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SUMMARY

Data flow testing creates test requirements as definition-use (DU) associations, where a definition is a
program location that assigns a value to a variable and a use is a location where that value is accessed. Data
flow testing is expensive, largely because of the number of test requirements. Luckily, many DU-associations
are redundant in the sense that if one test requirement (e.g., node, edge, DU-association) is covered, other
DU-associations are guaranteed to also be covered. This relationship is called subsumption. Thus, testers
can save resources by only covering DU-associations that are not subsumed by other testing requirements.
Although this has the potential to significantly decrease the cost of data flow testing, there are roadblocks to
its application. Finding data flow subsumptions correctly and efficiently has been an elusive goal, the savings
provided by data flow subsumptions and the cost to find them need to be assessed, and the fault detection
ability of a reduced set of DU-associations and the advantages of data flow testing over node and edge
coverage need to be verified. This paper presents novel solutions to these problems. We present algorithms
that correctly find data flow subsumptions and are asymptotically less costly than previous algorithms.
We present empirical data that shows that data flow subsumption is effective at reducing the number of
DU-associations to be tested and can be found at scale. Furthermore, we found that using reduced DU-
associations decreased the fault detection ability by less than 2%, and data flow testing adds testing value
beyond node and edge coverage.
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1. INTRODUCTION

Software engineers test software to find faults and assess the quality of software under test. The

number of possible inputs is effectively infinite for most programs, thus we cannot completely test

the program. Thus, testers try to use a reasonable and cost-effective number of tests while also

maximizing the test suite’s fault detection capability. One method is to use test requirements to

cover specific parts of software artifacts. Test requirements can be derived from various software

artifacts, including source code [8,22], graphs [39,49], and the software’s input space [16]. Coverage

criteria provide a systematic way to generate test requirements [3] and can be used to assess the test

adequacy and test quality.

Graph criteria are widely used for testing. Graphs can be generated from source code, state

machines, software specifications, and use cases. Several related test criteria have been proposed
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based on the control flow analysis and data flow analysis on graphs. Control flow analysis focuses

on testing the flow of program control during execution. Data flow analysis evaluates the flow of

data values during program execution. The goal of data flow testing is to exercise pairs of definitions

and uses of variables, known as definition-use associations. These are also called du-associations,

def-use associations, du-pairs, and def-pairs. This paper uses DU-associations, or simply DUA.

Studies have shown that data flow testing (DFT) is comparable to that with control flow testing

(CFT) [14, 18, 21]. Hemmati showed that DUA coverage finds faults that control flow coverage

criteria do not [18]. Hemmati found that 79% of faults control flow criteria did not find were

found by DFT. This shows that DFT could add value when used alongside CFT. Additionally, DFT

coverage supports security verification [10] and fault localization [43, 47].

Control flow analysis is widely available in commercial test coverage calculation tools like Clover

(www.atlassian.com/software/clover/), JaCoCo (www.eclemma.org/jacoco/),

Cobertura (cobertura.github.io/cobertura/), and even some integrated development

environments (IDE) like IntelliJ (www.jetbrains.com/idea/), and is commonly used by

professional programmers. However, data flow analysis is not widely used. This low usage of DFT

is in part due to the large number of test requirements for DFT, each of which adds to the expense.

Table I illustrates this issue by listing programs with their number of lines of source code (LOC)

and number of DUAs, along with other metrics. Consider Math, the eighth from the bottom of the

table, which has 54,518 LOC. The all-uses criterion [42], which requires every use to be reached at

least once, has 87,603 DUA requirements on Math, which is 60% more than the LOC.

Table I. Program metrics and data flow data

Program LOC
Methods Methods

DUAs
w. DUAs executed

Csv 602 40 37 929
Cli 1107 60 54 1291
Codec 1946 109 92 4446
Jsoup 2046 136 119 1866
JacksonXml (J-Xml) 3084 179 124 3402
Compress 4974 217 116 6286
Gson 3840 226 191 3281
Mockito 7468 400 366 4236
JacksonCore (J-Core) 10,978 563 383 17,653
JxPath 14,699 800 691 20,178
Lang 15,270 1157 715 22,290
Time 19,672 1182 1010 18,160
Collections 18,156 1311 1094 16,937
JacksonDatabind (J-DataBind) 27,274 1737 1263 31,797
Math 54,518 2415 1999 87,603
Chart 68,346 3219 2151 81,847
Closure 61,177 3696 3241 78,068
Elki 47,799 5820 * 180,675
SystemDS 60,121 8516 * 255,382
Weka 216,781 11,315 1964 337,063
CoreNLP 101,910 13,626 * 444,792

Total 531,938 56,720 15,610 1,618,182

This paper presents a novel algorithm (Algorithm 1) that implements data flow analysis without

having to check each individual DUA requirement. This in turn allows DFT to be cheaper. The

general approach is to exploit the subsumption relationship among testing requirements (TR)

[23, 35, 46]. A TR tr1 (e.g., a DUA D1) subsumes another test requirement tr2 (e.g., a DUA D2) if
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every test path that satisfies tr1 also satisfies tr2 [35]. A minimal subset of TRs that subsumes

every other TR is called a spanning set and its elements are referred to as unconstrained test

requirements [35]. Identifying the spanning set establishes a priority order among TRs that allow

testers to focus on just the unconstrained requirements, saving time and effort.

Santelices and Harrold [46] make use of the subsumption of TRs of different coverage criteria to

reduce the cost of code instrumentation. They infer which DUAs have been covered or conditionally

covered based on the edges that a test case visits. The subsumption of DUAs with respect to nodes

(DUA-node subsumption) and edges (DUA-edge subsumption) can save resources by focusing on

DUAs not covered by node and edge coverage or by tracking only nodes or edges at run-time.

Thus, we focus on the subsumption relationship to identify the DUAs that are not covered by

node and edge coverage or other DUAs to get the most value from data flow testing with the least

cost. However, identifying and using such test requirements has several issues:

1. Data flow subsumption discovery. How best to discover data flow testing subsumption

relationships (DFTS) has been an elusive goal. The current algorithms are costly, being

linear [46] in the number of DUAs for DUA-edge and quadratic [23, 35] for DUA-DUA

subsumption. This cost hampers its application for industry-size systems. Furthermore, some

algorithms [23, 35] can miss paths that would block the subsumption of DUAs, leading to

incorrect results.

2. Effectiveness. The number of unconstrained DUAs should be substantially smaller than the

original set of DUAs to reduce the cost of data flow testing. Several papers that explored

reduction in the number of DUAs used small programs, and algorithms that miss paths that

can block the subsumption relationship [35] [23]

3. Scalability. No prior work assesses the scalability of data flow subsumption algorithms.

Therefore, we do not know if the time taken by the algorithm is feasible for industrial use.

4. Fault detection ability. The fault detection ability of unconstrained DUAs may be affected by

infeasible unconstrained DUAs, and program interruptions such as exceptions.

5. Yield of data flow testing. For practitioners to use data flow testing, the faults it reveals must

supplement faults revealed by control flow testing.

This paper addresses the issues of subsumption relationship in data flow testing. We address both

cost and omissions regarding data flow subsumption discovery by presenting a novel and efficient

approach to tackle data flow subsumptions. This approach models the problem of finding local

DUA-node subsumption; that is, those DUAs that are covered whenever a particular point p (e.g, a

node) of a program is reached, as a data flow analysis framework [17, 26]. Using the local DUA-

node subsumption, one can efficiently discover the subsumption of DUAs with respect to nodes,

edges, and other DUAs.

We conducted an empirical study to assess the effectiveness and scalability of data flow

subsumption. We used 21 programs (listed in Table I) from the Defects4J repository [25] and four

extra programs, namely, Elki, SystemDS, Weka, and CoreNLP. The program size ranged from 602

source lines of code (LOC) to more than 200,000 LOC. We used the approach presented in this

paper to identify unconstrained DUAs, DUA-edge and DUA-node subsumptions in the programs,

with the purpose of evaluating the effectiveness and scalability of data flow subsumptions. Our

findings show that data flow subsumption is effective at reducing the number of DUAs to be tested

and can be found at scale for programs similar to those developed in the industry.

We also assessed the fault detection ability of unconstrained DUAs and the result of DUA-

node and DUA-edge subsumption. We used probabilistic coupling [7] as a proxy for the fault

detection ability of DUAs. Our results indicate that the likelihood of missing a fault by using only

unconstrained DUAs is less than 2%. Happily, these missed faults can be determined either statically

or at run-time. Furthermore, the top fault revealing DUAs were not subsumed by node coverage for

around 20% of the bugs and around 7.5% by the edge coverage. Subsumption relationship can
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highlight which DUAs are most likely to reveal faults and though modest, data flow testing adds

value.

Our results suggest that efficient data flow subsumption discovery, applicable to industry-sized

programs, can reduce the number of test requirements to be verified or tracked and better estimate

test set completeness. This paper represents a major extension to the paper presented at the 14th

IEEE International Conference on Software Testing, Verification, and Validation [5]. The most

significant extensions are (1) this paper adds an in-depth analyses of the fault detection ability

of unconstrained DUAs and the value added by data flow testing, and (2) this paper includes

extensive additional empirical work. The empirical work is reflected in Section 6, and includes

several additional research questions and empirical results on fault detection and effectiveness of

data flow testing using unconstrained DUAs. This paper also has significant more background,

details of the algorithms, and related work. The paper starts with background in data flow testing in

Section 2. We then describe data flow subsumptions in Section 3, followed by our solution to solve

the local DUA-node subsumption in Section 4. Algorithms to find other data flow subsumptions are

described in Section 5, followed by experimental analysis in Section 6. Related work is discussed

in Section 7, and conclusions are in Section 8.

2. BACKGROUND

Graph based testing criteria use graph abstractions of the software under test to generate tests. A

directed graph can be defined as G(N,E, s, e), where N is a set of nodes, E is a set of edges, s is

the start node and e is the exit node. A node (n) can represent a single statement of the program

or a sequence of statements. For our purposes, we consider a sequence of statements, also known

as a basic block, to be a node. An edge represents potential control flow from one node to another,

written as (ni, nj), ni 6= nj , where node ni is the predecessor and node nj is the successor. Graphs

extracted from a program must have at least one start node and exit node for it to be useful to

generate tests. A program can have multiple entry and exit points.

A path is a sequence of nodes (ni, . . ., nk, nk+1, . . ., nj), where i ≤ k < j, such that (nk, nk+1)

∈ E. A test path is a special path that starts from a start node s and ends at an exit node e. A test

path represents the execution of one or more test cases. A side-trip is a sub-path that starts and ends

at the same node (a loop).

Figure 1 presents a program that finds the maximum element in an array of integers [6] and

Figure 2 presents its control flow graph. The numbers at the start of each line of code in Figure 1

indicate the line’s corresponding node in the graph.

Graph coverage criteria come in two forms, control flow coverage criteria and data flow coverage

criteria. Control flow coverage criteria cover the structure of the graph, including nodes, edges, and

specific sub-paths. Data flow coverage criteria evaluates the flow of data values during program

execution. Data flow coverage criteria provide test requirements for data flow testing by focusing on

definitions and uses of variables. A definition, or def, is a program location where a value is assigned

to a variable. A use is a location where the variable is referenced. The graph shown in Figure 2 is

annotated with defs and uses associated with its nodes and edges.

Data flow testing focuses on the flow of data values from definitions to uses. A variable can

be used to compute a value or in a predicate. Value computations are associated with nodes and

predicate computations are associated with edges.

A definition-clear (def-clear) path with respect to a variable x is a path where x is not redefined

along the path. A du-path is a simple sub-path (all nodes are different except the first and last nodes)

that is def-clear with respect to (wrt) variable x. A du-path with side-trips wrt variable x allows

side-trips that are also def-clear wrt x.

