on the test case, node
8 may be visited several times before reaching the use node.

Figure 4 shows the SG2 sub-graph, which represents paths
from node 8 back to itself. For this purpose, the definition
node 8(2), shown in light gray, should be both the start and
exit node of SG2. The underlying idea of sub-graph SG2 is
to represent paths that start and end at the definition node. In
these paths, a redefinition of the DUA variable (in the example,
variable a) may occur. Since the exit node of SG2 is also the
definition node, the redefinition has no impact on the coverage
of a DUA. The use node, 6(2), is also included in SG2. Though
counter-intuitive, the use node in SG2 might appear in paths
in which DUA (8,6, a) is covered twice or more times.

C. Reaching the use

Since we assume that DUA (8,6, a) will eventually be
covered, there exists at least one def-clear path wrt variable a
from node 8 to node 6 that will be traversed. So we need to
find the sub-graph containing all def-clear paths wrt variable
a that reach the use node. Figure 5 shows sub-graph SG3,
which describes all def-clear paths wrt variable a from node
8 to node 6. Note that the definition node, node 8(3), is the
start node and node 6(3), the use node, is the exit node.

D. Visiting the use multiple times

Now that we have reached the use, we need a path that
completes execution to reach the exit node. Just as with
the definition node, the path after the use node may cy-
cle back to the use one or more times. Consider the path

3

Figure 4. Sub-graph SG2

Figure 5. Sub-graph SG3

Figure 6. Sub-graph SG4

Figure 7. Sub-graph SG5

[6,5,7,4,5,7,4,8,2,3,4,5,6], which returns to the use at node 6.
Sub-graph SG4 in Figure 6 describes all paths that start and
end at node 6. The start and exit node of SG4 is the use node,
node 6(4), shown in light gray in Figure 6.

E. Reaching the exit node

Finally, we must find a path from the last execution of the
use node to the exit node. Figure 7 shows all paths that start
at node 6 and end at the exit node. The start node is node 6(5)
and the exit is node 9(5).

F. Graphdua(8,6, a)

Next we connect sub-graphs SG1, SG2, SG3, SG4, and SG5
in Figures 3 through 7 to create the graph to represent DUA
coverage. This results in a graph that comprises all complete
paths that cover DUA (8,6, a). This graph, called graphdua(8,6,
a), is shown in Figure 8.

The exit node of SG1 is the same as the entry nodes to
SG2 and SG3, so it is connected to the successors of the
entry nodes. We need both edges because, after touring SG1,
execution may cycle back to the definition node (graph SG2)
or go directly to the use (graph SG3).

SG2, in turn, connects to the successors of the start node
of SG3. Because of the possibility of cycles, the exit node of
SG3 connects to both SG4 and SG5.

Note that nodes from G can appear more than once in
a graphdua, which necessitates the more complicated node
labels. The first number is the label from G and the second
is the sub-graph. We only need the first number to display a
complete path.

Observe in Figure 8 that the graphdua has dangling nodes
(8(3) and 6(5)); they are unreachable nodes. These appear
because the graphdua only models paths that include def-clear
sub-paths from the def to the use, so some nodes from the
original graph cannot be visited twice.

The next section generalizes this example to present a
complete formal definition of a graphdua, and then shows how
to build it.

IV. GRAPHDUA

The graphdua(D) models all paths that cover a particular
DUA D = (d, u,X). This section formally presents the
graphdua(D) and an algorithm to build it. The construction
of the graphdua for an edge DUA (d, (u′, u), X) is reduced
to the problem of finding the graphdua for node DUAs in
Section IV-D.

