Self determination: A comprehensive strategy for
making automated tests more effective and efficient

Kesina Baral, Jeff Offutt, and Fiza Mulla
Department of Computer Science, George Mason University
{kbaral4,offutt} @ gmu.edu, 818852@Icps.org

Abstract—A significant change in software development over
the last decade has been the growth of test automation. Most
software organizations automate as many tests as possible, which
not only saves time and money, but also increases reproducibility
and reduces errors during testing. However, as software evolves
over time, so must the test suites. For each software change, each
test falls into one of four categories: (1) it needs to rerun as is,
(2) it does not need to rerun, (3) it needs to change and rerun,
(4) it should be deleted. This test management is currently done
by hand, leading to shortcuts such as always running all tests
(wasteful and expensive), deleting valuable tests that should be
fixed, and not deleting unneeded tests. Over time, the test suite
becomes larger and more expensive to run while also becoming
steadily less effective. This project introduces a novel solution
to this problem by giving individual tests the ability to self-
manage through self-awareness and self-determination. Each test
will encode its purpose (its test requirement), can discover what
changed in the software, and then decide whether to run, not
run, be changed, or self-delete. We are developing techniques
and algorithms to compare syntactically two versions of the
same program (previous and new) to identify differences. Tests
can then check to see whether their purpose is affected by the
change, and decide what to do. We have developed preliminary
test framework infrastructure to be used with tests that satisfy
edge coverage, based on the control flow graph. We have carried
out empirical studies on open-source software to evaluate the
accuracy of tests’ decisions and the cost of execution. Results are
encouraging, indicating strong accuracy and reasonable cost.

Index Terms—Test management, Test automation, Regression
testing

I. INTRODUCTION

This paper presents a novel, holistic solution to the problem
of test suite management. As software evolves, its associated
automated tests must also evolve. For each change, existing
tests fall into one of four categories: (1) it needs to rerun to
verify the change, (2) it does not need to be rerun, (3) it needs
to be changed to adapt to new syntax or behavior, or (4) it
is no longer needed and can be deleted. We collectively call
these activities fest suite management. These topics have been
previously studied and useful algorithms and techniques have
been proposed, [1] [2] [3] [4] [5] yet much of the research
is piecemeal and few ideas have been adopted in practice.
Crucially, all prior work depended on human testers to do
much of the work; part of the novelty of this research is
to move the burden of decision-making and acting from the
human to individual tests.

The result is that software developers currently manage
their test suites by hand, with all the expected difficulties.

Sometimes all tests are rerun for every change. This is fine
for small programs with small test suites, but does not scale
to programs with millions of lines of code and thousands or
tens of thousands of tests. Sometimes the decision of which
tests to rerun is made intuitively, with the expected loss of
fidelity and effectiveness when some tests that need to rerun
are skipped and others that should be rerun are not skipped.
Often tests that need to be changed to reflect changes in the
software are either ignored, if they still compile and execute
to completion, or simply deleted if they do not. This leads to
tests that are no longer useful or the loss of valuable tests.
And finally, when test management is done by hand, few tests
are deleted when no longer needed—they simply stay around
being rerun for no good reason for years.

The term test bloat is used for test suites that continue to
grow and contain increasing numbers of useless and unnec-
essary tests. Test bloat wastes valuable resources. Computer
resources are wasted when useless tests are run unnecessarily.
Worse, human resources are wasted when tests fail because of
the test, not the software, and when humans spend increasing
amounts of time poring through voluminous test results that
are full of noise, looking for the ever-shrinking signal. When
coupled with flaky tests [6] [7] and blind tests [8], these
problems lead to systemic and industry-wide waste, in turn
making software more expensive and less reliable.

This paper presents a novel self-management approach to
maintaining test suites that is inspired by two conference pre-
sentations [9] [10]. We propose a practical and comprehensive
strategy based on having individual tests self-manage. We say
that a test is self-aware if it has access to its purpose in
an actionable way. For example, if its purpose is to cover
a specific edge in a control flow graph (its test requirement),
then the test must encode the edge or edges that it covers
and be able to access information as to whether that edge
is still present after the software changes. Or, if the test’s
purpose is to verify a specific functional or nonfunctional
requirement, it needs to encode the requirement it verifies and
be able to access information about whether the requirement is
affected by the software’s change. This information is typically
stored in “soft” form, in natural language documentation such
as comments, notes on paper, or even lost completely. For
example, software engineers often create tests for a specific
purpose but then never document that purpose.

Further, we say that a test has self-determination if it has
the ability to decide what should happen after the software

changes. That is, depending on its purpose and the change,
should the test rerun, not run, be changed, or be deleted? At
present time, we expect that a test that needs to be changed
to reflect the software’s change must be changed by a human.
In the future, we plan to investigate the possibility of using
automatic program repair techniques to “repair” tests that no
longer compile or run.

We discuss background and challenges of test suite man-
agement in section II. Section III describes the proposed
framework for test self management. Our empirical study is
discussed in section IV, followed by results in section V.
Section VI presents threats to validity, section VII presents
related work, and section VIII concludes the paper.

II. BACKGROUND AND CHALLENGES OF TEST SUITE
MANAGEMENT

Every program has a suite of tests that are designed during
development to verify that the program’s behavior is as ex-
pected. As the program evolves, some tests are added, some
are modified to reflect the program’s changes, some are no
longer needed and deleted, and others are unchanged. Running
all the tests in a test suite after every program change costs
time and effort, and is prohibitively expensive for software
at scale. Thus, testers try to only run tests that may behave
differently on the modified program.

