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This document provides a brief description of the muJava class mutation operators, which were updated
currently for version II of the tool. The class mutation operators are classified into four groups, based on the
language features that are affected. The first three groups are based on language features that are common
to all OO languages. The last group includes OO features that are Java-specific.

1. Encapsulation

2. Inheritance

3. Polymorphism

4. Java-Specific Features

Our strategy for developing mutation operators is to handle all the possible syntactic changes for OO
features. Some previous mutation operators have been developed based on experience of testers. There is so
little reported data on testing OO features that this method is not possible at this time.

Generally, all the behaviors of mutation operators fall under one of the three categories: (1) delete,
(2) insert, and (3) change a target syntactic element. This paper reports on mutation operators that
implement all three kinds of behaviors, within Java’s syntactic rules.

This section first describes each operator informally, then gives an example mutant that can be created
from the operator. Several operators were taken from the previous research into OO mutation, and the
relationships between our operators and the previous operators are detailed in the next section.
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Language Feature Operator Description

Encapsulation AMC Access modifier change

IHD Hiding variable deletion
IHI Hiding variable insertion
IOD Overriding method deletion
IOP Overriding method calling position change

Inheritance IOR Overriding method rename
ISI super keyword insertion
ISD super keyword deletion
IPC Explicit call to a parent’s constructor deletion

PNC new method call with child class type
PMD Member variable declaration with parent class type
PPD Parameter variable declaration with child class type
PCI Type cast operator insertion

Polymorphism PCC Cast type change
PCD Type cast operator deletion
PRV Reference assignment with other comparable variable
OMR Overloading method contents replace
OMD Overloading method deletion
OAC Arguments of overloading method call change

JTI this keyword insertion
JTD this keyword deletion
JSI static modifier insertion
JSD static modifier deletion

Java-Specific JID Member variable initialization deletion
Features JDC Java-supported default constructor deletion

EOA Reference assignment and content assignment replacement
EOC Reference comparison and content comparison replacement
EAM Acessor method change
EMM Modifier method change

Table 1: Mutation Operators for Inter-Class Testing

1 Encapsulation

In our experience in teaching OO software development and consulting with companies that rely on OO
software, we have observed that the semantics of the various access levels are often poorly understood, and
access for variables and methods is often not considered during design. This can lead to careless decisions
being made during implementation. It is important to note that poor access definitions do not always cause
faults initially, but can lead to faulty behavior when the class is integrated with other classes, modified, or
inherited from.

• AMC – Access modifier change: The AMC operator changes the access level for instance variables
and methods to other access levels. The purpose of the AMC operator is to guide testers to generate
test cases that ensure that accessibility is correct.

Original Code AMC Mutants
public Stack s; ∆ private Stack s;

∆ protected Stack s;
∆ Stack s;
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2 Inheritance

Although a powerful and useful abstraction mechanism, incorrect use of inheritance can lead to a number
of faults. We define five mutation operators to try to test the various aspects of using inheritance, covering
variable shadowing, method overriding, the use of super, and definition of constructors.

Variable shadowing can cause instance variables that are defined in a subclass to shadow (or hide)
member variables of the parent. However, this powerful feature can cause an incorrect variable to be
accessed. Thus it is necessary to ensure that the correct variable is accessed when variable shadowing is
used, which is the intent of the IHD and IHI mutation operators.

• IHD – Hiding variable deletion: The IHD operator deletes a hiding variable, a variable in a
subclass that has the same name and type as a variable in the parent class. This causes references to
that variable to access the variable defined in the parent (or ancestor). This mutant can only be killed
by a test case that is able to show that the reference to the parent variable is incorrect.

Original Code IHD Mutant
class List { class List {

int size; int size;
... ... ... ...

} }
class Stack extends List { class Stack extends List {

int size; ∆ // int size;
... ... ... ...

} }

• IHI – Hiding variable insertion: The IHI operator inserts a hiding variable into a subclass. It is
a reverse case of IHD. By inserting a hiding variable, two variables (a hiding variable and a hidden
variable) of the same name become to be exist. Newly defined and overriding methods in a subclass
reference the hiding variable although inherited methods reference the hidden variable as before.

Original Code IHI Mutant
class List { class List {

int size; int size;
... ... ... ...

} }
class Stack extends List { class Stack extends List {

∆ int size;
... ... ... ...

