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Abstract—Scientists have created many cost reduction tech-
niques for mutation testing, and most of them reduce cost with
minor losses of effectiveness. However, many of these techniques
are difficult to generalize, difficult to scale, or both. Published
results are usually limited to a modest collection of programs.
Therefore, an open question is whether the results of a given cost
reduction technique on programs studied in the paper will hold
true for other programs. This paper introduces a conceptual
framework, named SiMut, to support the cost reduction of
mutation testing based on historical data and program similarity.
Given a new, untested program u, the central idea is applying
to u the same cost reduction strategy applied to a group G of
programs that are similar to u and have already been tested with
mutation, and check for consistency of results in terms of reduced
costs and quality of test sets. SiMut includes activities to compute
program abstractions and similarity. Based on this information,
it supports the application of mutation cost reduction techniques
to both G and u. This paper presents the concepts behind SiMut,
a proof-of-concept implementation of SiMut, and results from a
pilot study. Finally, we discuss some issues related to the use of
SiMut, focusing on the composition of a representative dataset to
properly explore the potential of our framework.

Index Terms—mutation testing; cost reduction; program sim-
ilarity; reuse of historical data

I. INTRODUCTION

Mutation testing [14] (or simply mutation) helps testers
create high quality test sets. It takes a program p and sys-
tematically generates slightly modified versions of p, called
mutants. Mutation operators O = {o1, o2, ... , on} are used to
create mutants. Ideally, each mutant is a faulty program and
should behave differently from p for at least one test case.
When such a test is found, the mutant is said to be killed by
the test case. Until then, the mutant remains alive and either a
test case must be found or designed to kill the mutant, or the
mutant should be determined to be equivalent. An equivalent
mutant behaves the same as p on all tests, so cannot be killed.
The mutation score (MS) is a value in the interval [0, 1] that
represents the quality of the test set with respect to a given
group of mutants. The closer MS is to 1, the better the test
set is. The MS formula MS = K/(M-E) uses the dead (K),
equivalent (E), and the total number of mutants (M) generated.
We also consider mutants generated by a single operator oi. A
set of tests that kills all oi mutants is said to be oi-adequate,
and the mutation score for oi is the score of the oi-adequate
tests on all mutants created for the program.

Empirical studies have found that mutation yields tests
that detect more faults than tests derived with most other
structural criteria [7, 18, 27, 30, 31], and that can reveal
real faults [3, 13, 22]. Mutation is also very often used as
a test quality assessment instrument to evaluate tests derived
using other testing techniques and criteria. For example, as
recently highlighted in a literature review [40] that selected
502 mutation-related studies, all published between 2008 and
2017, 217 used mutants only for test assessment purposes.

Although effective, mutation is also expensive [21, 24, 40,
42]. Two major factors affecting the cost are (i) the large
number of mutants (even for small programs), and (ii) the
manual analysis required for unkilled mutants. Since detecting
equivalent mutants is generally undecidable [5], equivalence
detection can only be partially automated [29, 35, 39]. These
factors have limited the adoption of mutation in industry, lead-
ing to almost four decades of research into reducing the cost
of mutation, as reported in recent literature surveys [40, 42].

Experimental results indicate that many mutation cost re-
duction techniques reduce costs with minor losses of effective-
ness [42], however many techniques are difficult to generalize,
difficult to scale, or both. For example, Kurtz et al. [26] found
significant cost savings, but only if each program is analyzed
individually. Thus, a significant open question is whether the
results of any cost reduction technique on previous programs
will hold true for new programs.

For example, selective mutation [4, 36] defines an empir-
ically determined subset of mutation operators, a sufficient
set Os, that dramatically reduces the number of mutants (and
thereby the cost) without reducing the test quality. However,
Kurtz et al. [26] found that the ideal sufficient set is different
for each program. This problem can be generalized in terms of
particular sets of programs, or even in terms of technologies.
For instance, while investigating the ability of mutation to
reveal real faults, Siami-Namin and Kakarla [46] concluded
that “the major question to address is whether the researchers
need to apply exactly the same set of operators or the same
number of mutants as used” in previous experiments, “for any
other experimentations regardless of underlying programming
languages.” Papadakis et al. [40] also observed that “when
using mutation testing, it is important to carefully select



mutant operators that are appropriate to the programming
language studied”.