Data flow test criteria define test requirements as specific du-paths that must be covered. A du

association set D(d, u, x) is a set of du-paths and du-paths with side-trips wrt variable x that start

at node d and end at node u. If the use is on an edge (u′, u), the DU-associations set is written as

D(d, (u′, u), x). Several data flow testing criteria have been invented [32, 38, 42, 48]. In this paper,

we focus on the all-uses criterion proposed by Rapps and Weyuker [42].
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/ * 0 * / i n t max ( i n t a r r a y [ ] , i n t l e n g t h )
/ * 0 * / {
/ * 0 * / i n t i = 0 ;
/ * 0 * / i n t max = a r r a y [++ i ] ;
/ * 1 * / w h i l e ( i < l e n g t h )
/ * 1 * / {
/ * 3 * / i n t rogue = 1 ;
/ * 3 * / i f ( a r r a y [ i ] > max )
/ * 5 * / {
/ * 5 * / max = a r r a y [ i ] ;
/ * 5 * / p r i n t ( rogue ) ;
/ * 5 * / }
/ * 4 * / i = i + 1 ;
/ * 4 * / }
/ * 2 * / r e t u r n max ;
/ * 6 * / }

Figure 1. Example program Max

Figure 2. Annotated flow graph for Max

The all-uses criterion requires that at least one du-path (or du-path with side-trips) is executed, or

toured, for every DU-associations (DUAs) set, that is, each def reaches each use at least once. If a

test set T includes a du-path (or du-path with side-trips) for each DUA D(d, u, x) or D(d, (u′, u),

x), it is said to be adequate for the all-uses criterion for program P since all required DUAs were

covered.

Table II shows the test requirements for the all-uses coverage criterion on the program from

Figure 1. The triplet (0, (3, 5), array) indicates there is a def of variable array at node 0,

which reaches a use at edge (3, 5). Table II shows that the all-uses criterion generates many test
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Table II. All-uses test requirements for program Max

All-uses

(0, (3,5), array) (0, (3,4), array) (0, 5, array)

(0, (1,3), length) (0, (1,2), length) (0, (1,3), i)

(0, (1,2), i) (0, (3,5), i) (0, (3,4), i)

(0, 4, i) (0, 5, i) (0, 2, max)

(0, (3,5), max) (0, (3,4), max) (5, 2, max)

(5, (3,5), max) (5, (3,4), max) (4, (1,3), i)

(4, (1,2), i) (4, (3,5), i) (4, (3,4), i)

(4, 4, i) (4, 5, i) (3, 5, rogue)

requirements, 24, even for a relatively small method with only 6 nodes. This makes data flow testing

expensive. This paper uses subsumption to reduce the cost of data flow testing [35].

3. DATA FLOW TESTING SUBSUMPTION (DFTS)

Subsumption is traditionally used to compare testing criteria. A test criterion C1 subsumes criterion

C2 if and only if every set of execution paths P that satisfies C1 also satisfies C2 [9, 42]. Satisfying

the subsuming test criterion guarantees that the subsumed criterion is also satisfied. However,

the subsumption relation may not hold if some test requirements of the subsuming criterion are

infeasible. Additional strategies might be needed to reestablish subsumption [15].

Marré and Bertolino [35] explored subsumption relationships among testing requirements (TR)

of the same criterion C. The intuition is that if TR tr1 is subsumed by tr2, then tr1 is easier to

cover than tr2, resulting in an ordering that exists among TRs [34]. A minimal subset of TRs that

subsumes every other TR is called a spanning set and its elements are referred to as unconstrained

test requirements [35]. Thus, testers can save resources by only covering TRs that are guaranteed to

cover other TRs. Santelices and Harrold [46] compare TRs from different criteria, in particular du

associations (DUAs) subsumed by edges. In doing so, testers can focus only on DUAs not subsumed

by edges to enhance a test suite.

In a separate thread of research, the same concept of subsumption has been used to identify and

approximate minimal sets of mutants [2, 28–31]. Killing a minimal set of mutants guarantees that

all non-equivalent mutants would be killed by the same tests, but with substantially less effort than

killing all mutants. The first two papers [2, 28] introduced the theoretical concept, presented the

mutant subsumption graph (MSG), and showed how to approximate the “true” MSG dynamically.

Subsequent papers showed how to approximate the MSG statically [29], showed that redundant

(constrained) mutants effect the mutation score [31], and used minimal mutation to identify a

significant weakness in selective mutation [30]. The minimal mutant set is directly analogous to

the spanning set in structural criteria, with a significant difference being that the minimal mutant set

is uncomputable.

The following subsections discuss three data flow testing subsumption relationships: (a) DUA

subsumption by nodes, (b) DUA subsumption by edges, and (c) DUA subsumption by other DUAs.

3.1. DUA-node subsumption

DUA-node subsumption identifies DUAs that are guaranteed to be covered if a specific node in the

graph is visited. More formally, DUA D(d, u,X) or D(d, (u′, u), X) is DUA-subsumed by node

n if D is covered on all test paths that visits node n and reaches the exit node. The set of DUAs

subsumed by node n is the set of all DUAs that are covered by all test paths that visit n.

We find it necessary to allow for interrupted execution, for example exceptions or other program

aborts. Thus, we distinguish between local DUA-node subsumption, which is the set of DUAs

covered by all paths that reach n, and global DUA-node subsumption, which is the set of DUAs

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
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Figure 3. Local DUA-node subsumption for program Max

covered by all test paths that both reach n and then continue to the exit node. The set of globally

subsumed DUAs include DUAs that are DUA-node subsumed by nodes that appear on all paths

from node n to the exit node.

Figure 3 shows the DUA-subsumption sets for the Max program from Figures 1 and 2. Each node

contains the locally subsumed DUAs. For example, if node 5 is reached, the definition of array at

node 0 is guaranteed to have reached the use on edge (3,5).

Node ni dominates node nj if every path from the start node to nj includes ni [17]. Node nj

post-dominates node ni if any path from ni to the exit node includes nj . A node dominates itself

but does not post-dominate itself [23]. In the absence of early program termination, node 5 is post-

dominated by nodes 4, 1, 2, and 6. When they are visited by a test path, the set of DUAs that are

globally subsumed by node 5 includes the six DUAs listed in node 5, plus DUAs (0, 4, i) from

node 4 and (0, (1,2), length) from node 2. Thus, node 5 locally subsumes six DUAs and globally

subsumes eight DUAs.

Node 5 is the only unconstrained node for program Max. This means that eight of 24 DUAs will

be covered if all nodes of the Max program are visited. Thus, node coverage would result in a data

flow coverage of 33%.

3.2. DUA-edge subsumption

DUA-edge subsumption addresses DUAs that are guaranteed to be covered if edges are visited. A

DUA D(d, u,X) or D(d, (u′, u), X) is DUA-subsumed by edge (n′, n) if D is covered on all test

paths that visit (n′, n). The set of DUAs subsumed by edge (n′, n) is the set of all DUAs that are

covered by all test paths that visit (n′, n).
Figure 4 presents the control flow graph of Max, annotated with the DUAs that are locally

subsumed by each edge. The global DUA-edge subsumption sets include DUAs subsumed by nodes
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Figure 4. Local DUA-edge subsumption for program Max

that post-dominate n. For example, the seven DUAs listed on edge (5,4) are locally subsumed; the

global set also includes (0, (1,2), length) from edge (1,2).

Edges (3,5) and (3,4) are unconstrained for the all edges criterion, thus visiting them will ensure

all other edges are visited. Edge coverage will also ensure that nine unique DUAs are toured

(37.5%). That is one more than node coverage ensures, specifically, the DUA (0, (3,4), array),

which is subsumed by edge (3,4).

3.3. DUA-DUA subsumption

DUA-node and DUA-edge subsumption relate different criteria–node coverage with all-uses

coverage, and edge coverage with all-uses coverage. DUA-DUA subsumption relates test

requirements within the same criterion, all-uses coverage. A DU-association D1 subsumes another

DUA, D2, if every test that covers D1 is guaranteed to also cover D2.

Formally, D1(d1, u1, X1) subsumes D2(d2, u2, X2) (D2 → D1), if every test path that contains a

def-clear path with respect to X1 between d1 and u1 also contains a def-clear path with respect to

X2 between d2 and u2. We use the notation D2 → D1 to indicate that D1 subsumes D2.

As with DUA-node and DUA-edge subsumption, D1 locally subsumes D2 if D2’s def-clear path

with respect to X2 ends before D1’s def-clear path with respect to X1 ends.

In the example program, if a test ensures the def of i at node 4 reaches the use of i at edge (3,4),

we are guaranteed that the def of array at node 0 also reaches the use of array at (3,4). Thus, (0,

(3,4), array) → (4, (3,4), i). The subsumption relationship is not symmetric, however, because a

test that covers (0, (3,4), array) might not cause the def of i at node 4 to reach the edge (3,4), so (0,

(3,4), i) does not subsume (4, (3,4), i).

The graph in Figure 5 shows subsumption among the DUAs of Max. If two DUAs D1 and D2 are

in the same node, then D1 → D2 and D2 → D1. If D2 is in a node with an edge to a node that has

D1, that means that D2 → D1. This graph is very similar to the mutant subsumption graph [28].
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(0,5, i)
(0,(3,5), i)

(5,(3,5), max) (5,(3,4), max)

(4,5, i)
(4,(3,5), i)

(5,2, max)
(3,5, rogue)

(0,(3,5), max)
(0,5, out)

(0,5, array)
(0,(3,5), array)

(0,(3,4), max)
(0,(3,4), i)

(4,(3,4), i)

(0,(3,4), array)
(4,4, i)

(4,(1,3), i)

(4,(1,2), i)
(0,4, i)

(0,(1,3), i)
(0,(1,3), length)

(0,(1,2), i)

(0,2, max)

(0,(1,2), length)

Figure 5. DUA-DUA subsumption for example program Max

This DUA subsumption graph (DSG) allows us to directly find a minimal set of DUAs that, if

covered, implies that all DUAs are covered. This minimal set of DUAs is called the spanning set.

The leaves of the DSG, shown with shaded rectangles in Figure 5, give the spanning set of DUAs

for program Max. A DUA in the spanning set is an unconstrained DUA. The spanning set is not

unique because some leaves have more than one DUA. When that happens, any of the DUAs in the

node could be included in the spanning set.

Two of the five leaf nodes in Figure 5 have two DUAs. Thus, Max has four possible sets of

unconstrained DUAs, one being {(0, 5, i), (5, (3,5), max), (5, (3,4), max), (0, (3,4), max), (0, (1,2),

i)}.

4. FINDING THE LOCAL DUA-NODE SUBSUMPTION

Data flow analysis frameworks are created to solve data flow analysis problems such as reaching

definitions, live-variables, and available expressions [26]. They determine facts that are valid at

the entry or exit of a program point p whenever p is reached [20]. We use the data flow analysis

framework Data Flow Subsumption Framework (DSF) [4] to find local DUA-subsumption.

DSF finds the set of DUAs already covered or available to be covered at the entrance (set IN(n))

and at the exit (set OUT(n)) of a node n along all paths that reach n (the facts). A DUA is available

to be covered if its def node was previously toured in the path and there is no re-definition of its

variable in the nodes that were subsequently toured.
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This section presents the Subsumption Algorithm, which uses the DSF framework to find the

local DUA-node subsumption, and then analyzes the algorithm’s complexity.

4.1. Subsumption algorithm

The Subsumption Algorithm (SA), presented in Algorithm 1, uses DSF to find the local DUA-node

subsumptions. SA adapts a classical data flow analysis algorithm to find the values of sets IN(n) and

OUT(n). The final output of the algorithm is Covered(n), a set of DUAs that are covered at node n

when n is reached from any path that begins at the start node s of a flow graph G. Covered(n) gives

the local DUA-node subsumptions.