A. Graph definition

Let D = (d, u,X) be a DUA required to test a program P
to satisfy the all uses criterion. A graphdua(D) for D is given
by a tuple GD(ND, ED, sD, eD) such that:

1) ND is the set of nodes n(I) where n is a node in the flow
graph G(N,E, s, e) of P and I identifies the instance of
n in GD

2) ED is the set of edges (m(I), n(I ′)) where (m,n) is an
edge in G

4

Figure 8. graphdua(8,6, a) includes all complete paths that cover DUA (8,6, a)

3) sD = s(I) and eD = e(I ′) are the start and exit nodes
in GD, where s and e are the start and exit nodes in G

4) any path that covers D can be obtained by traversing
graphdua(D) and returning the value n for every node
n(I) ∈ ND that is visited

B. Finding sub-graphs

As shown in Section III, the graphdua is built by finding
sub-graphs and connecting them. Bertolino and Marré [14]
proposed an algorithm, which we call findSubGraph, to
determine the sub-graph SG(ni,nj) between nodes ni and nj

of a flow graph G2. In the example above, sub-graphs SG1,
SG2, SG4, and SG5 are created using findSubGraph. These
sub-graphs encode all paths from a node ni to a node nj .

However, when a DUA (d, u,X) is covered, there must exist
at least one path from the definition node d to the use node u
such that variable X is not redefined; that is, a def-clear path
from d to u wrt X . The sub-graph SG3 encodes these paths.
Marré and Bertolino [9] also proposed a slightly different
algorithm to determine sub-graphs that encompass def-clear
paths, which we call findDefClearSubGraph. The cost of
both algorithms findSubGraph and findDefClearSubGraph
is O(E) [14].

However, findSubGraph and findDefClearSubGraph as
defined by the authors may include dangling paths. For exam-
ple, if one utilizes findSubGraph to determine SG(2,7) from
the flow graph of Sort (Figure 2) the sub-graph of Figure 9 will

2SG(ni, nj) is found by visiting nodes forwards from ni and nodes
backwards from nj ; nodes visited in both searches are then connected. We
refer the reader to [14] for more details.

Figure 9. Sub-graph with dangling paths (SG(2,7))

be generated. The dashed edge and node represent a dangling
path. We clean up the dangling paths by using Algorithm 1; it
receives as parameters the sub-graph and a list of nodes to be
checked; that is, nodes that have no successors and are not the
exit node. Algorithm 1 also costs O(E) since it visits at most
three times all edges of the original flow graph. As a result,
the costs of findSubGraph and findDefClearSubGraph are
not altered by adding the clean-up of dangling paths.

C. Finding the graphdua

Finding a graphdua(D) requires invoking findSubGraph
to determine SG1, SG2, SG4, and SG5 and findDefClear-
SubGraph for SG3. Subsequently, the sub-graphs should be
connected accordingly to the rules described in Section III.

5

Input: Sub-graph SG(NSG, ESG, sSG, eSG); Check – set of
nodes to be checked

Output: sub-graph SG that encodes all paths from ni to nj

// Visit nodes backwards from exit node
1 W ← eSG; PredV is← ∅;
2 while W 6= ∅ do
3 n← remove node from(W);
4 foreach npred ∈ Predecessors(n) do
5 if not npred ∈ PredV is then
6 PredV is← PredV is

⋃
npred;

// Visit nodes backwards from
to-be-checked nodes

7 CheckV is← ∅;
8 while Check 6= ∅ do
9 n← remove node from(Check);

10 foreach npred ∈ Predecessors(n) do
11 if not npred ∈ CheckV is then
12 CheckV is← CheckV is

⋃
npred;

// Clean up dangling path
13 Cleanup← CheckV is− PredV is;
14 while Cleanup 6= ∅ do
15 n← remove node from(Cleanup);
16 foreach npred ∈ Predecessors(n) do
17 ESG ← ESG − (npred, n);

18 foreach nsuc ∈ Successors(n) do
19 ESG ← ESG − (n, nsuc);

20 NSG ← NSG − n;

21 return SG(NSG, ESG, sSG, eSG)
Algorithm 1: cleanUpDanglingPaths

Note that the only sub-graph that is guaranteed to exist is
SG3; the others depend on the characteristics of the DUA. For
example, DUA (1, (2,9), n) will only have SG3 since the start
node is the definition node and the target node of the edge is
the same as the exit node. Thus, SG1, SG2, SG4 and SG5 do
not exist.