We are currently investigating whether we can establish
similarities among programs such that the most effective suffi-
cient set of mutation operators for a prior program will likely
also be an effective sufficient set for a similar program. In a
previous paper [12], we reported results from an experiment
with a small set of 38 Java programs. We clustered programs
based on internal metrics, and asked whether sufficient sets
of mutation operators that were previously determined to be
effective for programs in the cluster are also effective for new
programs in the cluster. That is, can internal metrics be used
to determine similarity among programs that can be used to
predict an effective sufficient set of mutation operators. Notice
that such a program similarity-based approach can use any cost
reduction technique that relies on empirical training, including
but not limited to, supervised Machine Learning algorithms
and operator-based mutant selection,

This paper extends our prior paper in three ways. It:

1) Externalizes a conceptual framework, named SiMut, to
support the cost reduction of mutation testing based on
historical data and program similarity. SiMut uses var-
ied program abstractions beyond internal metrics, varied
program similarity calculations beyond clustering, and the
application of varied cost reduction techniques.

2) Presents a proof-of-concept implementation of the main
activities defined in SiMut, as well as results from a
pilot study with a dataset that is larger than in our prior
work. The artifacts included in the database were used
and produced in prior experiments with mutation testing.

3) Discusses key issues that should be handled while com-
posing a dataset to apply the approach embedded in
SiMut.

We analyzed three extensive literature reviews on mutation
testing [21, 40, 42]. Two [21, 40] summarized mutation-related
research published from 1977 to 2017; they account for more
than 800 analyzed studies, and provided a broad picture of
the area. The other [42] analyzed 175 studies and focused
on characterizing goals and techniques for cost reduction,
including used metrics and achieved results. None of studies
analyzed in the reviews had goals similar to ours. Therefore,
to the best of our knowledge, this is the first approach
that combines the use of information from previously tested
programs and program similarity to support the testing of new
programs using mutation at reduced cost.

This section summarizes the context, motivation, goals and
contributions of this paper. Basic background is presented
in Section II. Section III describes the SiMut framework,
Section IV describes our implementation, and Section V
reports on results of a pilot study. Section VI discusses key
issues related to the application of SiMut, as well as limitations
of this work. Section VII summarizes related work. Finally,
Section VIII brings our conclusions and points out future work.

II. BACKGROUND

This section describes basic background on program ab-
stractions and program similarity. Both concepts are used in
the SiMut framework, described in Section III.

A. Program Abstractions

Program abstraction is used to simplify the process of
analyzing complex programs. The abstraction tool creates
a relationship between a concrete program and an abstract
program [10]. We summarize various forms of program ab-
stractions, including structural graphs, sequence diagrams,
obfuscated source code, simplified source code, and static and
dynamic internal metrics.

In the context of program abstractions, our two experiments
(one from our prior work [12] and another here) used the
Chidamber and Kemerer (CK) static internal metrics [9] as
program abstractions. We then used them to compute similarity
among programs.

B. Program Similarity

The literature has several definitions for program similarity.
For example, in a comparison study of software clone detec-
tion techniques, Roy et al. [45] defined two types of similarity
between code fragments, one based on text (similar program
code), and based the other on functionality (similar program
behavior).

Another definition comes from Walenstein et al. [49]. The
definitions are similar to the ones proposed by Roy et al.
[45]. Walenstein et al. conceptually defined two types of sim-
ilarity: behavioral (semantic) and representational (syntactic).
Semantic similarity compares the meaning not the structure.
Examples are the comparison of program input and output,
and the program execution with searching for statements cor-
respondence (in relation to the order of statement executions).
Syntactic similarity, on the other hand, compares the structure
not the meaning, in different levels of abstraction, from code
blocks to architectural levels.

Representational similarity can be computed based on stat-
ically computed internal software metrics, which map code
features or structures to the domain of real numbers. We use
this technique in this paper, as described in Section V. Another
example is “feature-based” similarity, which determines the
similarity between programs using the number of feature
matches or properties identified in the programs.

III. THE SiMut FRAMEWORK

This section describes the conceptual framework named
SiMut (Program Similarity to support Cost Reduction of
Mutation). SiMut supports the cost reduction of mutation
testing based on historical data and on program similarity as
a core element. Is is comprised of a main process (overall
process) and a sub-process that is responsible for composing
groups of similar programs. Both processes, and some usage
scenarios, are described below.



Fig. 1. Overall process.

A. Overall Process

Figure 1 represents the overall process of SiMut. We use
Business Process Model and Notation (BPMN) to represent the
process. Key items (e.g. sub-processes, tasks, inputs, output,
and additional notes) are described next.

1. Compose reference group G: This sub-process com-
poses a group G of tested programs that are similar to
a new (untested) program u. A tested program has a
mutation-adequate test suite. The number of programs in G
can be either user-defined or default (e.g., defined by the
similarity algorithm).
• Inputs: A set T of programs tested with mutation, the
untested program u, and (optional) the size of G.

