
A SOFTWARE ARCHITECTURE-BASED TESTING TECHNIQUE

By
Zhenyi Jin

A Dissertation
Submitted to the
Graduate Faculty

of
George Mason University
In Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

____________________________ A. Jefferson Offutt, Dissertation Director
Chairman

_____________________________ Paul Ammann

_____________________________ X. Sean Wang

_____________________________ Elizabeth White

_____________________________ Stephen G. Nash, Associate Dean for
 Graduate Studies and Research

_____________________________ Lloyd J. Griffiths, Dean, School of
 Information Technology and Engineering

Date: __________________ Summer 2000
 George Mason University

 Fairfax, Virginia

i

A SOFTWARE ARCHITECTURE-BASED TESTING TECHNIQUE

A dissertation submitted in partial fulfillment of the requirements for the Doctor of
Philosophy degree in Information Technology at George Mason University

By

Zhenyi Jin
Master of Computer Science

George Mason University, 1994

Director: A. Jefferson Offutt, Associate Professor
Department of Information and Software Engineering

Summer Semester 2000
George Mason University

Fairfax, Virginia

ii

COPYRIGHT 2000 ZHENYI JIN
ALL RIGHTS RESERVED

iii

DEDICATION

This dissertation is lovingly dedicated to

iv

ACKNOWLEDGMENTS

I want to thank

v

Table of Contents

TABLE OF CONTENTS..V

CHAPTER 1INTRODUCTION..1
1.1 General Introduction ...1
1.2 Goals and Scope of This Research..5
1.3 Solution Strategy...7
1.4 Unique Contributions of the Research ...9
1.5 Dissertation Organization ..9

CHAPTER 2 BACKGROUND AND RELATED WORK ...10
2.1 Background ..10
2.2 Petri Nets..21
2.3 Software Testing ..26
2.4 Issues in Software Architecture-Based Testing ...28
2.5 General Properties to Be Analyzed and Tested at the Architectural Level29
2.6 Related Work ...32

CHAPTER 3A SOFTWARE ARCHITECTURE-BASED TESTING TECHNIQUE...............35
3.1 Basic Definitions..36
3.2 Architecture-based Testing Technique for General ADLs ..39
3.3 Architecture-based Testing Criteria ...57
3.4 Architecture Coverage Analysis ..59

CHAPTER 4 TESTING TECHNIQUE APPLIED TO WRIGHT ..62
4.1 ADL Wright in Brief..63
4.2 Mapping Wright to Interface Connectivity Graphs (ICG)...64
4.3 Mapping Wright to Behavior Graph (BG)...66
4.4 ICG and BG Relations ...95
4.5 Generating Test Requirements and Test Cases..97
4.6 Discussion ..105

CHAPTER 5 PROTOTYPE TOOL...106
5.1 System Description ..106
5.2 Assumptions and Design Structure ...107

CHAPTER 6 VALIDATION METHOD AND AN APPLIATION EXAMPLE124
6.1 Experiment Design..125
6.2 Experimental Results ..135
6.3 Conclusion ..138

vi

CHAPTER 7 CONTRIBUTIONS AND FUTURE RESEARCH ...139

APPENDIX A WRIGHT LANGUAGE IN BNF..142
APPENDIX B WRIGHT PROCESSES AND EVENTS ..147
APPENDIX C SUBJECT PROGRAM WRIGHT DESCRIPTIONS AND TESTS..............148
APPENDIX D BEHAVIOR GRAPHS OF THE SUBJECT SYSTEM..................................162

REFERENCES...169

vii

List of Figures

Figure 1-1 The Solution Topology...8
Figure 2-1 A Petri Net Example ..22
Figure 2-2 A Petri Net with Marking...24
Figure 2-3 A Petri Net After Firing ...24
Figure 2-4 Petri Net after Second Firing..25
Figure 3-1 Testing Technique Procedures ...36
Figure 3-2 Architecture Aspects ...38
Figure 3-3 An ICG Example..43
Figure 3-4 An Example of Component_Internal_Transfer_Path...52
Figure 3-5 An Example of Component Internal Ordering Rules...53
Figure 3-6 An Example o f Connector_Internal_Transfter_Path...53
Figure 3-7 An Example of Connector_Internal_Ordering_Rules..54
Figure 3-8 An Example of N_C_Path..55
Figure 3-9 An Example of C_N_Path..55
Figure 3-10 An Example of Direct_Component_Path...56
Figure 3-11 An Example of Indirect_Component_Path ..56
Figure 3-12 An Example of Conneted_Components_Path..57
Figure 3-13 Coverage Levels...59
Figure 4-1 Application Procedures ..62
Figure 4-2 Internal Choice Arcs...68
Figure 4-3 External Choice Arcs ...69
Figure 4-4 A Behavior Graph Example ...72
Figure 4-5 An I-path Example ...76
Figure 4-6 The Incidence Matrix of the Client-Server Example ...78
Figure 4-7 Wright Description to BG Mapping..79
Figure 4-8 Wright to ICG Transforming Procedures...80
Figure 4-9 The Preset/Postset Example ...82
Figure 4-10 Sequential Net and Non-sequential Net ...83
Figure 4-11 Sequential Net, Start/End Elements ...84
Figure 4-12 Sequential Composition ...85
Figure 4-13 Non-deterministic (Internal Choice) Composition...86
Figure 4-14 Deterministic (External Choice) Composition...87
Figure 4-15 Sequencing Composition..88
Figure 4-16 Naming Composition. ..89
Figure 4-17 Quantification Operator (1)..90
Figure 4-18 Quantification Operator (2)..91
Figure 4-19 Quantification Operator (3)..91
Figure 4-20 Representation of Wright Computation ...93

viii

Figure 4-21 A Wright to BG Example...95
Figure 4-22 ICG and BG Relation ...96
Figure 4-23 Test Set Generation 1 ...101
Figure 4-24 Test Case Generation 2 ..101
Figure 4-25 Test Case Generation 3 ..102
Figure 4-26 Test Case Generation 4 ..102
Figure 5-1 The Prototype Tool ABaTT ...107
Figure 5-2 Wright in the Form of Binary Tree ..108
Figure 5-3 The ABT Class Structures..110
Figure 5-4 Algorithm buildICG ...111
Figure 5-5 Algorithm wrightToBG..113
Figure 5-6 Algorithm combineTwoNets..115
Figure 5-7 Algorithm expandMatrix..116
Figure 5-8 Algorithm findBPath ..118
Figure 5-9 Algorithm findCPath ..119
Figure 5-10 Algorithm findIPath ...120
Figure 5-11 Algorithm findIndirecCPath...121
Figure 5-12 Test Coverage Algorithm...123
Figure 6-1 Tests For an Implementation..124
Figure 6-2 Experiment Procedure ..128
Figure 6-3 The Subject Program..130
Figure 6-4 The ICG of the Subject Program..135

ABSTRACT

A SOFTWARE ARCHITECTURE-BASED TESTING TECHNIQUE

Zhenyi Jin, Ph.D.

George Mason University, Fall 2000

Dissertation Director: Dr. A. Jefferson Offutt

This dissertation defines a formal technique to test software systems at the

architectural level, particularly for software systems developed using software

Architecture Description Languages (ADL). There is a lack of formally defined

testing techniques at the architecture level. Formalized software architecture

description languages provide a significant opportunity for testing because they

precisely describe how the software should behave in high level view, and they can

be used by automated tools. The basic theme in this dissertation is that many

system architectural problems can be addressed through architecture relations,

which are the paths through which architectural components communicate with

each other. This dissertation presents a practical, effective, and automatable

technique for testing architecture relations at the architecture level. This

dissertation also presents a proof-of-concept tool to generate test requirements. An

empirical evaluation is carried out to measure the fault finding effectiveness of the

architecture-based testing criteria. Results show that this technique is effective at

finding faults at the architecture level.

1

Chapter 1 Introduction

1.1 General Introduction

The growing emphasis on modularity, data abstraction, and object-orientation in software

design means that software systems are designed by using abstraction as a way to master

complexity. As the size and complexity of software systems increase, problems stemming from

the design and specification of overall system structure become more significant issues than

problems stemming from the choice of algorithms and data structures of computation [SG96].

The result is that the way groups of components are arranged, connected, and structured is

crucial to the success of software projects. One of the benefits of this kind of design is that

software components can be analyzed and tested independently, low level details can be hidden,

which permits concentration to be focused on analysis and decisions that are most crucial to the

stem structure. At the same time, this independence of components means that significant issues

cannot be addressed until full system testing. Problems in the interactions can affect the overall

system development and the cost and consequences could be severe. For example, AT&T Bell

Lab's formal review of architectures in development organizations suggests that this is a major

problem: "More than 50% of the trouble reports in some systems are related to communications

interfaces within them." [ATT93]. Thus, system-level faults must be specifically tested for.

This dissertation describes research to develop a new software testing technique at the

system level. The technique is based on software architectures, which specify the primary

2

components, interfaces, connections and configurations of software systems. Although formal

unit and module testing criteria have been well studied, system testing is typically done

informally, using manual, ad-hoc techniques [You96]. This informality makes it difficult to

measure the quality of testing, leads to a lack of repeatability in the process and results, and it

means that the tester cannot be confident in the efficacy of the testing. Unit testing metrics are

often used to measure the quality of system testing [Bei90]. For example, system tests are often

evaluated by measuring how many statements are executed in the code. This kind of approach is

clearly used only because there is no better metric; the two abstractions (system-level and

statement-level) are so divergent that there is almost no possibility that a measurement designed

for one level can be meaningful at the other. Unit testing techniques have also sometimes been

used to directly generate tests for system-level testing, but there are two problems with this

approach. First, this process is simply too expensive to be practical, and second, the kinds of

faults that occur at the system level are different from those found during unit testing, and there

is no reason to believe that unit testing techniques will find these kinds of faults. Those software

faults cannot be detected during unit, module, or integration testing are often faults in the way

the software components are structured or in how they communicate. Correctly implementing

interactions can be difficult because unlike the components of a software system, the

interactions are rarely isolated in a single, independent runtime structure. In stead, interaction is

typically spread across the components involved in the interaction. To make matters more

difficult, this interaction code is often tightly integrated with the code associated with the

component's functionality.

The central problem of test data generation is that the only way to ensure complete

correctness is to test with all possible inputs. Unfortunately, the number of possible inputs to a

3

given program is effectively infinite, to testers must accept partial results by finding a finite

number of test cases that will provide a high level of confidence that the program is correct.

When performing system testing, testers are concerned with aspects of communication

among the software components and subsystems, whether the structure of the software system

can satisfy all the requirements, and whether the overall software system solve the problem.

Software architecture design and specifications is at a level of abstraction above the traditional

design process. Software architecture serves as a framework for understanding system

components and their interrelationships, especially those attributes that are consistent across

time and implementations. This understanding is necessary for the analysis of existing systems

and the synthesis of future systems. For this reason, software architecture has drawn intensive

attention from both academics and industry. At the software architecture level, software systems

are presented at a high level of abstraction where a software system is viewed as a set of

compositional components, interactions among these components, and the configuration of the

system. Implementation details are suppressed and the independence of system components is

increased, which permits concentration to be localized at analysis and decisions that are most

crucial to the system structure. One idea that differentiates the study of software architecture

from earlier work in module interconnection [Pur94] is that interaction between components

must be made explicit and must be formalized. This means that software architectures,

particularly when defined formally using some sort of architectural description language, can

provide a description of the software system that could be used for tests generation at the system

level. This enables developers to abstract away the unnecessary details and focus on the big

picture of the system: system structure, high-level communication protocols, the assignment of

software components and connectors to hardware components, development process, and so

4

forth. The basic goal of software architecture research is to create better software systems by

modeling their important aspects throughout and especially early in the development. Another

promising potential of software architecture is to the reuse of software components and

connections.

One continuing trend in software engineering is towards more formalized descriptions of

software artifacts. Software architecture research is continuing this trend by introducing

architecture description languages (ADLs) that capture the system level details of components,

interactions and configurations. One important contribution of these languages is the fact that

interaction is first class. In an ADL, the interaction between components is defined explicitly. In

some ADLs, connector types can be defined as well and these can be instantiated and used to

describe interactions between objects of some given component types [MQ94].

Formalized software architecture design languages provide a significant opportunity for

testing because they precisely describe how the software is supposed to behave in (1) a high

level view that allows test engineers to focus on the overall system structure, (2) a form that can

be easily manipulated by automated means. Finding ways to use ADLs to drive the process of

analyzing and testing software systems is an important new avenue of research.

Evaluating and testing software systems at the architecture level can allow tests to be

created earlier in the development process, therefore substantially reducing the costs of any

problems and errors. Currently, there is a lack of testing techniques for testing at the software

architecture level. In this dissertation, we present a research in the area of software architecture-

based testing to create a general testing technique at this level.

5

1.2 Goals and Scope of This Research

Software architecture-based testing is crucial to the overall quality of software systems.

Architecture level errors may severely impact the software in ways that are costly to fix and that

cause catastrophic consequences in safety critical systems. Currently, there is a lack of formal

testing methods for testing at the software architecture level. The few research techniques that

exist are either limited in scope or use traditional implementation-based (programming language

dependent) testing methods to test at the software architecture level. Also, there are no general-

purpose tools to actually generate tests for testing at the software architecture level.

1.2.1 Problem statement

There are no general methods for software architecture-based testing. This thesis seeks to

address the problem of defining test criteria and generating test cases for testing at the software

architecture level.

1.2.2 Thesis Statement

This thesis seeks to solve the problem by formally defining testing criteria for software

architectures and automating test case generation based on these criteria in a well known

architecture definition language (ADL), Wright.

1.2.3 Scope of Research

This dissertation investigates the following research problems:

1. Develop testing criteria for generating software architecture level tests from software

architecture descriptions.

6

These criteria can be used both to guide the architecture designers and to help the testers

generate meaningful and effective test cases.

2. Define test requirements to be derived from testing criteria on one or more specific

ADLs.

These test requirements are generated directly from the criteria, and they describe

specific inputs to the software at the system level.

3. Develop algorithms to automatically create test requirements, then to automatically

generate test inputs.

These algorithms are based on a specific ADL description. When the selection of an

ADL changes, the algorithm remains the same at the top level, but may vary depending

on specific ADL features as lower level descriptions are reached.

 4. Develop a proof-of-concept tool to generate test cases automatically from a Wright

specification.

This tool generates incidence matrices (to represent two types of graphical

representations) of architectures and uses these formalisms to generate appropriate test

cases to satisfy the testing criteria.

5. Empirical validation.

The architecture-based testing technique is applied to an industrial software system. The

results are compared with results from using other two testing methods. The goal of this

process is to determine whether the new testing technique can effectively detect faults.

7

1.3 Solution Strategy

In order to find solutions to our research problems, first we discuss issues of testing at the

architecture level, then list a set of properties that should be tested for at the software

architecture level. This helps us to decide what to test when testing at the architecture level.

Then we define architecture relations at the architectural level, and formally define these

relations. Two graphical representations are introduced for testers to visualize the testing

technique and for possible analysis and simulations. Testing criteria are then discussed based on

the architecture relations. These criteria are classified and formally defined. Further, test

requirements can be derived from these testing criteria and the graphical representations. We

then apply the technique to a specific ADL, Wright, and develop algorithms to transform the

Wright specification to two graphical representations. An empirical evaluation of the technique

is carried out using an industrial software system, its evaluation results are discussed. The

overall solution topology is shown in Figure 1-1, where there are altogether three parts, Testing

technique for general ADLs, Applying the technique to an ADL, and Tests for an

implementation. Each of these three parts will be discussed in further detail in the next few

chapters.

8

Figure 1-1 The Solution Topology

1.3.1 A Brief Description of The Research Results

A general software architecture-based testing technique is defined in this dissertation.

Testing criteria are formally classified and defined. Test requirements can be derived for a

specific ADL description. Evaluation results show that when applying this technique to the

ADL Wright, test cases can be generated automatically, and these test cases can find more faults

at the architecture level than manual method or coupling-based testing technique. Test coverage

can be determined given some test case sets.

Part 3

A Specific ADL
Description

Test
Requirements
(path coverage)

Test Sets for
Modeling or Testing
the ADL Description

The ICG

The BG

Part 2

Mapping
the ADL Description
to the Implementation

An Actual
Implementation

Test Cases
For the
Implementation

Testing Technique for General ADLs (Chapter 3)

Applying the Testing Technique to an ADL (Chapter4)

Tests for an Implementation (Chapter 6)

General
ADLs

Rules For
Constructing
An ICG

Testing
Criteria

Part 1

9

1.4 Unique Contributions of the Research

Major contributions of this dissertation are listed as follows:

1. Formal definitions of criteria for testing software architcture-based software systems

2. Formal definition of a general-purpose technique for testing software architecture

3. Formal definitions of architecture relations

4. Petri net based architecture modeling technique

5. Formal definitions of transformation rules for translating Wright specification to revised

Petri Nets

6. Prototype tool for generating test case based on Wright descriptions

1.5 Dissertation Organization

Chapter 2 reviews background and related research. Chapter 3 discusses the architecture-

based testing technique for general ADLs. An application of the technique to the ADL Wright is

presented in Chapter 4. Chapter 5 presents a proof-of-concept-tool and an empirical validation

of the technique is discussed in Chapter 6. Finally, Chapter 7 concludes the dissertation research

and discusses future research directions.

10

Chapter 2 Background and Related Work

This chapter gives background information in software architecture, summarizes related

software testing techniques, discusses issues in architecture-based testing, presents the basics of

a specific architecture description language Wright, and overviews Petri nets, which will be

used as an intermediate form of representation for our testing and possible analysis.

2.1 Background

This section discusses some background information this dissertation work is based on.

General information about software architecture, software architecture description languages,

Petri Net basics, and software testing technique are presented in this section.

2.1.1 Software Architecture

The study of software architecture has evolved from the seminal work of Perry and Wolf

[PW92], Garlan and Shaw [GS93], and others to the classification of architectural styles,

architecture evaluation [KBA+94], formalized representation, and application of domain

specific architectures (DSSAs) [DSSA92]. The term "software architecture" is often used in

software engineering. One of the reasons is that "architecture" indicates an association with the

construction of actual buildings. Software engineers try to find an analogy between the

architecture design and development of buildings and that of software. In general, two groups

are considered to have laid the conceptual basis for software architecture. Perry and Wolf

11

[PW92] describe an overall software architecture as a mediator between requirements and

design. They view software architecture as elements + form + rationale, where the elements

are divided into three classes: processing elements, data elements, and connecting elements.

Since data elements and processing elements have been studied intensively in the past as

functions or objects, it is the connecting elements that especially distinguish one architecture (or

style) from another. Rationale describes quality attribute aspects [Abd-Allah96]. An architecture

style is viewed as constraints on a class of architecture; there is no clear distinction between

instances and styles. An architecture configuration consists of a collection of constraints. Shaw

and Garlan [GS93, SG94, SG95] describe software architecture as a necessary step in raising

the level of abstraction at which software is conceived and developed. They view software

architecture as components + connectors; a family of architectures + constraints defines an

architectural style. A model of architecture is a set of components together with a description

of the interactions (connectors) between these components. Architectural styles are a family of

systems (architectures) that share repeating patterns of computation and interaction, together

with rules for how these are used in specific configurations. Garlan and Shaw presented a partial

taxonomy of known architecture styles [SG96]. They listed twelve styles as Layered,

Distributed processes and threads, Pipes and filters, Object-oriented, Main

program/subroutines, Repositories, Event-based (Implicit invocation), Rule-based, State

transition based, Process control (feedback), Domain-specific and Heterogeneous. Quality

attributes are not described from Garlan and Shaw's view of software architecture. Also, the

rationale defined by Perry and Wolf is not present.

The ARPA Domain Specific Software Architecture (DSSA) program [Ves93] defines

software architecture as an abstract system specification consisting primarily of functional

12

components described in terms of their behaviors and interfaces and component-component

interconnections. Architectures are usually associated with a rationale that documents and

justifies constraints on component and interconnections or explains assumptions about the

technologies that will be available for implementing applications that are consistent with the

architecture [HAYE94]. An architecture is viewed as Components + Styles + Common patterns

of interaction between functional components.

The software architecture group of USC [GACB95] expands the notion of software

architectures into "system software architectures" with a set of criteria for identifying them.

They define a set of stakeholders (Customer, User, Architect and System Engineer, Developer,

Maintainer) and make the architectural rationale to ensure that the architecture's components,

connectors and constraints will satisfy the stake holder's needs. An architecture should be

composed of alternate views including a behavioral/operational view, a static topological view,

and a data flow view. Their formal architectural notations should be able to capture all these

views together with other views that are concerned with other stakeholder needs.

Although true consensus may be hard to achieve or not necessary, it is generally accepted

that software architectures identify the following software attributes. We use general

definitions described in Moriconi and Qian's paper [MQ94]:

Component: An object with independent existence, e.g., a module, process, procedure, or

variable.

Interface: A typed object that is a logical point of interaction between a component and its

environment.

Connector: A typed object relating interface points, components, or both.

13

Configuration: A collection of constraints that wire objects into a specific architecture.

Architectural style: A style consists of a vocabulary of design elements, a set of well-formed

constraints that must be satisfied by any architecture written in the style,

and a semantic interpretation of the connectors.

Components, interfaces, and connectors are used as first-class objects, i.e., they each has a

name and they can be refined (can be decomposed into a set of components, connectors, and

interfaces). Abstract architectural objects can be decomposed, aggregated, or eliminated in a

concrete architecture.

For instance, in a distributed system architecture, subsystems are components, and network

protocols are connectors. Components participate in the component interactions to initiate

communication, generate messages, and respond to other components' requests. The interfaces

of the connectors and components have to be consistent to keep the interactions active. The

organization of these components and connectors form the configuration of the architecture. For

instance, the ring or star architecture topology forms different configurations of the system.

2.1.2 Architecture Description Languages

Architecture Description Languages (ADL) have been proposed as modeling and design

notations to support analysis and development of architecture-based development. Most of them

use formal approaches for architecture representations. ADLs have recently been an area of

intense research in the software architecture community [Gar95, Wolf96].

A number of ADLs have been proposed for modeling architectures both within a particular

domain and as general-purpose architecture modeling languages. Here we introduce nine ADLs.

14

1) Rapide: developed by Luckham, et al. [LV95, LKA+95] of Stanford University for the

DARPA Prototech program, Rapide is designed to support component-based development of

large, multi-language systems by using architecture definitions as the development framework.

Rapide adopts a event-based execution model of distributed, time-sensitive systems -- the

"timed partial ordered set (poset) model." Posets provide the most detailed formal basis to date

for constructing early life cycle prototyping tools, and later life cycle tools for correctness and

performance analysis of distributed time-sensitive systems. Rapide supports simulation of

systems in general before they are implemented. It is event-based and object-oriented. Rapide

architectures of systems are described in terms of the events that occur and are passed between

system entities; posets are used to describe system behavior. There are actually five independent

sub-languages within Rapide: (1) type language to describe the interfaces of components, (2)

architecture language to describe the flow of events between components, (3) specification

language to write abstract specifications of component behavior, (4) executable language to

write executable bodies for components, and (5) pattern language to describe patterns of events

[LV95, LKA+95]. Automated analysis for behavior or timing problems such as deadlock or

improper event orders has been done. Rapide does not explicitly support software architecture

styles, and has in fact a bias towards event-based systems.

2) Aesop: developed by the ABLE project at Carnegie Mellon University [Gao94]. Aesop

creates a software architecture design environment that is specialized to support design in the

styles that it has taken as input. It provides a general framework for defining many architectural

languages, each specialized to a particular architectural style. The core of Aesop is a generic

architectural description language called ACME, from which the other more specialized forms

are developed.

15

3) UniCon (language for UNIversal CONnector support) : developed by Shaw of Carnegie-

Mellon [SDK+95], UniCon emphasizes the structural aspects of software architecture and is

based on the complementary constructs of component and connector.

4) MetaH: developed by Vestal, et al. [Ves96] of Honeywell for the DSSA project, MetaH

is intended to support analysis, verification, and production of real-time, fault-tolerant, secure,

multi- processing, embedded software.

5) LILEANNA (Library Interconnect Language Extended with ANNotated Ada):

developed by the Loral (now Lockheed Martin) DSSA team and Don Batory [Tra93] to support

abstraction, composition, and reuse of Ada software. LILEANNA has been applied to avionics

domain and is composed of LIL — a module composition language for Ada — and ANNA — a

language that facilitates automated analysis of formal specifications and composition of Ada

code.

6) C2: developed by a research group at UC Irvine [MTW96, MORT96, Med96]. C2 is

UCI's component- and message-based architectural style for constructing flexible and extensible

software systems. A C2 architecture is a hierarchical network of concurrent components linked

together by connectors (or message routing devices) in accordance with a set of style rules. C2

communication rules require that all communication between C2 components be achieved via

message passing.