The cost of creating a graphdua(D) is driven by the cost to
find the sub-graphs and connecting them. A graphdua will
have at most five sub-graphs; each one costs O(E) to be
found. As result, the cost of finding all sub-graphs is O(E).
Additionally, one needs to connect the sub-graphs. At most,
six connections between sub-graphs will be established. Each
connection consists of creating new edges between the exit
node of the precedent sub-graph with the successors of the
start node of the next sub-graph. Since the new edges are
limited by the number of edges (E) of G, the cost to connect
two sub-graphs is O(E). Hence, the total cost of finding a
graphdua is also O(E).

D. Def-clear sub-graph generation for edge DUAs

For edge DUAs such as (d, (u′, u), X), sub-graphs SG1,
SG2, SG4, and SG5 can be calculated using findSubGraph,
just as for node DUAs. However, if a target node u in SG3
for an edge DUA has more than one predecessor, we need to
do more work.

Consider DUA (8,(5,7), a) from program Sort (Figure 2).
All paths from node 8 to edge (5,7) are def-clear wrt variable

a. However, node 7 has two predecessors: nodes 5 and 6. If
preceded by 6, node 7 will occur at least twice in the path to
edge (5,7), since it is always the last node of the sub-graph.

Bertolino and Marré’s algorithm, though, assumes that the
end node (in this case node 7) will occur only once in the
paths represented by the generated sub-graph3. To overcome
this restriction, we modify the original flow graph to calculate
SG3 for edge DUAs. Figure 10 shows part of an annotated
flow graph in which there exists an edge (u′, u) with an edge
use of variable X and a node d with a definition of X . As
shown in the figure, node u has several predecessors. Let us
suppose there is a def-clear path from d to (u′, u) and, as a
result, an edge DUA (d, (u′, u), X).

Figure 10. Edge DUA with target node u with more than one predecessor

Figure 11. Modification of the flow graph to find SG3 for edge DUAs

Figure 12. SG3—Def-clear sub-graph wrt variable X that starts at node 8
and ends at edge (5,-7)

The original flow graph is modified as follows: Edge (u′, u)
is removed, and a new node −u (minus u) is added as well
as edge (u′,−u). We choose to label the new node −u to

3Bertolino and Marré’s algorithm use a flow graph in which sequential
statements are associated with edges and conditional transfer statements with
nodes. Their notation does not distinguish between node and edge DUAs.

6

differentiate it from node u, which may occur more than once
in a path to edge (u′,−u). Figure 11 shows the new flow graph
resulting from the modifications.

Though node −u has a different label, it has the same code
and, consequently, is annotated with the same sets of defs
and uses as node u. Its purpose is to allow findDefClearSub-
Graph to be applied to edge DUAs. As a result of including
edge (u′,−u) in the flow graph, findDefClearSubGraph can
be applied having as parameters d for the first node (ni) and
−u for the last node (nj) of the sub-graph. By doing so, the
problem of finding SG3 for edge DUAs is reduced to that
of finding SG3 for node DUAs. Figure 12 shows the SG3
generated for DUA (8,(5,7), a).

V. APPLICATION OF THE GRAPHDUAS FOR DATA FLOW
SUBSUMPTION

The graphdua is particularly, but not limited to, useful for
subsumption analysis among DUAs; that is, for discovering the
unconstrained DUAs whose coverage may imply covering all
the other DUAs of a program. Figure 13 gives the subsumption
relationship among DUAs of the Sort program; the light-gray
squares (the leaves of the graph) contain the unconstrained
DUAs. The subsumption graph has eleven leaves, which means
that by covering eleven DUAs, one from each leaf, all DUAs
might be covered.