A. Managing tests by hand

Automated tests encapsulate test inputs and expected re-
sults, allowing them to run automatically and report results.
However managing tests as software evolves is almost entirely
done by hand. Each test was designed for some purpose,
but that purpose is seldom recorded in a machine-readable
form, putting the responsibility of investigating, evaluating,
understanding, and remembering the purpose of tests on the
developers. Although researchers have published algorithms
for evolving and managing test suites [1] [2], the algorithms
are not available in useful tools that practical testers can
integrate into their typical workflow. Thus, they are left with
the burdens of investigating the cause of a failing test and
deciding which tests need to be rerun after the software
changes.

For every software change, the developer has to: (1) under-
stand the program’s logic and flow, (2) understand why each
test was created, (3) evaluate all tests to see if the change
affects the test’s purpose, and (4) decide which tests to rerun,
modify, and discard. Performing these tasks by hand is slow,
error-prone, and relies on tester expertise. Despite numerous
research advances, the field has not successfully deployed
tools for developers. Therefore, this project is creating novel
infrastructure that can allow tests to perform the above four
tasks and significantly reduce developers’ burden.

B. Information needed

A smart test can decide if it needs to be run, ignored,
modified, or discarded after the software is changed. To do
s0, it needs to answer five questions:

1) What are the test requirements of the program?

2) What does the test currently cover?

3) Does the test’s current coverage match the test require-
ment?

4) What has changed in the program?

5) Do the program changes affect the test’s purpose? If so,
how?

This information must be available in a form that can be

processed by software.

C. Central management vs. test responsibility

Automated tests are widely used in the software industry,
and usually managed by hand. Because modifying and remov-
ing out-of-date tests is time-consuming and complicated, test
suites are often not really managed, they merely grow. This
leads to fest suite bloat, where the test suite grows unchecked
and becomes increasingly harder to manage. Bloated test
suites include tests that fail because they no longer match the
software, which in turn leads to testers not noticing tests that
truly fail.

Researchers have proposed techniques to centrally manage
test suites. These include algorithms to prioritize tests for
ordered execution, algorithms to remove tests that are no
longer needed, and procedures to identify code elements that
are not currently covered [1] [11] [12] [13] [14] [15] [16] [17].
However, central management is expensive and cumbersome,
and tools that are useful in practice are not available.

D. Test self-management

To move from managing test suites centrally by hand to
test self-management, we need tests to be self-aware and
to have self-determination. A self-aware test must know its
traceability information such as what requirements or code
elements it covers (its purpose), and be able to discover what
has changed in requirements or program. This information
is typically kept in inaccessible documentation, not kept at
all, or at best, re-computed when needed. Self-determination
means that the test can check the available information and
decide, after the software changes, whether the test needs to
run as is, not run, be changed, or be deleted. We call tests with
self-awareness and self-determination smart, as they have the
ability to manage themselves.

III. A FRAMEWORK FOR TEST SELF-MANAGEMENT

This section describes a test self-management framework'.
The framework consists of five automated, sequential, steps
to answer the five questions listed in II-B. We first give a
high-level description in section III-A, followed by a more
algorithmic-level description in section III-B.

A. The test framework’s five step process

Figure 1 illustrates the five steps, and we discuss each below.
Step 1) Run the tests to track program statements executed:
This lets us track which statements were covered by each test,

IThe source code for this project is available at https:/github.com/
SmartTests/smartTest

Initial program Changed program

Step 1: Run the tests to track
program statements executed

flow graph of the

Step 4: Create a control
changed program

flow graph to identify coverage

‘ Step 2: Create and parse control
requirements

status

Step 3: Create mappings from tests
to the coverage requirements they
satisfy

Fig. 1. Test self-management framework

Step 5: Evaluate test }

allowing us to identify each tests’ purpose and evaluate its
status, as discussed in steps 3 and 5.

To track statement coverage, we modify the .class file
using bytecode injection at runtime to inject tracing code
immediately before the class is loaded and run. We use the
bytecode manipulation framework ASM [18], which provides
common bytecode transformation and analysis algorithms to
build code analysis tools.

Step 2) Create and parse the control flow graph to identify
coverage requirements: We compare the control flow graph
(CFG) of a program before and after program evolution to de-
tect precisely how the program was changed. This comparison
lets automated tests be aware of program evolution.

We use a cross-platform tool, Progex [19], to create control
flow graphs. Progex reads program source code, then generates
the control flow graph and exports it into a file format for
graphs such as DOT [20], GML, and JSON [21] (we use
DOT). Following is an example of a Progex-generated CFG
for SourceClass.java in DOT file format:

digraph SourceClassCFG {

// graph-vertices

vl [label="17: SourceClass (int gtyOnHand)"];
v2 [label="18: this.gtyOnHand = gtyOnHand"];

// graph-edges
vl —> v2;

}

Each node in the CFG, v1 and v2 in the example, represents
a single line of code. Each node has the line number and the
Java statement it represents as its label. Connections between
nodes are under graph—edges. In this example, the graph
has an edge from node v1 to node v2.

Step 3) Create mappings from tests to the coverage require-
ments they satisfy: Coverage criteria provide test requirements,
and in turn, each test has a specific purpose—to satisfy one

or more test requirements.

Although the concepts behind self-determining tests can be
applied to any type of test requirement, whether functional
or non-functional, our empirical focused on one test coverage
criterion, edge coverage (ECC). Many available tools measure
ECC and it is commonly used in industry. The test require-
ments for ECC are the edges in a graph, that is, a pair of Java
statements.

We use an automated script to identify the ECC require-
ments. The script uses the control flow graph generated by
Progex [19] to create a list of edges that must be traversed.
Based on the statements a test executed (from step 1), we
map the test to the requirements (pairs of Java statements) it
satisfied to document the tests’ purpose. This mapping is used
as the program evolves.