7) Darwin: describes a component type by an interface consisting of a collection of

services that are either provided or required. Configurations are developed by component

instantiation declarations and binding between required and provided services [MDEK95,

MK96]. It supports the description of dynamically reconfiguring architectures through two

16

constructs – lazy instantiation and explicit dynamic constructions. Darwin provides a semantics

for its structural aspects through the π-calculus [MPW92].

8) ACME: proposed as an architecture interchange language [GMW95, GMW97] to

support unifying existing ADLs, and hence provide a bridge for their different focuses and

resulting supporting tools. ACME uses components, connectors and configurations to model the

composition of a system.

9) Wright : is an architectural specification language [AG94a, AG94b, All97] that makes

the notion of first class connection precise by defining the semantics of connectors as formal

protocols in a variant of CSP [Hoa85]. Because we are applying the architecture-based testing

technique to Wright, details of Wright are introduced here.

2.1.3 The ADL Wright

Wright is built on three basic architectural abstractions: components, connectors, and

configurations [All97]. The description of a component has two parts: the interface and the

computation. An interface consists of a number of ports. Each port represents an interaction in

which the component may participate. A port specification indicates some aspect of a

component's behavior as well as the expectations of a component about the system with which

it interacts.

The computation describes what the component actually does. It carries out the interactions

described by the ports and shows how they are tied together to form a coherent whole. Ports

provide an additional level of abstraction, not to be redundant with the computation.

17

 A Wright connector contains a set of roles and the glue. Each role specifies the behavior

of a single participant in the interaction. The role indicates what is expected of any component

that will participate in the interaction. The glue of a connector describes how the participants

work together to create an interaction. Like the computation of a component, the glue of the

connector represents the full behavioral specification. Glue processes coordinate the

components' behavior to create an interaction. So a connector specification means that if the

actual components obey the behaviors indicated by the roles, then the different computations of

the components will be combined as indicated by the glue.

The components and connectors of a Wright description are combined into a configuration

to describe the complete system architecture. To distinguish the different instances of each

component and connector type that appear in a configuration, Wright requires that each instance

be explicitly and uniquely named.

Attachments define the topology of the configuration by showing which components

participate in which interactions. It associates a component's port with a connector's role.

In general, the component carries out a computation, part of which is a particular

interaction, specified by a port. That port is attached to a role, which indicates what rules the

port must follow in order to be a legal participant in the interaction specified by the connector.

If each of the components, as represented by their respective ports, obeys the rules imposed by

the roles, then the connector glue defines how the computations are combined to form a single,

larger computation. A Wright structure example looks like this:

Component C1
Port [port description]
Computation [computation description]

Component C2

18

Port [port description]
Computation [computation description]

Connector C1-C2 Connector
Role [role description]
Role [role description]
Glue [glue description]

Instances
component1: C1
component2: C2
connect: C1-C2 Connector

Attachments:
component1 provides as C1-C2.C1

 component provides as C1-C2.C2
end

A Wright Structure Example

Wright supports hierarchical descriptions. In particular the computation of a component or

the glue of a connector can be represented either directly by a behavior specification or by an

architectural description itself.

The behavior and coordination of components is specified using a notation based on CSP

[Hoa85, All97]. CSP is a notation for specifying patterns of behavior and interaction. Here are

some of the representations in Wright:

Processes and Events: The basic unit of a CSP behavior specification is an event. A

process describes an entity that can engage in communication events. In Wright, observing an

event and initiating an event is differentiated. An event that is initiated by a process is written

with an overbar (underscore in this document because of software limitation) within that

process' definition. A special event in Wright is §, which indicates the successful termination of

the entire system. This event is not considered either to be initiated or observed. If a process

supplies data, it is considered output, and is written with an exclamation point: write!x. If a

process received data, it is input, and written with a question mark: e?x.

19

Prefixing: Given a process P and an event e, the process e P is the process that first

engages in the event e and then behaviors as P.

Alternative ("external choice"): A process that can behave like P or Q, where the choice is

made by the environment, is denoted by the operator p. The process e P f Q is the

process that will behave as the process P if it first observes the event e and will behave as the

process Q if it first observes the event f. Because the behavior of the process is entirely

determined by what the environment does, this type of choice is called deterministic.

"Environment" refers to the other processes that interact with the process.

Decision ("internal choice"): A process that can behave like P or Q, where the choice is

made (non-deterministically) by the process itself, is denoted P Q. The process e P F

 Q is the process that will either output e and then act as P or output f and then act as Q. The

process itself decides which choice to take without consulting the environment.

Sequence: The ";" operator combines two processes in sequence. P;Q is the process that

behaves as P until P terminates successfully and then behaves as Q.

Behavior patterns that occur over and over again can be described by naming particular

processes. P = e P. Named processes can also be introduced into other processes using

Where: f P where P = e P . This process does a single f and then repeats e over and over.

State is added to a process definition by adding subscripts to the name of a process: Pi is a

process with a single state variable, i. For example, P1 where Pi = count!i Pi+1 is a process

that counts : count!1, count!2, count!3, etc. For more than state variables, simply add

corresponding number of subscripts to the name of the process.

20

Pv = Q, when p(V) defines a process P over variables V only when the boolean expression

p(V) is true.

An example of the Client-Server architecture description is given as follows:

Component Client
Port Service = ClienPullT
Computation = Service.open ; UseOrExit

 where UseOrExit = UserService Exit
 UseService = Service.request Service.result?y UseOrExit
 Exit = Service.close §

Component Server
Port Provide= ServerPushT
Computation = WaitForClient Exit §

 where WaitForClient = Provide.open Provide.request Provide.result?y
 WaitForClient
 Exit = Provide.close §

Connector C-S Connector
Role Client = ClientPullT
Role Server = ServerPushT
Glue = Client.open Server.open Glue
 Client.close Server.close Glue
 Client.request Server.request Glue
 Server.result?x Client.result!x Glue
 §

Instances
c: Client
s: Server
cs: C-S Connector

Attachments:
c provides as cs.c

 s provides as cs.S
end

Interface Type ClientPullT = open Operate §
 where Operate = request result?x Operate Close

 Close = close §

Interface Type ServerPushT = open Operate §
 where Operate = request result!x Operate Close

 Close = close §

Example: A Client-Server System in Wright

21

In CSP and also in Wright, the use of the term "process" does not mean that the

implementation of the protocol would actually be carried out by a separate operating system

process. Processes are logical entities used as specification building blocks. Also event is not an

ordinary event, but has special rules associated with. See [ROS98] for details.

2.2 Petri Nets

Petri Nets have been introduced for modeling distributed systems because they give a

graph-theoretic representation of the communication and control patterns, and a mathematical

framework for analysis and validation [Peterson81, RT86, Jin94]. Petri Net modeling is

appealing for the following reasons:

- Petri Nets capture the precedence relations and structural interactions of concurrent and

asynchronous events. Petri Nets provide an integrated methodology, with well-

developed theoretical and analytical foundations for modeling complex systems.

- The graphical nature of Petri Nets helps to easily visualize the complexity of the

system.

- The mathematical representations of Petri Nets allow for quantitative analysis of

invariants, deadlock detection, resource utilization, throughput rate, effect of failures,

and real-time implementation.

- Petri Nets can be executed and can actually show the dynamics of the system. This

makes the Petri Nets a powerful modeling language.

22

A Petri Net is a bipartite directed graph: N= (P, T, I, O). There are two sets of nodes:

• P = {p1, ..., pn} is a finite set of places. Each place pi models a resource, a buffer, or a

condition. A place is depicted by a circle node.

• T = {t1, ..., tm} is a finite set of transitions. Each transition ti stands for a process, an

event, or an algorithm. A transition is represented by a bar node.

• The arcs that connect these nodes are directed and fixed. They can only connect a place

to a transition, or a transition to a place. They are given by: I : P × T -> {0,1}, O : P ×

T -> {0,1}. I is an input function that defines the set of directed arcs from P to T. I(p,t)

= 1 if the arc exists, I(p,t) = 0 otherwise. An arc from a place p to a transition t

indicates that the process t requires the availability of the resource p, the fulfillment of

the condition p, or the availability of information in the buffer p, in order to occur. O is

an output function that defines the set of directed arcs from T to P. O(p,t) = 1 if the arc

exists, O(p,t) = 0 otherwise. An arc from a transition t to a place p indicates that when

the process t is finished, it either enables the condition p, makes the resource p

available, or sends an item of information to the buffer p. Figure 2-1 shows a Petri Net.

Figure 2-1 A Petri Net Example

p1 p2

p3 p4

t1

t2

t3 p5

23

The set of places P, the set of transitions T, and the input and output functions that define

the arcs for this net are:

P = { p1, p2, p3, p4, p5} T = {t1, t2, t3}

I(p1, t1) = I(p2, t3) = I(p3, t2) = I(p4, t3) = 1, I(p, t) = 0 otherwise.

O(p2, t1) = O(p4, t 2) = O(p5, t3) = 1, O(p, t) = 0 otherwise.

Dynamics of Petri Net

A Petri Net can contain tokens. Tokens are depicted graphically by indistinguishable dots

(•), and reside in places. The existence of one or more tokens represents either the availability of

the resource, or the fulfillment of the condition, or the number of items of information in the

buffer. The distribution of tokens in the net is controlled by the transitions. A marking of a Petri

Net is a mapping M that assigns a non-negative integer (the number of tokens) to each place.

The number and position of tokens may change during the execution of a Petri Net. The tokens

are used to define the execution of a Petri Net.

A transition is enabled by a marking if and only if all of its input places contain at least one

token provided each input arc represents a single connection between the place and the

transition. Formally, M(p) > 0.

An enabled transition can fire. The firing of the transition corresponds to the execution of

the process or the algorithm. The dynamic behavior of the system is embedded in the changes of

the markings. When the firing takes place, a new marking is obtained by removing a token from

each input place and adding a token to each output place, M' is said to be reachable from M

24

after one firing: M’(p) = M(p) + #O(p,t) - #I(p,t). As an example, consider the Petri Net in

Figure 2-2 with the indicated marking.

M(p1) = M(p3) = 1; M(p4) = 2; M(p2) = M(p5) = 0.

Figure 2-2 A Petri Net with Marking

In Figure 2-2, if t1 fires, then the resulting marking is shown in Figure 2-3.

Figure 2-3 A Petri Net After Firing

Transitions t3 and t2 are now enabled. If t3 fires, the new marking is shown in Figure 2-4.

p1 p2

p3 p4

t1

t2

t3 p5

p1 p2

p3 p4

t1

t2

t3 p5

25

Figure 2-4 Petri Net after Second Firing

 Mathematical representation of Petri Nets -- Linear Algebraic Approach

As with any other graphs, a Petri Net with n places and m transitions can be represented by

an n × m matrix C, the Incidence Matrix. The rows correspond to places, the columns

correspond to transitions. The cells are defined as follows:

• Cij = 1 if there is a directed arc from the j-th transition to the i-th place. "1" indicates

that the firing of the j-th transition adds one token to the i-th place.

• Cij = -1 if there is a directed arc from the i-th place to the j-th transition. "-1" indicates

that the firing of the j-th transition removes one token from the i-th place.

• Cij = 0 if there is no arc from the j-th transition to the i-th place.

For example, the incidence matrix of the net on Figure 2-1 is

 t1 t2 t3

C =

-1 0 0
 1 0 -1
 0 -1 0
 0 1 -1
 0 0 1

p1
p2
p3
p4
p5

p1 p2

p3 p4

t1

t2

t3 p5

26

2.3 Software Testing

Software testing is directly concerned with software quality. The goal of testing is not to

show the absence of failures in the software, but rather shows the presence of failures and gives

the tester confidence on the software system. We may have different objectives for testing: to

see if the software works, to find errors, or to check consistency and etc. Beizer [Bei90] defines

six levels at which software testing occurs, unit test, module test, integration test, subsystem

test, system test and acceptance test. Unit and module testing analyzes the local behavior of

individual software blocks. Integration testing analyzes how individual block behaviors, and the

interactions among blocks, contribute to the global system behavior of the system without

regard to its decomposition. Subsystem testing refers to testing of coherent software subsystems

before integrating into the complete system. System testing has the particular purpose to

compare the software system to its original objectives, in particular validating whether the

software meets the functional and non-functional requirements. Acceptance testing gets the user

involved by asking if the user accepts the complete system.

Testing techniques can be categorized into two general approaches, black box and white

box. Black box testing approaches create test data without using any knowledge of the structure

of the software under test, whereas white box testing approaches explicitly use the program

structure to develop test data. Black box testing is usually based on the requirements,

specifications or design, while white box testing is usually based on the implementation in a

specific programming language. White box testing approaches are typically applied during unit

testing, and black box testing approaches are typically applied during integration and system

testing.

27

An important problem in software testing is deciding when to stop. Test cases are run on

test programs to find failures. Unfortunately, we cannot exhaustively search the entire domain

of the program (which in most cases is effectively infinite). Testing strategies may be

conveniently categorized by the goal they seek to achieve. Weyuker [Wey86] has characterized

these goals as adequacy criteria. Adequacy criteria are defined for testers to decide whether

software has been adequately tested for a specific testing criterion [FW88]. A testing criterion is

a rule or a set of rules that impose requirements on a set of test cases. Test engineers measure

the extent to which a criterion is satisfied in terms of coverage, which is the percentage of test

requirements that are satisfied. Test requirements are specific criteria that must be satisfied or

covered, e.g., reaching statements are the requirements for statement coverage in unit testing,

killing mutants are the requirements for mutation testing [DLS78], and executing definition/use

pairs are the requirements in data flow testing [FW88]. There are various ways to classify

adequacy criteria. One of the most common is by the source of information used to specify

testing requirements and in the measurement of test adequacy. Hence, an adequacy criterion can

be specification-based or program-based.

Most current testing approaches are either based on the implementation or structural

information of the system or based on a requirement specification or system design, yet most

high level design representations and requirement specifications are not formal enough to do

this in an automated fashion. With the advent of formal architecture specification, however,

architecture based test criteria can be defined based on the system properties that an ADL

describes. This would support algorithmically defining test data to cover the architecture and

automatically developing architectural test plans – testing at the architecture level.

28

2.4 Issues in Software Architecture-Based Testing

As in any other testing techniques, we need to know what to test at the software architecture

level and therefore we can define testing requirements at this level. Most unit level testing

techniques use program structure to define test adequacy criterion, for instance, conditions

(control flow) or variable define-use pairs (data flow). At the integration and system testing

level, the predominant form for defining testing criteria is based on definition/use bindings

[PN86], where each module defines or provides a set of facilities that are available to the uses or

requires by other modules. Coupling-based testing techniques [JO98] and inter-procedural

testing techniques [HR94] are such examples. These techniques use information from

underlying implementation languages such as procedure calls or data sharing which means the

software must already be complete. But software architecture is beyond this level [AG94c].

Software architecture focuses on the interaction between components, and normally the view of

interaction is implementation language independent. Therefore, set up testing criteria that uses

traditional implementation-based structure information may not be possible at the software

architecture level. So interaction between components will be our major focus when testing.

Presentation of interaction properties of a software architecture becomes the key point.

As described in the previous section, ADLs are used to give formal definitions to software

architectures. But current ADLs have different focuses on different aspects of software

architecture [Med97, Cle96a]. For instance, Rapide is a general-purpose event-based description

language and it allows modeling of component interfaces and their external behavior, while

Wright focuses on formalizing the semantics of connections. Medvidovic and Clements

[Med97, Cle96a] both give surveys on these ADLs and try to summarize what properties need

29

to be described in an ADL. In the proposed research, we need to extract the general properties

that are important to software testing. These general properties will be useful both in testing

software architectures directly as well as in software conformance testing. Once we know what

we need to test, we need to define test requirements on these properties, therefore we can define

general testing criteria at the software architecture level. In summary, the major issues in

software architecture testing are:

• what are the general properties that are important for testing at this level?

• based on these general properties, what test requirements can be formulated?

• what general testing criteria can be defined at this level?

2.5 General Properties to Be Analyzed and Tested at the Architectural Level

An initial step in developing new testing methods is to enumerate the kinds of problems that

can exist. We have developed some preliminary architectural testing properties. It should be

emphasized that this list is tentative and work is ongoing to refine the set of properties to test for

at this level. In the list of properties, a conflict occurs when rules, constraints or semantics

cannot both be satisfied at the same time. In general, deadlock implies that a process does not

participate in any events, but has not yet terminated successfully. A process is deadlock free if it

can never go into a deadlock state.

1. Component Consistency Requirements: Semantics, constraints and interfaces can be

associated with components. They should be consistent with respect to each other and this

30

consistency needs to be considered at the architecture level. Interfaces have types as well as

data and control constraints.

• Component constraints and semantics should have no conflicts.

• Component constraints and semantics should be deadlock free.

• Component constraints and semantics should have no conflicts with the component

interface constraints.

2. Connector Consistency Requirements: A connector also contains interfaces, semantics, and

constraints that need to be consistent. Interfaces have types as well as data and control

constraints.

• Connector constraints and semantics should have no conflicts.

• Connector constraints and semantics should be deadlock free.

• Connector constraints and semantics should have no conflicts with the associated

connector interfaces constraints.

3. Component-Connector Compatibility Requirements: Component interfaces are associated

with connector interfaces to enable interactions. Informally, compatibility means that a

component interface behaves in a manner that is consistent with assumptions made by the

connector.

• Component interfaces should be compatible with the associated connector interfaces.

• For some compatibility requirements, it must be determined whether the

component/connector relationship is deadlock free.

4. Configuration Requirements: The configuration of a software architecture should be tested

against several test requirements. An initiation state is the "start state", the state that the

31

system is initially in. There are explicit data flows through the architecture of the system; a

data element is given a value (defined) in its source component and the value is used in a

target component. There are also explicit control flows; each architecture element has one or

more designated next element. This transfer of execution could be between states in a

component, through connectors, or across components.

• Data Flow Reachability: A data element should be able to reach its designated target

component from its source component through the connectors. The data element should

reach the target component without having its value modified.

• Control Flow Reachability: Every architecture element should be able to reach its

designated next element.

• Connectivity: A component or connector interface with either no next element or no

previous element is said to be "dangling". Dangling components and connector

interfaces could indicate potential problems.

• Interactions that in isolation are deadlock free can interact in such a way as to cause a

deadlock situation. It should be the case that the system is deadlock free.

5. Style Restriction Requirement: The architecture style being used imposes some constraints

on the software configuration. The system being used must satisfy those constraints.

 System-level tests derived from architectures can validate that the software implements the

architecture correctly and help to verify the architecture. If the architecture is sufficiently

descriptive, then the tests should be effective at finding problems in the implementation. In this

dissertation, we only discuss test case generation technique, analysis and evaluation of the ADL

specification is not in the scope of this research.

32

2.6 Related Work

Related work for this research covers the following areas: ADL survey, formal definition of

software architecture, architecture-based dependency analysis and testing, component adequacy

testing and mismatches of components.

2.6.1 ADL Classification and Survey

Medvidovic [Med97] gives a survey of most of the current ADLs and summarizes some

software architecture properties that current ADLs can describe. This survey classifies and

compares properties in components, connections, and configurations and how they are

represented in these ADLs. It makes an attempt to answer the question of what an ADL is and

why, and how it compares to other ADLs. Such information is very important for understanding

current status of ADLs. Even though the architectural properties these ADLs describe are not

specific for testing purpose, they help us understand and pick the properties to test.

2.6.2 Formal definition of Software Architecture

Allen [All97] shows that an Architecture Description Language based on a formal, abstract

model of system behavior can provide a practical way to describe and analyze software

architectures and architectural styles. He introduces Wright, an architectural description

language based on the formal description of the abstract behavior of architectural components

and connectors. Wright uses explicit, independent connector types as interaction patterns, it

describes the abstract behavior of components using a CSP-like notation, and styles can be

characterizes by using predicates over system instances. His work also shows some static

checks to determine the consistency and completeness of an architectural specification.

33

2.6.3 Correctness and Composition of Software Architectures

Moriconi and Qian [MORI94] discuss correctness and composition of software

architectures. In their paper, they provide a formal criterion for proving that one architecture

implements another architecture, even if they are described in different architectural styles.

They use first-order logic for the definition of both configuration and style structures, and

provide a specific model of style-based refinement of configurations.

2.6.4 Architecture-level Dependency Analysis & Testing

Richardson and Wolf present their research in architecture-based dependency analysis and

testing [RW96, SRW97, SRW98]. The Chemical Abstract Machine (CHAM) model is used to

represent software architectures. The CHAM for a software architecture defines molecules

(elements), solutions (combinations of elements), and transformation rules that specify how

solutions evolve. Dependency analysis is based on structural relationships (textual inclusion,

import/export, inheritance) and behavioral relationships (temporal, state-based, causal,

input/output). The structural dependencies allow one to locate source specifications that

contribute to the description of some state or interaction. The behavioral dependencies allow

one to relate states or interactions to other states or interactions. These relations are recorded in

a table for dependency analysis. Testing criteria are defined based on the CHAM model. For

example, all-data-elements requires that all data defined in the architecture are communicated

(for each data element d, at least one solution contains a molecule involving d), and all-

processing-elements requires that all processing elements are executed (for each processing

element p, at least on solution contains a molecule involving p). However it has been argued

[All97] that CHAM describes the structure and abstract behavior of a single configuration,

rather than a class of systems. Medvidovic [Med97] also argues that even though CHAM can

34

be used effectively to prove certain properties of architectures, the interface topology is implicit

in the solution and transformation rules. So this does not meet the requirements to be an ADL.

2.6.5 Component-based Testing

Rosebblum [Rosen00, Rosen97] initiates the development of a component-based software

testing theory. Two concepts were defined: the concept of C-adequate-for-P for adequate unit

testing of a component and the concept C-adequate-on-M for adequate integration testing of a

component-based system. This technique views testing of component-based software as both a

unit testing problem for program M, and an integration testing problem for program P

containing M. The unit-testing viewpoint requires the developer of M to test M with criterion C

and to carry out the testing with a test set that is C-adequate-for-P. The integration testing

viewpoint requires the developer of P to test P with a test set that is C-adequate-on-M. If the

test adequacy criteria being used are code coverage criteria, then satisfaction of these

requirements can be checked. A formal model of component-based software was defined, and

the model was used to formally define a notion of test adequacy for component-based systems.

The notion of component as used in this technique corresponds to a general object-oriented

notion of a component. A component M encapsulates some state and provides a well-defined

interface that strictly governs access to the state by other parts of a system containing the

component. The interface is viewed as a set of methods or operations that can be applied to the

component. Generally speaking, this technique is at the integration level rather than at the

architectural level and it is also based on the completeness of the implementation. This work is

different from the testing technique proposed in this dissertation.

35

Chapter 3 Software Architecture-based Testing Technique

Traditionally, software system level testing has been based on informal, manual, and ad-hoc

analyses of the system requirements. This informality may make it hard to distinguish different

levels of abstraction throughout the process and thus may lead to inconsistent testing results and

lack of repeatability in the process. Formalized software architecture description languages

represent significant opportunities for testing because they formally describe how the software

system is expected to behave in a high level view that allows test engineers to focus on the

overall system structure, and also in a form that can be handled automatically.

This chapter discusses a new software testing technique at the software architecture level.

As we have discussed in Chapter 1, the overall topology is presented in three parts: Testing

Techniques for General ADLs, Applying the Technique to a Specific ADL, and Tests for an

Implementation. This chapter focuses on presenting a testing technique for general ADLs,

shown in Figure 3-1. We introduce a graphical representation Interface Connectivity Graph

(ICG) and the construction of an ICG, then define the testing requirements and testing criteria

defined based on the ICG. The testing criteria may serve as guidelines for testers to decide when

to stop testing. Test coverage measurement is also discussed at the end of this chapter.

We use the following definitions here and after this chapter. Test requirements are specific

things that must be satisfied. For example, reaching statements are the requirements for

statement coverage, and killing mutants are the requirements for mutation testing. A testing

36

 criterion is a rule or a collection of rules that imposes requirements on a set of test cases.

Testers ensure the extent to which a criterion is satisfied in terms of coverage, which is the

percentage of requirements that are satisfied.

Figure 3-1 Testing Technique Procedures

3.1 Basic Definitions

To make architecture-based testing a manageable process, testing must be guided by the

definition of the architecture. As we have discussed, software architecture must be specified

using its own specification languages and analysis techniques in order to achieve benefits. A

large number of ADLs have been proposed, each of which specifies a particular approach and

specifies certain aspects of a software architecture. Even though there is no unique definition of

what an ADL should describe, we need to understand what software architecture aspects an

ADL should describe and start testing those aspects.

Before we discuss the general architectural aspects that need to be tested, we first define

some terms taken from Medvidovic's paper [Med97]. We view software architecture as

Testing Technique for General ADLs

General
ADL

Rules For
Constructing
an ICG

Testing
Criteria

Part 1

Applications in Chapter 4

37

components, connectors and configuration. For each component and connector, its interface,

types, constraints and semantics are defined.