Marré and Bertolino [9] suggested an algorithm to find the
DUAs subsumed by a DUA D1 = (d1, u1, X1). They first select
all paths that cover D1 by building an intermediate graph G∗
(we contrast the graphduas and G∗ in Section VII). Then they
check whether every path of G∗ also traverses a DUA D2 =
(d2, u2, X2) by initially verifying that d2 and u2 are always
traversed in G∗. Then, to find whether every path covering D1

also covers D2, they check whether no node ni from d2 and
u2 in G∗ contains a definition of X2.

Data flow subsumption can also be found by applying
the Subsumption Algorithm (SA) [15] on graphduas. SA
calculates those DUAs that are covered in all paths from the
start node s to particular node n. When SA is applied on a
graphdua(D), those DUAs covered in all paths from the start
node to the exit node of graphdua(D) comprise the set of DUAs
subsumed by DUA D.

VI. EXPERIMENTAL ANALYSIS

We investigated empirically whether graphduas can be cal-
culated at scale and whether its application in finding data
flow subsumption leads to test cost reduction. We addressed
two research questions:

RQ1: How long does it take to find the graphduas of a
program?

RQ2: How much test effort is saved by using unconstrained
DUAs?

The rest of this section presents and discusses the results of
our study. We conclude the section with threats to validity.

A. Results

For our study, we chose 17 programs from the Defects4J
repository [16], plus the machine learning program Weka. We
selected the first buggy version (referred to as 1b) from De-
fects4J and Weka’s version 3.8. The programs’ purposes vary:
manipulating text in compressed and binary files (Compress,
Csv, Gson, JacksonCore, JacksonDataBind, JacksonXml, and
JSoup); parsing and compiling (Cli, Closure, and JXPath);
data structure manipulation and language utilities (Collections
and Lang); mathematics, statistics, and data mining (Math
and Weka); data and time manipulation (Time); and software
testing (Mockito). The programs’ size also vary: they range
from small programs such as Csv (929 DUAs) to larger
programs such as Weka (337,063 DUAs).

Table II presents empirical data from applying the graphdua
algorithm to our subject programs. The table gives the name
of each program, the number of DUAs (#DUAs), the percent
of unconstrained DUAs wrt the total of DUAs (Unc.), the
number of milliseconds needed to find all graphduas, averaged
over 10 trials (TGra.), the number of milliseconds needed
to discover the unconstrained DUAs (TUnc.), and the ratio
between graphdua calculation and subsumption analysis time
(Rat.).

We implemented and ran the algorithm to generate all
graphduas for every method that has at least one DUA. Many
methods have none because they only have local definitions
and uses; these methods’ data are not included in Table II.
Figure 15 presents the graphdua generated for DUA (3,(5,7),
mymax) of the Sort program by the algorithm. For each
method, we ran SA on every graphdua to find the subsumption
relationship and then the unconstrained DUAs. All data were
collect using a MacAir, 1.8 GHz Dual-Core Intel Core i5, 8
GB 1600 MHz DDR3.

The rows of Table II are sorted by the number of DUAs.
The number of unconstrained DUA ranged from 24.5% for
Chart to 37.9% for Codec, with an average of 29.4%. The
time to calculate the graphduas varied roughly according to
the number of DUAs of the program, with 38s needed for
Weka and 27s for Math, the most expensive programs. All the
other programs needed fewer than 12s to find all graphduas.
Figure 14 plots the number of DUAs and the time to generate
graphduas for each program. The cost of graphdua generation
in the subsumption analysis varied from 25.9% for Math to
68.3% for Jsoup, being the average 50.5%.

B. Discussion

RQ1 is concerned with the cost (time) to generate a pro-
gram’s graphduas. With the exception of Lang and Chart
(shown in bold font in Table II), which were slightly less
expensive despite of having more DUAs than the previous
program, it took longer to find graphduas when a program
had more DUAs. This trend is shown in Figure 14.