We use another automated script to create the mapping
between a test and the requirements it satisfies. The script
uses the test requirements identified for a criterion and the test
coverage information from step 1 and produces a mapping in
JSON format. JSON is a standard, lightweight, data format
that uses human readable text to store data in a map structure
[21]. Following is a sample JSON mapping.

[
"info": "27-04-2020_17_01_08"
I
{
"requirements":
{"TR1": "17,18" }
b
{
"testCoverage": {
"testAdd":
["’I‘Rl"}
}
}
]
The info line gives the creation date, and

requirements contain the test requirements, in this
case, to cover edge (17, 18). Thus, this JSON script indicates
that the test method testAdd() satisfies test requirement TR1.

Step 4) Create a control flow graph of the changed program:
This step lets us compare the changed CFG to the previous
CFG to identify changes in the program. The detected change
can then be analyzed to see if it affects the test requirements,
and in turn, the purpose of the tests.

Step 5) Evaluate test status: For a test to decide what to
do after a change, the test needs to know how the program’s
source code was changed. In our system, this decision is based
on the difference between the old and new CFGs. If the change
is more than an addition of white space we say the change is
substantial, and the effects of the change on tests need to be
evaluated. Once the test knows its purpose and is aware of the
change, it can then compare the two and decide if the change
affects its purpose. The test evaluates the change with respect
to its purpose to decide. If the test’s purpose is affected, it
evaluates the extent of the change and acts accordingly.

B. Details of the test framework process

The previous steps were described at a high level, in terms
of goals and results. Now we discuss how these steps are
carried out. We implemented all automation using Python and
bash scripts.

1) Detecting software changes: We compare the control
flow graph of the modified program with the prior CFG to
detect changes in the code. This includes comparing every
statement in the old and new versions in case the change
affected the line number or node in the CFG. For efficiency, we
identify individual program methods and compare statements
within a method. We use the SequenceMatcher [22] class of
the diffLibPython [23] library to make this comparison.

SequenceMatcher compares pairs of sequences of any data
type. The ratio method of SequenceMatcher returns a measure
of two sequences’ similarity as a float in the range [0, 1], where
1 represents an exact match and O represents no match. This
ratio is calculated as: ratio = 2.0% % where M is the number
of elements that match and T is the total number of elements
in both sequences.

We provide two statements, representing a node in the two
control flow graphs, as input to the ratio method. The sequence
is simply the characters in the statement, for example, the
statement “x = axb;” is a sequence of 8 characters. A
higher ratio means more similarity. Low similarity could mean
one of two things. First, two different unmodified statements
could be being compared, for example, the statement on line 1
could be being compared with line 10. Second, a statement is
compared with its modified version in the modified program.
The SequenceMatcher documentation [23] says to interpret
a value over 0.6 to mean that the sequences are a close
match. We follow this recommendation to make the following
inferences:

i. If the ratio between two Java statements is 1, they are
identical and no change has been made. We categorize
these as perfect match statements.

ii. If the ratio between two Java statements is 0.6 or above
and below 1, we categorize them as close match state-
ments.

iii. If the ratio is below 0.6, they have low similarity and
need to be evaluated further.

2) Analysis of the program evolution: We consider four
types of program evolution: (a) no substantial change from
the previous program version, (b) statements in the previous
program were modified, (c) statements in the previous program
were removed, and (d) statements were added in the new
version. The previous step (detecting software changes) creates
two categories of statements: perfect match statements and
close match statements. These categories need to be further
analyzed to understand what kind of program change they
represent:

i. Was there a substantial change in the code?
If all the statements from the previous program are
present in the changed program and were categorized as

perfect match statements, no change was made to the
program.

ii. Were statements in the initial program modified?
If statements from the previous program were categorized
as close match, the statements were modified. This means
the program was modified.

iii. Were statements removed from the initial program?
If statements from original program were not catego-
rized as either perfect match or close match, either the
statement from the previous program was significantly
changed or it was removed.

iv. Were statements added to the modified program?
If statements from the modified program were neither a
close match nor a perfect match, they were added to the
modified program.

3) Impact analysis of the program change on test: We
categorize program changes into four possible types.

1. No changes to the previous program:
No test requirements were affected and no tests need to
be run or modified.

ii. Some statements were modified in the previous program:
We assume edge coverage is being used, so a change to
a statement implies a change to all edges that statement
appears in. Thus, all tests that cover those edges need to
be rerun, and some may need to be modified.

iii. Statements removed from the previous program:
If a statement is removed from the previous program,
then any edge it appeared in are no longer present in
the CFG, and those test requirements are gone. Tests that
covered that edge may no longer be needed. If the change
removes only a single test requirement (one edge), then a
test that satisfies that test requirement needs to be rerun
and possibly modified. If a change removes several test
requirements, for example, deleting a complete method,
then tests that satisfy those test requirements are no longer
needed and can be discarded.

iv. Statements added to the previous program:
If statements were added, one or more new test require-
ments were created and existing test requirements might
be affected. This means all the tests that satisfy the
affected test requirements need to be rerun, and new tests
may be needed.