Input: Flow graph G(N,E, s, e) of program P ; sets Disabled(n), Sleepy(n),

PotCovered(n), and Born(n), all DUAs required to test P

Output: Covered(n), set for every node n

1 IN(s) = ∅ where s is the start node;

2 OUT(s) = Born(s) where s is the start node;

3 Covered(s) = ∅ where s is the start node;

4 for each node n other than the start node s do

5 OUT(n) = all DUAs of program P ;

6 Covered(n) = all DUAs of program P ;

7 while changes to any OUT occur do

8 for each node n ∈ N do

9 IN(n) =
⋂

p∈PRED(n) OUT(p);

10 CurSleepy =
⋃

p∈PRED(n)and(p,n)is not a back edge Sleepy(p);

11 Covered(n) =
⋂

p∈PRED(n) Covered(p)
⋃

[(IN(n) - CurSleepy)
⋂

PotCovered(n)];

12 OUT(n) = Born(n)
⋃

[IN(n) - Disabled(n)]
⋃

Covered(n);

13 for each node n ∈ N do

14 IN(n) =
⋂

p∈PRED(n) OUT(p);

15 CurSleepy =
⋃

p∈PRED(n)and(p,n)is not a back edge Sleepy(p);

16 Covered(n) =
⋂

p∈PRED(n) Covered(p)
⋃

[(IN(n) - CurSleepy)
⋂

PotCovered(n)];

17 return Covered(n) for every node n

Algorithm 1: Subsumption algorithm

Lines 1-6 in Algorithm 1 initialize the algorithm’s working sets. Initially, IN(s) is empty since

there is no DUA covered or available to be covered, OUT(s) contains the DUAs that become

available for coverage after s is traversed (see the definition of Born(n) below), and Covered(s) is

also empty because no DUA is covered at s. All other nodes are initialized with OUT and Covered

equal to all DUAs.

Lines 9-12 represent the DFS transfer functions. When a node n is reached, transfer functions

calculate the fact that is valid at the entrance and exit of node n. To define the transfer functions of

DSF, we associate nodes of the flow graph with sets, as introduced by Chaim and Araujo [6]. These

sets are defined as follows:

Let n ∈ N be a node in flow graph G(N,E, s, e) of a program P and (d,u,X) or (d,(u′,u),X) a

DUA required to test P according to the all-uses criterion.

Born(n) : set of DUAs (d,u,X) or (d,(u′,u),X) s.t. d = n

Disabled(n) : set of DUAs (d,u,X) or (d,(u′,u),X) s.t. X is defined in n and d 6= n

PotCovered(n) : set of DUAs (d,u, X) or (d,(u′,u), X) s.t. u = n
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Sleepy(n) : set of DUAs (d,(u′,u), X) s.t. u′ 6= n

Born(n) sets are similar to the gen(n) and e gen(n) sets of the reaching definitions and available

expressions problems [1]. They represent DUAs that are born because the node where their variable

is assigned has been toured. Disabled(n) is analogous to the sets kill(n) and e kill(n) of the same

data flow analysis problems, since they contain the DUAs that are killed after n was traversed.

SA also needs sets PotCovered(n) and Sleepy(n). PotCovered(n) represents those DUAs that

can potentially be covered when a node is traversed. If a DUA is available for coverage when n is

reached and it belongs to PotCovered(n), then it will be covered after n is traversed.

A node may be reached from multiple paths. We cannot guarantee that a particular edge DUA has

been covered since we cannot predict which path reached node n. Thus, we use a sleepy DUA set to

identify which edge DUAs are guaranteed to be covered. After touring node n, we can say that edge

DUAs with uses on edges starting at node n will be covered. The other edge DUAs are called sleepy

at n. Hence, the Sleepy(n) set blocks the edge DUAs (d,(u′,u),X) from being covered after node

n is traversed, if u′ 6= n. For example, after touring node 3, we know that edge DUAs with use on

edge (3,5) or (3,4) will be covered. So the other edge DUAs of the program are in the set Sleepy(3).

This concept of sleepy is used to construct the set CurSleepy.

CurSleepy is the union of the DUAs that are blocked after a predecessor p of n is toured, if (p,n)

is not a back edge. Edge (p,n) is a back edge if node n dominates node p [1]. In Figure 2, (4,1) is

a back edge. CurSleepy is used to block edge DUAs from being covered when we cannot predict

the path that reached a node n. However, when (p,n) is a back edge, we know that n is always

toured before p is toured so that it cannot block other edge DUAs from being covered at n. For

example, two paths could reach node 4: (0,1,3,5,4) and (0,1,3,4). To identify the edge DUAs that

will definitely be covered at node 4, we generate the sleepy set of node 4’s predecessors, Sleepy(5)

and Sleepy(3). There is no DUA with a use in edge (5,4) to be excluded from the Sleepy set, hence

all DUAs are in Sleepy(5). Thus, CurSleepy at node 4 is the union of Sleepy(3) and Sleepy(5),

that is, all edge DUAs. The CurSleepy set blocks all edge DUAs as not guaranteed to be covered at

node 4.

The value of IN(n) is found by intersecting OUT sets of the predecessors of n on line 9. The

transfer function on line 10 calculates edge DUAs that cannot be covered at node n.

The transfer function on line 11 finds the DUAs that are covered by all paths that reach node

n. It has two parts that are combined via union. The first part of line 11 intersects Covered sets

of the predecessors of n. Thus, node n will inherit only DUAs that were previously covered in all

paths that reach it. The second part of line 11 calculates the DUAs covered at node n. IN(n) has

the DUAs that were covered and available to be covered in all paths that reach n according to line

9, CurSleepy has the edge DUAs that are blocked at node n, and PotCovered(n) contains DUAs

that might be covered at n if they are in IN(n). The remaining DUAs after these operations, plus the

DUAs covered in previously toured nodes, represent the DUAs that are covered at node n.

Finally, the transfer function in line 12 determines the OUT(n) sets–that is, the DUAs that are

forwarded in the data flow analysis. They are calculated in three parts that are unioned together. The

first part is the Born(n) set, which contains the DUAs that become available for coverage at node

n; that is, their variable was assigned at n. The second part contains the DUAs that are available in

IN(n) and survive node n because they do not belong to Disabled(n). The last set added in Line

12 is the set of DUAs covered at n (Covered(n)). All these DUAs are forwarded to the node’s

successors in the data flow analysis.

Lines 13-16 update the Covered(n) sets. OUT(n) has already converged to its final values after

leaving the while-loop at Line 7, but Covered(n) needs to be updated with the final values of

OUT(p).

To exemplify how SA works, consider node 5 from program Max in Figure 2. Figure 6 shows how

sets IN(5), Covered(5), and OUT(5) evolve during SA’s execution in three distinct points (Point 1,

Point 2, and Point 3). Point 1, before Line 8 in Algorithm 1, is located immediately inside the body

of the while-loop, which repeats until all sets OUT(n) stop changing. For program Max, the while-

loop repeats three times until sets OUT(n) stop changing. Figure 6 shows IN(5), Covered(5), and

OUT(5) at Point 1 in these three iterations. Point 2, before Line 13 in Algorithm 1, is immediately
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after the execution of the while-loop and Point 3, before Line 17 in Algorithm 1, is just before

returning the Covered(n) sets.

Point 1 – Before line 8 in Algorithm 1

Iter. Sets DUAs

1

IN(5) —

Covered(5) All DUAs

OUT(5) All DUAs

2

IN(5) (0,(3,5),array), (0,(3,4),array), (0,5,array), (0,(1,3),length), (0,(1,2),length),

(0,(1,3),i), (0,(1,2),i), (0,(3,5),i), (0,(3,4),i), (0,4),i), (0,5),i), (0,2),max),

(0,(3,5),max), (0,(3,4),max), (3,5,rogue)

Covered(5) (0,(3,5),array), (0,5,array), (0,(1,3),length), (0,(1,3),i),(0,(3,5),i), (0,5),i),

(0,(3,5),max), (3,5,rogue)

OUT(5) (0,(3,5),array), (0,(3,4),array), (0,5,array), (0,(1,3),length),(0,(1,2),length),

(0,(1,3),i), (0,(1,2),i), (0,(3,5),i), (0,(3,4),i), (0,4),i), (0,5),i), (0,(3,5),max),

(3,5,rogue), (5,2,max), (5,(3,5),max), (5,(3,4),max)

3

IN(5) (0,(3,5),array), (0,(3,4),array), (0,5,array), (0,(1,3),length), (0,(1,2),length),

(0,(1,3),i), (0,4),i), (0,(3,5),max), (3,5,rogue)

Covered(5) (0,(3,5),array), (0,5,array), (0,(1,3),length), (0,(1,3),i), (0,(3,5),max),

(3,5,rogue)

OUT(5) (0,(3,5),array), (0,(3,4),array), (0,5,array), (0,(1,3),length), (0,(1,2),length),

(0,(1,3),i), (0,4),i), (0,(3,5),max), (3,5,rogue), (5,2,max), (5,(3,5),max),

(5,(3,4),max)

Point 2 – Before line 13 in Algorithm 1

Sets DUAs

IN(5) (0,(3,5),array), (0,(3,4),array), (0,5,array), (0,(1,3),length), (0,(1,2),length),

(0,(1,3),i), (0,4),i), (0,(3,5),max), (3,5,rogue)

Covered(5) (0,(3,5),array), (0,5,array), (0,(1,3),length), (0,(1,3),i), (0,(3,5),max),

(3,5,rogue)

OUT(5) (0,(3,5),array), (0,(3,4),array), (0,5,array), (0,(1,3),length), (0,(1,2),length),

(0,(1,3),i), (0,4),i), (0,(3,5),max), (3,5,rogue), (5,2,max), (5,(3,5),max),

(5,(3,4),max)

Point 3 – Before line 17 in Algorithm 1

Sets DUAs

IN(5) (0,(3,5),array), (0,(3,4),array), (0,5,array), (0,(1,3),length), (0,(1,2),length),

(0,(1,3),i), (0,4),i), (0,(3,5),max), (3,5,rogue)

Covered(5) (0,(3,5),array), (0,5,array), (0,(1,3),length), (0,(1,3),i), (0,(3,5),max),

(3,5,rogue)

OUT(5) (0,(3,5),array), (0,(3,4),array), (0,5,array), (0,(1,3),length), (0,(1,2),length),

(0,(1,3),i), (0,4),i), (0,(3,5),max), (3,5,rogue), (5,2,max), (5,(3,5),max),

(5,(3,4),max)

Figure 6. Sets of program Max’s node 5 during the execution of Algorithm 1

At Point 1, in the first iteration†, IN(5)1, Covered(5)1 and OUT(5)1 have the values that were

assigned during the initialization on Lines 1-6. IN(5)1 will still receive the results of the transfer

function on Line 9. Covered(5)1 and OUT(5)1 contain all DUAs as assigned on Lines 1-6. In

the second iteration, Point 1 shows IN(5)2, Covered(5)2, and OUT(5)2 having the result of the

application of DSF transfer functions (Lines 9-12) during the first iteration. IN(5)2 is a subset of

DUAs because it is calculated at Line 9 using OUT(3)1 (node 3 is the only predecessor of node

†We use exponents to differentiate the values of sets IN(5), Covered(5) and OUT(5) in the three iterations at Point 1.
For instance, IN(5)2 refers to the value of the IN(5) in the second iteration; that is, it refers to the set of DUAs presented
in the sixth row from the top of the table of Figure 6.
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5). Covered(5)2 and OUT(5)2 also contain a restricted set of the DUAs due to the application of

DSF transfer functions on Lines 11 and 12. Point 1 in the third iteration shows the results of the

second iteration where IN(5)3 has six fewer DUAs than IN(5)2, Covered(5)3 two fewer DUAs than

Covered(5)2, and OUT(5)3 four fewer DUAs than OUT(5)2.

At Point 1, OUT(5) starts with all DUAs and as the DSF transfer functions are applied, its value

converges to a fixed point, which is the set of those DUAs that are covered or available to be covered

at node 5. When sets OUT converge for every node n of Max’s flow graph, SA leaves the while-loop

at Line 7 and goes to Point 2.

Point 2 shows IN(5), Covered(5), and OUT(5) as having the same values as Point 1 at iteration

3, showing that OUT(5) had already converged to its fixed point after iteration 2. However, not all

OUT(n) had converged, so a third iteration was needed. In the next section, we analyze the number

of iterations required to leave while-loop at Line 7 for most of the programs.