A Component's Interface is a set of interaction points between this component and other

components that this component interacts with. It specifies the services (messages, operations,

and variables) a component provides. Interfaces in ADLs are represented as either ports (as in

Wright) or constituents (as in Rapide). ADLs support reuse by modeling abstract components as

types and instantiating them multiple times in an architectural specification. Abstract component

types can also be parameterized to further facilitate reuse. Component Semantics is a description

of component behavior; it enables analysis, constraint enforcement, and mappings of

architectures across levels of abstraction. Component Constraints is a property of or assertion

about a system or one of its parts. Constraints are specified to ensure adherence to intended

component uses, enforce usage boundaries, and establish intra-component dependencies. A

connector's interface is a set of interaction points between it and the components attached to it.

It enables proper connectivity of components and their communication in a software

architecture. Architecture-level communication is often expressed with complex protocols. To

abstract away these protocols and make them reusable, ADLs should model connectors as

Connector Types . Connector Semantics provides connector protocol and transaction semantics

so as to be able to perform analyses of component interactions, consistent refinements across

levels of abstraction, and enforcement of interconnection and communication constraints. Not

every ADL models connector semantics. Connector Constraints specifies constraints to ensure

adherence to interaction protocols, establish intra-connector dependencies, and enforce usage

boundaries. In order to describe software systems at different levels of detail, architecture

configurations Compositionability supports the situations where a software architecture may

38

become a mere component in a bigger architecture or vise versa. Architecture Configurations

Constraints describe desired dependencies among components and connectors in a

configuration.

Figure 3-2 shows these aspects in a software architecture. These architecture aspects will be

used for the software architecture-based testing. From now on, we name components,

connectors, interfaces of components and connectors as the architecture units. Other

architecture aspects such as constraints and semantics will be used to define possible

relationships among these architecture units. Configuration will be considered as the

instantiation of the architecture units. When it comes to a specific ADL description, it may not

have all these aspects defined explicitly or defined at all. For instance, Rapide [LV95] does not

explicitly describe a connector, it has no constraints or semantics for the connector. So when

applying architecture-based testing technique to a specific ADL, we will only consider those

aspects that are described in the ADL, therefore, the application of this testing technique will

vary based on the ADL used.

Figure 3-2 Architecture Aspects

component
connector

component

constraints

semantics

constraints

semantics

constraints

semantics

interfaces
types types typesinterfaces

39

3.2 Architecture-based Testing Technique for General ADLs

Relations among architecture units are the key factors in a software architecture description,

they define the behaviors and connectivities among software components via connectors. Our

software architecture-based testing technique focuses on testing the relations among architecture

components. Therefore, we define relations among architecture units as software architecture

relations. The technique requires that tests cover certain architecture relations among

components and connectors or inside a component and a connector. These architecture relations

are based on the possible bindings: data transfer, control transfer, and execution ordering rules.

Formal descriptions of these relations are defined in the next section. The underlying premise of

the architecture-based testing criteria is that to achieve confidence in the architecture relations

between architecture components and connectors, it must be ensured that all the existing

architecture relations be covered in the test. Because this technique is limited to the architecture

description, it is only concerned with relations at the architecture level, not with detail design or

implementation level, but they can be extended to the software design or implementation level.

3.2.1 What Needs to be Tested at the Architecture Level – Testing Requirements

Given architecture relations among components, interfaces, and connectors, software

architecture testing needs to focus on testing the following aspects:

1. Testing component to connector connectivity: this tests the connectivity and

compatibility from a component interface to a connector interface.

2. Testing connector to component connectivity: this tests the connectivity and

compatibility from a connector interface to a component interface.

40

3. Testing component internal interfaces: this tests the possible data transfer, control

transfer, and ordering relations among the interfaces inside a component.

4. Testing connector internal interfaces: this tests the possible data transfer, control

transfer, and ordering relations among the interfaces inside a connector.

5. Testing direct component to component connectivity: this tests the connection of two

components through a connector.

6. Testing indirect component to component connectivity: this tests a subset of

components and connectors that are indirectly data or control related.

7. Testing whole structure connectivity: this tests the overall architecture structure

connectivity. All connections among components, connectors and all internal

connections are tested.

3.2.2 Architecture-based Testing Concepts

Testing at the unit level focuses on relations on program units, such as statements, variables,

or conditions. Testing at the architecture level should focus on the architecture relations of the

architecture units specified by a specific ADL description. This section defines some concepts

for the architecture relations. To visualize the architecture relations, a graphical representation

of the architecture is introduced in this section, we then can derive testing requirements and

testing criteria based on this graphical representation.

41

3.2.2.1 The Interface Connectivity Graph (ICG)

Testing adequacy criteria help to tell testers when testing is enough and when to stop.

Graphical representations have long been used to help to visualize the definition of testing

criteria. For instance, data flow diagrams, control flow diagrams, state transition diagrams, etc.,

have all been used in defining testing criteria and in generating testing cases. Therefore, we

introduce graphical representations to help visualize our architecture-based testing technique.

The Interface Connectivity Graph (ICG) represents the connectivity relationships between

components and connectors as well as relations inside a component and a connector.

An ICG is composed of a set of components (visually as rectangular boxes), component

interfaces (clear circles on the edge of the component boxes), connectors (round boxes),

connector interfaces (shaded circles on the edge of the connector boxes), connections between

connectors and components (solid arrows), and connections inside components or connectors

(dash-line arrows).

Definition 3.1 Architecture Interface Connectivity Graph (ICG)

Given a software architecture defined by a specific ADL, the architecture Interface

Connectivity Graph (ICG) is defined as:

ICG = (N, C, N_Interf, C_Interf, N_Ex_arc, C_Ex_arc, N_In_arc, C_In_arc),

• N = {N1, N2, … Nn}, a finite set of components

• C = {C1, C2, … Cm}, a finite set of connectors

• N_Interf = {N1.interf1, … N1.interfs, … Nn.interf1, … Nn.interfx}, a finite set of

component interfaces

• C_Interf = {C1.interf1, … Cm.interft), a finite set of connector interfaces

42

• N_Ex_arc is defined as (N × C) → {0, 1}, if N_Ex_arc(n, c) = 1, then the arc exists,

there is a connection between the component interface to a connector interface,

otherwise the arc does not exist

• C_Ex_arc is defined as (C × N) → {0, 1}, if C_Ex_arc(n, c) = 1, then there is an arc

between a connector to a component interface, otherwise the arc does not exist

Because C_Ex_arc and N_Ex_arc contain arcs that connect components and

connectors, they are viewed as the external arcs. Internal arcs represent the connections

between interfaces of one component or they represent the connections between interfaces

of one connector. Internal arcs are defined as follows.

• N_Inter_arc = (C_Interf × N_Interf) → {0, 1}, if N_In_arc (n.interf1, n.interf2) = 1, then

there is a connection between n.interf1 and n.interf2, otherwise there is no such an arc

• C_Inter_arc = (C_Interf × C_Interf) → {0, 1}. If C_Inter_arc (c.interf1, c.interf2) = 1,

then there is an arc c.interf1 and c.interf2. Otherwise, there is no such an arc

As an example, consider a software system that consists of two Graphical User Interface

(GUI) components that acquire data from the server component. Server contains an internal

database that has to synchronize its data with data processed in Sync component. The data

contained in the internal database in Server needs to be updated by the DataStore component,

where it processes the data and output the data to Server. The ICG of the system is shown in

Figure 3-3.

43

Figure 3-3 An ICG Example

In this example, there are five components and four connectors and a number of arcs

connecting them. Details are given as follows:

N = {GUI1, GUI2, Server, DataStore, Sync}

C = {CS1, CS2, SD1, SD2}

N_Interf = {GUI1.i1, GUI2.i1, Server.i1, Server.i2, Server.i3, Server.i4, Sync.i1,

DataStore.i1}

C_Interf = {CS1.i1, CS1.i2, CS2.i1, CS2.i2, SD1.i1, SD1.i2, SD2.i1, SD2.i2}

N_Ex_arc = {a1, a4, a6, a7, a10, a12}

C_Ex_arc = {a2, a3, a5, a8, a9, a11}

N_In_arc = {b7}

C_In_arc = {b1, b2, b3, b4, b5, b6}

GUI 1 CS1 Server SD1
DataStore

a1 a2

a3 a4

a5 a6
b1

b2

b5
i1

i1 i2

i1 i2

i1 i2 i1

GUI 2

i1

CS2

b3

b4
i1 i2

Sync

i1

SD2

i1

i2

i3 i4

a7

a8

a9

a10 a11

a12b6

b7

44

Definition 3.2 Data Structure Representation of an ICG -- ICG Incidence Matrix

As with any other graphs, an ICG with n total component interfaces and m total

connector interfaces can be represented by an (n+m) (n+m) matrix M, the ICG

Incidence Matrix . The rows correspond to the component interfaces and the connector

interfaces, the columns correspond to the component interfaces and the connector

interfaces. The cells are defined as follows:

• Mij = 1 if there is a directed arc from the j-th interface to the i-th interface.

• Mij = -1 if there is a directed arc from the i-th interface to the j-th interface.

• Mij = 0 if there is no arc between the j-th interface and the i-th interface.

3.2.2.2 Architecture Relations

Testing at all levels focuses on relations among program units and aims to generate test

cases to cover these relations. Testing criteria are usually defined to cover certain relations

among program components. For instance, in unit level data flowing testing [FW88], variable

definition-usage defines one type of data flow relation inside a program, covering all the def-use

pairs becomes one of the data flow testing criteria. At subsystem level, coupling-based testing

[JO98] defines coupling relations between two software components, covering different

coupling relations therefore satisfies different types of coupling-based testing criteria. At the

software architecture level, we need to first define general architecture relations for a software

architecture described by an ADL description, then derive testing requirements and criteria

based on the architecture relation coverage. It can be seen that finding the right relations

provides a good foundation for deriving good testing requirements and testing criteria.

45

Definition 3.3 Component Internal Transfer Relation

The component internal transfer relation defines the possible data transfer or control

transfer relations between two interfaces inside a component.

N_Internal_Transfer_Relation(N.interf1, N.interf2): (N_Interf × N_Interf) → {0, 1}== 1 if

for a component N, there is a data or control transferred from N.interf1 to N.interf2,

otherwise 0. This relation is non-reflexive, non-symmetric, and it is not transitive.

For instance, if component A has two interfaces p1 and p2, if interface p1 closes, then

interface p2 closes, this is a control relation between the two interfaces. If interface p1 reads

data and the same data is used by interface p2, then there is a data relation between these

two interfaces. These are considered to be component internal transfer relations.

The component internal transfer relation can be extracted from the architecture

description in a specific ADL description. Note that we only discuss these types of

relationship at the ADL description level, any possible relationships that may occur at the

implementation level are not considered at this level.

Definition 3.4 Component Internal Ordering Relation

If the interfaces of a component have to behave based on some execution ordering rules,

either be in parallet or sequential, then there is an ordering relation between the component

interfaces. If two or more interfaces can occur in any arbitrary order, then there is no

specific ordering relation between the interfaces. This is represented as

Component_Internal_Ordering_Relation(N.interf1, N.interface2): (N_Interf × N_Interf)

→ {0, 1}== 1 if N.interf1, N.interface2 have to follow certain execution ordering rules.

46

Otherwise 0. This ordering relation is non-reflexive, but is symmetric and transitive.

Interface ordering rules contains three types of orderings:

1) (p1 | p2): interface p1 has a data/control transfer to interface p2

2) (p1 // p2): interface p1 and p2 runs in parallel

3) (p1 => p2): interface p2 runs after p1 finishes processing

Definition 3.5 Component Internal Relation

 Component_Internal_Relation(N1.interf1,N1.interf2): (N_Interf × N_Interf) → {0, 1}==

1 if (Component_Internal_Transfer_Relation(N1.interf1, N1.interf2) == 1 or

Component_Internal_Time_Relation(N1.interf1,N1.interf2) == 1), otherwise (N_Interf ×

N_Interf) → {0, 1}== 0.

Note that ordering rules in an ADL description may be represented as constraints or

implicitly described as part of the component behavior. For instance, in Wright, concurrent

processing of each interface can be described by constraints.

Definition 3.6 Connector Internal Transfer Relation

The connector internal transfer relation defines the possible data input/output or control

pass relations among interfaces inside a connector. Connector_Internal_Transfer_Relation

(C.interf1, C.interf2): (C_Interf × C_Interf) → {0, 1}== 1 if for a connector C, there is a

data or control transfer from C.interf1 to C.interf2, otherwise 0. This relation is non-

reflexive, non-symmetric and non-transitive.

47

Note that some ADLs may not have an explicit description on connectors or their

behavior. A detailed classification and survey can be found in Medvidovic's paper [Med97].

Definition 3.7 Connector Internal Ordering Relation

If the interfaces of a connector have to behave based on some ordering rules, the ordering

rules requires that the interfaces must run either in parallel or sequentially, then there is an

ordering relation among the connector interfaces. If two interfaces can occur at any

arbitrary order, then there is no specific ordering relation between the two interfaces. This is

represented as

Connector_Internal_Ordering_Relation(C.interf1, C.interface2): (C_Interf × C_Interf) →

{0, 1}== 1 if such ordering relation exists, 0 otherwise. This relation is non-reflexive, but is

symmetric and transitive.

Definition 3.8 Connector Internal Relation

A connector internal relation Connector_Internal_Relation(C.interf1, C.interf 2): (C_Interf

× C_Interf) → {0, 1}== 1 if Connctor_Internal_Data_Relation(C.interf1, C.interf2) == 1 or

Connector_Internal_Ordering_Relation (C.interf1, C.interf2) == 1, otherwise 0.

Again, some ADLs may not have a description on connector, therefore no connector

internal ordering restriction is given.

48

Definition 3.9 Component and Connector Relation

N_C_Relation(N.interf1, C.interf1): (N_Interf × C_Interf) → {0, 1}== 1 if an interface of a

component is associated with an interface of a connector, 0 otherwise. This relation is non-

reflexive, non-symmetric, and non-transitive.

Definition 3.10 Connector and Component Relation

C_N_Relation(C.interf1, N.interface1): (C_Interf × N_Interf) → {0, 1}== 1 if an interface

of one connector is associated with an interface of a component, 0 otherwise. This relation

is non-reflexive, non-symmetric, and non-transitive.

Definition 3.11 Direct Component Relation

Direct_Component_Relation (N1.interf1, N2.interf2): (N_Interf × C_Interf × C_Interf ×

N_Interf) → {0, 1}== 1 if N_C_Relation(N1.interf1, C1.interf1) == 1 and

C_N_Relation(C1.interf2, N2.interf2) == 1 and Connector_Internal_Relation(C1.interf1,

C2.interf2) ==1, 0 otherwise. This relation is reflexive, symmetric, but non-transitive.

Definition 3.12 Indirect Component Relation

If component N1, N2 has direction relation Direct_Compoent_Relation(N1.interf1,

C1.interf1, C1.interf2, N2.interf1) == 1 and component N2 and N3 has a direction relation

Direct_Component_Relation(N2.interf2, C2.interf1, C2.interf2, N3.interf2) == 1, also, if

Component_Internal_Relation(N2.interf1, N2.interf1) == 1, then

Indirect_Component_Relation(N1.interf1, C1.interf1, C1.interf2, N2.interf2, C2.interf1,

C2.interf2, N3.interf1): (N_Interf × C_Interf × C_Interf × N_Interf × C_Interf × C_Interf ×

49

N_Interf) → {0, 1}== 1, 0 otherwise. This relation is non-reflexive, non-symmetric, but is

transitive.

Definition 3.13 Initiation Point and Called Point

If Direct_Component_Relation(N1.interf1, C1.interf1, C1.interf2, N2.interf2) == 1, the

component interface that initiates the whole connection process is called an initiation point.

Every other component interface is called the called point.

To summarize, the following architecture relations are defined in this section. These

architecture relations will be used in defining the testing requirements and testing paths in

section 3.2.3.

• Component Internal Relation:

Component_Internal_Relation(N1.interf1, N1.interf2)

• Component Internal Transfer Relation:

Component_Internal_Transfer_Relation(N.interf1, N.interf2)

• Component Internal Ordering Relation

Component_Internal_Ordering_Relation(N.interf1, N.interf2)

• Connector Internal Relation:

Connector_Internal_Relation(C.interf1, C.interf2)

• Connector Internal Transfer Relation:

Connector_Internal_Transfer_Relation(C.interf1, C.interf2)

• Connector Internal Ordering Relation:

Connector_Internal_Odering_Relation(C.interf1, C.interf2)

• Component and Connector Relation:

50

N_C_Relation(N.interf1, C.interf1)

• Connector and Component Relation:

C_N_Relation(C.interf1, N.interf1)

• Direct Component Relation:

Direct_Component_Relation(N1.interf1, C1.interf1, C1.interf2, N2.interf1)

• Indirect Component Relation:

Indirect_Component_Relation(N1.interf1, C1.interf1, C1.interf2, N2.interf2,

C2.interf1, C2.interf2, N3.interf1)

Example ICG Architecture Relations and Paths

Given the ICG shown in Figure 3-3, assume that the Server component has to run first,

then the Server has to get information from the DatatStore and Sync components before the

Server can send out information through its ports Server.i1 and Server.i2. Both of the two

GUI components have to make requests to the Server and wait for responses back from the

Server. The following shows the ICG architecture relations. To make it simple to read and

understand, we use paths to represent these architecture relations.

Component Internal Transfer Relation:

• {Server(b7)} – There is only one transfer relation for all the components in Figure 3-3.

Component Internal Ordering Relation:

• {Sequence(Server(i2 // i4), Server(i1 // i3)} – In Server component, its port i2 and i4 and

run in parallel or independently, ports i1 and i3 can run in parallel, but either port i2 or i4

has to run before port i1 or i3 can run.

51

Component Internal Relation:

• {Server(b7), Sequence(Server(i2 // i4), Server(i1// i3)}

Connector Internal Transfer Relation:

• {GUI1(b1, b2), GUI2(b3, b4), SD1(b5), SD2(b6)}

Connector Internal Ordering Relation:

• {Sequence(CS1(b1), CS1(b2)), Sequence(CS2(b3), CS2(b4))} – Request first before

receiving response

Connector Internal Relation:

• {GUI1(b1, b2), GUI2(b3, b4), SD1(b5), SD2(b6), Sequence(CS1(b1), CS1(b2)),

Sequence(CS2(b3), CS2(b4)) }

Component and Connector Relation:

• {a1, a7, a4, a9, a6, a12}

Connector and Component Relation:

• {a3, a8, a4, a10, a5, a11}

Direct Component Relation:

• {(GUI1(i1), CS1(i1), CS1(i2), Server(i1)), -- GUI1-CS1-Server

(GUI2(i1), CS2(i1), CS2(i2), Server(i2)), - - GUI2-CS2-Server

(DataStore(i1), SD1(i2), SD1(i1), Server(i2)), -- DataStore-SD1-Server

 (Srnc(i1), SD2(i2), SD2(i1), Server(i4)) } -- Sync-SD2-Server

Indirect Component Relation:

None in this case.

52

3.2.3 Architecture-based Testing Path Definitions

Before testing coverage criteria are defined, we need to formally define what needs to be

covered at the architecture level. These were informally discussed in section 3.2.1, we now

formally define the connectivities that need to be covered. An architecture-based testing path is

defined based on the ICG of a software architecture, it is a path between two interfaces (either

component interfaces or connector interfaces) from an initiation point to a called point and it

covers certain architecture relations so as to satisfy certain architecture-based testing

requirements. Because these testing paths are defined at the ICG level, they may appear only as

some simple edges in an ICG, but when it comes to a specific ADL description, more detailed

behavioral and design information need to be included to extend these edges at that level. This

is what we defined as part two of the overall testing technique, and it is presented Chapter 4.

Types of architecture-based testing paths are now defined, first informally, then formally.

1. Component internal transfer path

Given a component N, there is a Component internal data path if there is a

Component_Internal_Data_Relation(N.interf1, N.interf2) between the two interfaces.

This path is defined formally as:

Component_Internal_Transfer_Path = {(i, j) | i ∈ N_Interf, j ∈ N_Interf, and

Component_Internal_Transfer_Relation(i, j) == 1}

For example, b2 in Figure 3-4 is an Component_Internal_Transfter_Path.

Figure 3-4 An Example of Component_Internal_Transfer_Path

N1

i1 i2

b1

53

2. Component internal ordering rules

 Given a component N, if any interface of N has an ordering relation, then there must

be a rule or set of rules for this ordering relation. This path is defined formally as:

Component_Internal_Ordering_Rule = {order_rules(i, j) | i ∈ N_Interf, j ∈ N_Interf,

and Component_Internal_Ordering_Relation(i, j) == 1}

For example, component N1 has three ordering rules as shown in Figure 3-5: i1 has

data/control transfer to i2; i2 and i3 are running in parallel; i3 interface runs after

interface i1 runs.

Figure 3-5 An Example of Component Internal Ordering Rules

3. Connector internal transfer path

 Given a connector C, there is a path for Connector_Internal_Transfer_Relation

(C.interf1, C.interf2) between C.interf1 to C.interf2. This path is defined formally as:

Connector_Internal_Transfer_Path = {(i, j) | i ∈ C_Interf, j ∈ C_Interf, and

Connector_Internal_Data_Relation(i, j) == 1}

b1 in Figure 3-6 is a Connector_Internal_Transfter_Path.

Figure 3-6 An Example o f Connector_Internal_Transfter_Path

C1
b1

i1 i2

N1

i1

i2

i3

Ordering rules:
1. (i1 | i2)
2. (i2 // i3)
3. (i1 => i3)

54

4. Connector internal ordering rules

 Given a connector C, if any interface of C has an ordering relation, then there must be

a rule or set of rules for this ordering relation. This path is formally defined as:

Connector_Internal_Ordering_Rule = {order_rules(i, j) | i ∈ C_Interf, j ∈ C_Interf, and

Connector_Internal_Ordering_Relation(i, j) == 1}

Figure 3-7 shows an example of the connector internal ordering rules: i2 has

data/control transfer to i2; i2 has data/control transfer to i1; i1 to i2 transfer happens

before i2 to i1 transfer.

Figure 3-7 An Example of Connector_Internal_Ordering_Rules

5. Component to connector (N_C) path

Given a component N and a connector C, if there is N_C_Relation(N.interf1, C.interf1),

there is a path from the N.interf1, to C.Interf1. This path is formally defined as:

N_C_Path = { (i, j) | i ∈ N_Interf, j ∈ C_Interf, and N_C_Relation(i, j) == 1}

a1 in Figure 3-8 is an N_C_Path between component N1 and connector C1.

Ordering rules:
1. (i1 | i2)
2. (i2 | i1)
3. ((i1|i2) =>(i2|i1))

i1 i2

C1

55

Figure 3-8 An Example of N_C_Path

6. Connector to component (C_N) path

Given a component N and a connector C, if there is a C_N_Relation(C.interf1,

N.interf1), there is a path from C.interf1 to N.interf1. This path is formally defined as:

C_N_Path = { (i, j) | i ∈ C_Interf, j ∈ N_Interf, and C_N_Relation(i, j) == 1}

a2 in Figure 3-9 is a C_N_Path between connector C1 and component N2.

Figure 3-9 An Example of C_N_Path

7. Direct component to component path

Given two components N1 and N2, and a connector C1, if there is an architecture

relation Direct_Component_Relation(N1.interf1,C1.nterf1) and a

C_N_Relation(C1.interf2, N2.Interf1), there is a path from N1.interf1 to C1.interf1 to

C1.interf2 to N2.Interf1. This path is formally defined as:

N1 C1
a1

i1 i1 i2

C1 N2
a2

i1 i2 i1 i2

56

Direct_Component_Path = {(i, j) | i ∈ N_Interf, j ∈ N_Interf and

Direct_Component_Relation (i, l) == 1}

a1-b1-a2 in Figure 3-10 is a Direct_Component_Path between component N1 and N2.

Figure 3-10 An Example of Direct_Component_Path

8. Indirect component to component path

Given components N1, N2, and N3 and connectors C1 and C2, if there are relations that

connect these components and connectors together, then the resulting path is: N1-C1-

N2-C2-N3. This path is formally defined as:

Indirect_Component_Path = {(i, s, t, j, w, z, k) | i ∈ N_Interf, s ∈ C_Interf, t ∈

C_Interf, j ∈ N_Interf, w ∈ C_Interf, z ∈ C_Interf, k ∈ N_Interf, and

Indirect_Component_relation(i, s, t, j, w, z, k) ==1}.

For instance, a1-b1-a2-b2-a3-b3-a4 is an Indirect_Component_Path in Figure 3-11.