• Output: The reference group G.
• Notes: For more details, see the Composition of the Refer-

ence Group (G) process in Section III-B.

2. Select cost reduction technique C: A cost reduction
technique C to apply to G is chosen from existing techniques
such as selective mutation [36], optimization of analysis of mu-
tants based on Machine Learning algorithms [6, 8], sufficient
operators [4] and minimal mutation [2]. Users decide which
technique to use. If results for C applied to G are already

available, they are retrieved (process 4). Otherwise, they are
calculated using process 3.
• Input: A collection of available cost reduction techniques.
• Output: The selected cost reduction technique C.

3. Apply cost reduction technique C to reference group G:
This sub-process applies C to the programs in G. The resulting
measures RG and the resulting cost reduction parameters S are
stored. Examples of parameters are a sufficient set of mutation
operators or a trained Machine Learning algorithm. Parameters
S will be next applied to the untested program u.
• Input: The reference group G and the selected cost reduc-
tion technique C.

• Output: The cost reduction results RG and the cost reduc-
tion resulting parameters S.

4. Retrieve cost reduction resulting parameters S for the
reference group G.

5. Apply cost reduction technique C to untested pro-
gram u: The parameters S from applying C to the reference
group G are used to apply C to the new program u.
• Inputs: The untested program u, the selected cost reduction
technique C, and the cost reduction parameters S.



• Output: Ru, the results of applying C to u based on S.

6. Assess results for untested program u: Here we evaluate
the results Ru. The evaluation includes the mutation score
produced by S-adequate tests when all mutants are considered.
The evaluation can also compare cost reduction savings with
respect to the reference group G.
• Inputs: The cost reduction results Ru, all mutants, and

(optional) the cost reduction results RG.
• Output: Varied (depends on the evaluation goals).

Notes about the overall process: Sub-process 6 is for experi-
mental purposes only. This step would not be executed when
SiMut is used in practice.

B. Choosing Programs in the Reference Group

This section describes how programs are chosen for the
reference group G, as illustrated in Figure 2.

1.1. Computing measures for u: We need to apply the
same measures to u that will be used to calculate similarity.
Measures that may be calculated (depending on current exper-
imental goals) include internal program metrics [9], control
flow graphs [34], and obfuscated source code. We refer to
these as pre-processed abstractions in the rest of the paper.
• Input: The untested program u.
• Output: A set of measures Au for u.
• Notes: We assume that the same measures have already
been gathered for programs in T . The process of gather-
ing such measures is the same as process #1.1 described
previously.

1.2. Select similarity approach S: Next we select a similarity
calculation approach S to apply to u with respect to the tested
programs T . Example similarity calculations include clustering
(applied in the exploratory study presented in Section V), lexi-
cal distance calculation, and information diversity calculation.
• Input: A set of available similarity calculation approaches.
• Output: The selected similarity calculation approach S.

1.3. Apply approach S: Next we calculate similarity between
u and T to determine the reference group G of programs that
are similar to u.
• Inputs: The selected similarity calculation approach S, the
set of measures Au for u, the sets of measures for the
programs included in the set of tested programs T , and
(optional) the size of G.

• Output: A preliminary version of the reference group G
(this group may be refined in the next process).

1.4. Generate reference group G: G is a subset of the
programs in T that will be used in the overall process
described in Section III-A. G contains programs from T that
are most similar to u.
• Input: The selected similarity calculation approach S; the

initial reference group G; and the size of G.
• Output: The final reference group G.

Notes about the process for computing G: As noted in
sub-process 1.1, the composition of the reference group re-
quires that the same measures gathered for u have already
been gathered for programs in T . This information must be
available to be retrieved and used in sub-process 1.3 (Apply
approach S).

C. Examples of Usage Scenarios
This section illustrates the use of SiMut with two scenarios,

each applying a different mutation cost reduction technique.
The first uses sufficient operators [4]. The second uses opti-
mization of mutant analysis through automatic mutant classi-
fication based on Machine Learning (ML) algorithms [6, 8].
Both scenarios require the execution of particular paths of
the process depicted in Figure 1. A third technique, one-op
mutation [48], was used in the study described in Section V.

Scenario 1—Mutant classification based on sufficient op-
erators: This scenario computes a sufficient set of mutation
operators for u using a procedure such as the Sufficient
procedure by Barbosa et al. [4]). The sufficient set of operators
will be obtained based on the reference group G using the
following steps:
• Sub-process 1: Compose the reference group G of similar

programs.
• Task 2: Select the cost reduction technique C (sufficient
operators).

• Decision D1: Answer is no (results for C applied to G are
not available).