Values of IN(5), Covered(5), and OUT(5) at Point 2 are used to calculate the final value of

Covered(5) on Lines 13-16. Point 3 shows the result of SA. The final value of Covered(5) is equal

to that of Point 2 and contains the DUAs {(0,(3,5),array), (0,5,array), (0,(1,3),length), (0,(1,3),i),

(0,(3,5),max), (3,5,rogue)}, as shown in node 5 of Figure 3. That is so because OUT(5) converged

after iteration 2, however, sometimes the OUT set converges in the last iteration, which makes it

necessary to apply transfer function at Line 11 again at Line 16 to achieve the correct values for

Covered(n).

4.2. Complexity

The complexity of SA is dominated by the number of iterations needed to finish the while-loop in

line 7. In the worst case, the cost of SA is the product of the number of DUAs and the number of

nodes in the flow graph. However, SA shares characteristics with other practical data flow analysis

problems, including reaching definitions and available expressions. The fact at each node (the

covered or available DUAs) propagates along cycle-free paths.

If the nodes are visited in a depth-first order (reverse postorder [17]) in line 8, the information is

first propagated through the cycle-free paths. Using this approach, the number of iterations will be

no greater than the depth of the nested loop in the program [1] plus 2. These loops tend to be limited

to a small constant [27, 45]. SA requires yet another visit to each node to update the Covered sets,

which will require one more visit to every node of the flow graph.

SA also finds the dominance relationship to determine the back edges. Luckily, the dominance

relationship is also modeled as a data flow analysis problem with the same property of propagating

its fact (the dominator nodes) along cycle-free paths. Thus, the dominance relationship is found at

the same cost. Therefore, the cost of SA for most programs tends to be linear in the number of nodes

in its flow graph.

4.3. Memory requirements

The subsumption algorithm SA receives as input the flow graph G(N,E, s, e) of a program P ;

and sets Disabled(n), Sleepy(n), PotCovered(n), and Born(n). SA returns the sets Covered(n) as

output. Additionally, SA uses two working sets for each node n of G, IN(n) and OUT(n), and the

working set CurSleepy. All these sets have the size U , where U is the set of all DUAs required to

test P . As a result, SA uses 7 × |N| + 1 sets of size |U|. Thus, the memory cost for all SA’s sets is

O(|N| × |U|). The memory needed for flow graph G costs O(|N| + |E|). Since we can assume the

number of edges as O(|N|), the flow graph G costs O(|N|) to store.

Therefore, all SA memory requirements total O(|N|) + O(|N| × |U|), that is, O(|N| × |U|).
Though this amount of memory should not stress the RAM memory of modern computers, it can be

reduced even further if one implements SA’s sets as bit vectors. Memory was not a problem in our

empirical assessment.
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4.4. SA’s correctness

We verified the correctness of SA by proving that the data flow subsumption framework (DSF)

is monotone and distributive and that sets OUT(n) contain the covered and available nodes for

coverage DUAs at a node n. As a result, by applying an iterative algorithm, SA finds sets OUT and

then the final value of Covered(n). We detail the proof in our technical report [4].

Therefore, SA finds the local DUA-subsumption at every node n; that is, every DUA that is

subsumed whenever node n is reached from any path from the start node s. However, SA only

works and has the costs as discussed above when the following conditions hold.

1. A program P ’s flow graph G has to be well-formed: (a) there is a single start node s with zero

incoming edges; (b) there is a single exit node e with zero outgoing edges; (c) for every edge

(n′,n), n′ 6= n (there are no self loops).

2. Sets Disabled(n), Sleepy(n), PotCovered(n), and Born(n) should have been calculated

previously.

5. FINDING DATA FLOW SUBSUMPTIONS

This section shows how to use the Subsumption Algorithm (SA) algorithm to find DUA-node, DUA-

edge, and DUA-DUA subsumption. We also explore the cost.

5.1. DUA-node subsumption

Section 3 presented the DUA-node subsumption algorithm informally. First, we find the local DUA-

node subsumption using SA and the post-dominance relationship. Then, we union the Covered(n)

and Covered(m) sets when m post-dominates n to find the set of DUAs subsumed by a node n.

SA and the post-dominance relationship cost ≈ O(|N|), where |N| is the number of nodes in the

flow graph. The union of the Covered sets costs up to O(|N|2) since for each node n, every other

node m would be checked to see if it post-dominates n. However, the post-dominators of n are

generally fewer than the number of nodes and can be scanned efficiently when implemented as bit

vectors using machine instructions.

5.2. DUA-Edge subsumption

We first use SA to calculate local DUA-node subsumption. Then, Algorithm 2 uses SA results to

find the local DUA-edge subsumption.

1 for each edge (n′, n) do

2 if #Successors(n′) > 1 then

3 Covered(n′, n) = [(OUT(n′) - Sleepy(n′))
⋂

PotCovered(n)]
⋃

Covered(n);

4 else

5 Covered(n′, n) = Covered(n′)
⋃

Covered(n);

6 return Sets Covered(n′, n)

Algorithm 2: Local DUA-edge subsumption algorithm

Two results of SA are IN(n) and OUT(n). OUT(n′) contains DUAs that are covered or available

for coverage after node n′ is toured by any path from the start node to n′. Algorithm 2 assumes

every edge (n′, n) is toured, so it calculates DUAs covered as if the next node following n′ is n; that

is, set Covered(n′, n), in Lines 3-5.

If more than one path leaves n′ (n′ has more than one successor at line 2), then line 3 allows only

edge DUAs with uses in (n′, n) to be covered at (n′, n) and joins them with Covered(n). Note that

Sleepy(n′) removes from OUT(n′) edge DUAs whose use is in edges (u′, u) such that u′ 6= n′. In
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other words, only edge DUAS with uses in (n′, n) will be allowed to be covered and joined with

Covered(n). Line 5 deals with edges (n′, n) with a single successor. The set of DUAs covered at

(n′, n) is the union of DUAs covered at n′ and n. The global DUA-edge subsumption is calculated

by adding to each Covered(n′, n) those sets Covered(m) such that m post-dominates n.

DUA-edge differs from DUA-node subsumption because it calculates the local DUA-edge

subsumption (Algorithm 2). Lines 3-5 can be implemented as bitwise operations; so, their cost

is constant. The for loop at line 1 iterates on edges; however, the number of edges is O(|N|) for

most programs. As a result, local DUA-edge subsumption costs ≈ O(|N|).

5.3. DUA-DUA subsumption

For every DUA D1, DUA-DUA subsumption associates a set of DUAs D2 that are covered in every

test path that covers D1. We apply SA to find DUA-DUA subsumption, but in a different graph.

Marré and Bertolino [34, 35] suggested a graph called G∗ that models all paths that cover a dua

D1(d1, u1, X1). That is, every test path in G∗ should, in principle, cover D1. G∗ includes paths from

the start node (s) to the definition node (d1), def-clear paths wrt X1 from d1 to node u1, and paths

from u1 to the exit node (e). We use a different graph, graphdua, which includes paths that are not

in G∗ that might block the subsumption of a DUA D2.

To find DUAs D2 that are subsumed by D1, we first calculate the graph graphdua(D1) using the

algorithm described in our previous paper [37]. Figure 7 shows the graphdua for D1(3, 5, rogue). A

graphdua consists of the composition of five sub-graphs; each encompassing sub-paths required to

cover D1.

The first sub-graph, SG1, encompasses paths from s to d1. In Figure 7, this sub-graph is composed

of nodes whose identifiers are pairs n(1) where n is the node of the original flow graph G and 1 is

the identifier of SG1. There is an edge (n′(1),n(1)) in a graphdua if there is an edge (n′,n) in G.

The graphdua also includes paths from d1 to d1; they are represented by sub-graph SG2, which in

turn is composed of nodes n(2) and edges connecting them. SG3 represents def-clear paths wrt X1

from d1 to u1, SG4 paths from u1 to u1, and SG5 paths from u1 to e. In Figure 7, these sub-graphs

are indicated by nodes identified by pairs n(3), n(4), and n(5), respectively. As proposed by Marré

and Bertolino, G∗ does not include paths encompassed by sub-graphs SG2 and SG4, which might

lead to incorrect subsumptions since possible redefinition paths are not blocked. We compare and

contrast G∗ and the graphdua in related work (Section 7).

We can run SA on graphdua(D1) since it is a regular graph with a different node identification

schema. SA gives Covered sets for all nodes of graphdua(D1); however, Covered(eD1
), where eD1

is the exit node of graphdua(D1), contains the set of DUAs D2 that are subsumed in any path that

covers D1. In Figure 7, the Covered set at node 6(5) gives all DUAs subsumed by D1(3, 5, rogue).

As far as cost goes, G∗ and graphdua(D1) cost O(|E|) to calculate, where |E| is the number of

edges [34, 37]; hence, its cost is O(|N|). SA’s cost is determined by the number of nodes in the

graph. A graphdua has no more than five times the number of nodes of the program’s flow graph,

which is O(|N|). As a result, running SA on a graphdua costs ≈ O(|N|). Hence, calculating the

DUAs subsumed by D1 is ≈ O(|N|).
If U is the set of all DUAs required to test a program, DUA-DUA subsumption will cost

≈ O(|U||N|) to calculate. Unconstrained DUAs, as shown in Figure 5, cost up to O(|U|2) to

calculate [33]. Implementing the sets of subsumed DUAs as bit vectors and scanning them with

machine instructions reduces this cost.

6. EXPERIMENTAL ANALYSIS

Previous sections showed how data flow subsumptions can be calculated at asymptotically lower

cost than previous approaches. However, Section 1 raises additional questions related to identifying

and using data flow subsumption. We present them as research questions below:

Subsumption discovery :
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Figure 7. Graphdua for D1(3, 5, rogue)

RQ1: Does our approach using SA and graphduas correctly find data flow subsumptions?

Effectiveness :

RQ2 : Is the number of unconstrained DUAs (substantially) smaller than the total number of

DUAs?

RQ3 : How many DUAs are subsumed by node and edge coverage?

Scalability :

RQ4: How long does it take to calculate the data flow subsumption?

Fault detection ability :

RQ5 : How much fault detection ability is lost by using unconstrained DUAs to create tests?
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Yield of data flow testing :

RQ6 : Are the top fault revealing DUAs subsumed by node and edge coverage?

The rest of this section presents the subject programs, the pool of faults used to assess questions

RQ5 and RQ6, the concept of probabilistic coupling used as proxy of the fault detection ability and,

for each RQs, the results, and discussion. We conclude the section with threats to validity. We have

deployed a replication package on github: https://github.com/icst2021satool.

6.1. Subject programs

For our study, we chose 17 programs from the Defects4J repository [25], plus machine

learning programs Elki (https://elki-project.github.io/), SystemDS (https:

//systemds.apache.org/), and Weka (https://www.cs.waikato.ac.nz/ml/

weka/) and natural language processing program CoreNPL (https://stanfordnlp.

github.io/CoreNLP/) as described in Table I. The programs are sorted by the number of

methods with DUAs. We selected the first buggy version (referred to as 1b) from Defects4J and

Elki’s commit 6465675, SystemDS version 3.0.0, Weka’s version 3.8, and CoreNLP version 4.4.0.

The programs’ purposes vary: Compress, Csv, Gson, JacksonCore, JacksonDataBind, JacksonXml,

and JSoup manipulate text in compressed and binary files; Cli, Closure, and JxPath parse

and compile; Collections and Lang are utilities for data structure manipulation and languages;

Elki, SystemDS, Math, and Weka are mathematics, statistics, and data mining packages; Time

manipulates date and time objects; Mockito supports software testing; and CoreNPL supports

natural language processing (CoreNPL). The programs also vary in size: ranging from small

programs such as Csv (602 LOC) to larger programs such as Weka (216,781 LOC).

Table I shows the LOC, the number of methods with DUAs, the number of methods executed,

and the total of DUAs required to test the programs. We used javancss (www.kclee.

de/clemens/java/javancss/) to calculate the LOC, and SAtool (github.com/

icst2021satool/source-code) to find the methods with DUAs, the DUAs themselves,

and data flow subsumptions. We modified Jaguar [44] to collect DUA coverage for every JUnit

method of the developers’ tests included in the programs’ repository.