Another less evident exception is Math. Weka has almost
four times more DUAs, but it is only 1.4 more expensive
than Math. The asymptotic cost to find a graphdua is O(E) or
O(N), assuming that the number of edges (E) is linear to the

7

[1,(5,6), a]
[1,6, a]

[1,(5,7), a]

[8,(5,6), a]
[8,6, a]

[8,(5,7), a]

[8,8, sortupto]
[8,3, sortupto]

[8,(2,3), sortupto]
[8,8, a]
[8,3, a]

[6,(5,7), mymax] [6,(5,6), mymax]

[3,6, index]
[3,(5,6), index]

[7,6, index]
[7,(5,6), index]

[6,8, mymax]
[3,(5,6), mymax]

[6,8, maxpos]

[3,(5,7), index]
[3,(5,7), mymax]

[7,(5,7), index]

[7,7, index]
[7,(4,5), index]

[7,8, index]
[3,7, index]

[7,(4,8), index]
[3,(4,5), index]

[1,(4,5), n]

[1,8, maxpos]
[3,8, index]

[3,(4,8), index]

[3,8, mymax]

[1,3, sortupto]
[1,8, sortupto]

[1,(2,3), sortupto]
[8,(2,9), sortupto]

[1,(4,8), n]
[1,(2,3), n]

[1,8, a]
[1,3, a]

[1,(2,9), sortupto]

[1,(2,9), n]

Figure 13. Subsumption graph among DUAs of program Sort

Table II
EMPIRICAL COSTS OF APPLYING THE GRAPHDUA ALGORITHM

Program #DUAs Unc. (%) TGra. (ms) TUnc. (ms) Rat. (%)
Csv 929 31.5 424.5 670.0 63.4
Cli 1291 29.4 533.8 923.2 57.8
JSoup 1866 26.8 599.1 877.3 68.3
Gson 3281 29.7 826.7 1295.8 63.8
J-Xml 3402 26.5 776.0 1237.9 62.7
Mockito 4236 32.1 1121.7 1931.1 58.1
Codec 4446 37.9 2080.9 6778.4 30.7
Compress 6286 28.3 2393.5 5797.4 41.3
Collections 16,937 30.0 2456.9 4556.9 53.9
J-Core 17,653 28.1 2751.3 6394.3 43.0
Time 18,160 31.1 3081.6 5915.2 52.1
JxPath 20,178 29.7 3386.5 6494.9 52.1
Lang 22,290 32.0 3079.2 6087.2 50.6
J-Databind 31,797 26.4 3946.2 6982.3 56.5
Closure 78,068 31.8 11,913.6 32,076.6 37.1
Chart 81,847 24.5 10,004.4 18,420.5 54.3
Math 87,603 25.3 27,010.4 104,246.0 25.9
Weka 337,063 27.4 38,200.9 98,377.5 38.8

number of node (N). As a result, programs with more complex
methods tend to be more costly. Two methods in Math have
2197 DUAs and flow graphs with 327 nodes, which appear to
be clones of each other. They dominate the cost to generate
graphduas for Math.

Overall, most graphduas were calculated quickly, with a
very few highly complex methods being exceptions. As a
result, hundreds of thousands of graphduas are calculated in
tens of seconds. Though they represent a significant amount
of the cost of the subsumption analysis, on average 50%
and as much as 68%, the subsumption analysis of DUAs is
scalable. The most costly program for subsumption analysis,
Math, needed around 1min and 40s to find the unconstrained
DUAs for all methods because data flow subsumption analysis
is more sensitive to the complexity of the programs [15].

RQ2 concerns the usefulness of the graphduas. Column
Unc. reports the percentage of uncontrained DUAs wrt to
the total of DUAs. On average they represent 30%, which
represents a potential saving of 70% in testing effort since the
tester would need to verify only 30% of DUAs to achieve data
flow coverage. We caution, though, the reader that subsump-
tion relationships can be disrupted by infeasible DUAs or due
to program interruption.