• Sub-process 3: Apply technique C is to G, getting results
RG and cost reduction parameters S (sufficient operators).

• Sub-process 5: Apply the sufficient operators identified for
G to the untested program u, obtaining results Ru.

• Sub-process 6 (optional): Assess results Ru, for example,
with respect to test set quality (full mutation score), and
with respect to RG.

Scenario 2—Mutant classification based on machine
learning algorithms: The tester reuses a trained ML algorithm
that automatically classifies mutants based on their utility. An
example approach is by Chekam et al. [6, 8], who applied
supervised learning to train an algorithm to automatically
classify mutants based on their probability of revealing faults.
This scenario assumes a reference group G that was already
used to train the ML algorithm. The algorithm parameters
are retrieved and reused to classify mutants of the untested
program u using the following steps:
• Sub-process 1: Compose the Reference group G of similar

programs.
• Task 2: Select the cost reduction technique C (mutant
classification based on ML).

• Decision D1: Answer is yes (results for C applied to G
are available).

• Sub-process 4: Retrieve the parameters S from the trained
ML algorithm.

• Sub-process 5: Apply the ML-based classifier to mutants
of the untested program u, obtaining results Ru.



Fig. 2. Composition of the reference group of tested programs.

• Sub-process 6 (optional): Assess results Ru, for example,
with respect to precision of the classifier, and with respect
to the full mutation score produced by test cases that are
adequate for the classified mutants.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

This section describes a proof-of-concept implementation of
SiMut. The prototype includes three main modules, Metrics
Collector, Clustering Calculator, and Mutation Score Cal-
culator. It is available at https://doi.org/10.6084/m9.figshare.
11787474.v1. Metrics Collector and Clustering Calculator are
Java programs that use an external tool to collect metrics and
an API to cluster information. Mutation Score Calculator is
written in SQL and C#. Details are provided next.

Metrics Collector: We use Analizo1 [47] to calculate metrics.
Analizo computes 10 project level metrics and 16 class level
metrics, including the CK metrics [9]. Metrics were gathered
in three steps. First, the programs to be analyzed are identified
and stored in a file system. Second, the metrics are collected
and stored in memory for each source file identified in step
one. Third, the metrics are stored in a relational database.

Clustering Calculator: The clustering process runs in four
steps. First, all values from the Collector module are normal-
ized in a linear fashion and placed into the interval [0, 1].
Second, the normalized values are formatted for the X-Means
algorithm [41]. Third, we use the X-means algorithm, as
implemented in the Weka API [17], to produce the clusters.
Fourth, the results are presented in terms of the clusters
generated and which programs belong to each cluster.

Mutation Score Calculator: Program mutation usually finds a
test that kills a mutant, then does not run that mutant against

1http://www.analizo.org/, accessed in February, 2020.

subsequent tests. However, we need to know all tests that kill
all mutants. This information allows us to create a complete
killing matrix for each program, where rows represent all the
mutants, columns represent all the tests, and a cell is marked
if that test killed that mutant.

We use a database of mutation-related artifacts (described in
Section V-B) to identify mutants generated by each operator,
and calculate mutation scores for each operator. For the
experiment described in Section V, the mutation scores of
each operator were calculated for the programs separately, for
each cluster created, and for the entire set of programs. This
allowed us to determine the best mutation operator (One-Op)
for each option (program, cluster, and total set). Note that our
database includes information about mutants and tests that kill
them; therefore, we do not re-run the mutants on the test sets.

V. PILOT STUDY

We ran a pilot study to demonstrate the feasibility of our
process, as well as to illustrate how results can be interpreted.
At this point, we do not analyze statistical significance because
of limitations on the data, as discussed in Section VI-A.

A. Study Overview

Our research goal is to determine if internal program
information (as measured by internal metrics) can be used
to predict mutation testing results. More specifically, for an
untested program u, we evaluate whether the best mutation
operators for programs similar to u are also the best operators
for u as well. We measure operators based on their mutation
scores. This study uses the same procedures as in our previous
study [12], but considers a substantially larger database of
mutation-related artifacts.

This study followed the SiMut process from Section III. We
selected CK metrics as the program abstraction, clustering as

https://doi.org/10.6084/m9.figshare.11787474.v1
https://doi.org/10.6084/m9.figshare.11787474.v1
http://www.analizo.org/


TABLE I
SUMMARY OF ARTIFACTS INCLUDED IN THE DATABASE.