As a result, we use SAtool to calculate DUAs and subsumption relationships and then Jaguar

to find DUA coverage. To ensure the integrity of the data from SAtool and Jaguar, we checked

whether both tools generate the same set of DUAs‡. We found no difference for programs in the

Defects4J repository, but found 66 (out of 509) Weka’s classes with different SAtool and Jaguar

DUA sets. These classes were removed before evaluating our research questions. Additionally,

SAtool could not analyze a few classes from Elki (2), Weka (1), SystemDS (11), and CoreNPL

(6). We were not able to collect coverage data for Elki, SystemDS, and CoreNLP, because Jaguar

was not able to properly process them.

6.2. Pool of faults

We used most of the faulty versions of the programs present in Defects4j repository, but could not

use all due to the following Jaguar limitations:

1. Jaguar uses BA-DUA [11] to collect data flow coverage. BA-DUA does not generate data

flow coverage for methods with uncaught exceptions, so we could not use those faults.

2. JVM limits the size of generated Java bytecode for each method in a class to a maximum of

64K bytes. If the method’s bytecode plus the instrumentation added by BA-DUA exceeds 64K

bytes, the method is not instrumented and no coverage is generated.

‡See https://github.com/icst2021satool/subsumption-experiment/blob/main/scripts/
comparison.py
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3. We ran the test classes using the command line interface (CLI) of JUnit (http://junit.

org), Defects4J ran the tests using tools such as Maven (https://maven.apache.

org/). We could run the majority of Defects4J’s faulty versions with JUnit, excepting Lang’s

versions 35 to 65. These versions use reflection, which caused more test cases to fail.

Thus, we could not use 51 of the original 835 faults, leaving 784 to form the pool for our study.

Table III details the Defects4J programs, number of bugs removed, and the reason for removal. In

the fourth column (Removed bugs), the number between parenthesis refers to the Jaguar limitation

from the list above that caused us to remove that bug.

Table III. Faulty versions used in the pool of faults

Program
# of bugs Total # of Removed

in the pool bugs bugs

Chart 23 26 6(1,2),8(1,2),10(1,2)

Cli 39 39 —

Closure 172 174 137(1,2), 143(1,2)

Codec 18 18 —

Collections 4 4 —

Compress 46 47 44(1,2)

Csv 16 16
Gson 17 18 8(1,2)

JacksonCore 22 26 5(1,2),19(1,2),23(1,2),25(1,2)

JacksonDatabind 109 112 44(1,2), 45(1,2), 95(1,2)

JacksonXml 6 6
Jsoup 93 93
JxPath 22 22
Lang 30 64 6(1,2), 11(1,2), 35-65(3)

Math 103 106 5(1,2),55(1,2),89(1,2)

Mockito 38 38 —

Time 26 26 —

Total 784 835

The pool’s data for a particular bug is comprised of matrices for which the rows represent the tests

and the columns represent the DUAs required by the methods of a class. There is one matrix for each

class loaded during testing. A cluster of 128 servers with 20 cores, 512 GB of RAM, and Intel(R)

Xeon(R) CPU E7-2870 @ 2.40GHz processor collected the data for most programs, with the

exception of Cli, Collections, Compress, Csv, JacksonDatabind, Lang, Mockito, and Time. For these

programs, we used Jaguar with a modified BA-DUA library to circumvent a problem with class

loading. Some versions use libraries (e.g., PowerMock: https://powermock.github.io/)

that overrides the application’s class loader so that Jaguar loses access to the data structures

needed to track data flow coverage.

For RQ1, we used data coverage on one buggy version (1b) for every Defects4J programs and

Weka. We restricted the analysis to one buggy version of the programs because: (a) we did not

expect significant differences from one bug to another, and (b) we manually checked parts of the

results. For RQ2 to RQ4, we added Elki, SystemDS, and CoreNPL because subsumption discovery,

effectiveness, and cost seemed particularly sensitive to complex mathematical programs.

RQ5 and RQ6 used the pool of faults described in Table III and did not include Elki, SystemDS

Weka, and CoreNPL because these programs do not have faulty versions available.
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6.3. Probabilistic coupling

Recently, Chen et al. [7] introduced a new measure to assess the sensitivity of node, edge, DUA, and

mutant coverage test requirements in revealing faults. Probabilistic coupling (PC) is defined, for a

real fault f and a test requirement tr, by the conditional probability p = P (detectf | tr is detected).
Thus, PC captures the likelihood of detecting a fault given that a particular test requirement is

satisfied during testing. Note that a tr with p = 1 is perfectly coupled with fault f ; if p = 0, it is

perfectly decoupled; and if 0 < p < 1, it is probabilistic coupled.

The maximum probabilistic coupling (PCmax) for a set of test requirements indicates the

sensitivity of the test requirements in revealing a known real fault and is agnostic to noise caused

by unrelated test goals (e.g., test set size). Though probabilistic coupling does not capture the

complex inter-dependencies of test requirements, it can approximate fault detection ability of testing

requirements.

We calculated the PC for each DUA for every bug in the pool as a proxy for their fault detecting

ability. Let f be a fault in the pool and D a DUA required by all uses criterion to test a program P ;

we calculate PC(D) using the formula below.

PC(D) =
# of tests that covered D and failed for faultf

# of tests that covered D

Then we selected those DUAs with PCmax as an approximation of the data flow testing ability in

revealing the bugs. Among the DUAs with PCmax there might be unconstrained DUAs, subsumed

DUAs, and DUAs subsumed by nodes and edges. We make use of this information to assess the

fault detection ability of unconstrained DUAs and the value of data flow testing.

6.4. RQ1: Data flow subsumption calculation

Section 5 presents algorithms to find data flow subsumptions, local DUA-edge subsumption and,

especially, global DUA-node, DUA-edge, and DUA-DUA subsumptions, which are built upon SA

and our new data structure, graphdua. We use DUA coverage and global DUA-DUA subsumption

data to verify our data flow subsumption approach using SA and graphduas. We verify them by

checking two properties associated with DUA-DUA subsumption.

The subsumption relationship is reflexive; that is, every test requirement (in our case, a DUA)

of a program subsumes itself. The reflexive property was checked in 1,618,182 DUAs of 56,720

methods of all programs and failed for 25 methods and 72 DUAs. The 25 failures were based on

two issues with not well-formed flow graphs: either the start node had incoming edges or graph

had self-loops (n,n). Our SAtool was not able to handle either of those special cases. SAtool

uses ASM (asm.ow2.io/) to be compatible with Jaguar, which might generate ill-well-formed

graphs. Once we removed 447 (of 56,720) methods with these characteristics, all DUAs subsumed

themselves.

The subsumption relationship implies that the subsumed DUAs should be covered when the

subsuming DUA is. For instance, in Figure 5, whenever unconstrained DUA (0, (1,2), i) is covered,

DUAs (0, 2, max) and (0, (1,2), length) should be covered as well due to the subsumption property.

We verified the subsumption property of the unconstrained DUAs for every executed method in the

tests and found that it did not hold for 21 of 15,610 executed methods. The subsumption property

was disrupted in 20 due to the occurrence of an exception inside a try clause and one due to a

synchronized clause, which blocked the coverage of the subsuming DUAs. We calculated the

unconstrained DUAs using global DUA-DUA subsumption, which does not address these clauses.

This verification shows that our approach using SA graphduas correctly finds data flow

subsumption, provided SA’s assumptions hold (Section 4). Additionally, it shows that execution

interruptions (e.g., exceptions in try clauses) can disrupt global data flow subsumptions as

discussed in Section 3.
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6.5. RQ2 and RQ3: Data flow subsumption effectiveness

Table IV shows data regarding the effectiveness of data flow subsumption. Columns %DUA-node

and %DUA-edge show the percentage of DUAs covered if every node and edge are covered. These

use local DUA-node and DUA-edge sumpsumption, and they can be combined provide testers

with the Covered(n) and Covered((n′,n)) sets. Column %Unc. DUAs gives the percentage of

unconstrained DUAs with respect to the total of DUAs. The last line in the table presents the mean,

median, minimum, maximum, and standard deviation values for their columns.

Table IV. Effectiveness and scalability data

Program DUAs
%-DUA %-DUA %-Unc. t-DUA t-DUA t-Unc.

-Node -Edge DUAs -Node (ms) -Edge (ms) DUAs (ms)

Csv 929 57.3 70.3 31.5 331.3 323.6 664.0
Cli 1291 69.6 83.0 29.4 426.4 426.6 877.0
Codec 4446 38.0 48.4 37.9 640.1 634.8 6268.0
Jsoup 1866 80.0 92.9 26.8 582.7 567.3 828.1
J-Xml 3402 75.7 87.9 26.5 686.2 665.8 1187.5
Compress 6286 58.7 67.0 28.3 1109.5 1182.2 5801.6
Gson 3281 76.6 88.4 29.7 767.1 741.9 1140.3
Mockito 4236 74.6 90.0 32.1 1104.2 1047.9 1482.0
J-Core 17,653 59.5 72.7 28.1 1484.0 1469.2 6199.1
JxPath 20,178 66.9 84.4 29.7 1685.0 1661.8 6201.6
Lang 22,290 62.8 73.9 32.0 1996.5 1937.8 5717.0
Time 18,160 69.2 80.9 31.1 2101.5 2046.9 5143.0
Collections 16,937 68.8 81.9 30.0 2107.3 2028.8 4319.1
J-DataBind 31,797 73.8 85.6 26.4 2845.2 2774.8 6963.8
Math 87,603 57.9 64.2 25.3 11,625.4 11,220.4 100,184.0
Chart 81,847 72.8 82.2 24.5 6131.7 5776.9 17,165.8
Closure 78,068 67.9 83.7 31.8 6106.6 5817.2 31,206.8
Elki 180,675 63.4 72.4 24.9 12,544.0 12,367.6 39,454.3
SystemDS 255,382 66.0 79.6 26.5 14,012.5 13,943.9 42,679.6
Weka 337,063 59.9 70.9 27.4 19,647.2 19,164.1 84,613.3
CoreNLP 255,382 54.6 65.2 36.7 32,163.9 30,831.3 1,114,919.0

Mean 68,037 65.4 77.4 29.4 5719.0 5553.8 70,620.0
Median 18,160 66.90 80.9 29.4 1996.5 1937.8 6199.1
Min. 929 38.0 48.4 24.5 331.3 323.6 664.0
Max. 337,063 80.0 92.9 37.9 32,163.9 30,831.3 1,114,919.0
Std Dev. 100,723 9.5 10.7 3.5 8148.5 7873.3 240,877.6

Effectiveness data show that node and edge coverage can lead to significant data flow coverage;

65.4% and 77.4% on average. Though the minimum values can be as low as 38% (%DUA-node)

and 48.4% (%DUA-edge), the mean and median values are close, showing that many DUAs are

covered when nodes and edges are plentiful in the program. However, many small methods have

100% %DUA-node and %DUA-edge coverage (18,761 and 33,9191 methods, respectively).

To assess the effectiveness on harder to test methods, Figure 8 gives the histograms of %DUA-

node and %DUA-edge for 2,604 methods (out of 56,720 of all programs) with more than 100

DUAs. The number of methods with %DUA-node coverage equal or below 40% is 544 and for

%DUA-edge, 326. A few methods have as many as thousands of DUAs; in our data set we have 50

methods with more than 1,000 DUAs. So, many DUAs may still need to be tested after achieving

node and edge coverage.

About 30% of all DUAs are unconstrained (Table IV). Interestingly, the relative amount of

unconstrained DUAs is quite similar in all programs: they comprise between 24.5% and 37.9% of all
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DUAs. Figure 9 illustrates methods with more than 100 DUAs. Unconstrained DUAs represent less

than or equal to 30% of all DUAs for 1,684 out of the 2,604 most demanding methods. Thus, DUA-

DUA subsumption, in combination with DUA-node and DUA-edge subsumption, can significantly

reduce the number of DUAs to be verified, since the tester would only need to test unconstrained

DUAs not covered by edge or node coverage.