We automate these three steps in a Python script. The script
takes the control flow graph of the original and modified
program, and uses SequenceMatcher to identify the statement
level changes. Then our script uses the mapping between tests
and test requirements from step 3 and the similarity ratio from
SequenceMatcher, to let the tests to decide what action to
take. If the test needs to be changed, it informs the (human)
developer, including a message such as:

code in original program: if (gty < 0)
modified version: if (gty > 0)

If multiple tests need to be rerun, we compare requirements
satisfied by the affected tests and if there is an exact match of

RUNNING TEST
RUNNING TEST
RUNNING TEST
RUNNING TEST

testString
testQuadratic
testSerial
testQuintic

SOURCE CODE STATUS

Rerun test:—————-— > testAddition to check requirement {’TR3’, 'TR2’}

Rerun test:—————-— > testConstants to check requirement ({’TR3’, "TR2’}
Rerun test:—————-— > testlLinear to check requirement {’TR3’, ’'TR2’}

Rerun test:—————- > testMath341 to check requirement {’TR3’, ’'TR2’}

Rerun test:—————- > testMultiplication to check requirement {’TR3’, ’'TR2'}
Rerun test:—————-— > testQuadratic to check requirement {’TR3’, 'TR2’}
Rerun test:—————- > testQuintic to check requirement {’TR3’, 'TR2’}

Rerun test:—————-— > testSerial to check requirement {’TR3’, ’'TR2’}

Rerun test:—————- > testString to check requirement {’TR3’, ’'TR2'}

Rerun test:————-— > testSubtraction to check requirement ({’TR3’, ’"TR2’}
Rerun test:—————- > testfirstDerivativeComparison to check requirement {"TR3’, "TR2'}

Reran test:—————- > testString
Reran test:————- > testQuadratic
Reran test:—————- > testSerial
Reran test:—————- > testQuintic

Fig. 2. Test self-management result

satisfied requirements, we run only one of the affected tests.
This is a relatively simple approach that could be replaced
or augmented by one of the more sophisticated approaches
discussed in Section VIL.

We use Progex [19] to create a control flow graph of the
modified version of the program. We then use the original
and modified program CFGs to evaluate the test status, as
described in step 5.

C. Scope of the framework

We developed our test framework for Java projects built
in Maven [24] and unit tests written in JUnit. We used the
ASM [18] framework to perform bytecode manipulation. We
used Major [25] mutation framework to generate mutants,
and use the mutants as a substitute for real faults. This is a
common technique that has been supported by research [26].
We used all the mutation operators provided by the tool. We

used Progex [19] to generate CFGs of the source code. The
open source projects we used did not have test plans that
identified individual test goals. As a proxy, we used the Edge
Coverage Criterion (ECC) to specify coverage requirements
of the program, and measured the available tests in terms of
edges covered. This resulted in test purposes that are valid for
our experiment. We used Python scripts to automate the steps
in our framework. To flag changes in the source code, we use
the SequenceMatcher [22] class of the diffLibPython [23].
Although the tools and environment used in this project
limit the scope of this framework, most limitations could be
overcome by finding or building more robust tools.

IV. AN EMPIRICAL STUDY

We carried out two studies to analyze our strategy to make
automated tests more efficient. We start by asking two research
questions:

RQ1. How much time does the analysis use?

RQ2. How accurate are the analysis results from the frame-
work?

A. Methodology

We collected two sets of data from four open source code
repositories. All projects had JUnit tests. We first collected
requirements for statement coverage and edge coverage, and
then measured the coverage the tests achieved. We used
mutation analysis to simulate changes to the source code, then
compared the mutated (new) versions of the program to the
original version. This gave each test the information needed
to decide what action to take when the software was changed.

1) Study 1: Preliminary Analysis: We performed a prelim-
inary, small scale study to evaluate how comprehensive and
accurate our strategy is.

i) Subject selection: The study’s goal was to evaluate the
reliability of our approach and the correctness of the automated
steps. We used four classes from the Apache Commons Math4
project. All the classes have between 100 to 1000 lines of code
and came with between 7 and 74 tests. Table I gives statistics
from these classes.

ii) Data collection: We used automated scripts to perform
steps 1 (run the tests), 2 (create the CFG), and 3 (create map-
pings from tests to test requirements) of the test management
framework process. The scripts collected statement coverage
and edge coverage requirements, and created mappings be-
tween tests and which test requirements they satisfied. We
simulated changes to the software under test by using mutation
to modify the original program. We used the PiTest mutation
testing tool [27] to generate mutants of each Java class. The
mutation operators used are shown in Table II. To allow us
to perform manual analysis in a reasonable time frame, we
randomly selected 25 killed and 25 surviving mutants for each
Java class. We placed these 200 mutations ((25+25)x4) into
the code to create 200 versions of the classes. We created
the CFG for each “new” version, and compared them with
the CFG of the initial program to identify the changes to the
program. The change was then analyzed to check if the test
requirements were affected, and in turn, the tests. We then
analyzed these changes to identify which action the test need
to take in response to the change, which was then presented
to the tester on the console.

iii) Framework result verification: We then verified the
results for each test and each change by hand, allowing us to
identify corner cases that needed to be addressed. We found
that our strategy correctly identified which lines were changed
and how, and which statements were deleted. In turn, the
framework was able to identify test requirements that were
affected, and which tests those changes affected. We were also
able to correctly flag unsatisfied requirements and failing tests.

We also verified the accuracy of decisions to rerun or delete
tests. The results of this verification are presented in Section
V; all decisions made in this study were correct.