Source # Programs # Tests # Mutants # Operators Operators Tool
[15] 29 18 4,161 15 LOI; SDL; AOIS; VDL; COI; AOIU; ROR; AOR; ODL; CDL; COR; ASRS;

AODU; AODS; COD
muJava

[38, 43] 9 303 1,347 10 AOIS; AOIU; AOR; ROR; LOI; AODS; COR; AODU; COD; COI muJava
[16] 13 11 2,418 18 JID; JSD; JSI; AOIS; AOIU; AOR; ASRS; COI; LOI; ROR; EAM; JDC; JTD;

JTI; IOD; AODU; COD; COR
muJava

[37] 21 105 10,147 30 EAM; EOC; IOD; IOR; IPC; ISI; JSD; JSI; PCI; OMR; PCC; ISD; PRV; OAN;
PMD; PPD; EMM; IOP; PCD; JID; ROR; UOI; SWA; LCR; NUF; ABS; TEX;
AOR; DEC; INC

muJava

[19] 211 934 19,851 10 DEC; SWA; AOR; ABS; INC; UOI; NUF; ROR; LCR; TEX Bacterio

the similarity calculation technique, and one-op [48] as the
mutation cost reduction technique.

B. Subject Programs

We used Java programs from previous mutation-related
research. We used our previous Systematic Literature Re-
view [42] to find subject programs that are available online. We
also contacted all authors of studies that used Java programs
to request access to the artifacts from their experiments.

After analyzing these materials, we had a collection of
artifacts that included programs, mutants, mutation operators
used, test cases, and information on which tests killed which
mutants. We had to omit artifacts that did not have enough
information for our research.

Table I summarizes our subject artifacts, as drawn from six
prior experiments [15, 16, 19, 37, 38, 43]. These artifacts are
available at https://tinyurl.com/mutation2020.

The database includes 283 Java programs, most of which
have a single class. We used 37,924 first-order mutants gen-
erated from the mutation operators listed in the Operators
column by the muJava [33] and Bacterio [44] tools. We also
used 1,371 test cases, which are linked to the mutants they
killed. The studies indicated the tests were mutation-adequate,
so mutants not killed are assumed to be equivalent. Disregard-
ing duplicate programs, the database includes 218 items.

As shown in Table I, the 15 mutation operators in muJava
were applied to the 29 programs in study [15]. However,
the next row shows that only 10 muJava operators were
applied to the 9 programs. In general, different programs and
different studies might use different mutation operators within
the same dataset. This issue imposes restrictions to the reuse of
historical information and is further discussed in Section VI.

C. Used Metrics

Chidamber and Kemerer proposed six metrics for
object-oriented software [9]. Table II defines the metrics, and
Table III shows the values gathered using the Analizo tool for
some of the programs2. Given that most programs only have
a single class, we determined that only the ACCM and RFC
metrics were meaningful. The other CK metrics are related to
class hierarchies and structures that are not common in our
subject programs. Impacts of this 2-value (ACCM and RFC)
representation of each program is discussed in Section VI.

2Metrics for other programs are omitted for space but included in the
repository https://tinyurl.com/mutation2020.

D. Program Sets and Clusters

We separated the programs into three sets, based on which
mutation operators were applied to them. This allowed us
to combine programs used in previous studies, and to create
groups of programs that are homogeneous in terms of applied
mutation operators. For instance, consider a set of programs
B = {P1, P2, P3, P4, P5}. If the LOI and AOR operators
were applied to P1, P2 and P5, and the AOR and ROR
operators were applied to P1, P3 and P4, we created two sets
of programs B1 = {P1, P2, P5} and B2 = {P1, P3, P4}. Then,
for B1 we considered mutants generated by LOI and AOR, and
for B2 we considered mutants generated by AOR and ROR.
The sizes of the program sets are shown in the second column
of Table IV.

The numbers of programs per cluster formed by the
X-Means algorithm are shown in the # Programs per Cluster
columns in Table IV. Two clusters were formed for B1, 3 for
B2, and 5 for B3. The numbers of mutation operators applied
to each program set are shown in the # Operators column and
the mutation operators are listed in the Operators column.

E. Summary of Results

Table V summarizes the results of this pilot study. R1 and
R2, defined below, may have positive (V), negative (X), or
neutral results (N). Note that, to achieve such results, from
each set (B1, B2, B3), we took each program as an untested
program u (for experimental purposes only), and computed
the best mutation operators for u, for the cluster to which u is
associated with (except u), for the other clusters formed for the
program set (called remaining clusters), and for all programs
in the program set.
• R1: We compute R1 to evaluate if the cluster of similar
programs is a good predictor of the best mutation operator
for an untested program u, when compared to clusters of
programs that are less similar to u. Ou is the set of best
operators for u, and OCi is the set of best operators for
each cluster i. R1 evaluates the intersection of Ou and OCi,
considering the cluster that u is associated with, and the
remaining clusters formed from the program set.