6.6. RQ4: Data flow subsumption cost

We ran SAtool to find data flow subsmptions on a MacAir, 1.8 GHz Dual-Core Intel Core i5, 8

GB 1600 MHz DDR3. Columns t-DUA-node and t-DUA-edge in Table IV give the the number of

milliseconds needed to find local DUA-node and local DUA-edge subsumption for each program,

averaged over 10 trials. Note that these numbers are for subsumption analysis only. It took only

around 30s to find the local DUA-node and DUA-edge subsumption for the more demanding

program, CoreNLP. As expected by the asymptotic analysis, t-DUA-node and t-DUA-edge values

are very similar.

SA’s cost is dominated by the number of methods: more methods implies more nodes, and as a

consequence, higher cost. However, three programs (Codec, Compress, and Math) did not follow

the cost prediction. They have fewer methods, but SA takes more time.

These three programs have a few very complex methods with many nodes, edges, and loops. For

instance, Math has two clone methods with 327 nodes, 463 edges, 2,197 DUAs, and 85 back edges.

Weka’s most demanding method has 187 nodes, 339 edges, 1,301 DUAs and 27 back edges.

Column t-Unc. DUAs gives the time to calculate the set of unconstrained DUAs in the same

conditions. The slowest, by far, is CoreNP, which took 18 min, followed by Math with 100s and

Weka with 85s. Figure 10 plots the number of DUAs and the time in milliseconds for unconstrained

sets calculation to assess the relation with the number of DUAs. For all but a few programs, the

number of t-Unc. DUAs is a fraction of the number of DUAs. Exceptions are Codec, Compress,

Math, and CoreNLP.

The effect of the methods’ complexity is magnified for unconstrained DUAs calculation. SA is

applied on each DUA’s graphdua; thus, any increase to SA’s cost will be multiplied by the number

of DUAs. This is true for Math, but even more so for CoreNLP, which took about 18 minutes to find

the unconstrained DUAs. The second most demanding program, Math, only took about 1 min and

40s. CoreNLP has 33 methods with more than 1,000 DUAs. However, CoreNLP’s overall cost is

due to a single method that uses about two thirds of the total time. That method’s control flow graph

has 1,222 nodes, 2,132 edges, 15 back arcs, and 22,501 DUAs! Excepting for methods as complex

as this one, SA finds unconstrained DUAs very quickly.

This single method brings up several questions. Should a method whose control flow graph has

1,222 nodes be refactored? Is there any way to assess or ensure the correctness of such a method? Is

data flow the best testing approach for such a method? These questions, while intriguing, are beyond

the scope of this paper.

6.7. RQ5: Fault detection ability of unconstrained DUAs

We used the DUAs with the highest PCmax as an approximation of the fault detection ability of

data flow testing.

Figures 11 and 12 give violin plots for PCmax for all DUAs and only unconstrained DUAs, for

the bugs in our pool. The triangle indicates the median and the star indicates the average in both

figures. Violin plots indicate the regions where the distribution of data is denser. In both plots, the

most often PCmax value is 1.0—378 for DUAs and 374 for unconstrained DUAs out of 784. There

is very little difference between Figures 11 and 12. The average PCmax for DUAs is 0.651 and

0.643 for unconstrained DUAs with median 0.667 for both.

Table V presents the estimated probability of losing fault detection ability by using unconstrained

DUAs (uncDUAs) instead of DUAs for the bug pool. Unconstrained DUAs lost fault detection

ability for 15 out of 784 bugs, which gives an estimated probability of 1.91%. Due to the large

sample size, we assume the convergence of sample mean to a Normal distribution; thus, the 95%

confidence interval is 0.95% and 2.87%.
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Figure 10. Number of DUAs and time to find the unconstrained DUAs

Table V. Probability of fault detection ability loss

# Bugs with PCmax(UncDUAs) < PCmax(DUAs) = True 15
# Bugs with PCmax(UncDUAs) < PCmax(DUAs) = False 769
Probability of PCmax(UncDUAs) < PCmax(DUAs) = True 1.91%

Inferior Confidence Interval 0.95%

Superior Confidence Interval 2.87%

Figures 11 and 12 suggest that data flow testing is quite effective for the faults. Tests covering

data flow requirements were able to reveal almost half of the faults in our pool, that is, PCmax

equals to 1.0 for 378 faults. Additionally, they indicate that unconstrained DUAs and DUAs, with

the exception of a few bugs, have identical PCmax distributions.

This finding shows that unconstrained DUAs are able to capture fault revealing data flows as well

as reduce the number of test requirements. Table V further shows that the likelihood of losing fault

detection ability by using unconstrained DUAs is very low.
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Figure 12. Maximum probabilistic coupling for unconstrained DUAs

In most cases, the fault detection ability of unconstrained DUAs is due to interference in DUA-

DUA subsumption. We also identified cases where DUA-DUA subsumption fails at run-time or
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cannot be calculated. The subsumption relationship fails when: a program interruption occurs

(Section 6.4); or a subsumed DUA is covered by a test, but its subsumers are not. The latter situation

happens because the subsumption relationship is not symmetric§. Additionally, we cannot find data

flow subsumptions when the method under analysis has an ill-formed flow graph (Section 6.4). We

investigated these situations and their impact on the unconstrained DUAs ability to reveal faults.

Table VI gives the causes of data flow subsumption disruption, the number of bugs associated with

each cause, and the loss of fault detection ability (PCmax(UncDUAs) < PCmax(DUAs) = True).

Table VI. Data flow subsumption disruption and fault detection ability loss

Bugs with failed data flow subsumption

Cause of Disruption
Loss of fault detection ability

# Bugs
Yes No

Program interruption 0 4 4

Ill-formed flow graph 8 0 8

Non-symmetric 7 0 7

Total 15 4 19

The most fault revealing DUAs for four bugs were located in methods in which data flow

subsumption failed due to program interruption (row Program interruption). However, there was

no loss of fault detection ability because at least one unconstrained DUA was among the top

revealing DUAs. The unconstrained DUAs failed to subsume all DUAs at run-time, but they were

still as prone to reveal the faults as all DUAs.

For eight bugs, the top revealing DUAs were located in methods with ill-formed graphs (row Ill-

formed flow graph). Strictly speaking, the subsumption relationship was not disrupted, but it could

not be calculated. Once the ill-formed flow graphs are fixed, the subsumption relationship will be

found. The fact that DUA-DUA subsumption is not symmetric (row Non-symmetric) causes fault

detection loss when it occurred in top revealing DUAs. Though detrimental to the fault detection

ability of unconstrained DUAs, this situation rarely occurs (7 out of 784).

Methods with ill-formed flow graphs are easily identified statically by checking the flow graph

structure. Testers can use all DUAs to test these methods. Program interruption and non-symmetric

situations were identified in our experiment by checking whether the subsumed DUAs were covered

when the unconstrained DUAs were. A testing tool could implement the same verification and

inform the tester when a method has disrupted subsumption relationships. Therefore, the disruptions

of the data flow subsumption can be identified and circumvented to avoid fault detection loss.

Considering the top revealing DUAs, a practitioner will seldom lose fault detection ability using

unconstrained DUAs to create tests. Even in the rare situations when it can occur, the loss is

preventable with appropriate tools.

6.8. RQ6: Value of data flow and control flow testing

PC measures how sensitive a bug is to the coverage of a particular testing requirement (tr); that is,

PC gives the likelihood of revealing a fault given that tr is covered in a test set. We investigated

the DUAs with highest PC (PCmax) and local DUA-node and local DUA-edge subsumptions. Our

findings indicate that data flow testing will be especially valuable when DUAs with PCmax are not

subsumed either by nodes or by edges.

Let D be a DUA required by a program P such that PC(D) = p and D is subsumed by a

control flow testing requirement (node or edge) c. As discussed in the previous section, data flow

subsumptions are not symmetric. As result, covering c implies covering D, but D might be covered

without c being covered. However, considering only the top revealing DUAs in our pool, data flow

subsumption disruption was a rare event–occurring only in seven bugs out of 784. Additionally,

these events are unlikely when using local DUA-node and DUA-edge subsumptions. This is because

§
D1 subsuming D2 (D2 → D1) does not imply D2 subsuming D1 (D1 → D2)
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DUAs subsumed between the visit of a node or a edge to the end of the program are not taken into

account.

Thus, considering local data flow subsumptions, a fault f in our pool and DUAs D with PCmax,

we can approximate that PC(c) ≈ PC(D) = p, if c subsumes D. Figure 13 shows a bar chart One,

subsumption True means that at least one top revealing DUA of the bug is subsumed by a node or

edge. Two, subsumption False means that no node or edge subsumes the top revealing DUAs. Three,

subsumption not clear means there are top revealing DUAs not subsumed by nodes and edges and

the other top revealing DUAs are located in ill-formed methods, so we could not determine whether

they are subsumed by nodes or edges.
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Figure 13. Bar chart of bugs whose top revealing DUAs are subsumed by node or edges

Black rectangles in Figure 13 give the bugs for which data flow testing may generate gains in

terms of fault detection ability when compared with control flow testing. They indicate that about

one fifth of bugs have top revealing DUAs that are not subsumed by nodes, and about 1/20 are not

subsumed by edges.

Table VII gives the number of occurrences in each category for DUA-node and DUA-edge

subsumptions, the estimated probability of data flow testing gains with respect to node and edge

coverage, and additional statistical data. The estimated probability of data flow improving over

node coverage is 21.14±2.88% and over edge coverage is 7.50±1.86%

The results suggest that data flow testing possible gains are modest, especially with respect to

edge coverage. These gains are consistent with the effectiveness data in Section 6.5. We found that

node and edge coverage subsume, on average, 65.4% and 77.4% of all DUAs of the programs. As

most of the methods have a limited number of DUAs, many of which are subsumed by nodes and

edges, bugs are more likely to be located in one of these methods than in methods with more than

100 DUAs, which are fairly rare. Nevertheless, the results also indicate that data flow testing can

reveal faults that would go undetected if only control flow testing was used.
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In this context, algorithms to find data flow subsumptions are useful to focus the practitioner’s

attention on relevant data flows; in particular, data flows not subsumed by the coverage of nodes and

edges.

Table VII. Data flow testing probability of improving fault detection ability

Subsumption by

Node Edge

# Bugs with no top DUA subsumed (subsumption False) 163 58
# Bugs with at least one top DUA subsumed (subsumption True) 608 715
# Bugs with no clear subsumption (subsumption not clear) 13 11
Estimated probability 21.14% 7.50%

Inferior Confidence Interval 18.26% 5.65%

Superior Confidence Interval 24.02% 9.36%

6.9. Limitations and threats to validity

This section discusses the conclusion risks, and internal and external threats to the validity of our

work. We addressed the external threat to validity by using the bugs in the Defects4J repository.

Defects4J contains open-source programs that are comparable to industry programs, thus reducing

external threat. To further reduce that threat, we also studied Elki, SystemDS, Weka, and CoreNLP

because the mathematical nature of those software systems challenged the scalability of our

algorithm.

An internal threat to validity is the correctness of our tools and algorithm. To address that threat,

we verified the SA both formally with a proof and empirically. We use SAtool to compute the

DUAs and Jaguar to check the coverage of the DUAs. The two tools use the same library to

calculate the DUAs and to further ensure consistency between them, we wrote a script to compare

the DUAs generated by the two tools. The data structures used in our SA implementation are mostly

based on Java APIs. However, they may have inefficiencies that we are not aware of. Despite that, the

algorithm’s execution time is fast. We performed a lightweight analysis to determine the data flows

of a method. Though it might miss DUAs due to aliasing, most of those DUAs will be subsumed

by the unconstrained DUAs. The programs and scripts created to generate probabilistic coupling

data and to check data flow subsumption disruptions were verified for only a handful of bugs, which

constitutes another internal threat to validity.

One conclusion threat is due to the use of PC as a proxy of the fault detection ability of DUAs.