} }

The ability of a subclass to override a method declared by an ancestor allows a class to modify the behavior
of the parent class. When there are overriding methods, it is important for testers to ensure that a method
invocation actually invokes the intended method.

• IOD – Overriding method deletion: The IOD operator deletes an entire declaration of an over-
riding method in a subclass so that references to the method uses the parent’s version. The mutant
act as if there is no overriding method for the method.

Original Code IOD Mutant
class Stack extends List { class Stack extends List {

... ... ... ...
void push (int a) { ... } ∆ // void push (int a) { ... }

} }
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• IOP – Overridden method calling position change: Sometimes, an overriding method in a
child class needs to call the method it overrides in the parent class. This may happen if the parent’s
method uses a private variable v, which means the method in the child class may not modify v directly.
However, an easy mistake to make is to call the parent’s version at the wrong time, which can cause
incorrect state behavior. The IOP operator moves calls to overridden methods to the first and last
statements of the method and up and down one statement.

Original Code IOP Mutant
class List { class List {

... ... ... ...
void SetEnv() void SetEnv()

{size = 5; ... } {size = 5; ... }
} }

class Stack extends List { class Stack extends List {
... ... ... ...
void SetEnv() { void SetEnv() {

super.SetEnv(); ∆ size = 10;
size = 10; ∆ super.SetEnv();

} }
} }

• IOR – Overridden method rename: The IOR operator is designed to check if an overriding method
adversely affects other methods. Consider a method m() that calls another method f(), both in a class
List. Further, assume that m() is inherited without change in a child class Stack, but f() is overridden
in Stack. When m() is called on an object of type Stack, it calls Stack’s version of f() instead of List’s
version. In this case, Stack’s version of f() may have an interaction with the parent’s version that has
unintended consequences. The IOR operator renames the parent’s versions of these methods so that
the overriding cannot affect the parent’s method. It models the situation that the overriding method
is declared as a new method with different name in the child class.

Original Code IOR Mutant
class List { class List {

... ... ... ...
void f() { ... } ∆ void f’() { ... }
void m() {... f(); ... } ∆ void m() {... f’(); ... }

} }

class Stack extends List { class Stack extends List {
... ... ... ...
void f() { ... } void f() { ... }
void g() {... f(); ... } ∆ void g() {... f(); ... }

} }

The super keyword is used to access parent’s members (variables or methods) within the child class. When
there is variable shadowing or method overriding, use of the super keyword should be careful because it
change the reference to variables or methods from the child class to super class.

• ISI – super keyword insertion: The ISI operator inserts the super keyword so that a reference to the
variable or the method goes to the overridden instance variable or method. The ISI operator is designed
to ensure that hiding/hidden variables and overriding/overridden methods are used appropriately.
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Original Code ISK Mutant
class Stack extends List { class Stack extends List {

... ... ... ...
int MyPop( ) { int MyPop( ) {

... ... ... ...
return val*num; ∆ return val*super.num;

} }
} }

• ISD – super keyword deletion: The ISD operator deletes occurrences of the super keyword so that
a reference to the variable or the method goes to the overriding instance variable or method. It is a
reverse case of the ISI.

Original Code ISK Mutant
class Stack extends List { class Stack extends List {

... ... ... ...
int MyPop( ) { int MyPop( ) {

... ... ... ...
return val*super.num; ∆ return val*num;

} }
} }

Although constructors are not inherited the way other methods are, a constructor of the superclass is invoked
when subclasses are instantiated. When we create new objects of a derived class, the default constructor
(no arguments) for the parent class is automatically called first, then the constructor of the derived class is
called. However, the subclass can use the super keyword to call a specific parent class constructor. This is
usually done to pass arguments to one of the parent class’s non-default constructors.

• IPC – Explicit call of a parent’s constructor deletion:

The IPC operator deletes super constructor calls, causing the default constructor of the parent class
to be called. To kill mutants of this type, it is necessary to find a test case for which the parent’s
default constructor creates an initial state that is incorrect.

Original Code IPC Mutant
class Stack extends List { class Stack extends List {

... ... ... ...
Stack (int a) { Stack (int a) {

super (a); ∆ // super (a);
... ... ... ...