• R2: We next compute R2 to evaluate if the cluster of
similar programs is a good predictor of the best mutation
operator for an untested program u, when compared to the
entire set of programs. OPu is the set of best operators
for the entire set of programs. R2 evaluates the intersection
between the sets Ou and OPu, then compares this result

https://tinyurl.com/mutation2020
https://tinyurl.com/mutation2020


TABLE II
CK METRICS COLLECTED BY ANALIZO.

ACCM (Average of Cyclomatic
Complexity per Method):

Used as substitute to WMC (Weighted Methods per Class), consists of summing up all separate paths within a method
(cyclomatic complexity proposed by McCabe [32]), and then summing up all method-specific complexities.

CBO (Coupling between Object
Classes):

Corresponds to the number of interactions of a chosen class with other classes at the level of methods and variables.

DIT (Depth of Inheritance Tree): Measures the depth of the inheritance tree of a given class.
LCOM4 (Lack of Cohesion of Meth-
ods version 4)

The methods are organized in pairs, say m1 and m2. The number of class attributes that m1 and m2 have in common
are counted, then the number of class attributes m1 and m2 do not have in common are counted. LCOM4 is the
difference between those counts.

NOC (Number of Children): Count the number of subclasses of a class.
RFC (Response for Class): The number of methods inside the class added to the number of external methods used by the class.

TABLE III
CK METRICS FROM A SUBSET OF PROGRAMS.

CK Metrics
Source Program LOC ACCM CBO DIT LCOM4 NOC RFC
[38, 43] Bisec 24 2 0 0 3 0 5
[38, 43] BubCorrecto 35 1.57 0 0 2 0 14
[38, 43] Find 44 3.25 0 0 1 0 11
[38, 43] Fourballs 28 2.5 0 0 1 0 11
[38, 43] Mid 41 1.44 0 0 4 0 18
[38, 43] Triangulo 54 3.6 0 1 2 0 16
[38, 43] PluginTokenizer 103 1.62 0 1 6 0 30
[38, 43] Ciudad 262 2.65 0 0 1 0 55
[38, 43] IgnoreList 36 2.66 0 0 1 0 7

[15] BoundedQueue 78 2 0 0 1 0 26
[15] countPositive 63 3.5 0 0 2 0 2
...

TABLE IV
PROGRAM SETS AND CLUSTERS.

Program # # Programs per Cluster # Operators
Sets Programs C1 C2 C3 C4 C5 Operators
B1 36 17 19 10 AOIS; AOIU; AOR; CDL; COI; COR; LOI; ROR; SDL; VDL
B2 82 47 29 6 10 ABS; AOR; DEC; INC; LCR; NUF; ROR; SWA; TEX; UOI
B3 120 22 74 13 3 8 5 AOR; LOI; NUF; ROR; VDL

TABLE V
SUMMARY OF RESULTS.

Results Program Sets
B1 B2 B3

R1 V(14), N(10), X (12) V(0), N(30), X(52) V(0), N(90), X(30)
R2 V(14), N(22), X (0) V(0), N(82), X(0) V(1), N(110), X(9)

with OCu, which is the set of best operators for the cluster
u is associated with.
For both R1 and R2, positive (P) and neutral (N) results

favor the similarity approach, given that the cluster was a
predictor at least as good as the other clusters, or at least as
good as the entire set of programs. Note that positive results
regarding R2 motivate the evolution of the research, since
one might consider just a subset of programs to calculate cost
reduction parameters for applying a particular mutation cost
reduction technique.

In this pilot study, for B1 the clusters were good predictors
of best mutation operators in 67% (24/36) of the cases when
compared with the other clusters, and in 100% (36/36) of the
cases when compared with all programs. These percentages
were 37% (30/82) and 100% (82/82) for B2, and 75% (90/120)
and 93% (111/120) for B3.

As we are trying to show feasibility as well as describing
how the approach works via example, we did not compute
significance in this pilot study, nor compare results with

our prior work [12]. Next we discuss issues that should be
handled while identifying or finding artifacts for this type of
experiment or when applying this approach in practice.

VI. DISCUSSIONS AND LIMITATIONS

This section discusses issues related to the selection and
preparation of artifacts and techniques to be used in an
approach such as the one introduced by SiMut. We highlight
three issues: (i) how representative the set of programs in the
population is, (ii) how comprehensive the mutation operator
set is, and (iii) the tools used to generate the mutants.