Figure 3-11 An Example of Indirect_Component_Path

N1 C1 N2 C2 N3

a1 a2b1

i1 i1 i2 i1 i2 i1 i2 i1

a3 a4b3b2

N1 C1 N2

a1 a2b1

i1 i1 i2 i1 i2

57

9. Connected components path

Given components N1, N2, … Ns and connectors C1, C2, … Ct, if there are relations that

connect these components and connectors together, then the resulting path is: N1-C1- …

-Ct-Ns. This path is formally defined as:

Connected_Components_Path = {(n1, c1, c2, n2, c3, c4, …, nw, cx, cy, nz) | n1 ∈ N_Interf,

c1 ∈ C_Interf, c2 ∈ C_Interf, n2 ∈ N_Interf, c3 ∈ C_Interf, c4 ∈ C_Interf, nw ∈ N_Interf,

cx ∈ C_Interf, cy ∈ C_Interf, nz ∈ N_Interf, and direct component-to-component or

indirect component-to-component paths connects n1 to nz to a path.}

For instance, a1-b1-a2-b2-a3-b3-a4-…-ax-bs-ay is a Connected_Components_Path in

Figure 3-12.

Figure 3-12 An Example of Connected_Components_Path

3.3 Architecture-based Testing Criteria

Software architecture-based test criteria are defined to specify the required testing in terms

of identified properties and relations of the specification of the software architecture, so that a

test set is adequate if all the identified architecture relations have been fully exercised. They

provide an increasing amount of coverage at more cost and time.

N1 C1
a1 b1

i1 i1 i2

N2 C2
a3 b3

i1 i1 i2

N3

i1

...
Cx

ax bt

i1 i2

Ny

i1

b2
a2 a4 a5 ayb4

58

1. Individual component interface coverage requires that the set of paths executed by the test

set T covers all Component_Internal_Transfer_Paths and

Component_Internal_Ordering_Rules for an individual component.

2. Individual connector interface coverage requires that the set of paths executed by the test

set T covers all Connector_Internal_Transfer_Paths and

Connector_Internal_Ordering_Rules for an individual connector.

3. All direct component-to-component coverage requires that the set of paths executed by the

test set T covers all C_N paths, all N_C paths and all Direct_Component_Paths.

4. All indirect component-to-component coverage requires that the set of paths executed by

the test set T covers all Indirect_Component_Paths.

5. All connected components coverage requires that the set of paths executed by the test set T

covers all possible Connected_Components_Paths for all the components in the

architecture.

Figure 3-13 shows how five different coverage levels are reflected in an example

architecture. Edges with specific numbers are the relations/paths that need to be tested for the

corresponding coverage levels. Path N1-C1-N2-C2-N3-C3-N4 is numbered with 5, this means

this path needs to be tested to satisfy coverage level 5 (All connected components coverage).

There are two level 4 paths (N1-C1-N2-C2-N3 and N2-C2-N3-C3-N4), three level 3 paths (N1-

C1-N2, N2-C2-N3, and N3-C3-N4), three level 2 paths (inside C1, C2, and C3), and three level

1 paths (inside N2, N3, and N4).

59

Figure 3-13 Coverage Levels

3.4 Architecture Coverage Analysis

Structural coverage analysis is needed to determine whether all architecture relations have

been covered. The architecture-based testing criteria defined in the previous section provide test

requirements that must be satisfied during testing. Test cases can then be generated specifically

to satisfy each test requirement or they can be generated separately and then checked to see if

they satisfy the requirements. In general, test coverage is measured by calculating the number of

internal arcs, external arcs and paths. A general way to measure test coverage is given as

follows.

 Given a software architecture described by a certain ADL, we can construct its ICG. As

defined in the previous section, ICG = (N, C, N_Interf, C_Interf, N_Ex_arc, C_Ex_arc,

N_In_arc, C_In_arc), test coverage can be represented by ICG edge and node coverage. Let EA

be the number of external arcs in the ICG, IA be the number of internal arcs in the ICG, and

NInterf be the number of component and connector interfaces:

1. EA = | N_Ex_arc | + | C_Ex_arc |

N1 C1
3 2

N2 C2

3 21
3

N3

1
3

4

C3

2

N4

1

4

5

3 3

60

2. IA = | N_In_arc | + | C_In_arc |

3. NInterf = | N_Interf | + | C_Interf |

4. AINN = number of all indirect component-to-component paths

5. INi = number of internal relations inside a component Ni that have been tested

6. ICi = number of internal relations inside a connector Ci that have been tested

7. DNN = number of all direct component-to-component relations that have been tested

8. INN = number of all indirect component-to-component relations that have been

tested

9. AN = number of all connected components relations that have been tested

Then we have the following test coverage defined:

Individual component interface test coverage = INi / | Ni_In_arc |

Individual connector interface test coverage = ICi / | Ci_In_arc|

All direct component-to-component test coverage = DNN / (EA / 2)

All indirect component-to-component test coverage = INN / AINN

All connected components coverage = AN / | N_In_arc |

Test coverage analysis can be used to determine how much of the overall architecture has

been tested for given test case sets. This evaluation can be very helpful when we need to know

when to stop testing.

For instance, if we would like to check the individual connector interface (connector CS1)

test coverage in the ICG showed in Figure 3-3, if only one edge b1 has been covered in a test

set, while there are two internal arcs within that connector CS1, then individual connector CS1

interface coverage is ICi / | Ci_In_arc| = 1/2 = 50 %.

61

In conclusion, this chapter discusses a new testing technique at the software architecture

level. Architecture relations are the main focus of this technique, and they are formally defined.

The Interface Connectivity Graph (ICG) is introduced to help to represent the architecture

relations. Testing requirements and criteria are formally defined. Test coverage and analysis are

also formally defined in this chapter. This testing technique applies to general ADLs. Given a

specific ADL, we may have the capability to describe a software architecture with more details,

then we need to apply the architecture-based testing technique at a more detailed level as

presented in Chapter 4, in which a specific ADL Wright is used, and another graphical

representation is used.

62

Chapter 4 Testing Technique Applied to Wright

This chapter presents an application of the architecture-based testing technique to a specific

ADL, Wright. Because the software architecture-based testing technique presented in Chapter 3

is based on the ICG representation, to apply this technique to Wright, we need to develop a

mapping from a Wright description to an ICG (Interface Connectivity Graph). Also, as Wright

provides detail descriptions of interface behavior of components and connectors, we introduce

another type of graphical representation, the Behavior Graph (BG), based on the theory of Petri

Net [Peterson81, RT86]. Then we derive detailed test requirements (in terms of path coverage)

and testing sets based on the ICG and the BG. The application procedures are shown in Figure

4-1. The relation between an ICG and a BG is discussed, test data generation algorithms are

defined for automatic test requirements generation. Some issues related to this application are

also discussed at the end of the chapter.

Figure 4-1 Application Procedures

A Specific ADL
Description

Test
Requirements
(path coverage)

Test Sets for
Modeling or Testing
the ADL Description

The ICG

The BG

Part 2

Applying the Testing Technique to An ADL

Test Criteria (Defined in Chapter 3)

Implementation in
Chapter 6

63

4.1 ADL Wright in Brief

Architecture Description Languages (ADLs) are designed to provide ways to formally

describe software architectures. A large number of ADLs have been proposed [LV95, SDK+95,

Ves96, Tra93, MTW96, AG94a], each of which specifies a particular formal model in which

some aspects of a software architecture can be described. The formal architecture specifications

and descriptions allow us to algorithmically define test criteria and test sets. To apply the

software architecture testing technique described in Chapter 3, a specific ADL needs to be

chosen. There are three reasons we choose Wright as the basis for this application. First, Wright

explicitly defines components, connectors, and configurations of a software architecture, while

many other ADLs may not have explicit descriptions for connectors. Second, Wright is well

studied and there is a downloadable tool for Wright [Wrighttool]. Third, Wright has been

applied to several realistic application examples [AGI98, All97]. They provide valuable

resources for validation of the test criteria. Table 4-1 shows the Wright capability based on an

ADL survey [Med97].

Table 4-1 Representation Capability of Wright

Software Architecture Artifacts Wright

interface port

Component semantics computation and ports

interface role

semantics glueConnector

constraints role and glue

Configuration implicit or explicit? explicit

64

4.2 Mapping Wright to Interface Connectivity Graphs (ICG)

As described in Chapter 2, in a Wright description basic elements are components, which

are independent computational elements, and connectors, which define the interactions among

them. Wright components and connectors are instantiated and bound together in well-defined

ways to form configurations.

A component type consists of some number of ports (interfaces) and optionally, a

computation. Each port represents an interaction in which the component may participate and

describes expectations about how the component uses the port. The computation defines what

the component does and how the component uses the interactions described by the ports. A

Wright connector type consists of a set of roles and the glue. Each role in a connector defines

what is expected of any component that will participate as part of the interaction. The glue for a

connector describes how the roles work together to form an interaction. The components and

connectors of a Wright description are combined into a configuration to describe a complete

system architecture. Wright requires that each instance be explicitly and uniquely named. An

attachment defines the configuration by defining which component interfaces participate in

which connector roles.

An ICG only captures the structural relations in a Wright description, it visually contains all

the components and their interfaces (ports in Wright), all the connectors and their interfaces

(roles in Wright), and shows connections between component and connector interfaces and

possible connections inside components and connectors. But an ICG does not capture the

detailed behavioral information that some ADLs provide. To translate a Wright description to

65

an ICG, we need structural information such as component-port, connector-role relations and

configuration information from a Wright description.

An ICG can be represented by the structural properties of a Wright description. Each

Wright component corresponds to an ICG component box, ports of a Wright component

correspond to the interface circles in an ICG component box, and possible links among ports

described by the component computation are reflected as the component internal arcs inside an

ICG. Each Wright connector is represented by an ICG connector box, and the roles correspond

to the interface circles of the ICG connector box. Wright glue will link these circles in the ICG

connector box. A name mapping mechanism maps the instance names to their corresponding

component and connector names. An attachment decides the linkage between components and

connectors. The following shows a Wright description structure where components, connectors,

instances, and the attachment are described.

Wright Description Structure

Component C1

Port 1 [describes how the component expects to interact in connection 1]

…..

Port n [describes how the component expects to interact in connection n]

Computation [ties Port 1 … and Port n together]
Component C2

Port 1 [describes how the component expects to interact in connection 1]

…..

Port m [describes how the component expects to interact in connection m]

Computation [tie Port 1 … and Port m together]
Connector C1-C2 Connector

Role 1 [describes what is expected of any component that will participate in interaction 1]

……

Role s [describes what is expected of any component that will participate in interaction 1]

Glue [describes how the participants work together to create an interaction]
Instances

component1: C1

component2: C2

connect: C1-C2 Connector

66

Attachments:

component1 provides as C1-C2.C1

 component provides as C1-C2.C2

end

Table 4-2 gives the structural mapping from a Wright description to an ICG. Wright

components and ports become the ICG components and interfaces, Wright connectors and

interfaces become the ICG connectors and corresponding interfaces. Component computations

provide the information for possible links among ports inside a component in an ICG. Wright

attachments provide links between component interfaces and their corresponding connector

interfaces.

Table 4-2 ICG Elements and Wright Elements

Wright Element (Instantiated) ICG Elements
Components N
Connectors C
Ports of Components N_Interf
Ports of Connectors C_Interf
Connector Glue and Attachment N_Ex_arc
Connector Glue and Attachment C_Ex_arc
Component Computation N_In_arc
Connector Glue C_In_arc

4.3 Mapping Wright to Behavior Graph (BG)

In this section, we introduce a new graphical representation to describe the port and role

behaviors described in Wright. We discuss why we need the Behavior Graph (BG), how it is

defined, and how Wright descriptions are mapped into BGs.

67

4.3.1 ICG Is Not Enough -- Behavior Graph

An ICG provides a high level abstraction of a software architecture. But some ADLs

provide more detailed information about interface behavior and their relations or constraints.

Wright gives behavioral descriptions of component and connector ports and how they should

work together. In order to reflect this type of information in testing, we introduce a new type of

graphical representation, the Behavior Graph (BG), to represent the information about the port

behavior of two components and their connections. We found that Petri Net [Peterson81, RT86]

is a very good choice to describe the port or role behavior (as discussed below in section

4.3.1.1). We define the BG based on the Petri Net theory. An introduction to Petri Net theory

was given in Chapter 2.

4.3.1.1 Revised Petri Net (RPN)

Petri Nets are used to formally modeling distributed systems because Petri Nets provide

graph-theoretic representations of the communication and control patterns, and mathematical

frameworks for analysis and validation [Peterson81, Jin94]. Petri Net modeling is useful in this

application for several reasons. First, Petri Nets can capture the precedence relations and

structural interactions of concurrent and asynchronous events and can provide an integrated

methodology, with well-developed theoretical and analytical foundations. Second, the graphical

nature of Petri Nets allows the systems to be visualized. Third, the mathematical representations

of Petri Nets allow quantitative analysis to be used when generating test cases. Finally, Petri

Nets can be executed, allowing the dynamics of a system to be explored.

68

Formal definition for Petri Nets was given in Chapter 2. To suit our particular needs in the

context of software architecture, we need to introduce three changes to the Petri Nets. The

resulting graph is named a Revised Petri Net (RPN). Given a Petri Net N(P, T, I, O) as defined

in Chapter 2, a Revised Petri Net RPN(P, T, I, O) has three differences:

• Represent "the end of process". RPN.P now includes a new type of place pend that

represent the end of the process, a thick-lined place. This is just a notation change that does

not affect any theoretical properties of Petri Nets.

• Add "internal choice". RPN.I and RPN.O now include the representation of internal

choices Iinternal or Ointernal. Internal choices are non-deterministic choices made by the

process itself. Internal choices are presented by arcs that have small vertical lines, as shown

in Figure 4-2. This means when there is a token in p3, either transition t2 or t3 will fire.

The choice is made internally by the process itself. This is not only a notation representation

change, but also will affect the execution result.

Figure 4-2 Internal Choice Arcs

• Add "external choice". RPN.I and RPN.O now include the representation of external

choices Iexternal or O external. External choices are deterministic choices made by the

environment rather than by the process itself. In the context of Wright, it means that an

input arc comes from another component help to make the decision. Internal or external

p3

t2

t3

69

choices are presented by arcs that have double vertical lines, as shown in Figure 4-3. This

means when there is a token in p3, either transition t2 or t3 will fire, the choice is made

externally by input arcs from other components. This is a notation change, in the context of

software architecture, whenever there is an external choice, there is always another arc from

another component of the net to help enable the firing. Therefore, the choice is determined

by the availability of some resource from other components. This is the external choice

case.

Figure 4-3 External Choice Arcs

4.3.1.2 Behavior Graph (BG)

A Behavior Graph (BG) is an RPN that shows the behavior and the relation of two related

components. A BG consists of two component subnets, with each representing the behavior of

one component. A BG also has other places and transitions to show the connections of the two

components. Each component subnet contains one or more port subnets that describe the

expected behavior of each port. These ports may have transfer relations, ordering relations or

they may not have any relations at all. Transfer relations are described by place and transition

linkages from one port subnet to another, ordering relations are represented separately by a

computation subnet that describe the rules of ordering. Currently we consider the computation

p3

t2

t3

from another component

70

subnet a separate subnet inside a component subnet, it plays a role in generating test sets when

there are ordering relations among the ports. Each transition and place in a component subnet

will be named with the component's name as prefix. Formally, a BG is defined as follows:

Definition 4.1 Behavior Graph

Behavior Graph = (Comp1(Pn1, Tn1, In1, On1), Comp2(Pn2, Tn2, In2, On2), Pc, Tc, Ic, Oc), where

• Comp1 is the graph that describes component C1. Comp 1(Pn1, Tn1, In1, O n1) is a 5-tuple

representation of the graph. Pn1 is the set of all the places in C1, Tn1 is the set of all

transitions in Comp1, and In1 and On1 are the input and output arc sets.

• Comp2 is the graph that describes component C2. Comp2(Pn2, Tn2, In2, On2) is a 5-tuple

representation of the graph. Pn2 is the set of all the places in Comp2, Tn2 is the set

of all transitions in Comp2, and In2 and On2 are the input and output arc sets.

• Pc is a set of places that are used to connect components Comp1 and Comp2.

• Tc is a set of transitions that are used to connect components Comp1 and Comp2.

• Pn1 ∩ Pn2 ∩ Pc = ∅, Tn1 ∩ Tn2 ∩ Tc = ∅

• Ic is a set of arcs, each of which connects a place to a transition between two

components. Ic: ({Pn1, Pn2, Pc} × {Tn1, Tn2, Tc}) → {0,1}. If the value is 1, then the

arc exists, otherwise the arc does not exist.

• Oc is a set of arcs, each of which connects a transition to a place between two

components. Oc: ({Tn1, Tn2, Tc} × {Pn1, Pn2, Pc}) → {0,1}. If the value is 1, then

the arc exists, otherwise the arc does not exist.

When there is only one component, then the Behavior Graph becomes (Comp1(Pn1, Tn1,

In1, On1)).

71

As an example, considered the Client-Server example described in Wright [AG96] shown

below. This Client-Server system contains two components, Client and Server. The Client

component has one port of ClientPullT type, the Server component has one port of ServerPushT

type. A connector that has two roles connects the Client and the Server components together.

Component Client
Port Service = ClienPullT
Computation = Service.open ; UseOrExit

 where UseOrExit = UserService Exit
 UseService = Service.request Service.result?y UseOrExit
 Exit = Service.close §

Component Server
Port Provide= ServerPushT
Computation = WaitForClient Exit §

where WaitForClient = Provide.open Provide.request Provide.result?x
 WaitForClient
 Exit = Provide.close §

Connector C-S Connector
Role Client = ClientPullT
Role Server = ServerPushT
Glue = Client.open Server.open Glue
 Client.close Server.close Glue

 Client.request Server.request Glue
 Server.result?x Client.result!x Glue
 §

Type ClientPullT = open Operate §
 where Operate = request result?x Operate Close

Close = close §

Type ServerPushT = open Operate §
 where Operate = request result!x Operate Close

Close = close §
Instances

c: Client
s: Server
cs: C-S Connector

Attachments:
c provides as cs.c

 s provides as cs.S
end

Wright Description of the Client-Server Problem

72

Figure 4-4 shows the corresponding Behavior Graph of the Client-Server system. The

client-server connection obeys the following rules: Client either initiates the process to open

(Client.open) the connection with Server or Client does nothing and stops the process

(Client.§1). Once open, Client sends requests (Client.request) to Server. Server then opens

(Server.open) its connection when initiated by Client. When Server receives a request

(Server.request) from Client, it sends out the requested result (Server.result!x) back to Client.

Server waits for possible more Client requests as long as the connection is kept open. When

Client receives a result (Client.result?x) from Server, it may send out more requests to Server or

Client may close the connection (Client.close). If Client closes connection, then Server is forced

to close its connection (Server.close) and ends the process. Because under software architecture

context, we only care about the transitions (events or processes), names of places in a BG are

not important. Therefore, we name places as p0, p1 and etc.

Figure 4-4 A Behavior Graph Example

Server Component

open request Result?xp1

p3

p2

p4 p5

§1

§2
close

open request Result!x

close

p1

p3

p2

p4 p5

§1

§2

p0

p0

p101 p102 p103
p104

Client component

73

The following shows the BG in the form of (Comp1(Pn1, Tn1, In1, On1), Comp2(Pn2, Tn2, In2,

On2), Pc, Tc, Ic, Oc). Note that for two transitions that have the same names in a subnet, we use

subscripts to differentiate them. For example, both Client and Server components have two §

transitions, we use §1 and §2 to differentiate the transitions.

Client = {P(client.p0, client.p1, client.p2, client.p3, client.p4, client.p5),

T(client.open, client.request, client.result?x, client.close, client.§1, cleint.§2),

I((client.p0, client.open), (client.p1, client.request), (client.p2, client.result?x),

(client.p1, client.close), (client.p0, client.§1,), (client.p4, client.§2)),

O((client.open, client.p1), (client.§1, client.p3), (client.request, client.p2),

(client.result?x, client.p1), (client.§2, client.p5), (client.close, client.p4)) }

Server = {P(server.p0, server.p1, server.p2, server.p3, server.p4)

T(server.open, server.request, server.result!x, server.close, server.§1,

server.§2),

I((server.p0, server.open), (server.p1, server.request), (server.p2, server.result!x),

(server.p1, server.close), (server.p4, server.§2), (server.p0, server.§1)),

O((server.open, server.p1), (server.request, server.p2), (server.result!x, server.p1),

(server.§1, server.p3), (server.close, server.p4),), (server.§1, server.p5))}

Pn = {p101, p102, p103, p104}

Tn = {}

In = {(p101, server.open), (p102, server.request), (p103, client.close), (p104, client.result?x)}

On = {(clinet.open, p101), (client.request, p102), (server.result?x, p104),(Client.close, p103)}

It can be seen from this example that the behavior inside a component interface and across

two components can be represented statically and dynamically in terms of a BG representation,

74

marking, and firing sequences. Static information is represented in the BG structure, while the

dynamic features can be shown through the execution of the Revised Petri Nets. The BG will

further be used to help generate test cases under defined testing criteria.

Now we define some BG paths. These paths will be used in generating test requirements

and test cases.

Definition 4.2 BG Path

A BG path is a set of k place / transition nodes and k - 1 directed arcs, for some

integer k, such that the ith directed arc either connects the ith node to the (i+1)th node

or the (i + 1)th node to the ith node.

Definition 4.3 BG component behavior path (B-path)

A BG B-path is a BG path within a component interface subnet. It starts with the start

place of a component and ends with an end place. When there are loops in the subnet,

only one loop can be allowed in each behavior path. I.e., each node (place or

transition) is allowed to be visited at most twice in each B-path.

As an example, consider Figure 4-4. The behavior–paths in Client are:

1. client.p0-- client.open -- client.p1 -- client.request -- client.p2 -- client.result?x --
client.p1 -- client.close -- client.p4 – client.§2 – client.p5

2. client.p0 -- client.§1-- client.p3

3. client.p0 -- client.open -- client.p1 -- client.close -- client.p4 -- client.§2 --
client.p5

For instance, in behavior path 1 presented above, the path traversed back to client.p1

after transition client.result?x.

75

Definition 4.4 BG Component Connection Path (C-path)

A BG C-path is a BG path that crosses two component subnets A and B. It starts with

a place in component subnet A, where this place's output transition leads to the

connection of component subnet B. The path ends with the place in B that is the output

place of the transition that has a connection with A. In the context of software

architecture, connections between components in BGs are always from transitions

(events or processes) to transitions.

For example, all the BG C-paths from Figure 4-4 are shown as follows.

1. client.p0 -- client.open – p101 – server.open -- server.p1

2. client.p1 -- client.request – p102 – server.request – server.p2

3. server.p2 -- server.result!x – p104 -- client.result?x – client.p1

4. client.p1 -- client.close – p103 – server.close – server.p4

Definition 4.5 BG Interface Interaction Path (I-path)

A BG I-path is a BG path that crosses two component interface subnets A.I1 and A.I2.

The I-path starts with a place (circle) in component interface subnet A.I1, where this

place's output transition (rectangle) leads to the connection of another interface subnet

A.I2. The path ends with the place in A.I2 that is the output place of the transition that

has a connection with A.I1.

The example in Figure 4-5 shows a component with two ports, In and Out. There

are some connections between port In and port Out inside the component. I-paths show

the connections between ports inside the component.

76

Figure 4-5 An I-path Example

The I-paths of this example are:

1. In.p0 -In.read - p3 – Out.write - Out.p0

2. Out.p0 - Out.write – p5 – In.read - In.p0

3. In.p0 - In.close – p4 – Out.close - Out.p2

Definition 4.6 BG Component Indirect Connection Path (Indirect C-path)

A BG indirect C-path is a BG path that crosses three component subnets A, B, and C.

It starts with a place in component subnet A, where this place's output transition leads

to the connection of component subnet B. The path ends with the place in C that is the

output place of the transition that has a connection with B.

We also use the following notations to simplify the naming of the BG:

BG(Comp1, Comp2): The simplified version of BG of component Comp1, Comp2 and

their connector.

BG(Compi), i = 1 or 2: Compi(Pni, Tni, Ini, Oni) (i= 1 or 2)

read

close §
p1

In Out

write

close §p2

p3

p4

end1

end2
p5

p0
p0

77

C_Ex_arc(Comp1, Comp2): The Ex_arcs of component Comp1 to the connector that

connects to component Comp2.

N_Ex_arc(Comp1, Comp2): The Ex_arcs of connector that connects Comp1 and Comp2.

C_In_arc(Comp1): The internal arcs of component Comp1.

N_In_arc(Conn1): The internal arcs of connector Conn1.

BG Mathematical Representation

As with any other graphs, a Petri Net with n places and m transitions can be represented

by an n × m Incidence Matrix, C. The rows correspond to places and the columns

correspond to transitions. The cells are defined as follows:

• Cij = 1 if there is a directed arc from the j-th transition to the i-th place. "1"

indicates that the firing of the j-th transition adds one token to the i-th place.

• Cij = -1 if there is a directed arc from the i-th place to the j-th transition. "-1"

indicates that the firing of the j-th transition removes one token from the i-th place.

• Cij = 0 if there is no arc from the j-th transition to the i-th place.

• Cij = -0.5 if there is a directed arc from the i-th place to the j-th transition, and the

arc is an internal choice or an external arc.