Differently from previous studies [9], [10], we calculated the
unconstrained DUAs taking into account all paths covering a
particular DUA. We also used industrial-sized programs. Thus,
our results indicate that graphduas work at scale and are useful
to reduce the cost of data flow testing.

C. Threats to validity

The main validity threats to our assessment are due to
internal and external risks. We used the Defects4J repository
to reduce the external threat since its programs are open-
source and thus comparable to those developed in industry.
Also to tackle the external validity, we added Weka because
we observed that mathematical software seemed to be more
demanding for the graphdua algorithm.

Our experiment has also an internal validity threat. We
implemented algorithms for creating the graphduas, for read-
ing the control and data flow information from bytecode,
and the Subsumption Algorithm. To verify the correctness
of the algorithms, we checked automatically the subsumption
relationship using coverage data for 16 of the 18 subject
programs. Nevertheless, we implemented the algorithms using
Java and Java Collections; hidden inefficiencies of their data
structures might impact the time data.

8

C
li

J
S

o
u
p

G
s
o
n

J
−

X
m

l

M
o
c
k
it
o

C
o
d
e

c

C
o
m

p
re

s
s

C
o
lle

c
ti
o
n
s

J
−

C
o
re

T
im

e

J
x
P

a
th

L
a

n
g

J
−

D
a

ta
b
in

d

C
lo

s
u
re

C
h
a

rt

M
a

th

W
e

k
a

0

50000

100000

150000

200000

250000

300000

350000

DUAs

TGra.(ms)

Figure 14. Number of DUAs and time to generate the graphduas

1(1)

2(1)

3(1)

4(2)

4(3)

3(2)

8(2)5(2)

2(2)6(2)

7(2) 3(3)

5(3)

-7(3)

4(4)

4(5)

7(4)

8(4) 5(4)

2(4) 6(4)

3(4) 7(5)

8(5)

2(5)

9(5) 3(5)

Figure 15. Graphdua generated for DUA (3,(5,7), mymax)

VII. RELATED WORK

We have identified three previous attempts to find all paths
that cover a particular DUA. One of them is the G∗ graph
[9], [13] from which the graphdua is an extension. The main
difference between the graphdua and G∗ is the number of
subgraphs that comprises the graph representation. G∗ takes
into account paths from the start node (s) to the definition node
(d1) (our SG1), def-clear paths wrt X1 from d1 to node u1

(our SG3), and paths from u1 to the exit node (e) (our SG5).
Thus, G∗ does include paths encoded by sub-graphs SG2 and
SG4. Our graphdua also differs from G∗ by dealing with edge
DUAs; G∗ includes only uses in nodes (see Section IV-D).

As a result, G∗ misses paths that might negate the DUA
subsumption relationship because of an intervening def of the
variable. Consider the DUAs D2 = (1,(5,7), a) and D1 =
(3,(5,7), mymax) in Figure 1. If a test takes the path [3,4,5,7]
to cover D1, the path must have started at node 1, thereby
covering D2. Thus G∗ finds that D1 subsumes D2. However,
G∗ does not find path [1,2,3,4,8,2,3,4,5,7], which covers D1,
but because of the definition of a at node 8, is not def-clear
wrt to the definition of a at node 1. This is precisely the kind
of path that SG2 finds. Figure 15 shows that the graphdua of
(3,(5,7), mymax) encodes the path that blocks the subsumption
of (1,(5,7), a). By not including back-paths, G∗ finds invalid
subsumptions among DUAs. The graphdua corrects that flaw.

Su et al. [12] use static analysis to reduce path explosion
when using symbolic execution (SE) to generate test inputs or
to detect whether DUAs are infeasible. They use dominator
analysis to find a set of cut points to guide path exploration.
Given a DUA D = (d, u,X), its cut points are a sequence of
critical control points c1, . . . , ci, . . . , cn that must be passed
through in succession by any control flow path that cover
D. That is, the sequence c1, . . . , d, . . . , ci, . . . , u, . . . , cn will
eventually occur in any path that covers D. The authors
developed heuristics based on cut points to select the paths
to be symbolically executed.