PC is an approximation because it does not capture the complex inter-dependencies between test

requirements. Nevertheless, it has two advantages: (1) it does not require costly simulations to

estimate fault-detection probabilities; (2) it is robust to noise introduced by irrelevant test goals

and tests [7].

Additionally, the test pools used are in themselves a threat to the conclusion validity. Ideally, a

test pool should include tests that cover 100% of the feasible DUAs several times. Even so, though

less likely, an extra (failing or passing) test to this “ideal” test pool might change PCmax. In this

sense, DUA coverage can serve as a rough assessment of test pool’s adequacy.

Table VIII gives DUA coverage percentage for faulty versions used in our pool calculated

using Jaguar and BA-DUA. It presents the following data flow coverage values per Defects4J

project: minimum, first quartile, median, mean, third quartile, maximum, and the standard deviation.

Research questions RQ5 and RQ6 are assessed using these faulty versions. The coverage did not

vary much among the faulty versions of a project: the median and median values are similar and the

standard deviation is small. The median and mean values were below 50% only for Chart, between

50% and 70% for three projects, and above 70% for 13. Although the test pools are away from

the “ideal” pool, considering the size of the projects, a DUA coverage above 70% indicates a quite

thorough test pool since we are taking into account all (feasible and infeasible) DUAs.

Finally, the coverage implied by data flow subsumptions represents an upper bound because they

can be disrupted by exceptions and program aborts. Because we used local subsumption, the impact
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on DUA-node and DUA-edge subsumptions is restricted to code inside catch clauses since we

do not know which node raised the exception. The unconstrained DUAs, though, were calculated

using global DUA-DUA subsumption and could be impacted by exceptions. Nevertheless, the top

revealing DUAs suggest that these are rare events and should have a limited impact on the results.

It could be useful to experiment further with software that has a great deal of exception handling.

7. RELATED WORK

This paper addresses several issues regarding data flow testing and subsumption, including

identifying, effectiveness, scalability, the fault detection ability of unconstrained DUAs, and yield

of data flow testing. We discuss work related to each issue below.

7.1. Data flow subsumption discovery

Santellices and Harrold’s approach finds DUAs whose coverage are inferable or conditionally

inferable by edge coverage based on the concept of def-use order [46]. A DUA D(d,u,X) is in

def-use order if one of the following conditions hold: (1) Node u cannot reach node d; (2) node d

dominates node u; or (3) node u post-dominates node d. Thus, if a DUA D is in def-use order, node

d is guaranteed to occur before node u. Additionally, they check whether the re-definitions of X do

not occur in paths between d and u. If so, D is inferable; otherwise, it is conditionally inferable if

no re-definition of X occurs between d and u in a particular test path.

For each node d and u of D, their technique finds the edges that controls the execution of d and

u; that is, d and u are control-dependent on these edges. A node nk is control-dependent on ni if

and only if there exists a directed path P from ni to nk and any nj in P (excluding ni and nk) is

post-dominated by nk and ni is not post-dominated by nk. If nk is control dependent on ni, then ni

has two outgoing edges: one that leads to nk execution and other that does not. CD(nk) represents

the edge on which nk is control dependent [23].

D is covered if one required edge for d (that is, d is control-dependent on this edge) and one for

u are covered. If a required edge for a re-definition was taken, D was either not covered or possibly

covered in the test path, depending on whether D is inferable or conditionally inferable. Santelices

and Harrold’s technique costs O(|U|), where U is the set of all DUAs, since all DUAs have to be

checked for def-use order. Local DUA-edge subsumption, in turn, provides similar information,

DUAs inferable after edge coverage, at a much lower cost, ≈ O(|N|).
We have identified three previous algorithms to find DUA-DUA subsumption. Marré and

Bertolino suggested two algorithms (referred to as M&B I [33] and M&B II [34, 35]), and Jiang et

al. proposed another [23]. M&B I is based on rules establishing conditions under which whenever

a test path covers D1(d1, u1, X1), it also covers D2(d2, u2, X2). Figure 14 displays the rules for

subsumption of DUA D2 by DUA D1. The rules are based on the possible alignments of nodes s

(start node), d1, d2, u1, u2 and e (exit node), on restrictions over the paths connecting these nodes,

and on the definitions allowed to occur in nodes d1 and u1.

As an example of a subsumption rule, consider Rule 2 (item 2. in Figure 14). Roughly speaking,

to fulfill it, nodes s, d2, and d1 must be aligned and so must d1, u2, and u1. Three nodes ni, nj ,

and nk are aligned if every path from node ni to nk contains nj , denoted by AL(ni, nj , nk) [33].

Such a requirement aims imposes the ordering of Rule 2. Furthermore, all paths connecting d2 and

d1 must be def-clear wrt X2 and the paths connecting d1 and u2 that are def-clear wrt X1 must also

be def-clear wrt X2. The final requirement for D1 to subsume D2 is that a definition of X2 is not

allowed to occur in node d1.

By fulfilling these conditions, D1 should in principle subsume D2. Some conditions must be

verified algorithmically:

• Alignment of nodes. Check whether three nodes ni, nj e nk are aligned, denoted by AL(ni,

nj , nk). For Rule 2, AL(s, d2, d1) and AL(d1, u2, u1) should hold.
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Figure 14. Subsumption rules for D1= (d1, u1, X1) and D2 = (d2, u2, X2) [33].

• All paths def-clear wrt X . Check whether every path from a node ni to node nj is def-clear

wrt variable X , denoted AllDefClear(ni, nj , X). Regarding Rule 2, AllDefClear(d2, d1, X2)

should be true.

• Any path simultaneously def-clear wrt X and Y . Check whether any path from ni to node nj

that is def-clear wrt X is def-clear wrt to Y as well, denoted AnySimDefClear(ni, nj , X ,Y ).

Considering rule 2, AnySimDefClear(d1, u2, X1,X2) should hold.

The formal description of all six rules [33] for the subsumption of D1(d1, u1, X1) by D2(d2, u2,

X2) is presented below.

1. AllDefClear(d2, u2, X2) AND AL(s,u2,d1) AND AL (s, d2, u2); OR

2. (a) X1 6= X2 AND AllDefClear(d2, d1, X2) AND AnySimDefClear(d1, u2, X1, X2) AND

X2 is not defined in d1 AND AND AL (d1, u2, u1); OR

(b) X1 = X2 AND d1 = d2 AND AL (d1, u2, u1); OR

3. (a) X1 6= X2 AND AnySimDefClear(d2, u2, X1, X2) AND AL(d1, d2, u1) AND

AL(d2,u2,u1); OR

(b) X1 = X2 AND d1 = d2 AND AL(d1,u2,u1); OR

4. AllDefClear(d2, u2, X2) AND AL(u1,d2,e) AND AL (d2, u2, e); OR

5. (a) X1 6= X2 AND AnySimDefClear(d2, u1, X1, X2) AND AllDefClear(u1, u2, X2) AND

X2 is not defined in u1 AND AL(d1, d2, u1) AND AL(u1, u2, e); OR

(b) X1 = X2 AND d1 = d2 AND X2 is not defined u1 AND AllDefClear(u1, u2, X2) AND

AL(u1,u2,e); OR

6. (a) X1 6= X2 AND AllDefClear(d2, d1, X2) AND AnySimDefClear(d1, u1, X1, X2) AND

X2 is not defined in d1 AND AllDefClear(u1, u2, X2) AND X2 is not defined in u1 AND

AL(e0,d2,d1) AND AL(u1, u2, e); OR

(b) X1 = X2 AND d1 = d2 AND X2 is not defined in u1 AND AllDefClear(u1, u2, X2) AND

AL(u1,u2,e).

Marré and Bertolino [33] show that AL(ni, nj , nk), AllDefClear(ni, nj , X), and

AnySimDefClear(ni, nj , X , Y ) can be checked at a cost of O(|E|) where E is the number of edges
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Figure 15. G∗ for DUA (3, 5, rogue)

of the program flow graph. Since each DUA is verified against every other DUA, the total cost for

DUA-DUA subsumption verification is O(|U|2|E|), where U is the number of duas.

Unfortunately, the rules described above miss paths that might occlude DUA-DUA subsumptions.

Consider the subsumption of D2(0, 5, i) by D1(3, 5, rogue) of the Max program example. For the

example, s = 0, d1 = 3, u1 = 5, X1 = rogue, d2 = 0, u2 = 5, and X2 = i. All conditions of Rule

2(a) are fulfilled as shown below.

• X1 6= X2 is true since variable i is different from variable rogue

• AllDefClear(d2, d1, X2) and AnySimDefClear(d1, u2, X1, X2) are true because

AllDefClear(0, 3, rogue) and AllDefSimClear(3, 5, rogue, i) are, respectively, true

• AL(s,d2,d1) and AL(d1, u2, u1) are both true since AL(0, 0, 3) and AL(3, 5, 5) are true

• Finally, X2 (variable i) is not defined in d1 (node 3)

Thus, according to Rule 2(a), D2(0, 5, i) is subsumed by D1(3, 5, rogue). However, Rule 2(a)

allows test path (0,1,3,4,1,3,5,4,1,2,6) when it should not. Such a path covers D1 but does not D2. In

this path, d1 (in the example, node 3) occurs twice, but that possibility is not discarded by condition

AnySimDefClear(d1, u2, X1, X2) of Rule 2(a). Thus, M&B I does not account for back paths, such

as (3,4,1,3), to avoid finding incorrect DUA-DUA subsumptions.

M&B II uses G∗ to find all DUAs subsumed by a DUA D1. It first selects all paths that cover D1

by building G∗. Figure 15 shows G∗ D1(3, 5, rogue) as proposed by Marré and Bertolino [34, 35].

Then M&B II checks whether every path of G∗ also traverses a DUA D2 by initially verifying that

d2 and u2 are always traversed in G∗. Then, to find whether every path that covers D1 also covers

D2, it checks whether no node ni from d2 and u2 in G∗ contains a definition of X2. M&B II runs in

time O(|U|2|N|) [33, 34].

G∗ is composed of three sub-graphs encompassing paths from the start node (s) to the definition

node (d1), def-clear paths wrt X1 from d1 to node u1, and paths from u1 to the exit node (e).

However, it does not encode paths from d1 to d1 and from u1 to u1. That is, it does not include the

sub-paths encoded by graphdua’s sub-graphs SG2 and SG4. By comparing graphdua for D1(3, 5,

rogue) (Figure 7) and G∗ for D1(3, 5, rogue) (Figure 15), one can observe that a graphdua encodes

many more paths than G∗.
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Consider again test path (0,1,3,4,1,3,5,4,1,2,6) of Max (Figure 1) and G∗ generated for D1(3, 5,

rogue). M&B II will incorrectly conclude that D1 subsumes D2(0, 5, i) because G∗ also misses

path (3,4,1,3) (i.e., d1 to d1) in which variable i is re-defined. Our graphdua fixes that by adding

the missing paths d1 to d1 and u1 to u1 to G∗. Consequently, a graphdua will have as many as five

sub-graphs; each with at most the number of nodes of the original flow graph.

Jiang et al.’s [23] algorithm for DUA-DUA subsumption is based on the concepts of def-use order

and control dependency [46]. A DUA D2 is subsumed by D1 if and only if the following three

conditions are satisfied: (1) D1 and D2 are in def-use order; (2) CD(d1)
⋃

CD(u1) ⊇ CD(d2)
⋃

CD(u2), where CD(n) is the edges of which n is control-dependent; and (3) there is a path between

d1 and u1 that does not contain a definition of X1, and there is a path between d2 and u2 that does

not contain a definition of X2.

However, Jiang et al.’s technique misses the very same paths that G∗ misses. Consider again

D1(3, 5, rogue), which subsumes D2(0, 5, i) according to this technique. Both DUAs are in def-

use order because the def node dominates the use node; and Jiang et al.’s conditions (2) and (3)

for subsumption are also valid. Nevertheless, the def-use order does not exclude a path from node

3 to node 3 that blocks the subsumption of (0, 5, i) by (3, 5, rogue). Jiang et al. did not discuss

complexity, but it is at least O(|U|2|N|, since every DUA is checked against every other and one has

to find dominance relationship of nodes.