} }
} }

3 Polymorphism

Object references can have different types with different executions. That is, object references may refer to
objects whose actual types differ from their declared types. The actual type can be from any type that is
a subclass of the declared type. Polymorphism allows the behavior of an object reference to be different
depending the actual type. Therefore, it is important to identify and exercise the program with all possible
type bindings. The polymorphism mutation operators are designed to ensure this type of testing.

• PNC – new method call with child class type: The POI operator changes the instantiated type
of an object reference. This causes the object reference to refer to an object of a type that is different
from the declared type. In the example below, class Parent is the parent of class Child.
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Original Code PNC Mutant
Parent a; Parent a;
a = new Parent(); ∆ a = new Child();

• PMD – Member variable declaration with parent class type: The PMD operator changes the
declared type of an object reference to the parent of the original declared type. The instantiation will
still be valid (it will still be a descendant of the new declared type). To kill this mutant, a test case
must cause the behavior of the object to be incorrect with the new declared type. In the example
below, class Parent is the parent of class Child.

Original Code PMD Mutant
Child b; ∆ Parent b;
b = new Child(); b = new Child();

• PPD – Parameter variable declaration with child class type: The PPD operator is the same
as the PMD, except that it operates on parameters rather than instance and local variables. It changes
the declared type of a parameter object reference to be that of the parent of its original declared type.
In the example below, class Parent is the parent of class Child.

Original Code PPD Mutant
boolean equals (Child o) { ... } ∆ boolean equals (Parent o) { ... }

• PCI – Type cast operator insertion: The PCI operator changes the actual type of an object
reference to the parent or child of the original declared type. The mutant shows different behavior
when the object to be casted has hiding variables or overriding methods.

Original Code PCI Mutant
Child cRef; Child cRef;
Parent pRef = cRef; Parent pRef = cRef;
pRef.toString(); ∆ ((Child)pRef).toString();

• PCD – Type cast operator deletion: The PCD operator deletes type casting operator. It models
a reverse case of PCI.

Original Code PPD Mutant
Child cRef; Child cRef;
Parent pRef = cRef; Parent pRef = cRef;
((Child)pRef).toString(); ∆ pRef.toString();

• PCC – Cast type change: The PCC operator change the type that a variable is to be cast into.
The change is occurred with subclasses or ancestors of the type.

Original Code PPD Mutant
((Parent)ref).toString(); ∆ ((Child)ref).toString();

• PRV – Reference assignment with other compatible type: Object references can refer to
objects of types that are descendants of its declared type. The PRV operator changes operands of
a reference assignment to be assigned to objects of subclasses. In the example below, obj is of type
Object, and in the original code it is given an object of type String. In the mutated code, it is given
an object of type Integer.

Original Code PRV Mutant
Object obj; Object obj;
String s = “Hello”; String s = “Hello”;
Integer i = new Integer(4); Integer i = new Integer(4);
obj = s; ∆ obj = i;
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Method overloading allows two or more methods of the same class to have the same name as long as they
have different argument signatures. Just as with method overriding, it is important for testers to ensure that
a method invocation invokes the correct method with appropriate parameters. Three mutation operators
are defined to test various aspects of method overloading.

• OMR – Overloading method contents change: The OMR operator is designed to check that
overloaded methods are invoked appropriately. The OMR operator replaces the body of a method
with the body of another method that has the same name. This is accomplished by using the keyword
this.

Original Code OMR Mutant
class List { class List{

... ... ... ...
void Add (int e) { ... ... } void Add (int e) { ... ... }
void Add (int e, int n) { void Add (int e, int n) {

... ... ∆ this.Add(e);
} }

} }

• OMD – Overloading method deletion: The OMD operator deletes overloading method declara-
tions, one at a time in turn. If the mutant still works correctly without the deleted method, there may
be an error in invoking one of the overloading methods; the incorrect method may be invoked or an
incorrect parameter type conversion has occurred. The POD operator ensures coverage of overloaded
methods, that is, all the overloaded methods must be invoked at least once.

Original Code OMD Mutant
class Stack extends List { class Stack extends List {

... ... ... ...
void Push (int i) { ... } ∆ // void Push (int i) { ... }
void Push (float i) { ... } void Push (float i) { ... }

} }

• OAC – Argument of overloading method change: The OAC operator changes the order or the
number of the arguments in method invocations, but only if there is an overloading method that can
accept the new argument list. If there is one, the OAC operator causes a different method to be called,
thus checking for a common fault in the use of overloading.