TABLE I
PRELIMINARY STUDY: SUBJECT PROGRAM DETAILS
EC
Class names SLOC | #tests | #mutants .
requirements
DerivativeStructure 637 T4 50 283
FiniteDifferences-

Differentiator 169 16 30 43
SparseGradientFunction | 555 70 50 257
DSCompiler 885 7 50 436
Total 2246 167 200 1019

TABLE 11
PRELIMINARY STUDY: PIT MUTATORS USED

Mutator
Boolean false return
Boolean true return
Conditional boundary mutators
Empty returns

Example
return a — return false
return a — return true
a<br—a<b
java.lang.String —

o

Increments i+ — i——

Invert negatives return -i — return i
Math +— -

Negate Conditionals I=— ==, < — >
Null return return a — return null

Primitive returns replaces primitive data type
return values with 0

Void method calls removes calls to void methods

2) Study 2: Apache Projects: We used three Apache
projects, Commons Math3, Commons CSV, and Apache Com-
mons CLI, for our second study. The goal of this study was to
check the accuracy and comprehensiveness of the framework
result, and the time required for the analysis, in a larger
project.

i) Subject selection: To scale up the size of our study,
we used the Major mutation testing tool [25] to automate
the creation of new (mutated) versions of the software. We
switched to Major because it has the ability to export mutated
program versions. This change also caused us to switch to
Apache Commons Math3 because Major was not compatible
with some parts of Math4. Details of our subject program are
shown in Table III.

ii) Data collection: As in study 1, we used automated
scripts to perform steps 1 (run the tests), 2 (create the CFG),
and 3 (create mappings from tests to test requirements). We
then used Major to generate the new versions of the soft-
ware, resulting in 4829 changes to 108 classes. The mutation
operators used in this study are shown in Table IV. We
then created CFGs for each new version and compared them
with the CFGs of the original versions. As before, we then
analyzed the changes to determine which test requirements
were affected, then identified the appropriate action for each
test. We recorded the system time for the analysis to answer
RQ1. The results of the analysis were shown on the console
for the tester to see.

iii) Framework result verification: We used an automated
script to verify results on the 4829 mutants. The script
compared the result to the expected result based on the
initial program version and the new program version. We
found several discrepancies between the result reported by the

TABLE III
SECOND STUDY: SUBJECT PROGRAM DETAILS
Package # SLOC # #. # EC
names classes tests | mutations | requirements
math4 project (9 packages)
differentiation 5 1708 | 100 231 971
function 8 1173 | 138 353 288
integration 8 1116 26 380 264
interpolation 14 1767 85 616 862
polynomials 5 741 41 250 419
solvers 14 1650 52 472 701
complex 6 976 159 229 429
dfp 4 2662 36 200 2019
distribution 27 3560 | 153 1331 1334
CSV (1 package) 6 1432 | 205 251 804
CLI (1 package) 11 1962 | 268 516 873
Total 108 18,747 | 1263 4829 8964
TABLE IV

SECOND STUDY: MAJOR MUTATION OPERATORS USED FOR STUDY 2

Mutation operator
AOR (Arithmetic Operator Replacement)
LOR (Logical Operator Replacement)
COR (Conditional Operator Replacement)
ROR (Relational Operator Replacement)
SOR (Shift Operator Replacement)
ORU (Operator Replacement Unary)
EVR (Expression Value Replacement)
LVR (Literal Value Replacement)
STD (STatement Deletion)

Example
a+br—a-b
aAbr——alb
allbr—a&&b
a==br——a>b>b
a>br——a<khb
A a
return a —return 0
0 ——1, true — false
return a —— << no — op >

framework and expected results, as reported in Table VI.

V. OBSERVATIONS AND RESULTS

This section presents results from the two studies whose
results are shown in Tables V and VI, and our observations
from those results. In the preliminary study on four classes
from Apache Commons Math4, we checked the test and
program status for 50 changes to each Java class. Table V
shows that all program and status decisions in study 1 were
correct.

Our second study used 4829 changes to 108 classes, as
shown in Table VI. We used a maximum of 50 changes
per class, drawn randomly from the total number of changes
(some classes had fewer than 50 changes). This analysis
required a total of 553 minutes, for an average of just over
5 minutes per class. The time required to identify a program
change, identify the test status, and determine the appropriate
action averaged 6.87 seconds per change. The framework’s
recommended action was accurate 94.31% of the time.

TABLE V
RESULT: STUDY 1

Packages Mutants evaluated | Incorrect results
DerivativeStructure 50 None
FiniteDifferencesDifferentiator 50 None
SparseGradientFunction 50 None
DSCompiler 50 None
Total 200 None

We analyzed each inaccurate result and categorized the
reasons into three types.

a) The program change was not identified correctly.
Our framework only generates control flow graphs for the
methods in the class. Therefore, code changes that do not
appear in methods, such as changes to statements that declare
or instantiate class attributes outside a method, were not
identified. This is a limitation of the tool, rather than a problem
with the concepts.

This could be solved by adding such information to the
control flow graph or by using a different abstraction that
represents that information. In our study, 36 of the 258 (14%)
inaccurate results fall in this category, that is, 0.7% of the total
number of results.

b) The CFG was not created correctly. Our CFG gen-
eration tool, Progex [19], was not able to create control flow
graphs for some methods in some classes. This happened when
the methods used recently added language features that the
CFG tool did not recognize. In our study, 79 of the 258 (31%)
inaccurate results fall in this category, that is, 1.6% of the total
number of results.

c¢) The line reported by the framework as changed
did not match the actual line changed. The control flow
graph considered one statement as one node regardless of the
statement length, such as when a program statement spanned
multiple lines. For example, the following statement spanned
four lines in the source code file:

Logistic.value (param[1l] - x,

1 param[0],
2 param[2],
3

4

param[3],
param[4],

param[5]);
Fig. 3. Example four-line statement

Our control flow graph generator placed all four lines into
a single node, and identified the entire statement as line 1.
However, if a change was made on physical source code line
2 (changing param[3] to param[i] for example), our tool would
match that to line 2 in the CFG, which does not exist in the
generated CFG, since lines 2, 3, 4 from the actual source code
are part of line 1 in the CFG. In our study, 143 of the 258
(55%) inaccurate results fall in this category, that is, 2.96% of
the total number of results.