The dominance relationship only includes control flow
information. Thus, even though the cut points must appear
in every path that covers D, the nodes occurring between d
and ci (d, . . . , ci) and between ci and u (ci, . . . , u) should
be checked against possible redefinitions of variable X . Su
et al. [12] check for redefinitions during path exploration
analysis for symbolic execution. Heuristics can be devised to
guide symbolic execution by traversing the graphdua with two
advantages: (1) cut points are not needed because they are
embedded in the graphdua; and (2) no tracking of redefinition
nodes is required because graphdua’s sub-graph SG3 includes
only paths between d and u without redefinition of variable
X . Additionally, the cost of finding the graphdua and the cut
points is the same: O(E) where E is the number of edges of
the control flow graph of the program (see Section IV-C).

Jiang et al. [10] also presents an algorithm for DUA
subsumption. They frame the paths covering a particular DUA
by applying the concept of def-use order (introduced by
Santellices and Harrold [17]). A DUA D = (d, u, X) is in

9

def-use order if one of the following conditions hold: (1) node
d is not reachable from node u; (2) node d dominates node
u; or (3) node u post-dominates node d. As a result, a DUA
D is in def-use order if, whenever D is covered, node d is
guaranteed to occur before node u. However, if the def-use
order is obtained by conditions (2) or (3), the use node u can
reach the def node d. If so, the very same paths that the G∗
misses will be missed by the def-use order. Consider the DUA
D = (3,6, mymax) of the Sort program. It is in def-use order
due to condition (1) (def node 3 dominates use node 6), but
node 6 reaches node 3. There is a path from node 3 to node 3
that is not encoded by the def-use order that might block the
subsumption of DUAs.

With respect to the previous approaches for representing
data flow coverage, the graphdua finds back-paths that avoid
finding incorrect subsumption relationships, deals with all
types of DUAs, cleans up dangling paths, and can guide the
path exploration for symbolic execution without needing to
track redefinition nodes.

In a separate thread of research, the same concept of
subsumption has been used to identify minimal sets of mutants
[18]–[22]. In the terminology used in those papers, a set
of mutants is minimal if all test sets that kill all mutants
in the minimal set are guaranteed to also kill all mutants.
The first two papers [18], [19] introduced the theoretical
concept, presented the mutant subsequent graph (MSG), and
showed how to approximate the “true” MSG dynamically.
Subsequent papers showed how to approximate the MSG
statically [20], showed that redundant (constrained) mutants
effect the mutation score [22], and used minimal mutation to
identify a significant weakness in selective mutation [21]. The
minimal mutant set is directly analogous to the spanning set in
data flow, with a significant difference being that the minimal
mutant set is uncomputable.

VIII. CONCLUSIONS

This paper presents a new graph representation, called
graphdua, for data flow testing coverage. The graphdua is
used to cover definition-use associations (DUA) [3]. We used
a running example to informally present the graphdua’s main
property, which is that it includes all paths that cover a
particular DUA D. The graphdua extends previous solutions
[9], [13] to fix omissions of paths that may lead to incorrect
results.

Additionally, we present experimental data suggesting that
graphduas are generated at scale for industry-sized programs to
efficiently find data flow subsumptions. Data flow subsumption
analysis may reduce the cost of data flow testing by up to
70%. Previous studies found the subsumption relationship in
part manually [9] and in programs with fewer DUAs [10].

Our next steps will be to investigate the use of the graphduas
in generating input data for real-world applications and for
feasibility analysis of data flow associations.

ACKNOWLEDGMENT

Marcos Lordello Chaim was supported by grant #2019/
21763-9, São Paulo Research Foundation (FAPESP).

REFERENCES

[1] J. Laski and B. Korel, “A data flow oriented program testing strategy,”
IEEE Transactions on Software Engineering, vol. SE-9, no. 3, pp. 347–
354, 1983.