The incidence matrix of the BG in Figure 4-4 is shown in Figure 4-6. To save space, we

prefix server with s and client with c. In this matrix transitions are grouped in two components.

Places are partitioned into 3 groups, two come from the two components, and the other group

78

contains places that connect the two component interfaces. In Figure 4-6, places s.p0 through

s.p5 is a group of places from component Server, c.p0 through c.p5 is a group of places from

component Client, and places p101 through p104 is group of places that connect Server and

Client.

 s.open s.request s.result s.close s.§1 s.§2 c.open c.request c.result c.close c.§1 c.§2
s.p0 -0.5 0 0 0 -0.5 0 0 0 0 0 0 0
s.p1 1 -0.5 1 -0.5 0 0 0 0 0 0 0 0
s.p2 0 1 -1 0 0 0 0 0 0 0 0 0
s.p3 0 0 0 0 1 0 0 0 0 0 0 0
s.p4 0 0 0 1 0 -1 0 0 0 0 0 0
s.p5 0 0 0 0 0 1 0 0 0 0 0 0

c.p0 0 0 0 0 0 0 -0.5 0 0 0 -0.5 0
c.p1 0 0 0 0 0 0 1 -0.5 1 -0.5 0 0
c.p2 0 0 0 0 0 0 0 1 -1 0 0 0
c.p3 0 0 0 0 0 0 0 0 0 0 1 0
c.p4 0 0 0 0 0 0 0 0 0 1 0 -1
c.p5 0 0 0 0 0 0 0 0 0 0 0 1

p101 -1 0 0 0 0 0 1 0 0 0 0 0
p102 0 -1 0 0 0 0 0 1 0 0 0 0
p103 0 0 0 -1 0 0 0 0 0 1 0 0
p104 0 0 1 0 0 0 0 0 -1 0 0 0

Figure 4-6 The Incidence Matrix of the Client-Server Example

4.3.2 Mapping Wright Descriptions to Behavior Graphs

To represent a Wright description with a BG is more complicated than to map a Wright

description to an ICG. As described in the above section, the behavior properties of a Wright

description can be viewed as three parts: the component (the actual behavior of a component),

the connector (the expected behavior of a component), and the connections of all the

components. Each component is represented by a component RPN subnet and each connector

79

can also be represented by a connector subnet. Because ports have to obey rules defined by

roles, we assume that they are identical here. So we do not produce repetitive role subnets.

4.3.2.1 Mapping Procedures

Figure 4-7 shows the mapping from a Wright description to a BG representation, where port

descriptions become the port subnets inside a component subnet. A component computation

provides information of possible transfer links among ports of the component; it also may form

a computation subnet if ordering rules are described in the computation. The glue of a connector

helps to form the transfer linkage between two components, and there will be a glue subnet if

there are ordering rules between connector roles.

Figure 4-7 Wright Description to BG Mapping

Component C1 Subnet

…...

port1 subnet

portn subnet

Component C2 Subnet

…...

port1 subnet

portm subnet

transfer
relation

Component C1
Computation subnet

Component C2
Computation subnet

Connector C1-C2
Glue subnet

ordering relation ordering relation ordering relation

transfer relation
transfer relation

Component C1
 port1
 ….
 portn

 computation [……]

Component C2
 port1
 ….
 portm

 computation [……]

 Connector
 C1-C2

role 1
role 2

 Glue [……]

Wright Description

80

Figure 4-8 shows the mapping relations and procedures. The mapping procedure is divided

into four parts: (1) map a port description to a BG subnet, (2) map a computation description to

a BG subnet, (3) map a glue description to a BG subnet, and (4) name mapping from a Wright

configuration and the attachment. A set of transformation rules needs to be defined and used in

the transformation process. As for the connector roles, we are assuming that a port behavior is

identical to the role it connects to, so no duplicate role subnet is produced in the process. Role

behaviors can be defined differently from the behaviors that they are connecting to. Port

behavior must obey what is defined in the connecting role. Petri Net analyses techniques such as

consistency checks, deadlock checks, and etc. [Peterson81] can be applied to check the subsume

relations between a role and a port. This is beyond the scope of this thesis.

Figure 4-8 Wright to ICG Transforming Procedures

Wright Description

Component Connector Configuration/Attachment

port1 …… portn computation role1 …… rolem glue instantiations of components and
connectors

port1
subnet

portn

subnet

computation
subnet and
ports subnet
linkage

assumed to be
the same as port
subnets

glue sunbet and
component to
Component subnets
linkage

name mapping

transformation
rules

map port to
subnet
algorithm

map computation
to subnet
algorithm

map glue to
subnet
algorithm

name mapping table

81

In order to map a Wright description to a BG systematically, we need the syntax definition

of the ADL Wright. A full Backus-Naur Form (BNF) of Wright [Wrighttool] is given in

Appendix A. Now we present a way to map a subset of the ProcessExpression of the Wright

BNF form to Petri Net based on Goltz and Reisig's work [GR84]. They discussed transforming

a subset of the process algebra CSP (Communicating Sequential Processes) programs to Place

Transition Nets. Our mapping is based on their theory, but differs from their work in that we are

using Wright syntax which is slightly different from CSP. Details about Wright syntax can be

found in Allen's work [All97]. Also, we use Petri Nets instead of Place Transition Nets. The

transformation rules are defined in the following section.

4.3.2.2 Transformation Rules

To represent CSP like Wright ProcessExpression, we define the following types of

transformation rules for mapping a Wright description to a Revised Petri Net (RPN, defined in

section 4.3.1).

Rule 1. Events e are translated as Transf[e]:

Rule 2. Events e?x are translated as Transf[e?x]:

Rule 3. Events e!x are translated as Transf[e!x]:

e

e?x

e!x

82

Rule 4. Process definitions P = e → P are translated as Transf[P = e → P] :

Rule 5. Event § is translated as Transf[§]:

Preset and Postset

Given a Petri Net (P, T, I, O), let x ∈ P ∪ T, the preset *x and postset x* is defined as

preset: *x = { y ∈ P∪ T | (y, x) ∈ ((P ×T)) ∪ (T × P)) }

postset: x* = { y ∈ P∪ T | (x, y) ∈ ((P × T)) ∪ (T × P)) }

The preset of a place x is a set of all transitions that have directed arcs pointed to the place

x. The postset of a place x is the set of all transitions that have directed arcs pointed from the

place x. The presets and postsets of transitions are defined in a complementary manner. The

concepts of preset and postset are very useful when combining subnets together.

For example, in Figure 4-9, *t1 = {p1}, t1* = {p2}, *t2 = {p2}, t2* = {p3}, *p1 = Ø, p1*

= {t1}, *p2 = {t1}, p2* = {t2, t3}, *p3 = {t2}, p3* = Ø, *p4= {t3}, p4* = Ø

Figure 4-9 The Preset/Postset Example

eP

§ end

t1p1 p2
t2

t3

p3

p4

83

Definition 4.7 Sequential Net

An RPN net is sequential if and only if for all transitions ti ∈ T, |*ti| =|ti*| = 1. In RPN, we

extend the notion of sequential net such that |*ti| =|ti*| = 1 when ti is connected to two or

more internal choice arcs because only one of the choices will be taken. For instance, in

Figure 4-10, net A is a sequential net, net B is not a sequential net.

Figure 4-10 Sequential Net and Non-sequential Net

Now we define a sequential composition of two sequential RPN nets.

Definition 4.8 End Elements of a Net N•

The end elements of a RPN net is the set of all the elements (places or transitions) that have

only input arcs but no output arcs, or a designated one if the end element of the net is in a

loop.

N
•
(P, T, I, O) = {x ∈ P ∪ T | x* = ∅}

N
•
 is the set of all the end elements (places or transitions) of a net.

t1p1 p2
t2

t3

p3

p4

Net A

t1p1 p2
t2

t3

p3

p4

Net B

84

Definition 4.9 Start Elements of a Net
•
N

The start elements of a RPN net is the set of all elements (places or transitions) that have

only output arcs but no input arcs, or a designated element if the start element of the net is

in a loop.

•
N(P, T, I, O) = {x ∈ P ∪ T | *x = ∅}

•
N is the set of all the start elements (places or transitions) of a net.

For example, Figure 4-11 shows a sequential net A and a non-sequential net B. C is a

sequential net with a loop. The start element set for A is {p1}, and the end element set for A is

{p4, p5}. C is also a sequential net, because the output arcs from e are internal choice arcs, only

one of them can be chosen at a time.

Figure 4-11 Sequential Net, Start/End Elements

Rule 6. Sequential Composition

This sequential composition operation combines two sequential Wright nets by obtaining

the end elements of the first net and the start elements of the second net and then linking

p1

t1

t2

t3

t4

p2

p3

p4

p5

t1

p2

p3
p1

net A net B

ep1
p2

net C

85

them. In our case, the output arcs are always from a transition to one or more places. This

is formally defined as:

Let W1(P1, T1, I1, O1) and W2(P2, T2, I2, O2) be two sequential Wright nets, W1 ∩ W2 = ∅.

If P1
•
 = ∅, then W1 consists only of place P1 and we define W1(P1, T1, I1, O1) ° W2(P2, T2,

I2, O2) = W2(P2, T2, I2, O2) , otherwise W1(P1, T1, I1, O1) ° W2(P2, T2, I2, O2) = W(P, T, I, O),

where P= (P1 - W1
•
) ∪ P2, T = T1 ∪ T2, O = (O1 ∪ O2) ∩ (P × T) ∪ (*(W1

•
) ×

•
W2)).

For example, Transf[e1 à e2] = Transf[e1] ° Transf[e2], as shown in Figure 4-12

Figure 4-12 Sequential Composition

Rule 7. Non-deterministic (Internal Choice) Composition +

This non-deterministic composition operation combines two sequential Wright nets by

obtaining the start elements (places, in the context of Wright, a BG always starts with one

or more places) of the two nets and then merging them into one place. The new merged arcs

will be marked as internal choice marks. This is formally defined as:

Let W1(P1, T1, I1, O1) and W2(P2, T2, I2, O2) be two sequential Wright nets, W1 ∩ W2 = ∅.

If P1
• = ∅, then W1 consists only of place P1 and we define W1(P1, T1, I1, O1) + W2(P2, T2,

I2, O2) = W2(P2, T2, I2, O2) , otherwise W1(P1, T1, I1, O1) + W2(P2, T2, I2, O2) = W(P, T, I, O),

e1 e2
e1 e2p1 p2 p3 p4 p1 p3 p4

86

where P= (P1 - (
•
W1 ∪

•
W2) ∪ {p0}), T = T1 ∪ T2, I = ((I1 ∪ I2) - (

•
W1 × ((

•
W1)*) ∪ (•W2 ×

(
•
W2)*) ∪ ({p0} × (

•
W1)*) ∪ ({p0} × (

•
W2)*)), O = (O1 ∪ O2) – (*(

•
W1) ×

•
W1) ∪

(*(
•
W1) × {p0}) ∪ (*(

•
W2) × {p0}) ∪ (*(

•
W2) ×

•
W2))).

For example, Transf[P1 P2] = Transf[P1] + Transf[P2], where P1 = e2 → e2, P2 = e → P2.

This is shown in Figure 4-13.

Figure 4-13 Non-deterministic (Internal Choice) Composition

The only difference between the deterministic and the non-deterministic composition is that

the two choice arcs are different. The deterministic composition generates external choice arcs,

while the non-deterministic composition generates internal choice arcs.

Rule 8. Deterministic (External Choice) Composition ♦

This deterministic composition operation combines two sequential Wright nets by obtaining

the start elements (places) of the two nets and then merging them into one place. The new

merged arcs will be marked as external choice mark. The actual decision factor will be from

the interaction of another component. Details are discussed in the next section. This is

formally defined as:

e1 e2

eP

e1 e2

e

87

Let W1(P1, T1, I1, O1) and W2(P2, T2, I2, O2) be two sequential Wright nets, W1 ∩ W2 = ∅.

If P1
•
 = ∅, then W1 consists only of place P1 and we define W1(P1, T1, I1, O1) ♦ W2(P2, T2,

I2, O2) = W2(P2, T2, I2, O2) , otherwise W1(P1, T1, I1, O1) ♦ W2(P2, T2, I2, O2) = W(P, T, I,

O), where P= (P1 - (
•
W1 ∪

•
W2) ∪ {p0}), T = T1 ∪ T2, I = ((I1 ∪ I2) - (

•
W1 × ((

•
W1)*) ∪

(
•
W2 × (

•
W2)*) ∪ ({p0} × (

•
W1)*) ∪ ({p0} × (

•
W2)*)), O = (O1 ∪ O2) – (*(

•
W1) ×

•
W1) ∪

(*(
•
W1) × {p0}) ∪ (*(

•
W2) × {p0}) ∪ (*(

•
W2) ×

•
W2))). These replacement arcs are external

choice arcs.

For example, Transf[P1 ∏ P2] = Transf[P1] ♦ Transf[P2], here P1 = e2 → e2, P2 = e → P2.

This is shown in Figure 4-14.

Figure 4-14 Deterministic (External Choice) Composition

Rule 9. Parallel Composition ∪

The parallel composition operation combines two sequential Wright nets without

changing either one of them. The availability of tokens to initiate both sequential nets will

e1 e2

eP

e1 e2

e

88

make the execution of the combined net two parallel processes. There is no connection

between the two nets.

Let W1(P1, T1, I1, O1) and W2(P2, T2, I2, O2) be two sequential Wright nets, W1 ∩ W2 = ∅.

W1(P1, T1, I1, O1) ∪ W2(P2, T2, I2, O2) = W(P, T, I, O), where P= P1 ∪ P2, T = T1 ∪ T2, I =

I1 ∪ I2 , O = O1 ∪ O2. This transformation rule is: Transf[P1 || P2] = Transf[P1] ∪

Transf[P2]

Rule 10. Sequencing Composition ";"

 Note that there are two ways to construct a new process by sequencing, the Wright operator

";" is one way, the other way is to use the operator " " to combine an event and a process,

which has been discussed in this section. These two operators share the same composition

rules:

Transf[P1 ; P2] = Transf[P1] ° Transf[P2]. An example is shown in Figure 4-15.

Figure 4-15 Sequencing Composition

Rule 11. Naming Composition "where"

In Wright, named processes can be introduced into other processes using "where". For

instance, f P where P = e →Q. We define naming composition as follows:

Transf[f P where P = e →Q] = Transf[f] ° Transf[e →Q]. One example is shown in

Figure 4-16.

e1 e2
e1 e2p1 p2 p3 p4 p1 p3 p4

89

Figure 4-16 Naming Composition.

So far, we have the following transformation rules from Wright descriptions to a BG.

Rule 1. Events e are translated as Transf[e]

Rule 2. Events e?x are translated as Transf[e?x]

Rule 3. Events e!x are translated as Transf[e!x]

Rule 4. Process definitions P = e → P are translated as Transf[P = e → P]

Rule 5. Event successful § is translated as Transf[§]

Rule 6. Sequential Composition ° : Transf[P1 P2] = Transf[P1] ° Transf[P2]

Rule 7. Non_deterministic (Internal Choice) Composition + : Transf[P1 P2] = Transf[P1]

+ Transf[P2]

Rule 8. Deterministic (External Choice) Composition ♦: Transf[P1 ∏ P2] = Transf[P1] ♦

Transf[P2]

Rule 9. Parallel Composition: Transf[P1 || P2] = Transf[P1] ∪ Transf[P2]

Rule 10. Sequencing Composition ";" : Transf[P1 ; P2] = Transf[P1] ° Transf[P2]

Rule 11. Naming Composition "where": Transf[f → P where P = P1] = Transf[f] °

Transf[P1]

Wright component and connector types can be parameterized by using a quantification

operator ∀x: S <op> P(x). This operator constructs a new process based on a process expression

and the set S combining its parts by operator <op>. The operator can be p, or Π or ;.

f ef e Q Q

90

For instance, ∀x: {1, 2, 3} p Pi = P1 p P2 p P3

∀x: {1, 2, 3} Π Pi = P1 Π P2 Π P3

∀x: {1, 2, 3} ; Pi = (P1; P2; P3)Π (P1; P3; P2)

Π(P2; P3; P1)Π (P2 ; P1; P3)

Π(P3; P2; P1)Π (P3; P1; P2)

These types of parameterization normally occur in the component computation or connector

glue descriptions. They represent the possible transfer and ordering relations between

component ports. We translate them into RPN based on the following rules:

Rule 12. Transf[∀x: S p P(x)] = Transf[P(x1)] + Transf[P(x2)] + … + Transf[P(xn)]

In terms of RPN representation, we can put a place set S in the start place of the subnet that

represents all the available tokens (elements in S) that will participate in the subnet. This

shows in Figure 4-17. Firing of the transition P can be controlled as one at a time or allow

multiple firing at the same time.

Figure 4-17 Quantification Operator (1)

Rule 13. Transf[∀x: S Π P(x)] = Transf[P(x1)] ♦ Transf[P(x2)] ♦ … ♦ Transf[P(xn)].

In terms of RPN representation, we put a place set S in the start place in the subnet, its out

put arc is a external choice arc. This shows in Figure 4-18. Firing of the transition P can be

controlled as one at a time or allow multiple firing at the same time.

p

S

91

Figure 4-18 Quantification Operator (2)

Rule 14. Transf[∀x: S ; P(x)] = Trans[P(S)]

As shown in Figure 4-19, the start place is initialized with a token set S. Each process

transition P is associated with a place named "avail", which represents the availability of

transition (process) P. This "avail" place guarantees that the process transitions will be fired

one after another. This complies with the semantics of the ";" operator. This is shown in

Figure 4-19.

Figure 4-19 Quantification Operator (3)

Rule 15. State Variables

State variables in Wright are subscripts on processes, because they can be represented

implicitly in a BG subnet by the process execution and token distribution in a net. For this

reason, state variables do not need to be explicitly transformed into a BG.

p

S

p

avail

S

92

For example, from a Wright case study [All97], a component computation with state

variables is defined as follows:

Component Server (numclients: 1 ..) =

Port Client1..numClients = ServerPushT
Computation = WaitForClient{},{}

where WaitForCliento,c = x: ((1..numClients) \ (O C)) Clientx.open
DecideNextActionO {x}, C

DecideNextActionO,C = WaitForClientO,C x: O ReadFromClientx,O,C

O {} O C {1..numClients)
DecideNextActionO,C = x: O ReadFromClientx,O,C

O {} O C = {1..numClients)
DecideNextActionO,C = WaitForClient{},C

O = {} C {1..numClients)
DecideNextAction{},{1..numClients} = §
ReadFromClientx,O,C = Clientx.request Clientx.result!y DecideNextActionO,C

 Clientx.close DecideNextAction O \{x}, C {x}

A State Variable Example

There are two state variables O and C. O indicates the number of clients that have been

opened and C indicates the number of clients that have closed their connections.

Combinations of four possible O and C states result in different processing steps. The

Wright computation description can be described by a Colored Petri Net [Jensen97] as

shown in Figure 4-20. The token distribution and execution of the net would show the same

behavior as described by the state variables in its Wright description.

93

Figure 4-20 Representation of Wright Computation

Rule 16. Constraints

Wright uses constraints as style restrictions. As our testing technique dose not focus on the

style constraints of a specific software architecture, we will not include mapping of Wright

constraints into BG. How to test whether a given architecture fits for a specific architecture

style is out of the scope of our research, however it remains a future research topic.

4.3.2.3 Completeness Discussion

We have defined 16 rules in the previous section to transform a Wright specification to a

Revised Petri Net. Events (e?x, e!x, §) and 6 operators (→, p, Π , ||, ;, where, Π) have had

transformation rules defined for them. The Universal quantifier ∀x: S p P(x) , ∀x: S Π P(x),

and ∀x: S ; P(x) have also had transformation rules defined for them. Process of state variables

is also discussed in brief (a more sophisticated form of Petri Net needs to be used in dealing

C.open

(1..numClients)
o o o o

o

o

c

n’c

n’c

Wait
Decide

client
x

§

C.lose

C.request
C.result

94

with state variables). These cover all the operators defined in the Wright BNF

ProcessExpression as shown in Appendix A. Only style constraints are not discussed because

it is not in the scope of this dissertation.

4.3.2.4 An Example

The Read-Write model contains two components, component1 and component2.

Component1 has two ports, port In reads data from an other source, and port Out writes the

data that was just read from port In. Out also sends the data that was read to component2 port

In.

Component C1
Port In = read?x In close §
Port Out = write!x Out Close §
Computation = (In.read?x Out.write!x Computation)

 (In.close Out.close §)
Component C2

Port In = read?x In close §
Computation

Connector CC
Role Input = read?x Input close § fail §
Role Output = write!x Out Close §
Glue = C1.write!x C2. read?x Glue
 close §

Instances
component1: C1
component2: C2
connect: C1-C2 Connector

Attachments:
component1 provides as C1-C2.C1

 component provides as C1-C2.C2
end

The Read-Write Example

Figure 4-21 shows the BG representation of Component C1, C2, and their Connector CC.

The subnet of port Out should obey the rules of connector role Input, that is, the port subnet

should be a refinement of the role subnet. The computation of component C1 is shown as the

95

links between the two port subnets in component C1. The glue of the connector is shown as the

links between the component C1 and component C2 subnets.

Figure 4-21 A Wright to BG Example

4.4 ICG and BG Relations

For a given architecture Wright description, an ICG describes an architecture at a higher

level of abstraction than a BG does. An ICG hides behavioral details of component and

connector interfaces, while a BG represents the aggregated effect of the behaviors that are

modeled by the Revised Petri Net. As shown in Figure 4-22, a component or a connector

interface can be seen as a folded Petri Net (a Petri Net whose transitions and places can be

Component C1

read

close §
p1

In

Out
write

close §p2

p3

p4

Component C2

In
read

close
§p2

ports

Computation of
a component

Glue

end1
end2

end

p101 p102

96

decomposed into more Petri Nets), unfolding it reveals the details of the ports behavior. When

generating test cases, we can choose to either go to a higher level of abstraction or use more

detailed information about the components and connectors.

Figure 4-22 ICG and BG Relation

component1

port1

start end

open close

 ICG Representation

p1 p2 p3 p4

p5

p6

component2

port1

start end

open close

p0

p1

p4

p2

p3

Component2

Component1

connector

role1 role2 role1 role2

BG Representation

97

When a BG contains a computation subnet that constrains the possible ordering information

among interfaces other than transfer relations, then the computation subnet provides the process

ordering guidance among the interfaces.

It can be seen that ICG arcs will be expanded in the corresponding BG representation. The

following table shows how ICG arcs expand in a BG representation.

Table 4-3 ICG and BG Relations

ICG Arcs BG Paths

C_Ex_arc(Comp1, Comp2) all the c_paths in the BG(Comp1, Comp2) from the initiation

component to the called component.

N_Ex_arc(Comp1, Comp2) all the c_paths in the BG(Comp1, Comp2) from the called

component to the initiation component.

C_In_arc(Comp1) all the I_paths between the two or more interface subnets in the

Comp1 subnet of the BG(Comp1, Comp2).

N_In_arc(Conn1) not explicitly represented in BG, each role is assumed to be of the

same behavior as its corresponding component port.

From Table 4-3, we can see that one ICG arc can sometimes be represented by multiple BG

paths based on the behavioral nature of the component ports. Therefore, as it comes to test

criteria coverage, we will apply the testing criteria on the ICG level and expand them to the BG

level.

4.5 Generating Test Requirements and Test Cases

With the ICG and the BG of a Wright architecture description available from the previous

sections, the testing criteria described in Chapter 3 can be applied to these two graphs. First we

98

look at how the testing relations described in Chapter 3 can be represented in terms of ICGs and

BGs. Table 4-4 gives the testing relations and their corresponding ICG or BG paths.

Table 4-4 Wright and ICG Mapping

Testing Relations ICG or BG paths

1 Component_Internal_Transfer_Relation(N.interf1, N.interf2) BG I-paths

2 Component_Internal_Ordering_Relation(N.interf1, N.interface2) BG I-paths and ordering rules

3 Component_Internal_Relation(N1.interf1, N1.interf2) all BG I-paths from 1, 2 and
ordering rules

4 Connector_Internal_Transfer_Relation(C.interf1, C.interf2) BG I-paths

5 Connector_Internal_Odering_Relation(C.interf1, C.interface2) BG I-paths and ordering rules

6 Connector_Internal_Relation(C.interf1, C.interf2) all BG I-paths from 3,4 and
ordering rules

7 N_C_Relation(N.interf1, C.interf1) ICG paths and BG C-paths

8 C_N_Relation(C.interf1, N.interface1) ICG paths and BG C-paths

9 Direct_Component_Relation(N1.interf1, C1.interf1, C1.interf2,
N2.interf2)

ICG paths and BG C-paths

10 Indirect_Component_Relation(N1.interf1, C1.interf1, C1.interf2,
N2.interf2, C2.interf1, C2.interf2, N3.interf2)

ICG paths and BG C-paths

4.5.1 Applying Testing Criteria to Generate Testing Requirements

This section shows what testing requirements can be generated when applying the six

testing criteria defined in Chapter 3:

99

1. Individual component interface coverage requires that the set of paths executed by the test

set T covers all Component_Internal_Transfer_paths and

Component_Internal_Ordering_rules for an individual component.