All three prior approaches do not find DUA-DUA subsumptions because they cannot encode

back paths (encoded by graphdua’s SG2 and SG4) that might block the subsumption relationships.

However, they can be fixed. M&B I and Jiang et al. can include back paths in their rules and M&B

II will work if a graphdua is used instead of a G∗.

Still, the “fixed” algorithms could not find DUA-DUA subsumption as efficiently as our algorithm

can. We apply SA, the algorithm that finds local DUA-node subsumption, on graphduas. In doing

so, we find all DUAs subsumed by a particular DUA D1 at once. As a result, we find all DUAs

subsumed by D1 in ≈ O(|N|) time, and all DUA-DUA subsumptions in ≈ O(|U||N|) time. On the

other hand, M&B I, M&B II, and Jiang et al. cannot find DUA-DUA subsumptions in time less than

O(|U|2|N| because they find subsumption relationships on a DUA-by-DUA basis. Our experimental

data suggests that costs increase significantly with algorithms that are quadratic in the number of

DUAs.

We have one final remark on how SA allows efficient calculation of data flow subsumptions.

We developed the Data Flow Subsumption Framework (DFS) [4], which assigns to a node the

DUAs subsumed or available to be subsumed whenever it is reached. SA uses DFS to quickly

calculate local DUA-node subsumption (≈ O(|N|)). Using local DUA-node subsumption, we can

then efficiently find local DUA-edge (≈ O(|N|)) and DUA-DUA subsumption (≈ O(|U||N|)). Our

approach efficiently calculates data flow subsumptions because SA processes several DUAs at once,

whereas prior techniques find subsumption relationships in a DUA-by-edge [46] or DUA-by-DUA

basis [23, 34–36].

7.2. Effectiveness

Jiang et al. presents an evolutionary approach to generating input data for data flow testing called

Evolutionary Data flow Testing Generation (EDTG) [23]. Their algorithm for data flow subsumption

first reduces the number of DUAs. EDTG then uses a genetic algorithm (GA) with a fitness function

tailored for DUA coverage to generate input data for the reduced collection of DUAs. Comparison

between EDTG and classic data flow test generation (CDTG) shows that they both use the same

fitness function, but EDTG uses unconstrained DUAs for input data generation.

Jiang et al.’s results are similar to those presented in Section 6.5, but the EDTG algorithm does

not include paths that could block the subsumption relationship. They found a reduction on the

number of DUAs varying from 19% to 63%, in classes requiring a relatively small number of

DUAs (a couple of hundreds on average). Our assessment uses industry-like programs (Table I) that

implement mathematical functions, few of them with more than 2000 DUAs. It further corroborates

the evidence that unconstrained DUAs substantially reduce the number of DUAs to be tested:
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Table VIII. DUA coverage percentage for Defect4J’s faulty versions per program

Program Min 1st Qu. Median Mean 3rd Qu. Max. Std. dev.

Chart 41.74 45.12 46.20 45.91 46.49 48.17 1.27

Cli 76.10 85.77 90.44 87.36 90.98 93.50 5.71

Closure 59.22 69.59 74.10 73.49 76.55 79.94 4.06

Codec 65.05 73.59 75.29 74.91 77.57 78.83 3.85

Collections 75.79 75.80 76.22 76.32 76.74 77.05 0.63

Compress 59.18 66.86 70.30 69.87 73.87 75.82 4.22

Csv 81.47 85.65 86.23 85.70 86.37 86.75 1.32

Gson 71.61 75.85 76.13 75.95 76.56 76.69 1.13

J-Core 55.99 57.58 58.97 59.39 60.38 63.86 2.36

J-Databind 61.71 62.86 63.44 64.14 63.78 69.54 2.38

J-Xml 63.20 68.19 70.06 71.43 74.57 84.08 5.11

Jsoup 63.20 68.19 70.06 71.43 74.57 84.08 5.11

JxPath 56.39 56.67 56.77 58.49 56.91 66.69 3.84

Lang 85.24 85.92 86.27 86.30 86.95 87.08 0.67

Math 76.40 77.95 79.76 80.29 82.86 83.73 2.60

Mockito 70.36 73.50 80.92 78.64 83.03 83.75 4.76

Time 79.12 79.65 79.84 79.76 79.95 80.21 0.34

around 30% of the total. Additionally, we evaluated the savings from DUA-node and DUA-edge

subsumptions: 65.4% of DUAs are subsumed by node coverage and 77.4% by edge coverage.

7.3. Scalability

Previous papers on data flow subsumptions [23, 35, 46] do not address the cost of calculating

the subsumption relationship. Santelices and Harroldd [46] address the overhead reduction on

program instrumentation by using edge coverage to infer data flow coverage. They calculate

the asymptotic complexity of their algorithm (O(|U|)), but do not provide experimental data.

Marré and Bertolino’s [35] implementation of their M&B II algorithm included a manual step,

making algorithm complexity less relevant. Jiang et at. [23] do not provide scalability data either.

Furthermore, the programs they used are not complex (hundreds of DUAs) enough to evaluate

whether their algorithm scales.

7.4. Fault detection ability of unconstrained DUAs

Marré and Bertolino [35] ran an experiment to assess the fault detection ability of test sets created

using unconstrained DUAs. The experiment used five programs from the Siemens test suite [21],

Replace, Schedule, Schedule 2, Tcas, and Totinfo. An ad hoc initial test set that covered 50% of

the DUAs¶ was developed for all selected programs. New test sets were then created by adding test

cases to the initial test set to obtain coverage increases of 5% until reaching 95% coverage. Two

strategies are used to increase the coverage: random selection (RA) of test cases; and addition of a

new test case only if it covers a new unconstrained DUA (UD) until reaching the desired coverage

in both cases.

The fault detection ability of the new test cases were assessed by the number of faults detected

(ND), the number of test cases needed for each coverage level (TS), and the fault density (FD)

¶An unconstrained set of edges was also assessed in [35], although we report only the data regarding data flow testing.
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given by the ratio between ND and TS. The results suggest that there is no significant difference

up to 85% of coverage in terms of number of faults detected. However, as coverage grows, the

difference of faults detected becomes evident in favor of random selection (RA) test sets, with

statistical significance for test sets with coverage over 85%. On the other hand, RA needs more test

cases to reach the same coverage as unconstrained DUA (UD). UD is more efficient in terms of FD

than RA for test sets covering 85% or over, which means that UD detects more faults with fewer

test cases.

Marré and Bertolino assess the fault detection ability of test sets developed using unconstrained

DUAs and test sets created using random selection to improve data flow coverage. They found that

random selection impacted the size of the test sets, making the comparison difficult. Chen et al. [7]

claim that random selection is not a good approximation of the test creation process in practice.

We used probabilistic coupling to avoid confounding test goals to compare the fault detection

ability of unconstrained DUAs and all DUAs. Additionally, the subjects of the two assessments

differ largely in scale: they used five small programs of the Siemmens test suite [21], whereas we

used 784 larger programs from the Defects4J repository.

7.5. Value of data flow testing and control flow testing

Comparing fault detection ability of testing criteria has proved a challenging task, which has

often let to contradictory results [7]. Several studies compared data flow and control flow testing

[13,14,18,21]. Most of them were conducted years ago, used small programs [13,21], and differed in

experimental design, specific data flow criteria used, and tools (ASSET [12], ATAC [19], Tactic [41],

DUAforensics [46]). With the exception of Hemmati’s study [18], none of the previous studies

establish were conclusive in terms of which criteria was strong.

Hemmati [18] compared control flow criteria (statement, branch, loop, and MCDC coverage)

against definition-use pair coverage with respect to their ability to detect faults. He found that out of

274 faults in a subset of the Defects4J repository bugs, only 76 (28%) were found by control flow

coverage criteria. Definition-use pair coverage detected 79% of the faults not detected by control

flow criteria. He only applied data flow analysis on bugs where no control flow criteria were effective

in detecting the faults, we do not know if control flow criteria could detect bugs that data flow could

not.

Our assessment of the yield of data flow testing is based on DUA coverage, and DUA-node and

DUA-edge subsumption and probabilistic coupling as an approximation of the fault detection ability.

Hemmati’s is based on actual control flow coverage, but uses fewer than half the number of bugs

we use. While our assessment suggests modest gains for data flow over control flow, Hemmati’s

study indicates significant improvement in fault detection ability. Despite the differences of bug sets

and comparison measures used, we hypothesize that the use of inter-procedural data flow testing

implemented by DUAforensics might have played a role in leveraging data flow against control

flow since we only used intra-procedural data flow testing. Though the issue regarding data flow

and control testing value is not settled, the impact of inter-procedural data flow testing [24] on fault

detection ability needs further investigation.

8. CONCLUSIONS

Some studies indicate that data flow testing (DFT) can detect faults missed by control flow testing

(CFT) [18]. However, the large number of of DFT test requirements (DU-associations or DUAs)

have hampered its adoption by the industry. The subsumption relationship can identify redundant

DUAs so that testers could focus on fewer DUAs that will still lead to high data flow coverage and

effective test suites [35, 46]. Thus, the subsumption relationship can help make data flow testing

practical. Nevertheless, several issues remained to be addressed: including subsumption discovery,

effectiveness, scalability, fault detection ability of unconstrained DUAs, and yield of data flow

testing.
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Reliably identifying subsumption for definition-use associations is a difficult problem, whose

early solutions have subtle flaws and inefficient algorithms. We tackled the data flow subsumption

problem by modeling it as a data flow analysis framework. In doing so, we were able to solve

the local DUA-node subsumption with cost ≈ O(|N|), where |N| is the number of nodes in the

program’s flow graph. Using the local DUA-node subsumption, we can then find other data flow

(DUA-node, DUA-edge, and DUA-DUA) subsumptions at costs that are substantially lower than

other algorithms.

We investigated the effectiveness and scalability of the data flow subsumptions by applying it on

programs similar to those developed in the industry. Our experimental data suggest that DFT costs

can be reduced significantly by identifying data flow subsumption and then eliminating redundant

requirements. Additionally, the cost to calculate the subsumption relationship using the algorithms

presented in this paper was less than 2 minutes for programs as large as 200,000 lines of code.

Very large and complex programs, however, can take as much as 18 min to calculate data flow

subsumptions due to particular program units. These outliers can be easily identified using static

metrics (for example, number of DUAs, cyclomatic complexity, nested loops, etc.). Despite that, our

data suggest that data flow subsumption can be cost-effective in practice and incorporated directly

into interactive development environments.

We used a pool of 784 faults to investigate the loss of fault detection ability when using the

unconstrained DUAs—the subset of DUAs most relevant for testing identified using subsumption—

to develop tests. Our results suggest that the chance of a practitioner losing fault detection ability is

less than 2%. Furthermore, one can prevent these situations with appropriate tooling. We found that

data flow testing is more effective than control flow testing, although by a modest amount: around

20% over node coverage and 7.5% over edge coverage. Nevertheless, these unique fault revealing

data flows are found at low cost, even for large programs.

Data flow testing was introduced to add precision to software testing [42]. The subsumption

relationship captures both the strengths and weaknesses of data flow testing. More importantly, the

practitioner can make use of it to focus on data flows that add more value to testing.

We have several plans for extending this research. An important question is which coverage

criteria add the most value to the practitioner. We hypothesize that the edge-pair coverage [3, 40]

would subsume more data flows at low cost in the intra-procedural context. We plan to address

different use-case scenarios when comparing edge, edge-pairs, unconstrained DUAs, and all DUAs

in terms of fault detection ability. Another line of research is to explore the subsumption and

fault detection ability of inter-procedural data flows. This might be particularly important since

the real value of data flow testing might reside in the inter-procedural realm. Spectrum-based fault

localization techniques can benefit from data flow subsumptions to select relevant spectra. Finally,

we hope to carry out an empirical comparison of our subsumption algorithm with the algorithms by

M&B I [33], M&B II [34, 35], and Jiang et al. [23] to further evaluate the differences between the

subsumption algorithms.
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