Original Code OAC Mutants
s.Push (0.5, 2); ∆ s.Push (2, 0.5);

∆ s.Push (2);
∆ s.Push (0.5);
∆ s.Push ();

4 Java-Specific Features

Some object-oriented features are not common to all object-oriented languages. This group of operators
attempt to ensure correct use of such features supported in Java. Also, mistakes that a programmer often
makes when writing object-oriented software are considered here.

• JTI – this keyword insertion: The JTI operator inserts the keyword this. The JTD operator
checks if the member variables are used correctly if they are hidden by a method parameters by
replacing occurrences of “this.x” with “x” when “x” is both a parameter and an instance variable.
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Original Code JTD Mutant
class Stack { class Stack {

int size; int size;
... ... ... ...
void setSize (int size) { void setSize (int size) {

this.size=size; ∆ this.size=this.size;
} }

} }

• JTD – this keyword deletion: The JTD operator deletes uses of the keyword this. It models a
reverse case of JTI.

Original Code JTD Mutant
class Stack { class Stack {

int size; int size;
... ... ... ...
void setSize (int size) { void setSize (int size) {

this.size=size; ∆ size=size;
} }

} }

• JSI – static modifier insertion: The JSI operator adds the static modifier to change instance
variables to class variables. It is designed to validate behavior of instance and class variables.

Original Code JSC Mutant
public int s = 100; ∆ public static int s = 100;

• JSD – static modifier deletion: The JSD operator removes the static modifier to change class
variables to instance variables. It models a reverse case of JSI.

Original Code JSC Mutant
public static int s = 100; ∆ public int s = 100;

• JID – Member variable initialization deletion: Instance variables can be initialized in the variable
declaration and in constructors for the class. The JID operator removes the initialization of member
variables in the variable declaration so that member variables are initialized to the appropriate default
values of Java. This is designed to ensure correct initializations of instance variables.

Original Code JID Mutant
class Stack { class Stack {

int size = 100; ∆ int size;
... ... ... ...
Stack() { ... ... } Stack() { ... ... }

} }

• JDC – Java-supported default constructor deletion: Java creates default constructors if a class
contains no constructors. The JDC operator forces Java to create a default constructor by deleting
the implemented default constructor. It is designed to check if the user-defined default constructor is
implemented properly.

Original Code JDC Mutant
class Stack { class Stack {

... ... ... ...
Stack() { ... ... } ∆ // Stack() { ... ... }

} }
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• EOA – Reference assignment and content assignment replacement: Object references in Java
are always through pointers. Although pointers in Java are typed, which is considered to help prevent
certain types of faults, there are still mistakes that programmers can make. One common mistake
is that of using an object reference instead of the contents of the object the pointer references. The
EOA operator replaces an assignment of a pointer reference with a copy of the object, using the Java
convention of a clone() method. The clone() method duplicates the contents of an object, creating and
returning a reference to a new object.

Original Code EOA Mutant
Stack s1, s2; Stack s1, s2;
s1 = new Stack(); s1 = new Stack();
s2 = s1; ∆ s2 = s1.clone();

• EOC – Reference comparison and content comparison replacement: The EOC operator
considers another common mistake with objects and object references. Comparisons of object references
check whether the two references point to the same data object in memory. To support the comparison
of the contents of objects, Java suggests the convention of an equals() method, which should take an
object of type java.lang.Object as a parameter and return a boolean value; true if the parameter
has the same value as the reference object. This mutation operator targets faults programmers can
easily make when confusing the reference of an object and its state.

Original Code EOC Mutant
Integer i1 = new Integer (7); Integer i1 = new Integer (7);
Integer i2 = new Integer (7); Integer i2 = new Integer (7);
boolean b = (i1==i2); ∆ boolean b = (i1.equals (i2));

• EAM – Accessor method change:

The EAM operator changes an accessor method name for other compatible accessor method names,
where compatible means that the signatures are the same. This type of mistake occurs because classes
with multiple instance variables may wind up having many accessor methods with the same signature
and very similar names. As a result, programmers easily get them confused. To kill this mutant a test
case will have to produce incorrect output as a result of calling the wrong method.

Original Code EAM Mutant
point.getX(); ∆ point.getY();

• EMM – Modifier method change: The EMM operator does the same as EMM, except it works
with modifier methods instead of accessor methods.

Original Code EMM Mutant
point.setX (2); ∆ point.setY (2);
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