In summary, the incorrect results were due to relatively
minor issues in our tooling, in particular, the CFG generator,
not due to conceptual or practical problems with the problem
solution.

Thus our answer to RQ1 is that the time taken by the frame-
work to analyze each change averaged 6.87 seconds. This time
can be further decreased using code optimization techniques
such as reducing the number of file input output operations and
optimizing the database for information storage. Our answer to
RQ?2 is that the framework was accurate 94.31% of the time.
Since the incorrect results were due to incorrect or incomplete
representation of the program, we are confident the accuracy
can be improved even further.

TABLE VI
RESULT: FREQUENCY OF TEST STATUS MATCH AND TIME TAKEN FOR STUDY 2

Projects Packages Changes evaluated | Time (mins) | Result match | Result mismatch % of test % of test
status matches | status mismatches
math4 differentiation 231 31 226 5 97.83% 2.16%
function 353 39 329 24 93.20% 6.80%
integration 380 35 348 32 91.58% 8.42%
interpolation 616 91 601 28 94.45% 4.54%
polynomials 205 24 157 48 76.59% 23.41%
solvers 472 33 468 4 99.15% 0.85%
complex 229 75 220 9 96.07% 3.93%
dfp 200 8 199 1 99.50% 0.50%
distribution 1331 35 1289 42 96.84% 3.16%
CSV 251 53 246 5 98.00% 2.00%
CLI 516 129 456 60 88.37% 11.63%
Total 4829 553 4539 258 94.31% 5.68%

VI. THREATS TO VALIDITY

We used an open source control flow graph generator tool
from github, Progex [19]. The latest release of the tool was
in 2019 and the tool did not appear to have been validated.
Therefore, problems with the tool could lead to threats to our
study. Indeed, we determined that most incorrect decisions the
test framework were directly attributable to shortcomings of
Progex.

Another potential threat is that all of our classes were ob-
tained from a small number of open source projects. However,
the Apache Commons project is large and diverse, with classes
that perform many complicated computations.

The code changes were modeled through a fairly simple
program abstraction tool, the control flow graph. Result ac-
curacy could be higher if we included data flow information,
or a more sophisticated abstraction such as an interprocedural
CFG [28] or an interclass graph [29] to capture more details.

Finally, our model of program changes was fairly simple—
single order mutants. Although this allowed us to create and
analyze thousands of program changes, a more sophisticated
model of program changes, or actual changes made to software
as documented in changelogs, could provide different insights
to this approach to test management.

VII. RELATED WORK

The literature contains three general techniques to address
problems with test suite growth: test suite reduction or mini-
mization, test selection, and test prioritization.

A survey by Yoo and Harman discusses these approaches in
detail [30]. Our paper uses test case minimization and selection
as intermediate steps, but does not specifically introduce new
minimization or selection techniques. We also do not currently
address test case prioritization.

Test suite reduction approaches focus on reducing the size
of test suites to lower the maintenance cost of large test suite.
Chen and Lau proposed minimizing test suites by selecting
an essential set of tests that cover requirements that no other
tests cover, followed by a greedy algorithm to select more
tests [31]. Ammann et al. proposed removing redundant tests
until a minimal test set is obtained [32]. The primary focus
of our approach is to enable the automated tests to maintain

themselves to reduce maintenance costs for developers. We
also perform test suite reduction whenever a test requirement
becomes invalid due to software evolution. Vaysburg et al.
performed dependency analysis of Extended Finite State Ma-
chines to minimize test suite [33]. In our work, we analyze
control flow graphs to detect the impact of software evolution
on tests, although our general approach could work just as well
with other models and other techniques. A common concern
of test suite reduction techniques is to avoid removing a fault-
revealing test. To handle this issue, our framework does not
permanently remove tests whose requirements are no longer
valid; rather, we comment it out and notify the developer.

Test case selection focuses on selecting a subset of test
cases from the test suite after the software under test changes.
Various approaches have been explored to perform test case
selection using techniques such as data flow analysis [34]
[35] [3], symbolic execution [4], dynamic slicing [36], CFG
graph-walking [37] [38] [39] [40], textual difference in source
code [41] [42], and modification detection [5]. Rothermal
and Harrold suggested selecting test cases based on walking
control flow graphs [40]. Chen et al. used a modification-
based technique to identify test cases that are affected by
modification in program entities [5]. In our approach, we
compare control flow graphs of two software versions to
detect any changes, and select tests that execute the modified
statement. We select all test cases that execute the modified
statement but only run tests that satisfied a unique set of test
requirements.

Test case prioritization is an approach to find an ordering of
test cases for execution to get maximum benefit with minimal
effort [11] [16] [17] [30] [43]. We do not address test case
prioritization in our framework.

VIII. CONCLUSIONS AND THE FUTURE

This paper presents results from a novel, holistic, solution to
the problem of managing and evolving automated test suites.
As software evolves over time, the suite of automated tests
must also evolve. For every change, some tests need to be rerun
to verify the change, while other tests are not affected by the
change and thus do not need to be run. Further, some tests need
to be modified to still run on the modified software, others are

no longer relevant and can be ignored, and some new tests need
to be created to verify added or modified functionality. These
decisions are generally called test management, and despite
years of research, test management is still largely done by
hand.

Poor test management leads to unchecked growth in the
number of tests (test bloat), tests that are no longer correct
with respect to the software under test, flaky tests [6] [7], and
blind tests [8]. Over time, testing becomes more expensive and
less effective.

The novel approach presented in this paper is to give each
test the ability to manage itself. To do that, tests need two
things. They need to be self-aware, that is, know why they
exist. Second, tests need to have self-determination, that is,
be able to choose whether to run, not run, be changed, or
be deleted. We have developed a process to support self-
managed tests, and a framework that incorporates algorithms
and software to automate the self-management approach.