This criterion generates these testing requirements: All the BG component subnet I-paths of

a particular component should be covered by the test set T, and ordering rules should be

applied to the corresponding component interfaces.

2. Individual connector interface coverage requires that the set of paths executed by the test

set T covers all Connector_Internal_Transfer_paths and Connector_Internal_Ordering_rules

for an individual connector.

This criterion generates these testing requirements: All the BG connector subset I-paths of a

particular connector should be covered by the test set T, and ordering rules should be

applied to the connector interfaces. This dissertation assumes that port behaviors are

considered to be the same as defined connector behaviors, so the testing requirements are

not tested explicitly.

3. All direct component-to-component coverage requires that the set of paths executed by the

test set T covers all C_N paths, all N_C paths and all Direct_Component_paths.

This criterion generates these testing requirements: All the BG C-paths between two related

components should be covered for those components that have direct component-to-

component relations.

 4. All indirect component-to-component coverage requires that the set of paths executed by

the test set T covers all Indirect_Component_paths.

100

This criterion generates these testing requirements: All the BG C-paths and I_paths among

three related components should be covered, and all the ordering rules for those

corresponding interfaces should be applied.

5. All connected components coverage requires that the set of paths executed by the test set T

covers all Connected_Components_paths for all the components in the architecture.

This generates these testing requirements: All the BG component subnet I-paths for all the

components in the described system should be covered by the test set T, and ordering rules

should be applied to the corresponding component interfaces.

4.5.2 Test Case Generation Algorithms

Given a software architecture described in Wright, we can obtain its ICG and BG incidence

matrices as described in Chapter 3. The high level algorithm flow charts are represented in

Figure 4-23 through Figure 4-26. Algorithm details are presented in Chapter 5. Because test

case for criterion 5 can actually be generated from lower level criteria, the algorithm flow chart

for criterion 5 is not given here.

101

Figure 4-23 Test Set Generation 1

Figure 4-24 Test Case Generation 2
.

BG port2BG port1

BG I-paths + B-paths +
ordering rules

Test sequences

Component1

BG port2BG port1

Test sequences

Component2

BG port2BG port1

Test sequences

Componentn

Test Criterion 1 -- Individual Component Interface Coverage

BG I-paths + B-paths +
ordering rules

BG I-paths + B-paths +
ordering rules

BG role2BG role1

BG C-path + B-paths +
ordering rules

Test sequences

Connector1

BG role2BG role1

Test sequences

Connector1

BG role2BG role1

Test sequences

Connectorm

Test Criterion 2 -- Individual Connector Coverage

BG C-path + B-paths +
ordering rules

BG C-path + B-paths +
ordering rules

102

Figure 4-25 Test Case Generation 3

Figure 4-26 Test Case Generation 4

BG port2

BG role2BG role1

BG port1BG port1
BG port2

BG I-paths + ordering rules

Test sequences

BG I-paths + ordering rules

Test sequences

Component1 Component2

BG C-path + ordering rules

Test sequences

Connector1

Test Criterion 3 -- All Direct Component-to-Component Coverage

BG port2

BG role2BG role1

BG port1

BG role1

BG port1
BG port1

BG port2
BG port2

BG role2

BG I-paths +
ordering rules

Test sequences

BG I-paths +
ordering rules

Test sequences

BG I-paths +
 ordering rules

Test sequences

Component1 Component2 Component3

BG C-paths +
 ordering rules

Test sequences

BG C-paths +
 ordering rules

Test sequences

BG Indirect C-paths +
 ordering rules

Test sequences

Test Criterion 4 -- All indirect Component-to-Component Coverage

Connector1 Connector2

103

4.5.3 Test Procedure and Test Cases

As an example, one testing criterion is applied to the above Wright Client-Server example.

The Behavior Graph is shown in Figure 4-4. We present test scenarios three pieces of

information: (1) a time axis, (2) a list of components related to the test, in this example, the

Client and Server components, and (3) actions underlined with dashed lines indicating at which

time ti occurs. There are two different meanings for actions between two dashed lines: for those

actions between two dashed lines for the same component, it means a sequential action; for

those actions between two dash lines that are from different components, it means that the

actions can be taken with no specific sequence, that is, they can occur in parallel. If we choose

the testing criteria of "test all the component-to-component coverage", then we will have three

test cases.

Test Case 1. The first action is taken from the start of the time axis, t1, Client.open. If

Client is not waiting for any response from Server, then client.request results. In the mean time,

we expect the server side to open. The server.open action occurs independently of the

client.request result action. The server.request and server.result!x must happen sequentially after

time t2. Client will receive result in the next time period between t3 and t4, and may then

request for more results. Once Client sends its request, Server will receive the request and send

the result, then Client receives the result and closes up the connection, Finally, Server is

expected to close its connection when it knows Client has closed its connection.

104

Client Server

t1 open

open
t2 result?x

request

t3 result!x

result?x

t4 request
request

t5 result!x

 result?x

t6 close

t7 close

Test Case 2. Client opens the connection and requests result, in the mean time Server

opens the connection and receives request and then sends out results. Once Client receives

results, it closes the connection. Server then closes its connection.

Client Server

t1 open

open

t2 result?x
 request

t3 result!x

result?x

t5 close

t6 close

Test Case 3. Right after Client opens the connection, and when Server also connects, Client

closes up the connection, Server will then close the connection.

time
(increase)

time
(increase)

105

Client Server

t1 open

open
t2 close

t3 close

These three test cases covers the C-paths of the BG graph, this test set also covers all the I-

paths of the BG.

4.6 Discussion

This chapter shows how to apply the architecture-based testing technique to a specific ADL,

Wright. A new graphical representation BG based on Petri Net theory is introduced to help

show detailed Wright port behavior description. A formal definition of a BG is presented, and

transformation rules from Wright specification to BG are defined. Relations between a BG and

an ICG are also discussed. Test case generation procedures are listed and three scenarios are

used to show the application of the testing technique.

time
(increase)

106

Chapter 5 Prototype Tool

In order to demonstrate the effectiveness of the software architecture-based testing

technique, a prototype system was developed. This helps us to evaluate the technique and

examine its usefulness in generating test cases for an architecture description written in the

ADL Wright. This chapter describes the design and implementation of the prototype system

ABaTT (Architecture-Based Testing Tool) based on the software architecture-based testing

technique.

5.1 System Description

ABaTT is the prototype tool that was developed under Power Macintosh G3. It was written

in Java 1.2. The system was developed to meet two major objectives:

1) To implement and demonstrate the feasibility and effectiveness of the software

architecture-based testing technique

2) To generate test requirements (in terms of test paths) or to check test coverage on a

given test set

A high-level architecture structure is shown in Figure 5-1. The prototype tool takes a parsed

Wright architecture description. It generates the ICG and the BG incidence matrices. The

mapping between a Wright description and ICG and BG graphs was discussed in chapter 4.

The prototype tool test generation algorithm then generates tests to satisfy a given test criterion.

107

Figure 5-1 The Prototype Tool ABaTT

5.2 Assumptions and Design Structure

We made the following assumptions to the ABaTT tool. First, we assume that the input to

ABaTT is parsed Wright specifications in the form of binary trees, associated with tables that

describe the configurations information of the Wright specification. The binary trees describe

the ports and computations of components. Figure 5-2 shows a binary tree example, where a

Wright port description is given in the form of text, each node in the binary tree contains the

information of LeftChild, RightChild, NodeValue (String type), Visited, and BackLink (used

when there is a link back to a node). Glues and configuration information are stored in the tables

to record name mapping and port to port connection relations. To form the binary tree, we need

to build individual tree nodes by assigning the corresponding node names. For instance, we can

build a WrightTree node by instantiating a WrighTree object:

ICG
Matrix

Architecture
Description by an
ADL (Wright)

Parse
Wright

BG
Converter

ICG
Converter

BG
Matrices

Test Case
Generation
Algorithm

Test Coverage
Analysis

Algorithm

Test Cases

Test
Coverage

Wright in
Binary Trees

Test Criteria

Test Data

108

WrightTree t1 = new WrightTree ("A");

WrightTree t2 = new WrightTree ("B");

WrightTree t3 = new WrightTree (" ");

Then we can build a subtree t3 by combining the two nodes t1 and t2:

 t3.merge("->", t1, t2);

This creates a subtree A -> B. This way, we can keep on buiding the tree until the root is

reached. To run ABaTT, the program must call the method "computationToBG(root)". This

method returns the incidence matrix of BG. Matrix result = computationToBG (root).

Figure 5-2 Wright in the Form of Binary Tree

ClientAction = open Operate §
where Operate = setConnection Operate connectResponse?x ReadOrWrite Operate End
ReadOrWrite = writeToSocket ReadOrWrite readFromSocket ReadOrWrite
 End = close § fail §

root

ClientAction ∏

→ §1

open =

Operate
∏

→

→

→

setConnectionOperate →

∏

∏

=

=

→

→ →

∏END

connectResponse?x

close §3§2 failReadOrWrite

writeTo
Socket

ReadOrWrite readFrom
Socket

ReadOrWrite

Operate

109

Second, we assume that there are no state variables described in the Wright specification.

As we have discussed in Chapter 4, Wright state variables can be represented as the token

distributions in the process of executing BGs. Therefore, we do not handle state variables in the

prototype tool. Third, we assume that connector roles bear the same behavior description as

their corresponding component ports description. Therefore we are not concerned with port-

role consistency checks in this prototype tool. The class structures are shown in Figure 5-3.

110

Figure 5-3 The ABT Class Structures

TreeNode

constructor()
getValue()
printPreOrder()

AjdNode

constructor()
getValue()
getVisited()

MatrixNode

constructor()
getValue()
getPlace()
getTransition()

TreeNode

constructor()
getValue()
printPreOrder()

Stack

constructor()
push()
pop()
isEmpty()

WrightTree

constructor()
printInOrder()
printPreOrder()
printPostOrder()
makeEmpty()
isEmpty()
merge()

IncidenceMatrix

constructor()
rowValue()
colValue()
nodeValue()
findStart()
findEnd()
placeToIndex()
transitionToIndex()
indexToPlace()
indexToTransition()
combineNodes()
postStart()
preEnd()
expandMatrix()
rowAddition()
combinePlaceAndNet()
combineNetAndPlace()
combineTwoNets()
matrixMerge()
matrixAddition()
printMatrix()
reformatMatrix()

WrightToBG

constructor()
portToBG()
computationToBG()

<<algorithm>>
findIndirectCPath

constructor()
findIndirectCPath()
copyHistoryToList()

<<algorithm>>
findCPath

constructor()
findCPath()
copyHistoryToList()

<<algorithm>>
FindIPath

constructor()
findIPath()
copyHistoryToList()

<<algorithm>>
TestCriteria

constructor()
inputCriteria()
testCaseGen1()
testCaseGen2()
testCaseGen3()
testCaseGen4()
testCaseGen5()

constructor()

TestCoverage

constructor()
getExArc()
getInArc()
getInterf()
getIPath()
getCPath()
getIndirCPath()
compare()
indivCInterfCov()
indivNInterCovf()
allDirectCov()
allndirectCov()
allComponentCov()
allConnectorCov()

TestDataInput

constructor()
readInputSet()
processInputData()

ABaTT

main()

WrightToICG

constructor()
buildICG()
getComponent()
getConnector()

<<algorithm>>
findBPath

constructor()
findBPath()
findNegativeInCol()
findPositiveInCol()
findNegativeInRow()
findPositiveInRow()
printList()
copyHistoryToList()

111

5.2.1 ICG Converter Algorithm

The ICG convert program reads in the Wright binary tree inputs and converts them into an

ICG incidence matrix. The algorithm extracts the Wright component interfaces, connector

interfaces, and attachment and configuration information to form the ICG incidence matrix.

Figure 5-4 shows the algorithm.

algorithm: buildICG(wright_table)
input: wright_table: Wright specification tables
output: ICG_matrix: ICG incidence matrix

precondition: parsed Wright specification and configuration results are stored in wright_table.
attached(node1, node2) checks the relations between two nodes (ports/role), nameMapping
is a table that maps the names of the specified components, connectors, ports, and etc.

declare ICG_matrix: the incidence matrix to be built

buildICG(wright_table)
BEGIN

matrix_size = wright_table.numofPorts + wright_table.numofRoles;
 -- initialize a new matrix with desired size

ICG_matrix = new Matrix(matrix_size, matrix_size);
for (int row = 0; row <wright_table.numofPorts; row ++)
 for (int col = 0; col<wright_table.numofRoles; col ++)
 {
 -- if the two elements are associated from i to j (right associated)

if (attached(nameMapping[row], nameMapping[col]) == "right")
ICG_matrix[row, col] = 1;

 -- if the two elements are associated from j to i (left associated)
else if (attached(nameMapping[row], nameMapping[col]) == "left")

ICG_matrix[row, col] = -1;
 -- if the to elements are associated both ways

else if attached(nameMapping[row], nameMapping[col]) == "bothway")
ICG_matrix[row, col] = 2;

else if attached(nameMapping[row], nameMapping[col]) == "none")
ICG_matrix[row, col] = 0;

 }
}

END Algorithm buildICG

Figure 5-4 Algorithm buildICG

112

5.2.2 BG Converter Algorithm

The wrightToBG algorithm uses the Wright binary tree input and converts the binary tree

into a Behavior Graph (BG) incidence matrix. This algorithm is described as in Figure 5-5.

algorithm: wrightToBG(root)
input: root: Wright specification binary tree root
output: BG_matrix: BG incidence matrix

precondition: Wright specification is parsed, ports and computations are parsed into individual binary
trees

declare: Op_stack -- a stack that stores the Operators read in while traversing the wright binary
tree
sub_net_stack -- a stack that stores the pointers of the intermediate subnet incidence
matrices formed while traversing the binary tree
current_node -- the wright binary node that is currently traversed, a node has two pointers
that points to its LeftChild, RightChild (null when there is not a child node)
makeplaceSubnet(node.Value) -- forms a subnet incidence matrix that contains only one
place, the place name is defined in node.Value
maketransitionSubnet(node.Value) -- forms a subnet incidence matrix that contains one
transition (named as node.Value), and two places each corresponds to the input and output
place of the transition.

wrightToBG(root)
BEGIN
 Initialize(Op_Stack, sub_net_stack, root)

-- start preorder traverse from the root
 current_node = root;

-- update Operator stack
 Op_stack.Push(root);

-- check left tree
 while ((Op_stack.IsNotEmpty()) || (subnet_stack.IsNotEmpty()))
 {
 while ((current_node.LeftChild != null) || (current_node.RightChild != null))
 {

-- find leftmost tree
 current_node= findLeftMostNode (current_node);
-- update Operator stack while searching for leftmost node
 Op_stack.Push(root);

 if (root.Value Is "=") then equal_flag = true;
 if (equal_flag == true)
 {
 -- make a place subnet
 net = new makeplaceSubnet(current_node.Value);
 -- update subnet stack

 subnet_stack.Push(net);
 }
 else

113

 {
 --make a transition net
 net = new maketransitionSubnet(current_node.Value);

-- update subnet stack
 subnet_stack.Push(net);
 }

 current_node = root.RightChild; -- now visit Right child
 current_node.Visited = true;
 } -- end while

-- when it there is no more left or right subtrees
 if ((current_node.LeftChild == null) & (current_node.RightChild == null))
 {
 if (equal_flag == true)
 {
 -- make a place subnet
 net = new makeplaceSubnet(current_node.Value);

-- update subnet stack
 subnet_stack.Push(net);
 }
 else
 {

-- make a transition subnet
 net = new maketransitionSubnet(current_node.Value);

-- update subnet stack
 subnet_stack.Push(net);
 }
 }
 while (root.RightChild.Visited == true)

-- when both left and right child have been visited, combine the two subnets.
 {
 right_net = subnet_stack.Pop(); -- get top of the subnet stack
 left_net = subnet_stack.Pop(); -- get the next top of the subnet stack
 OP = Op_stack.Pop(); -- get top of the operator stack

-- combine left and right subnet with the current operator
 leftandright = left_net.combineTwoNets(left_net, right_net, OP.Value);

-- update the subnet stack and operator stack
 subnet_stack.Push(leftandright);
 Op_tmp = Op_stack.Pop();
 root = Op_tmp; -- upate root
 OP = Op_tmp; -- update operator
 -- if there is another right subtree that has not been visited
 if (root.RChild.Visited == false)
 Op_stack.Push(root);
 else // (root.RightChild.Visited == true)
 {
 WrightToBG(root.RightChild);
 current_node.Visited = true;
 } // end if
 } // end while
 BG_matrix = leftandright;
 } // end while
 return BG_matrix;

 END Algorithm wrightToBG

Figure 5-5 Algorithm wrightToBG

114

5.2.3 Combine Two Subnets Algorithm

Combine Two Subnets Algorithm is part of the BG converter algorithm. This algorithm

takes incidence matrices of two subnets, and combine them based on the operator type. This

algorithm presents the transformation rules from Wright specification to BG. The algorithm is

in Figure 5-6.

algorithm: combineTwoNets(m1, m2, operator)
input: m1:subet incidence matrix, m2: subnet incidence matrix, operator Wright operations
output: new_matrix: incidence matrix of the combined subnet
precondition: two subnets m1 and m2 have been formed, they are not empty
declare: subnet.findEnd() -- find the end element of the subnet

subnet.findStart() -- find the start element of the subnet
combinePlaceAndNet(m1,m2,operation) -- combines place subnet m1 with another subnet
m2 using specified operation
preEnd(m, end) -- finds the elements that have arcs directed to the end element in a given
subnet m
postStart(m, start) -- finds the elements that have arcs directly pointed out from the start
elements in a given subnet m
matrix_Merge(m1, m2) --merge two subnets from left (m1) to right (m2)
expandMatrix(m, ext_place, ext_transition) -- expand the incidence matrix of a subnet m to
the desired direction and sizes, this algorithm is presented next

combineTwoNets(m1, m2, operator)
BEGIN

endplace = m1.findEnd(); -- find end element of net1
startplace = m2.findStart(); --find start element of net2

-- in the case of merging a place and a net or merging a net and a place
-- when there is no end & start element or no start element

if ((endplace.length == 0) || (startpplace.length == 0))
{

 -- when there is only start element(s)
if ((endplace.length == 0) & (startplace.length != 0))
{

Matrix new_matrix = combinePlaceAndNet(m1, m2, operation);
return new_matrix;

}
else -- when there is only end element(s)
{

Matrix new_matrix = combineNetAndPlace(m1, m2, operation);
return new_matrix;

}
}
else -- when there are both end element and start element, then merge net with net
{

if (operation.startsWith("->") || operation.startsWith(";"))
{

115

--find the element(s) right after the start element(s)
 post_start = postStart(m2, startplace);
-- find the element(s) right before the end element(s)
 pre_end = preEnd(m1, endplace);
-- calculate new number of places
 new_row = m1.rowValue() + m2.rowValue() - n_start -n_end +1;
 new_row = Math.max(new_row, m1.rowValue(), m2.rowValue());
-- calculate new number of transitions
 new_col = m1.colValue() + m2.colValue();
-- expamd left subnet(m1) to the size of the new matrix
 int ext_row1 = new_row - m1.rowValue();
 int ext_col1 = new_col - m1.colValue();
 Matrix expand_left = expandMatrix(m1, ext_row1, ext_col1);
-- expand the right subner (m2) to the size of the new matrix
 int ext_row2 = new_row - m2.rowValue();
 int ext_col2 = new_col - m2.colValue();
 Matrix expand_right = expandMatrix(m2, -ext_row2, -ext_col2);
 if (operation !="=")
 {

-- now merge the two matrices
 Matrix new_matrix = matrixMerge(expand_left, expand_right);
 return new_matrix;

 }
 else -- when operator is not "=" then there is no combination

 return m2;
}
else if (operation.startsWith("[]"))
{

 startplace1 = m1.findStart(); -- find the startplace(s) of m1
 startplace = m2.findStart(); -- find the startplace(s) of m2

 -- find the transitions after the start places
 post_start = postStart(m2, startplace);
 post_start1 = postStart(m1, startplace1);
 new_row = m1.rowValue() + m2.rowValue() - n_start -n_start1 +1;
 new_row = Math.max(new_row, m1.rowValue(), m2.rowValue());
-- number of transitions remain the same after the merge
 new_col = m1.colValue() + m2.colValue();
-- expamd left subnet(m1) to the size of the new matrix
 int ext_row1 = new_row - m1.rowValue();
 int ext_col1 = new_col - m1.colValue();
 Matrix expand_left = expandMatrix(m1, ext_row1, ext_col1);
-- expand the right subner (m2) to the size of the new matrix
 int ext_row2 = new_row - m2.rowValue();
 int ext_col2 = new_col - m2.colValue();
 Matrix expand_right = expandMatrix(m2, -ext_row2, -ext_col2);
 Matrix new_matrix = matrixMerge(expand_left, expand_right);

 return new_matrix;
 }

else
 return null;
 }

END Algorithm combineTwoNets

Figure 5-6 Algorithm combineTwoNets

116

5.2.4 Expand Matrix Algorithm

The Expand Matrix algorithm can expand the current matrix with a choice of any one of the

four corners (Lower Left (LL) , Lower Right (LR), Upper Left (UL), Upper Right (UR)) to the

given extension size. The signs of the extension values decide which corner to expand to. This

is an important algorithm when we need to combine two subnets into one when we execute the

transformation rules. The algorithm is in Figure 5-7.

algorithm: expandMatrix (in_matrix, ext_place, ext_transition), expands the size of the matrix based on
the given row and col sizes. The signs of row and col decide which corner to extend to. For
a (ext_place, ext_transition) pair, if ++, then extends the LR corner, if +-, then extends the
LL corner, if --, extends to the UL corner, finally, if -+, extends to the UR corner.

input: in_matrix: subnet incidence matrix, ext_place intended place expansion, ext_transition:
intended transition expansion

output: ext_matrix: expanded matrix
precondition: in_matrix should not be empty, ext_place and ext_transition are given
declare: extendToLR(m) -- extends the matrix m to the LR corner

extendToLL(m) -- extends the matrix m to the LL corner
extendToUL(m) -- extends the matrix m to the UL corner
extendToUR(m) -- extends the matrix m to the UR corner

expandMatrix (in_matrix, ext_place, ext_transition)
BEGIN
 -- define new column and row values

 new_row = current__row + Math.abs(ext_place);
 new_col = current_col + Math.abs(ext_transition);
-- row and column difference
 ext_row = new_row - old_row;
 ext_col = new_col -old_col;
-- define matrix in expanded size
 ext_matrix = new Matrix(new_row, new_col);
-- extend to lower right corner
 if ((ext_place >= 0) & (ext_transition >=0))

ext_matrix.matrix = extendToLR(in_matrix)
-- extend to lower left corner
 if ((ext_place >=0) & (ext_transition <0))

ext_matrix.matrix = extendLL(in_matrix.matrix);
- extend to upper left corner
 if ((ext_place < 0) & (ext_transition < 0))

ext_matrix.matrix = extendUL(in_matrix.matrix);
-- extend to upper right corner
 if ((ext_place < 0) & (ext_transition >= 0))

ext_matrix.matrix = extendUR(in_matrix.matrix);
 return ext_matrix;

 END Algorithm expandMatrix

Figure 5-7 Algorithm expandMatrix

117

5.2.5 Test Case Generation Algorithm

The test case generation algorithm uses both ICG and BG matrices to generate test

requirements based on the given architecture-based testing criteria. The findBPath algorithm

finds all possible B-paths for a given incidence matrix. This algorithm is shown in Figure 5-8.

algorithm: findBPath(Adjmatrix, (i_1, j_1), (i_2, j_2)), finds all possible B-paths from start point to
end place in a net described in Adjmatrix.

input: Adjmatrix: subnet incidence matrix, (i_1, j_1) : start point, (i_2, j_2): end point
output: linklikst: a list of transitions of the path
precondition: incidence matrix has been formed, start and end point indexes should all be non-negative.
declare: linklist -- an array that records the transitions in a path

findNegativeInCol(m, row, col) -- finds all the elements that have negative values in matrix
m in current column col
findPositiveInCol(m, row, col) -- finds all the elements that have positive values in matrix m
in current column col
findNegativeInRow(m, row, col) -- finds all the elements that have negative values in matrix
m in current row
findPositiveInRow(m, row, col) -- filds all the elements that have positive values in matrix
m in current row
row_stack -- a stack that keeps the rows that have been checked

history_stack -- a stack that keeps the history path information
copyHistoryToList(row_stack, history_stack, linklist, link_index) -- copies history_stack,
row_stack information to linklist, starts from link_index in the linklist array

findBPath(Adjmatrix, (i_1, j_1), (i_2, j_2))
BEGIN
 current_row= i_1;
 current_col= j_1;
 linklist[link_index] = j_1 +1 ;
 Adjmatrix.matrix[i_1][j_1].Visited = true;
 link_index = link_index +1;
 history_stack.push(new Integer(j_1 + 1));