[2] S. C. Ntafos, “On required element testing,” IEEE Trans. Software Eng.,
vol. 10, no. 6, pp. 795–803, 1984.

[3] S. Rapps and E. Weyuker, “Selecting software test data using data flow
information,” IEEE Transactions on Software Engineering, vol. 11, no. 4,
pp. 367–375, Apr. 1985.

[4] H. Ural and B. Yang, “A structural test selection criterion,” Information
Processing Letters, vol. 28, pp. 157–163, 1988.

[5] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy criteria,”
in 16th International Conference on Software Engineering, ser. ICSE,
1994, pp. 191–200.

[6] P. G. Frankl and O. Iakounenko, “Further empirical studies of test
effectiveness,” in Proc. of the ACM SIGSOFT Foundations of Software
Engineering Conference, ser. FSE ’98, 1998, pp. 153–162.

[7] T.-B. Dao and E. Shibayama, “Security sensitive data flow coverage cri-
terion for automatic security testing of web applications,” in Engineering
Secure Software and Systems, ser. ESSoS, 2011, pp. 101–113.

[8] H. Hemmati, “How effective are code coverage criteria?” in Interna-
tional Conference on Software Quality. IEEE, 2015, pp. 151–156.

[9] M. Marré and A. Bertolino, “Using spanning sets for coverage testing,”
IEEE Transactions on Software Engineering, vol. 29, no. 11, pp. 974–
984, 2003.

[10] S. Jiang, J. Chen, Y. Zhang, J. Qian, R. Wang, and M. Xue, “Evolution-
ary approach to generating test data for data flow test,” IET Software,
vol. 12, no. 4, pp. 318–323, 2018.

[11] M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-flow test
generation,” in 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), Nov 2013, pp. 370–379.

[12] T. Su, Z. Fu, G. Pu, J. He, and Z. Su, “Combining symbolic execution
and model checking for data flow testing,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, May
2015, pp. 654–665.

[13] M. Marré, “Program Flow Analysis for Reducing and Estimating the
Cost of Test Coverage Criteria,” Ph.D. dissertation, Dep. de Computa-
cion, FCEyN – Universidad de Buenos Aires, Argentina, 1997.

[14] A. Bertolino and M. Marré, “Automatic generation of path covers based
on the control flow analysis of computer programs,” IEEE Transactions
on Software Engineering, vol. 20, no. 12, pp. 885–899, Dec 1994.

[15] M. L. Chaim, K. Baral, J. Offutt, M. Concilio, and R. P. A. Araujo,
“Efficiently finding data flow subsumptions,” in 14th IEEE International
Conference on Software Testing, Validation and Verification, ICST 2021,
Porto de Galinhas, Brazil, April 2021.

[16] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for Java programs,” in Interna-
tional Symposium on Software Testing and Analysis, ISSTA, July 2014,
pp. 437–440.

[17] R. Santelices and M. J. Harrold, “Efficiently monitoring data-flow test
coverage,” in 22nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE, 2007, pp. 343–352.

[18] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in 7th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2014), Cleveland,
OH, March 2014, pp. 21–30.

[19] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng, “Mutant
subsumption graphs,” in Tenth IEEE Workshop on Mutation Analysis
(Mutation 2014), Cleveland, OH, March 2014.

[20] B. Kurtz, P. Ammann, and J. Offutt, “Static analysis of mutant sub-
sumption,” in Eleventh IEEE Workshop on Mutation Analysis (Mutation
2015), Graz, Austria, April 2015.

[21] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
N. Gökće, “Analyzing the validity of selective mutation with dominator
mutants,” in 24th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), Seattle Washington, USA,
November 2016.

[22] B. Kurtz, P. Ammann, J. Offutt, and M. Kurtz, “Are we there yet? How
redundant and equivalent mutants affect determination of test complete-
ness,” in Twelfth IEEE Workshop on Mutation Analysis (Mutation 2016),
Chicago Illinois, USA, April 2016.

10