The paper presents results from an empirical evaluation on
open source software, which resulted in two broad findings.
First, the fime needed to create, store, process, and use the
information that tests need to manage themselves was quite
reasonable. Second, the accuracy, in terms of whether tests
made correct decisions, was quite high, with the primary
limitation stemming from the capabilities of the control flow
graph generator that we used.

A. Future work

In the future, we hope to extend these ideas in several
ways. As currently configured, when a test discovers that it
needs to change to accommodate changes in the software
under test, it alerts the test for manual intervention. We
believe that automatic repair [44] techniques could be used
to automatically update some tests. The scope of change is
smaller than for general software, so the potential for success
may be higher for automated tests. We also plan to investigate
and address scalability to ensure this approach works for larger
programs, and applicability, to ensure this approach works for
real programs and can be used in practice.

More broadly, our demonstration implementation works in
the context of test structural requirements derived from control
flow graphs. We hope to apply this approach to other types of
test requirements, such as those based on functional or non-
functional software requirements. We also plan to evaluate the
framework with real software faults, and to further investigate
how test requirements can be better captured and maintained as
the program evolves. Finally, since our research is attempting
to automate work that is currently done mostly by hand, we
hope to make a direct measure of improvement by comparing
results from our process with results from a strictly human
process.

B. A manifesto for research in test automation

For many years, software testing researchers and educators
viewed the automatic execution of tests as simple program-
ming problems that did not pose sufficient research challenges

or complexity to engage us. We focused on automating the
generation of test values, using criteria, algorithms, and ap-
proximation procedures, and to a lesser extent, on the problem
of automatic generation of oracles and test management issues.
But recently, researchers have discovered the deep complexity
and troubling problems that arise when automating the execu-
tion of tests [45], including the contents of test oracles [46],
[47], flaky tests [6] [7] [48], and blind tests [8]. We were
wrong!

The authors of this paper firmly believe that the community
needs to greatly expand our research into test automation,
including and especially the automated execution of tests, and
the automated creation of executable tests [49]. This focus
needs to be vitalized by funding from industry and govern-
ment, journal special issues, and topics and tracks within
top conferences. Our ultimate vision is ambitious, but fun-
damentally achievable. We envision testing becoming tightly
integrated into compilers and IDEs. After a compiler uses
syntactic validation (parsing) to correct all syntactic mistakes,
leading to an executable version of the software component,
we envision the next step to be semantic validation (testing).
The IDE will automatically generate a collection of tests,
automatically run those tests on the software component, and
present a report to the developer with the summary that out of
N tests, nl crashed, n2 appear to cause incorrect behavior, n3
have behavior that may or may not be wrong, and n4 appear to
be result in correct behavior. The developer will then proceed
to analyze and resolve each questionable test, in the same way
that we currently resolve errors and warnings from parsers.
The IDE will also use automatic program repair [44] tech-
niques to suggest specific code corrections. Naturally, it will
be impossible to completely replace all human test activities,
but smart tests and integration of compiling and testing has
enormous potential to automate tedious and mechanical testing
tasks, freeing up human testers to focus on more interesting
and challenging problems.

REFERENCES

[1] S. Eldh, J. Brandt, M. Street, H. Hansson, and S. Punnekkat, “Towards
fully automated test management for large complex systems,” in In-
ternational Conference on Software Testing, Verification and Validation
(ICST). 1IEEE, 2010, pp. 412-420.

[2] E. Enoiu and M. Frasheri, “Test agents: The next generation of test
cases,” in Workshop on NEXt level of Test Automation (NEXTA), 2019,
pp. 305-308.

[3] M. J. Harrold and M. L. Soffa, “An incremental approach to unit
testing during maintenance,” in International Conference on Software
Maintenance. Los Alamitos, CA, USA: IEEE Computer Society,
October 1988, pp. 362-367.

[4] S.-S. Yau and Z. Kishimoto, “Method for revalidating modified programs
in the maintenance phase.” in International Computer Software &
Applications Conference. 1EEE, 1987, pp. 272-2717.

[5] Y.-F. Chen, D. Rosenblum, and K.-P. Vo, “Testtube: A system for
selective regression testing,” in International Conference on Software
Engineering (ICSE). 1EEE, 1994, pp. 211-220.

[6] M. Fowler, “Eradicating non-determinism in tests,” Online, 2011,
https://martinfowler.com/articles/nonDeterminism.html, last accessed
October 2019.

[71 Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Foundations of Software Engineering, Hong Kong,
China, November 2014, pp. 643-653.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]
[28]

[29]

K. Baral and J. Offutt, “An empirical analysis of blind tests,” in In-
ternational Conference on Software Testing, Validation and Verification
(ICST). IEEE Computer Society, April 2020, p. 254-262.

J. Offutt, “From spec-based testing to test automation and beyond
(keynote address),” in Workshop on Advances in Model Based
Testing (A-MOST), Vasteros, Sweden, April 2018. [Online]. Available:
https://cs.gmu.edu/~offutt/documents/slides/2018 AMost-keynote.pptx
“It is great that we automate our tests, but why are they
so bad?” SAST Industry Day at the 11th IEEE Conference on
Software Testing, Validation, and Verification, Vasteros, Sweden, April
2018. [Online]. Available: https://cs.gmu.edu/~offutt/documents/slides/
2018SAST-ICST.pptx

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on Software Engi-
neering, vol. 27, no. 10, pp. 929-948, 2001.

S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases
for regression testing,” SIGSOFT Software Engineering Notes, vol. 25,
no. 5, pp. 102-112, 2000.