-- find all the negative values in a Col given a point
 negativeCol = findNegativeInCol(Adjmatrix, current_row, current_col);
 -- find all the positive values in a column given a point
 positiveCol = findPositiveInCol(Adjmatrix, current_row, current_col);
 int neg_col_num = negativeCol.length;
 int pos_col_num = positiveCol.length;
 if ((pos_col_num ==0) && (neg_col_num !=0)) // there still should be a loop
 pos_col_num =1;
 for (int k=0; k<pos_col_num; k++)
 {
 for (int i=0; i<neg_col_num; i++)
 {
 current_row = negativeCol[i];

118

 Adjmatrix.matrix[current_row][current_col].Visited = true;
positiveRow = findPositiveInRow(Adjmatrix, current_row, current_col);

 if (positiveRow.length>1)
 row_stack.push(new Integer(current_row));
 pos_row_num = positiveRow.length;
 for (int m=0; m<pos_row_num; m++)
 {
 current_col =positiveRow[m];

 if ((current_row <= i_2) && (current_col <= j_2) &&
(Adjmatrix.matrix[current_row][current_col].Visited == false))

 findBPath(Adjmatrix, current_row, current_col, i_2, j_2);
 }
 } -- end i loop

 } -- end k loop
 SetVisted(Adjmatrix, false);

if ((current_row == i_2)) -- if reaches end
 {

 linklist[link_index] = separator; -- set separator
 if(!row_stack.empty())
 {

 -- copy history path to current path
 int expand = copyHistoryToList(row_stack, history_stack, linklist, link_index);
 link_index = (link_index +expand);
 }
 else if (row_stack.empty()) -- if no loop back , then start from initial j col
 {
 link_index = link_index +1 ;
 linklist[link_index] = init_j + 1;
 }
 link_index = link_index +1 ;
 count_pos =0;
 }
 } // end for
 return linklist;
END Algorithm findBPath

Figure 5-8 Algorithm findBPath

119

5.2.6 Find C-path Algorithm

The findCPath algorithm finds all the c-paths between two subnets from two components. It

uses wright_table information in the search process. This algorithm is in Figure 5-9.

algorithm: findCPath(n1, n2, wright_table), finds all possible C-paths between two subnets n1 and n2
based on the wright_table information

input: n1: subnet1, n2: subnet2, wright_table: wright specification information
output: C_path: a list of C_paths in terms of transitions

precondition: port incidence matrices of two connected components have been formed. Wright
specification information about component connections has already been included in the
wright_table

declare: wright_table.NN_Association(n1, n2) -- is a an array of all connected component pairs
connectpairs -- port pairs of two connected components
makeCPath(connectpairs[j].start, connectpairs[j].end) -- returns the transition lists (C-
path) between two component pairs

findCPath(n1, n2, wright_table)
BEGIN

-- check component to component information in wright_table
 connectpairs = wright_table.NN_Associate(m1, m2);

-- check C-path for each pair of connections
 for (int j=0; j<connectpairs.length; j++)
 { -- select C-path

 temp_path = makeCPath(connectpairs[j].start, connectpairs[j].end);
 C_path = C_path + tmep_path;

 }
END Algorithm findCPath

Figure 5-9 Algorithm findCPath

120

5.2.7 Find I-path Algorithm

The findIPath algorithm finds all the I-paths between two ports of a component. This

algorithm also uses wright_table information to help search I-paths. This algorithm is in Figure

5-10.

algorithm: findIPath(n1, n2, wright_table), finds all possible I-paths between two subnets based on the
wright_table information

input: n1: subnet1, n2: subnet2, wright_table: wright specification information
output: I_path: a list of I_paths in terms of lists of transitions

precondition: port subnets of a component have been formed. Wright specification information about
ports and interface relations have already been included in the wright_table

declare: write_tables.N_interface(m) -- stores information about relations between component ports
N_interface_pairs -- stores the connectivity relations between two ports of a component
makeIPath(N_interface_pairs[j].start, N_omterface_pairs[j].end) -- returns the transition
lists (I-path) between two component ports

findIPath(n1, wright_table)
BEGIN

-- check component port interface information in wright_table
 N_interface_pairs= wright_table.N_Interface(n1);
-- check I-path for each pair of connections
 for (int j=0; j<N_interface_pairs.length; j++)
 { -- select I-path

 temp_path = makeIPath(N_interface_pairs[j].start, N_omterface_pairs[j].end);
 I_path = I_path + tmep_path;

 }
END Algorithm findIPath

Figure 5-10 Algorithm findIPath

121

5.2.8 Find Indirect C-path Algorithm

Find Indirect C-path algorithm finds all the indirect C-paths among three or more ports of

three components. This algorithm uses wright_table information to help to search indirect C-

paths. This algorithm is defined in Figure 5-11.

algorithm: findIndirecCPath(n1, n2, n3, wright_table), finds all possible Indirect C-paths among three
componenbs

input: n1: subnet1, n2: subnet2, n3: subnet3, wright_table: wright specification information
output: Ind_C_path: a list of Indirect C-paths in terms of lists of transitions

precondition: Wright specification information about component interfaces has already been included in
the wright_table

declare:

findIndirecCPath(n1, n2, n3, wright_table)
BEGIN
-- check component port interface information for each component
 N_interface_pairs_1= wright_table.N_Interface(n1);
 N_interface_pairs_2= wright_table.N_Interface(n2);
 N_interface_pairs_3= wright_table.N_Interface(n3);

 -- check component connection information for components
 connectpairs_1= wright_table.NN_Associate(n1, n2);
 connectpairs_2= wright_table.NN_Associate(n1, n3);
 connectpairs_3= wright_table.NN_Associate(n2, n3);

-- check Indirect C-path information for the three components
Inirect_relation = findIndirectRelations(N_interface_pairs_1, N_interface_pairs_2,

N_interface_pairs_3, connectpairs_1,connectpairs_2,connectpairs_3)

-- check IndirecC-path for each pair of connections
for (int j=0; j<Indirec_relation.length; j++)
{ -- select IndirectCpath
 temp_path = makeCPath(Indirect_relation[j]);
 Ind_C_path = Ind_C_path + tmep_path;

 }

END Algorithm findIndirecCPath

Figure 5-11 Algorithm findIndirecCPath

122

5.2.9 Test Coverage Algorithm

The test coverage algorithm uses both the ICG and BG matrices to analyze test data

coverage based on the given test data to the prototype tool. This algorithm is defined in Figure

5-12.

algorithm: testCover(test_data, wright_table, component, connector), finds the individual component
interface coverage for a given test set test_data

input: component1: component information about component1, test_data: a set of test data in
terms of transition lists, wright_table: wright specification information

output: coverage: coverage rate for types of coverage types

testCover(test_data, wright_table)
BEGIN
--EA = | N_Ex_arc | + | C_Ex_arc |
 ea = calculateEA (component, connector, wright_table);

-- IA = | N_In_arc | + | C_In_arc |
 ia = calculateIA(component, connector, wright_table);

-- NInterf = | N_Interf | + | C_Interf |
 ninterf = calculateNInterf(component, connector, wright_table);

-- number of all indirect component-to-component paths
 ainn = calculateAINN(test_data, component, connector);

-- number of internal relations inside a component Ni that have been tested
 in = calculateIn(test_data, component, connector);

-- number of internal relations inside a connector Ci that have been tested
 ic = calculateIC(test_data, component, connector);

--number of all direct component-to-component relations that have been tested
 dnn = calculateDNN(test_data, component, connector);

-- number of all indirect component-to-component relations that have been tested
 inn = calculateINN(test_data, component, connector);

-- number of all component internal relations that have been tested
 an = calculateAN(test_data, component, connector);

-- number of all connector internal relations that have been tested
 ac = calculateAC(test_data, component, connector);

-- Individual component interface test coverage
 coverage[0] = in / Math.abs(N_In_arc);

-- Individual connector interface test coverage
 coverage[1] = ic / Math.abs(C_In_arc);

123

-- all direct component-to-component test coverage
 coverage[2] = dnn/ (ea / 2);

-- All indirect component-to-component test coverage
 coverage[3] = inn/ainn;

-- All component interface coverage = AN / | N_In_arc |
 coverage[4] = an/Math.abs(N_In_arc);

-- All connector interface coverage = AC / | C_In_arc |
 coverage[5] = ac /Math.abs(C_In_arc);

 return coverage;
END Algorithm testCover

Figure 5-12 Test Coverage Algorithm

The prototype tool ABaTT is used in generating test requirements in an application

experiment presented in chapter 6.

124

Chapter 6 Validation Method and An Application Example

Validation of this research is conducted by applying the testing method developed in this

dissertation to an industrial software system. The goal of the validation is to determine whether

the testing method can detect faults effectively. To facilitate this experiment, the prototype tool

is developed as part of the research to evaluate the proposed test criteria. This chapter presents

the experiment design and discusses the results. Validation for the research is carried out by

developing and executing tests on faulty versions of an industrial software system. This

application experiment is the third part of the solution topology defined in Chapter 1, shown in

Figure 6-1. An actual implementation of a software system described in a specific ADL Wright

is tested using the architecture-based testing technique. Test cases are generated and used to

find faults seeded in the software system.

Figure 6-1 Tests For an Implementation

Part 3

Mapping
the ADL Description
to the Implementation

An Actual
Implementation

Test Cases
For the
Implementation

Tests for an Implementation (Chapter 6)

A Specific ADL Description Test Requirements
(Defined in Chapter 4)

125

6.1 Experiment Design

The experiment is designed as follows:

Subject Program: An industrial application system was used as the subject program. The

program is written in several programming languages, including Java, C, Perl/CGI, and HTML.

It has nine major components at the architecture level. It contains client-server applications, a

web-based application, file I/O, and pipe-line style processing. The system contains

approximately 2500 lines of code.

Test Adequacy Criteria: Three methods were compared: (1) manual/specification testing

based on experience and requirements specification, (2) the coupling-based integration testing

criteria [JO98], and (3) the architecture-based testing technique discussed in this dissertation.

Test Data: Three sets of test data were generated for each testing method applied on the

subject program. The generation of each test data set is specific to each test method applied.

Fault Set: The research was validated by determining the effectiveness of the software

architecture-based testing criteria at detecting faults that are associated with the connections of

the architecture components. It was necessary to inject faults of architecture related types. We

use the current research results of architectural mismatches classifications by Gacek

[GACEK99, GACEK98]. Their work addresses the importance of underlying architectural

features in determining potential architectural mismatches while composing arbitrary

architecture components. This is not yet an architectural level fault classification, but the

mismatches set does include many typical faults that are likely to occur at the architecture level.

Therefore, we chose to use this study as the source to define faults to be seeded in our subject

program.

126

Measurement: The fault detecting effectiveness of a given test adequacy criteria c for a

given architecture a with respect to a specific fault set f is defined as the ratio of the number of

faults detected to the number of faults seeded. This measurement was made for each pair of

subject architecture program and test adequacy criterion. In this experiment, we have three sets

of test cases for the three testing methods.

Experimental Procedure: The conduct of the experiment consisted of several steps. Let A

be an architecture, C be the test adequacy criteria, and T be the set of test data generated for

each test adequacy criterion.

For each a ∈ A and c ∈ C:

Step 1. Generate c-adequate test data set T(a,c).

Step 2. Define fault set F(a) for a.

Step 3. For each f ∈ F(a) define the fault seeded architecture A(f) by seeding a with

faults, yielding a fault-seeded architecture a(f) where each a(f) ∈ A(f).

Step 4. For each t ∈ T(a,c), if it detects some faults, increase Num(a,c) -- the number of

faults detected by test data set T(a,c). This does not double count if the same

fault is detected by two tests.

Step 5. Determine the fault detection rate R(a, c), for test adequacy criterion c with

respect to architecture a, as:

R(a,c) = Num(a,c) / |F(a,c)|

Step 6. Determine the fault detection effectiveness E(a, c), for test adequacy criterion a

with respect to arachitecture a, as:

127

E(a, c) = Num(a, c) / |T(a, c)|

Because the subject software program used in this experiment implements the Wright-

described architecture very straightforwardly, it was a straightforward task to map the

architectural faults into the implementation.

6.1.1 Experiment Procedures

The experiment procedure is summarized shown in Figure 6-2. First, based on the

component mismatches concept and classification work, we chose those mismatches that are

applicable to this subject program. Then we mapped these mismatches into implementation

faults and seeded them into the subject program. The next step was to convert the subject

program specification into a Wright description. To generate test sets using the architecture-

based testing technique, we ran the Wright description on the ABaTT tool (as described in

Chapter 5), to generate test requirement, then designed test cases (test set 1) that satisfied those

test requirements. To generate test sets using manual/specification method, we used one

experienced professional software engineer1 to generate test cases (test set 2) for the subject

program. To generate test set using the coupling-based integration testing method, a different

software engineer2 who is experienced with the coupling method generated the test cases (test

set3).

To avoid any bias that could be created by having knowledge of faults or one set of test

cases before creating the other set, the test cases were generated before the faults were

generated. The manual/specification tests were generated by a software professional, the

1 V. Ayala, colleague, senior communication engineer
2 B. Zhang, personal friend, software engineer

128

coupling-based tests were generated by another independent software professional, and the

architecture-based testing tests were generated with the support of the prototype tool ABaTT.

Each test case was executed against the faulty-version of the subject program. After each

execution, failures (if any) were checked and corresponding faults were debugged. This process

was repeated on each test case until no more failures occurred. The number of faults detected

was recorded and used in the analysis.

Figure 6-2 Experiment Procedure

Convert Specification to
Wright Description

Run Prototype Tool

Subject Program
Specification

Wright description of the
subject program

Test cases for the
subject program
 (Test set 1)

Run Test Cases on The
Fault-seeded Program

Subject Program
Implementation

Selected
Fault Set

Insert Faults to The Subject
Program Implementation

Fault-seeded program

Manually Generate
Test Cases

Test cases for the
subject program
(Test set 2)

Test cases for the
 subject program
(Test set 3)

Apply Coupling-based
Testing Technique

Result 1 Result 2 Result 3

Compare Results

Observation

129

6.1.2 The Subject Program

The subject program is an industrial software system. Because of its proprietary nature, we

can only provide the high level abstract of the program structure, and cannot publish the code.

This software system receives real-time data from external data sources, and processes and

archives selected data. Customers can request some archived data, which will cause the system

to send data that meets the customer's criteria to destination points (external data sinks). An

overview of the system is shown in Figure 6-3. The subject program Wright description is given

in Appendix C. Data Receiver receives the data from the data source and passes it to Data

Packaging Processor where data gets initially processed and readied to send to Data Archiving

Process through networks. Data is archived to data files at the Data Archiving Processor.

Selected data is sent to the User Request Processor through network. User Request Processor

makes system calls through network to the Web Interface Service Program. The system calls

need to use request parameters in the request configuration file. The Web Interface Service

program sends field values to the Web Server Request Handler to check customer request

criteria. Web responses are then shown as web pages. Response information is sent back to the

User Request Processor. The User Request Processor then selects archived data from data

archive 2 and sends it to Data Archiving Processor. Finally, Data Archiving Processor sends

requested data to the Data Packaging Processor for data transmitting to the Data Transmitter,

and eventually to the designated data sink. Currently, Web Interfaces Service communicates

with Web Server Request Handler through CGI program calls. All other network

communications are through TCP/IP socket connection.

There are four benefits for using this subject program. (1) This program reflects all the

architecture relations we described in the testing technique. (2) The subject program is simple

130

enough that most of the code deals with communications/connections between components.

Even though the implementation is at the unit level, it shows only connections that are at the

system level. (3) The subject program code is written in more than one language. JAVA, Perl,

Javascript, HTML, and C languages are used in this system. Data Receiver and Data

Transmitter components are written in C. Data Packaging, and Data Archiving are written in

Java. User Request is written in Java, HTML, and Perl. Web Interface, Perl Socket, and Web

Server are written in Javascript, Perl and HTML. This shows that the component integration can

be based on different language components. (4) Internet protocols are used in the system, which

adds another complication to the subject system.

Figure 6-3 The Subject Program

Data Receiver Data Transmitter

Data Packaging
Processor

Data Archiving
Processor

User Request
Processor

Web Interface
Service

Web Server
Request Handler

Data
Archive 1

Request
Config File

Data
Archive 2

Data sink
Data
source

Internet

Networks

Networks

Networks

File I/O

File I/O

File I/O

data data

data

data

data

data

System call

response

Response
 web page

CGI form field values

Perl Socket
response

131

6.1.3 Test Adequacy Criteria

We use three types of test adequacy criteria in this experiment application. (1) In the

manual/specification method, test requirements are generated based on the specification of the

subject program. A brief system specification of the subject system was available, where high

level data flow and control flow were presented. Test requirements and test cases were

generated based on the data flow, control flow, as well as the text description. (2) The coupling-

based testing technique is an integration testing technique [JO98] that is based on the couplings

between software components. Coupling between two program units increases the

interconnections between the two units and increases the likelihood that a fault in one unit may

affect others. The coupling-based testing criteria are based on the design and data structures of

the program, and on the data flow between the program units. This technique requires that the

program execute from definitions of actual parameters (coupling-defs) through calls to uses of

the formal parameters (coupling-uses). Four levels of testing criteria are defined: call-coupling,

all-coupling-defs, all-coupling-uses, and all-coupling-paths. In this experiment application, we

chose to use all-coupling-path coverage criterion, the highest level of the four, which requires

that for each coupling-def of variable x, the set of paths executed by test set T contains all paths

from the coupling-def to all reachable coupling-uses. Test cases are generated to meet this

criterion. (3) For the software architecture-based testing technique, we used the all indirect

component-to-component coverage criterion to generate test requirements using the prototype

tool ABaTT.

132

6.1.4 Fault Sets

Gacek and Boehm [GACEK98, GACEK99] discussed potential architectural mismatches

early in the reuse process by analyzing various architectural styles and their common features.

They believe that many potential architectural mismatches can be detected by analyzing their

various choices for conceptual features. Mismatches may occur because the subsystems have

different choices for some particular feature. For example, one is multi-threaded and the other is

not, creating the possibility of synchronization problems when accessing some shared data. Or

mismatches may also occur because the subsystems make the same choice for some particular

feature. For example, if two subsystems are single-threaded, they may also run into

synchronization problems when accessing some shared data since both parties assume there is

no risk. Garlan [GAO95b] also discussed how architectural mismatches can obstruct a

megaprogramming effort. In Gacek's work [GACEK98], they analyzes various architectural

styles and their common descriptions, and devised a working set of architectural conceptual

features and possible problems that may occur at the architectural level. In our experiment

application, we chose to use the classified problems at the architectural level, and use that as a

base for our seeded faults. Among all their listed faults and problems, we choose to use the

following types of typical mismatches. This list is taken from Gacek's dissertation [Gacek98].

1. "Different sets of recognized events are used in two subsystems that permit triggers (Trigger means to cause

certain actions, e.g., to cause data or control transfer.)"

Problem: A trigger may not be recognizable by some subsystem that should.

2. "An unrecognized triggering event is used."

Problem: The trigger will not cause the expected behavior, it will never fire the related actions.

3. "A shared data relationship refers to a subsystem which originally forbid data sharing."

133

Problem: May cause synchronization problems.

4. "There is a non-deterministic set of actions that could be caused by a trigger event."

Problem: It is not clear which set of actions should actually occur when triggered, and also it is not clear

what the action ordering should be.

5. "Data connectors connecting control components that are not always active may lead into deadlock."

Problem: Possibility of deadlock on the control component sending the data.

6. "Call to a cyclic (non-terminating) subsystem/control component."

Problem: Control will never be returned to the caller.

7. "Call to a private method."

Problem: Method not accessible to the caller.

8. "Sharing private data."

Problem: Data not accessible to all of the sharing entities being composed.

9. "A reentrant component is either sending or receiving a data transfer."

Reentrance means that some systems allow for multiple simultaneous, interleaved, or nested invocations of

the same piece of code that will not interfere with each other.

Problem: Potential incorrect assumption of which invocation of a component is either sending or

receiving a data transfer.

10. "Call to a non-reentrant component."

Problem: Component may already be running.

11. "Call from a subsystem requiring some predictable response times to some component(s) not originally

considered."

Problem: May have side effects on original predicted response times.

12. "Only part of the resulting system automatically reconfigures upon failure."

Problem: When other parts do not reconfigure, the system may not run correctly.

13. "Incorrect assumption of which instantiation of an object is either sending or receiving a data

transfer."

134

14. "Time represented/compared using different granularities."

Problem: Communications concerning time cannot properly occur.

15. "Sharing or transferring data with differing underlying representations."

Problem: Communications concerning the specific data will not properly occur.

16. "Resource contention."

Problem: Predictable response time indirectly affected because there may be some resource

contention not originally considered.

Based on the above 16 problems that can occur in the composition of two subsystems, we

created the following 16 faults for our subject system. The faults shown in Table 6-1 were

manually inserted to the subject program.

Table 6-1 Faults Inserted to the Subject Programs

Fault
Type

Faults in the Subject Programs

1. A wrong trigger event in the Perl program.
2. A fault in the JavaScript program that does not cause to trigger the response event.
3. File reading and file writing in different format before archiving and after archiving.
4. In Data Packaging Processor, the run program has the wrong conditions to start the process or

to end the process.
5. A wrong data transfer between a client and a server, causing other part of the program

deadlocked.
6. Use (datastream != null) instead of (moredata !=null) to check socket connection, this causes

the run program to never stop even when there is no data transfer.
7. A private method is called from outside.
8. Wrong use of a private data.
9. Wrong assumption of the invocation party between a client and a server component.
10. Multiple calls to the same server port number while the sever port is already in use.
11. Set wait_for_response_time very short when waiting for web server responses. This leads the

program to raise an exception when a response does not come back within the desired time
limit.

12. Set some clients automatically reconnect to the server when the server is down, and set other
clients to not to reconnect.

13. The sequence of operation in the server-client relations is incorrect.
14. Calculate current time based on minutes instead of seconds. This causes problems when the

time difference is within a minute.
15. Security certificate contention when there are multiple URL requests.
16 Incompatible port numbers between a server and a client component.

135

6.2 Experimental Results

Following the experiment procedures described in Figure 6-2, first we generated the Wright

description of the application program, which is shown in Appendix C. The ICG of the subject

program system is shown in Figure 6-3. Some of the behavior graphs are given in Appendix D.

Test requirements in terms of BG paths are listed in Appendix C. There are 9 components, 9

connectors and links between components and connectors. Ports of components use names

proceeded with "p", and roles use names proceeded with "r". The ICG is shown in Figure 6-4.

Figure 6-4 The ICG of the Subject Program

Receiver
Receiver-Packaging Packaging

p1

p1

p2

Archiving

Transmitter

p1

Transmitter-Packaging

p1

p3

UserRequest

Config
WebInterf

WebServer

Packaging-Archiving

WebInterf -WebServer

WebInterf-UserRequest

UserRequest-Config

Archiving-UserRequest

p1 p2

p3 p4

p1

p2 p3

p4

r1 r2
r4

r1 r2

p2

r1

r1

r1

r2

r3

r2

p1

p3

r2

r1

p1

r2

p2

r1

r2
p1

r1

r2

r1

r2

PERL

WebInterf -PERL

PERL-UserRequest

136

Observed test results are shown in table 6-2 and Table 6-3.

Table 6-2 Test Results

Fault
Number

Architecture-based
Testing Technique
Test Set 1

Manual/Specification
Method
Test Set 2

Coupling-based
Testing Technique
Test Set 3

1 Found Found Not Found
2 Found Found Not Found
3 Not Found Not Found Found
4 Found Not Found Not Found
5 Found Found Not Found
6 Found Found Not Found
7 Found Found Found
8 Not Found Not Found Found
9 Found Found Found
10 Found Not Found Not Found
11 Found Found Not Found
12 Found Found Found
13 Found Found Found
14 Found Found Not Found
15 Found Found Found
16 Found Found Found

Table 6-3 Faults Detected

Architecture-based Manual/specification Coupling-based
Number of Test
Cases

24 21 14

Faults Found 14 10 8
Faults Not Found 2 6 8
Fault-found
Percentage R(a, c)

87.5% 62.5% 50.0%

Test Effectiveness
E(a, c)

58.3% 47.6% 57.1%

From Table 6-3 it can be seen that the architecture-based technique resulted in 24 test cases,

which detected 14 faults. Fault 3 is a unit level fault, which only affects the content of the data

137

file, but is not shown anywhere else. Fault 8 is the wrong use of a private data object, which

also affects the content of the data transferred. These two faults were not found because they are

not demonstrated at the architectural level. The manual/specification method resulted in 21 test

cases, which detected 10 faults. Four faults were not found. Fault 3 was discussed above. Fault

4 is a wrong start process condition that causes incorrect data transfer sequences, but still keeps

the whole system up and running. Fault 8 is the wrong use of a private data, which only affects

the content of the data transferred. Fault 10 is a multiple calling to a port number that is already

in use, this fault causes a wrong data transfer, but is not visible at the system level. The port

ordering rules helped to generate test cases that checked the ordering sequence of the port

invocation, allowing the architecture-based testing technique to detect the faults. The coupling-

based technique resulted in 14 test cases, which detected 8 faults. All 8 faults that were not

found are the ones that are not covered by the all-coupling-paths.