(i) How representative the set of programs in the population
is: We used programs that had been used in previous studies
[15, 16, 19, 37, 38, 43]. Despite the relatively large number
of programs (218), they are small and simple, and most
did not use OO-specific constructs such as class hierarchies
and composition. We only used programs that came with
mutants whose operators were identified and test cases that
killed all non-equivalent mutants. These constraints make it



difficult to create a representative population of programs, and
it is unlikely our programs were. In the future, we hope to
either select metrics that are appropriate for the population of
programs, or create a larger and more representative population
of programs.

(ii) How comprehensive the mutation operator set is: Ques-
tions such as “Are there enough operators?”, or “Are there
too few operators?” should be considered when selecting the
cost reduction technique to use. The set of operators should be
aligned with the intent of the technique. For instance, if using
sufficient operators [4], we should analyze many operators. In
our pilot study, the programs used relatively few operators,
making it harder to explore different scenarios, for example,
trying subsets of sufficient operators of varying sizes. In this
study, the same few operators (ROR and SDL) dominated.

(iii) The tools used to generate mutants: The mutation oper-
ators implemented in each tool vary, and sometimes vary in
different releases of the same tool. The details of how some
operators are implemented also vary, depending on design and
implementation decisions.

In this context, Kintis et al. [25] compared the operators
from three mutation tools for Java programs: PIT, muJava and
Major. For example, consider Table VI. PIT implements the
Math operator (M ) as described in the first row. muJava and
Major implements arithmetic mutation using several individual
operators (AORB, SOR, and LOR in muJava, and AOR, SOR
and LOR in Major). Kintis et al. [25] also found differences in
the same operator. For example, conditional operator replace-
ment (COR) for muJava and Major is illustrated in Table VI.

TABLE VI
MUTATION OPERATORS IMPLEMENTED IN DIFFERENT TOOLS (ADAPTED

FROM KINTIS ET AL. [25])

Operator Description

PIT M
{(op1, op2)|(op1, op2) ∈ {(+,−), (−,+), (∗, /),
(/, ∗), (%, ∗), (&, |), (|,&), (∧,&), (<<,>>),

(>>,<<), (>>>,<<)}}

muJava

AORB {(op1, op2) |op1, op2 ∈ {+,−, ∗, /,%} ∧ op1 6= op2}
SOR {(op1, op2) |op1, op2 ∈ {>>,>>>,<<} ∧ op1 6= op2}
LOR {(op1, op2) |op1, op2 ∈ {&, |,∧} ∧ op1 6= op2}
COR {(op1, op2) |op1, op2 ∈ {&&, ||,∧} ∧ op1 6= op2}

Major

AOR {(op1, op2) |op1, op2 ∈ {+,−, ∗, /,%} ∧ op1 6= op2}
SOR {(op1, op2) |op1, op2 ∈ {>>,>>>,<<} ∧ op1 6= op2}
LOR {(op1, op2) |op1, op2 ∈ {&, |,∧} ∧ op1 6= op2}

COR
{(&&, op2), (||, op2)|op1 ∈ {==, LHS,RHS, false} ,
op2 ∈ {! =, LHS,RHS, true}

These differences in mutation operators may mean that
effective tests for mutants created by one tool may not be
effective for mutants created from the same operators in a
different tool. Thus, the tools used to create the mutants in
the program population must be carefully considered.

A. Limitations

SiMut is a conceptual framework that currently has one
proof-of-concept implementation. The SiMut framework has
three variables: (1) the program abstraction, (2) the similarity

calculation, and (3) the cost reduction technique. Our imple-
mentation and pilot study used internal metrics for (1), cluster-
ing for (2), and one-op mutation for (3). Other configurations
can be used for more extensive experimentation.

SiMut can also be expensive to use. Specific costs include
executing SiMut’s sub-processes to generate the reference
group of programs G, and computing the cost reduction
technique for G. However, computing cost reduction for an
entire set of programs, and obtaining cost reduction parameters
to apply to a new, untested program may be even more costly.

VII. RELATED WORK

Despite a comprehensive analysis of the literature on soft-
ware testing [21, 40, 42], we were not able to find prior
approaches that use historical information to reduce the cost of
applying mutation testing. This section describes recent papers
that explore program similarity to automatically classify equiv-
alent and redundant mutants [23, 24, 39], use internal program
characteristics to reduce the cost of mutation testing [6, 8], and
to correlate such characteristics with program testability [11].

Several authors used program similarity to automatically
classify equivalent [23, 24, 39] and redundant mutants [24, 39].
At the binary code level, Papadakis et al. [39] developed
Trivial Compiler Equivalence (TCE), which uses a simple diff
program to check equivalence between an original program
and its mutants, and to check for redundancy among mutants.
If the binary code is identical, the mutant is confirmed to be
equivalent or redundant.