G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia,
“The impact of test suite granularity on the cost-effectiveness of re-
gression testing,” in International Conference on Software Engineering,
2002, pp. 130-140.

H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test
case prioritization in a JUnit testing environment,” in International
symposium on software reliability engineering. 1EEE, 2004, pp. 113—
124.

H. Do and G. Rothermel, “A controlled experiment assessing test case
prioritization techniques via mutation faults,” in 2/st I[EEE International
Conference on Software Maintenance (ICSM), 2005, pp. 411-420.

Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization
in software evolution,” in 26th International Symposium on Software
Reliability Engineering (ISSRE). 1EEE, 2015, pp. 46-57.

L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired
by test prioritization and reduction,” in International Symposium on
Software Testing and Analysis. ACM, 2013, pp. 235-245.

F. T. INRIA, Online, https://asm.ow2.io/, last access: May 2020.

S. M. Ghaffarian and H. R. Shahriari, “Neural software vulnerability
analysis using rich intermediate graph representations of programs,”
Elsevier’s Information Sciences, pp. 189-207, April 2021.

Graphviz, “The DOT language,” Online,
https://www.graphviz.org/doc/info/lang.html, last access: May 2020.

D. Crockford, “Introducing JSON,” Online, https://www.json.org/json-
en.html , last access: May 2020.

P. S. Foundation, “Sequencematcher,” Online,
https://docs.python.org/3/library/difflib.html#difflib.SequenceMatcher,
last access: May 2020.

——, “difflib — helpers for computing deltas,” Online,
https://docs.python.org/3/library/difflib.html#, last access: May 2020.
T. A. S. Foundation, “Apache maven project,” Online,

https://maven.apache.org/what-is-maven.html, last access: May 2020.
R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler,” in
International Conference on Automated Software Engineering (ASE),
November 2011, pp. 612-615.

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in 27th International Conference on
Software Engineering, ser. ICSE "05. ACM, 2005, pp. 402—411.

H. Coles, “Pit mutation testing tool,” Online,
https://github.com/hcoles/pitest, last access: October 2020.

M. J. Harrold and M. L. Soffa, “Selecting and using data for integration
testing,” IEEE Software, vol. 8, no. 2, pp. 58-65, March 1991.

V. Martena, A. Orso, and M. Pezzé, “Interclass testing of object oriented
software,” in International Conference on Engineering of Complex

10

(30]

(31]

(32]

(33]

(34]

(35]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Computer Systems (ICECCS). Greenbelt, MD: IEEE Computer Society,
2002, pp. 135-144.

S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: A survey,” Wiley’s Software Testing, Verification and
Reliability, vol. 22, no. 2, pp. 67-120, 2012.

T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization
of a test suite,” Information Processing Letters, Elsevier, vol. 60, pp.
135-141, 1996.

P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing Theoretical
Minimal Sets of Mutants,” in IEEE International Conference on Soft-

ware Testing, Verification and Validation (ICST), 2014, pp. 21-30.
B. Vaysburg, L. H. Tahat, and B. Korel, “Dependence analysis in reduc-

tion of requirement based test suites,” SIGSOFT Software Engineering
Notes, vol. 27, no. 4, p. 107-111, July 2002.

R. Gupta, M. J. Harrold, and M. L. Soffa, “An approach to regression
testing using slicing,” in International Conference on Software Mainte-
nance, vol. 92. Citeseer, 1992, pp. 299-308.

M. J. Harrold and M. L. Soffa, “Interprocedual data flow testing,” ACM
SIGSOFT Software Engineering Notes, vol. 14, no. 8, pp. 158-167,
1989.

H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London, “Incremen-
tal regression testing,” in Conference on Software Maintenance. 1EEE,
1993, pp. 348-357.

G. Rothermel and M. J. Harrold, “A safe, efficient algorithm for regres-
sion test selection,” in Conference on Software Maintenance. IEEE,
1993, pp. 358-367.

——, “Selecting tests and identifying test coverage requirements for
modified software,” in ACM SIGSOFT international symposium on
Software testing and analysis, 1994, pp. 169-184.

, Efficient, effective regression testing using safe test selection
techniques. Clemson University, 1996.

——, “A safe, efficient regression test selection technique,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 6,
no. 2, pp. 173-210, 1997.

F. 1. Vokolos and P. G. Frankl, “Pythia: A regression test selection
tool based on textual differencing,” in Reliability, quality and safety
of software-intensive systems. Springer, 1997, pp. 3-21.

F. Vokolos and P. Frankl, “Empirical evaluation of the textual differ-
encing regression testing technique,” in International Conference on
Software Maintenance. 1EEE, 1998, pp. 44-53.

H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Transactions
on Software Engineering, vol. 32, no. 9, pp. 733-752, 2006.

L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1, pp.
34-67, January 2019.

Google, “Google test automation conference,” Online,
https://developers.google.com/google-test-automation-conference/,

last access: September 2019.

L. C. Briand, M. D. Penta, and Y. Labiche, “Assessing and improving
state-based class testing: A series of experiments,” IEEE Transaction on
Software Engineering, vol. 30, no. 11, pp. 770-793, November 2004.
N. Li and J. Offutt, “Test oracle strategies for model-based testing,”
IEEE Transactions on Software Engineering, vol. 43, no. 4, pp. 372—
395, April 2017.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically detecting flaky tests,” in 40th International
Conference on Software Engineering, Gothenburg, Sweden, May 2018.
N. Li and J. Offutt, “A test automation language for behavioral models,”
in 11th IEEE Workshop on Advances in Model-based testing (A-MOST),
Graz, Austria, April 2015.