A recent evaluation of TCE [24] considered programs
written in Java and C. For each language, two sets of programs
were analyzed (6 small, and 6 medium or large Java programs;
and 18 small, and 6 medium and large C programs). On
average, for the first sets of programs, for which ground-truth
information was available (that is, all equivalent mutants were
manually classified), TCE identified 30% of the equivalent
mutants for C and and 54% for Java. For medium and large
programs, considering all mutants, TCE classified 5.7% of
Java mutants and 7.4% of C mutants as equivalent, and 5.4%
of Java mutants and 21% of C mutants as duplicate. The study
did not report the true percent of equivalent and duplicate
mutants for medium and large programs, as that would have
taken extensive (and time-consuming) hand analysis.

At the source code level, Kintis and Malevris [23] explored
the concept of mirrored mutants; if two or more mutants
are present in similar code fragments, and particularly in
identical code locations inside these fragments, defining one
of those mutants as equivalent to the original program may
imply that the others are also equivalent. The authors used
a clone detection tool to detect the mirrored mutants. An
evaluation with six small Java programs resulted in average
49% automatically classified equivalent mutants, with preci-
sion ranging from 88% to 100%. Also at the source code
level, Ji et al. [20] used a domain reduction technique to
compute a distance value between two mutants to classify
mutants into specific clusters. They experimented with 12
mutation operators from the muJava tool [28] and one small



Java program. The predefined number of algorithm executions
did not allow for precise extraction of results. In our work,
sub-processes 1.1, 1.2, and 1.3 in Figure 2 can handle either
source code or binary code as program abstractions to calculate
similarity. As opposed to previous research [20, 23], SiMut
does not compute the similarity between mutants of a single
program; instead, it computes the similarity among various
programs.

Chekam et al.’s FaRM approach [6, 8] relies on internal
program information and supervised ML algorithms to au-
tomatically classify mutants that lead to more effective test
cases in terms of probability of revealing real unknown faults.
FaRM uses 28 program features to train the classifier. The
features are derived from the control-flow graph, the abstract
syntax tree, and the mutation type. Chekam et al. found that
FaRM outperforms random mutation and selective mutation
in terms of fault revealing ability, ranging from 23% to 34%
more revealed faults. When compared with our work, FaRM
uses program features that encompasses complexity elements,
which are also reflected by internal metrics. As described in
Section III-C, our approach could be combined with FaRM;
from a large set of input programs, SiMut could find the
most similar programs to be used during training, with the
expectation of achieving more precise mutant classification.

Cruz and Eler [11] explored program clustering based on
CK metrics to estimate program testability. They studied
Java programs and generated clusters using the Expectation
Maximization (EM) algorithm, based on the CBO, LCOM,
RFC, and WMC metrics. The testability of a class was char-
acterized as high or low, according to the structural coverage
and mutation score produced by the associated test sets. The
precision of the EM algorithm was assessed with the kNN (k
Nearest Neighbors) algorithm [1]. In particular, Cruz and Eler
used k = 3 and in 81.5% of cases, kNN confirmed the clusters
produced by the EM algorithm precisely grouped classes with
the same level of testability.

VIII. CONCLUSIONS AND FUTURE WORK

This paper introduced the SiMut conceptual framework to
support cost reduction of mutation testing based on histori-
cal data and program similarity. Although numerous papers
have reported success using cost reduction techniques when
averaged over many programs, Kurtz et al. [26] demonstrated
that, although the techniques work well on average, they do
not work well on individual programs. They suggested the
idea of individualized cost reduction, where the cost reduction
technique is tailored to individual programs. This leaves the
problem: How do we know which cost reduction technique
will work well with a given program before we test it?
Thus, the key goal of SiMut is to support the application
of mutation testing to a new, untested program u based on
knowledge obtained from testing programs that are similar to
u. The framework has three main variation points: the program
abstraction that represents the programs, the approach to be
used to calculate similarity among programs, and the mutation
cost reduction technique that to apply to u.

We demonstrated the feasibility of implementing and run-
ning SiMut with a proof-of-concept implementation and a
pilot study. We used internal program metrics as the program
abstraction, clustering as the similarity calculation approach,
and one-op mutation as the cost reduction technique. We
also presented some usage scenarios, and discussed some
issues related to the use of the framework, focusing on the
composition of a representative dataset to properly explore the
potential of SiMut.

For future work, the implementation can be reused and
customized for other experiments, including replications, and
for properly supporting the evolution of SiMut. We also plan
to analyze how the mechanisms SiMut uses can be used in
other contexts. Examples are the metrics collector and the
clustering calculator, which may also be used for program
analysis purposes. Last but not least, we would also like to
compare programs at the method level.
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