The goal of this experiment was twofold. One is to see if architecture-based testing could be

practically applied. The second was to make a preliminary evaluation of the merit of the

architecture-based technique by comparing it with the coupling-based method and the

manual/specification method. From the experiment results we conclude that the goals were

satisfied; the architecture-based testing technique was applied and worked fine, and performed

better than the other two techniques. However, there are several limitations to the interpretation

of the results. First, the subject program is of moderate size for industrial applications, it has

only several architecture styles in the system. Larger sized and more complicated systems need

to be used. Second, there is a lack of the classification of faults at the architectural level. Our

seeded faults in the subject program were derived from a subsystem-based composition

mismatches list. The faults we used in the subject program may not cover all the typical faults at

138

the architectural level. An architectural fault classification is needed for further experiment.

Third, since there is a lack of formal architectural/system testing technique, we used the

coupling-based integration testing technique as one of the comparison technique. Other system

or architectural testing technique should be compared with our technique. Fourth, only one

ADL description is used to describe the system. Other architecture description languages should

also be applied.

6.3 Conclusion

From this experiment application, we can see that the architecture-based testing technique

can be practically applied, and the preliminary evaluation shows that it can find architectural

level faults effectively. This result indicates that this testing approach can benefit practitioners

who are performing architecture/system testing on software. More evaluation of the

effectiveness of this technique is necessary for future work.

139

Chapter 7 Contributions and Future Research

This dissertation has presented six major new results. First, a new general testing technique

for software architecture-based testing has been defined and developed. The research led to the

creation of a set of new concepts including the software architecture Interface Connectivity

Graph (ICG), architecture relations, software architecture-based testing requirements,

architecture-based testing criteria and testing coverage. Second, properties that need to be

evaluated at the software architecture level have been defined. We classified the different

architecture relations in the software architecture context, and the different testing requirements

that have to be satisfied in testing at software architecture level. These concepts are formally

defined. Third, general architecture-based testing criteria are formally defined and test coverage

analysis is presented to help users to evaluate how much of the architecture specification has

been tested using this testing technique. Forth, these testing criteria have been instantiated to a

specific ADL, Wright. Based on the particular characteristics of Wright specifications, the

architecture Behavior Graph (BG) is introduced to graphically represent the behavior details and

other properties to be tested for a Wright specification. Transformation rules are presented to

map a Wright description to the ICG and the BG representations, and architecture relations are

connected with the Petri Net based architecture modeling technique so as to utilize many of the

developed Petri Net algorithms and analysis techniques. Fifth, algorithms are defined to

automatically generate test cases for Wright Description using the software architecture-based

140

 testing technique. These algorithms can generate test cases for any given defined testing

criteria. Sixth, a proof-of-concept tool has been implemented and used validate this approach

on industrial software.

By using the technique developed in this research to testing software architecture, we hope

to be able to get information about architecture and start testing software systems as early as

when they are in the architectural design stage. This technique can provide visual tools (such as

Petri Nets) into testing, modeling and simulation of the architecture properties at a higher level

of abstraction. Architecture-based testing criteria are used as guidelines and they can be applied

to automatically generate test cases for a given ADL. Tests and the intermediate graphical

representations (BGs) can be used as guidelines in the detail design and later in the actual

implementation. This allows significant testing activities to be carried out early in the software

development process, and can greatly reduce the risks of the propagation of costly errors

because the later the errors are discovered the more they cost. As a result, it can help software

developers design test early and reuse the tests later in the software development process. The

concept of architecture relations and the testing criteria can be used both at the architecture level

as well as refined with more design information so that they can be applied at design and

implementation stages. This is also a general testing technique that can be applied to various

ADLs.

Future Research

There are several future areas to explore. First, we applied this technique only to one ADL,

Wright. In the next research step, we would like to apply this technique to other ADLs such as

141

Rapide, Darwin, and etc. Applications to other ADLs should further help us to see the

effectiveness of this technique. Second, we could refine our research by studying the

transformation of Wright state variables and other constraints to the BG to find and overcome

any possible limitations on the translation. Third, more research can be carried out in the

analyzing of software architectures. As we pointed out in Chapter 2, properties such as

consistency, deadlock, completeness need to be checked as we carry out testing and analysis at

the architecture level. Theories and algorithms developed for Petri Nets can be applied. Another

direction is to test dynamic aspects of software architectures. This issue is not addressed in this

dissertation.

142

APPENDIX A WRIGHT LANGUAGE IN BNF

This appendix gives the Wright language in the form of BNF. This is from
http://www.cs.cmu.edu/afs/cs/project/able/www/wright/wright_tools.html.

SpecList := Spec | SpecList Spec;
Spec := Configuration | Style;

Style := "Style" SimpleName
[TypeList]
["Constraints"

[ConstraintExpression]]
"End Style";

TypeList := Type | TypeList Type ;
Type := Component | Connector | InterfaceType | GeneralProcess;

Component := "Component" SimpleName ['(' FormalCCParams ')']
 [PortList]
"Computation" BehaviorDescription;

Connector := "Connector" SimpleName ['(' FormalCCParams ')']
[RoleList]
"Glue" BehaviorDescription;

PortList := Port | PortList Port;
Port := "Port" FormalPRName '=' ProcessExpression;

RoleList := Role | RoleList Role;
Role := "Role" FormalPRName '=' ProcessExpression;

Configuration:= "Configuration" SimpleName
["Style" SimpleName]
[TypeList]
"Instances"
 [InstanceList]
"Attachments"
 [AttachmentList]
"End Configuration";

InstanceList := Instance | InstanceList Instance;
Instance := NameList ':' TypeUse;

143

TypeUse := SimpleName ['(' ActualCCParams ')'];

AttachmentList := Attachment | AttachmentList Attachment;
Attachment : Interface "As" Interface;
Interface : SimpleName '.' ActualPRName;

InterfaceType:= "Interface Type" ProcessName '=' ProcessExpression;
GeneralProcess:= "Process" ProcessName '=' ProcessExpression;

Names and Lists

• IDENTIFIER is a terminal representing an arbitrary name. Such names can contain an
combination of letters and digits, but must begin with a letter.

SimpleName := IDENTIFIER;
ProcessName := SimpleName ["_{" ProcessParams '}']
AlphabetName := "ALPHA" SimpleName;
DefnName := ProcessName | AlphabetName;

NameList := SimpleName | NameList ',' SimpleName;
ElementList := DataExpression | ElementList ',' DataExpression;

FormalPRName := SimpleName ["_{" FiniteRangeExpression '}'];
ActualPRName := SimpleName ["_{" IntegerExpression '}'];

EventName := [ActualPRName '.'] SimpleName

BehaviorDescription := '=' ProcessExpression
| Subconfiguration;

Subconfiguration := Configuration
 "Bindings"
 [BindingList]
 "End Bindings"

BindingList := Binding | BindingList Binding;
Binding := Interface '=' ActualPRName;

DeclList := Declaration | DeclList Declaration;
Declaration :=

DefnName '=' AnyExpression
| DefnName '=' "Cond" '{' ConditionalDefinitions '}'

ConditionalDefinitions =
ConditionalDefinition
| ConditionalDefinitions ConditionalDefinition

ConditionalDefinition =
ProcessExpression "When" '{' LogicalExpression '}'

144

| ProcessExpression "Otherwise"

Types of parameters (formal and actual for use in various rules)

The NL variant of ForamlParams allows lists of parameters, but each parameter of the
same type must be specified separately instead of in a list of the same type (eg, "i,j:X" is
not permitted; instead "i:X; j:X" would have to be used).

FormalParams := FormalParam | FormalParams ';' FormalParam;
FormalParam := NameList ':' SetExpression;

FormalParamsNL := FormalParamNL | FormalParamsNL ';' FormalParamNL;
FormalParamNL := SimpleName ':' SetExpression;

ProcessParams := AnyExpression | ProcessParams ',' AnyExpression;

FormalCCParams := FormalCCParam | FormalCCParams ';' FormalCCParam;
FormalCCParam := NameList ':' ProcessType | NameList ':' RangeExpression;

ActualCCParams := ActualCCParam | ActualCCParams ',' ActualCCParam;
ActualCCParam := ProcessExpression | IntegerExpression;

types of expresssions

ProcessType :=
"Interface Type"
| "Process"
| "Port"
| "Role"
| "Computation"
| "Glue";

ProcessExpression := ProcessExpression ';' ProcessExpression
 | ProcessExpression "/\" ProcessExpression

 | EventExpression "->" ProcessExpression
 | ProcessExpression "||" ProcessExpression

| ProcessExpression "|||" ProcessExpression
 | ProcessExpression "[]" ProcessExpression
 | ProcessExpression "|~|" ProcessExpression
 | "[]" FormalParams '@' ProcessExpression
 | "|~|" FormalParams '@' ProcessExpression
 | ';' FormalParams '@' ProcessExpression
 | "||" FormalParams '@' ProcessExpression

| "|||" FormalParams '@' ProcessExpression
| ToolAnnotation

 | ProcessName
 | "Computation"
 | "Glue"

| "Success"

145

| "Skip"
| "Stop"

 | ProcessExpression "Where" '{' DeclList '}'
 | '(' ProcessExpression ')';

ToolAnnotation :=
 "diamond" '(' ProcessExpression ')'

| "normalise" '(' ProcessExpression ')';

EventExpression := '_' EventName [EventDataList]
 | EventName [EventDataList];

EventDataList := EventDataList '?' NonEventDataExpression
| EventDataList '!' NonEventDataExpression
| '?' NonEventDataExpression
| '!' NonEventDataExpression;

LogicalExpression := "not" LogicalExpression
 | LogicalExpression "or" LogicalExpression
 | LogicalExpression "and" LogicalExpression
 | "forall" FormalParams '@' LogicalExpression
 | "forall" FormalParams '|' LogicalExpression '@' LogicalExpression
 | "exists" FormalParams '@' LogicalExpression
 | "exists" FormalParams '|' LogicalExpression '@' LogicalExpression

| NonEventDataExpression "==" NonEventDataExpression
| NonEventDataExpression "!=" NonEventDataExpression

 | IntegerExpression '<' IntegerExpression
 | IntegerExpression '>' IntegerExpression
 | IntegerExpression "<=" IntegerExpression
 | IntegerExpression ">=" IntegerExpression
 | DataExpression "in" SetExpression
 | DataExpression "notin" SetExpression

| "true"
| "false"

 | LogicalExpression "Where" '{' DeclList '}'
 | '(' LogicalExpression ')';

This introduces a lot of new possibilities and needs extensive work.

ConstraintExpression := LogicalExpression;

SetExpression := SetExpression "union" SetExpression
 | SetExpression "intersection" SetExpression
 | SetExpression "setminus" SetExpression
 | SetExpression "cross" SetExpression
 | "power" SetExpression

| "sequence" SetExpression
 | '{' ElementList '}'
 | '{' FormalParamsNL ['|' LogicalExpression] ['@' DataExpression] '}'

146

| RangeExpression
| SimpleName
| AlphabetName
| "Integer"
| "{}"

 | SetExpression "Where" '{' DeclList '}'
| '(' SetExpression ')';

SequenceExpression :=
 '<' ElementList '>'
 | SequenceExpression '^' SequenceExpression
 | SimpleName
 | "<>"

 | SequenceExpression "Where" '{' DeclList '}'
 | '(' SequenceExpression ')';

IntegerExpression := IntegerExpression '+' IntegerExpression
 | IntegerExpression '-' IntegerExpression
 | SimpleName

 | INTEGER
 | IntegerExpression "Where" '{' DeclList '}'
 | '(' IntegerExpression ')';

RangeExpression := IntegerExpression ".." IntegerExpression
 | IntegerExpression ".."
 | ".." IntegerExpression;

FiniteRangeExpression := IntegerExpression ".." IntegerExpression

TupleExpression := '(' DataExpression ',' DataExpression ')';

NonEventDataExpression :=
 SetExpression

| IntegerExpression
| SequenceExpression
| LogicalExpresssion
| TupleExpression;

DataExpression := EventExpression | NonEventDataExpression;

AnyExpression := ProcessExpression | DataExpresssion;

147

APPENDIX B WRIGHT PROCESSES AND EVENTS

e: event

e?x: Process receives data x

e!x: process supplies data x

§: successful termination of the entire system

e P: the process that first engages in the event e and then behaviors as P

p: external choice. A process that can behave like P or Q, where the choice is made by the

environment, is denoted by the operator P Q

Π: internal choice. A process that can behave like P or Q, where the choice is made (non-

deterministically) by the process itself, is denoted P Q.

; : the ";" operator combines two processes in sequence. P;Q is the process that behaves as

P until P terminates successfully and then behaves as Q.

where: behavior patterns that occur over and over again can be described by naming

particular processes.

state variable: state is added to a process definition by adding subscripts to the name of a

process: Pi is a process with a single state variable, i.

148

APPENDIX C SUBJECT PROGRAM WRIGHT DESCRIPTIONS
AND TESTS

This appendix lists the Wright description of the subject program, lists all the test path

requirements generated by architecture-based testing technique, lists all the test requirements by

manual method as well as by coupling-based method.

Wright Description of the Subject Program

Interface Type ClientAction = open Operate §
where Operate = setConnection Operate connectResponse?x ReadOrWrite Operate End
ReadOrWrite = writeToSocket ReadOrWrite readFromSocket ReadOrWrite
 End = close § fail §

Interface Type ServerAction = open Operate §
 where Operate = listenOnPort Operate connectResponse!x ReadOrWrite Operate End

ReadOrWrite = writeToSocket ReadOrWrite readFromSocket ReadOrWrite
Close = close § fail §

Interface Type SendCGIForm = openURL ; SubmitOrExit
where SubmitOrExit = submitValues?f SucceedOrFail Exit
SucceedOrFail = responsePage!y closefile § fail ToSubmit §
Exit = failOpenURL §

Interface Type AcceptCGIForm = openFile Check §
Check = checkFieldNames!f SucceedOrFail § Exit
SucceedOrFail = responsePage?y closefile § fieldNotMatch §
Exit = failOpenFile §

Interface Type FileIO = openFile; NextAction
where NextAction = writeToFile NextAction readFromFile NextAction fileFail §

closeFile § failOpenFile §

149

Component Receiving
Port p1 = ClientAction

Computation

Component Transmitting
Port p1 = ServerAction

Computation

Component Packaging
Port p1 = ServerAction
Port p2 = ServerAction
Port p3 = ClientAction
Port p4 = ClientAction
Computation = (x: 1..2 px.open); ConnectOrExit

where ConnectOrExit = Connect Exit
Connect = (x: 1..2 px.listenOnPort Connect) ; (x: 1..2 ; processx.); SendData
process1 = p1.connectResponse!x p4.open Operate Exit
where Operate = p1.setConnection Operate
process2 = p2.connectResponse!x p3.open Operate Exit
where Operate = p3.setConnection Operate
SendData = p1.readFromSocket p4.writeToSocket SendData
Exit = Fail §
Fail = (x: 1..4 px.failOpen) §

Component Archiving
Port p1 = ServerAction

Port p2 = ServerAction
Port p3 = ClientAction
Computation = (x: 1..2 px.open); ConnectOrExit

ConnectOrExit = Connect Exit
Connect = (x: 1..2 px.listenOnPort Connect) ; (x: 1..2 ; processx.); SendData
process1 = p1.connectResponse!x p3.open Operate Exit
Operate = p3.setConnection Operate
process2 = p2.connectResponse!x
SendData = p1.readFromSocket p2.writeToSocket p2.readFromSocket
p3.writeToSocket
Exit = (x: 1..3 px.failOpen) § (x: 1..3 ; px.close); §

Component UserRequest
Port p1 = ServerAction

Port p2 = ClientAction
Port p3 = SendCGIForm
Port p4 = FileIO
Computation = (x: 1..2 px.open); ConnectOrExit
ConnectOrExit = Connect Exit
Connect = (x: 1..2 px.listenOnPort Connect) ; (x: 1..2 ; processx.); SendData
process1 = p1.connectResponse!x p3.open Exit
process2 = p2.connectResponse!x
SendData = p2.readFromSocket p4.writeToFile p 4.closeFile p 3.openURL p 3.responsePage
p1.writeToSocket p1.readFromSocket p2.writeToSocket
Exit = (x: 1..4 px.failOpen) § (x: 1..4 ; px.close); §

150

Component WebInterf
Port p1 = SendCGIForm

Port p2 = SendCGIForm
Port p3 = AcceptCGIForm
Computation = p3.openURL; ProcessForms Exit
where ProcessForms Process1 ; Process2 Exit
Process1 = p3.responsePage p1.submitValues?f p3.responsePage p3.close p1.open
Process2 = p1.responsePage p2.submitValues?f p1.responsePage p1.close p2.open
Exit = Fail §
Fail = (x: 1..3 px.failOpen)

Component PERL
Port p1= AcceptCGIForm
Port p2 = ClientAction
Computation = p1.open; Process Fail
where Process = p1.responsePage!y p2.writeToSocket p1.responsePage p1.close p2.open
 Fail = p1.failOpen p2.§

Component WebServer
Port p1 = AcceptCGIForm
Computation

Component Config
Port p1 = FileIO

Computation

Connector Receiving-Packaging
Role r1 = ClientAction
Role r2 = ServerAction
Glue = ServerAction.open ClientAction. open Glue

 ClientAction.setConnection ServerAction.listenOnPort Glue
 ServerAction.connectResponse?x ClientAction.connectResponse!x Glue
 ServerAction.close ClientAction.close Glue
 §

Connector Transmitting-Packaging
Role r1 = ServerAction
Role r2 = ClientAction
Glue = ServerAction.open ClientAction. open Glue

 ClientAction.setConnection ServerAction.listenOnPort Glue
 ClientAction.connectResponse?x ServerAction.connectResponse!x Glue
 ServerAction.close ClientAction.close Glue
 §

Connector Packaging-Archiving
Role r1 = ClientAction
Role r2 = ServerAction

 Role r3 = ServerAction
Role r4 = ClientAction
Glue = ServerAction.open ClientAction. open Glue

151

 ClientAction.setConnection ServerAction.listenOnPort Glue
 ClientAction.connectResponse?x ServerAction.connectResponse!x Glue
 ServerAction.close ClientAction.close Glue
 §

Connector Archiving-UserRequest
Role r1 = ServerAction
Role r2 = ClientAction
Glue = ServerAction.open ClientAction. open Glue

 ClientAction.setConnection ServerAction.listenOnPort Glue
 ClientAction.connectResponse?x ServerAction.connectResponse!x Glue
 ServerAction.close ClientAction.close Glue
 §

Connector WebInterf-UserRequest
Role r1 = SendCGIForm
Role r2= AcceptCGIForm
Glue = SendCGIForm.openURL AcceptCGIForm.openFile Glue

 SendCGIForm.submitFormValues?f AcceptCGIForm.checkFieldNames!f Glue
 AcceptCGIForm.responsePage!y SendCGIForm.responsePage?y Glue

 AcceptCGIForm.failOpen SendCGIForm.failToSubmit Glue
 §

Connector WebInterf-WebServer
Role r1 = SendCGIForm
Role r2 = AcceptCGIForm
Glue = SendCGIForm.openURL AcceptCGIForm.openFile Glue

 SendCGIForm.submitFormValues?f AcceptCGIForm.checkFieldNames!f Glue
 AcceptCGIForm.responsePage!y SendCGIForm.responsePage?y Glue

 AcceptCGIForm.failOpen SendCGIForm.failToSubmit Glue
 §

Connector UserRequest-Config
Role r1 = FileIO
Role r2 = FileIO
Glue

Connector WebInterf-PERL
Role r1 = AcceptCGIForm
Role r2 = SendCGIForm
Glue = SendCGIForm.openURL AcceptCGIForm.openFile Glue

 SendCGIForm.submitValues?f AcceptCGIForm.checkFieldNames!f Glue
 AcceptCGIForm.responsePage SendCGIForm.responsePage Glue

 AcceptCGIForm.failOpen SendCGIForm.failToSubmit Glue
 §

Connector PERL-UserRequest
Role r1 = ClientAction
Role r2 = ServerAction
Glue = ServerAction.open ClientAction. open Glue

152

 ClientAction.setConnection ServerAction.listenOnPort Glue
 ClientAction.connectResponse?x ServerAction.connectResponse!x Glue
 ServerAction.close ClientAction.close Glue
 §

Instances
receiver: Receiving
packaging: Packaging
r-p: Receiving-Packaging

 archiving: Archiving
p-a : Packaging-Archiving
transmitting: Transmitting
t-p: Transmitting-Packaging
userrequest: UserRequest
a-u: Archiving-UserRequest
config: Config
u-c: UserRequest-Config
perl: PERL
p-u: PERL-UserRequest
webinterf: Webinterf
w-u: WebInterf-UserRequest
w-p: WebInterf-PERL
webserver: WebServer
w-w: WebInterf-WebServer

Attachments:
receiving provides as r-p.receiving

 s provides as cs.S
end

153

Individual Component Interface Coverage Paths

First, we define all the B-paths for individual ports. These paths will be used in the coverage

requirements.

acceptCGIForm_path:

1. openFile -- checkFieldNames -- reponsePage -- close -- §1

2. openFile -- checkFieldNames -- fieldNotMatch-- close -- §2

3. openFile -- failOpenFile -- §3

4. openFile -- close -- §4

sendCGIForm_path

1. openURL -- submitValues?f -- responsePage -- close -- §1

2. openURL -- submitValues?f -- failToSubmit-- close -- §2

3. openURL -- failOpen -- §3

4. openURL-- close -- §4

FileIO_path:

1. openFile -- close-- §2

2. openFile -- failOpen -- §1

3. openFile -- readFromFile --close -- §2

4. openFile -- WriteToFile -- close -- §2

5. openFile -- readFromFile --WriteToFile --close -- §2

6. openFile -- WriteToFile --readFromFile -- close -- §2

7. openFile -- readFromFile -- failOpen -- §1

8. openFile -- WriteToFile -- failOpen -- §1

9. openFile -- readFromFile --WriteToFile --failOpen -- §1

10. openFile -- WriteToFile --readFromFile -- failOpen -- §1

server_path

1. open -- listenOnPort -- close -- §2

2. open -- close -- §2

154

3. open -- fail -- §3

4. open -- listenOnPort -- connectResponse!x -- readFromSocket -- close -- §2

5. open -- listenOnPort -- connectResponse!x -- writeToSocket -- close -- §2

6. open -- listenOnPort -- connectResponse!x -- readFromSocket --writeToSocket-- close --

§2

7. open -- listenOnPort -- connectResponse!x -- writeToSocket --readFromSocke-- close -- §2

8. open -- listenOnPort -- fail -- §3

9. open -- listenOnPort -- connectResponse!x -- readFromSocket -- fail -- §3

10. open -- listenOnPort -- connectResponse!x -- writeToSocket -- fail -- §3

11. open -- listenOnPort -- connectResponse!x -- readFromSocket --writeToSocket-- fail -- §3

12. open -- listenOnPort -- connectResponse!x -- writeToSocket --readFromSocke-- fail -- §3

13. §1

client_path

1. open -- setConnection -- close -- §2

2. open -- close -- §2

3. open -- fail -- §3

4. open -- setConnection -- connecResponse?x -- readFromSocket -- close -- §2

5. open -- setConnection -- connecResponse?x -- writeToSocket -- close -- §2

6. open -- setConnection -- connecResponse?x -- readFromSocket -- writeToSocket -- close -- §2

7. open -- setConnection -- connecResponse?x -- writeToSocket -- readFromSocket -- close -- §2

8. open -- setConnection -- connecResponse?x -- readFromSocket -- fail-- §3

9. open -- setConnection -- connecResponse?x -- writeToSocket -- fail-- §3

10. §1

Here are the individual components and their B-paths and C-paths:

Receiving:

B-path: client_path

I-path: ∅

Packaging

B-path:

155

port1: server_path

port2: server_path

port3: client_path

port4: client_path

I-path :

Packaging I-path(p1, p4):

1. p1.connectResponse!x -- p4.open

2. p1.readFromSocket -- p4.writeToSocket

Packaging I-path(p2, p3):

1. p2.connectResponse!x -- p3.open

2. p2.readFromSocket -- p3.writeToSocket

Archiving

B-path:

port1: server_path

port2: server_path

port3: client_path

I-path:

Archiving I-path(p1,p3):

1. p1.connectResponse!x -- p3.open

Archiving I-path(p1,p2):

1. p1.readFromSocket -- p2.writeToSocket

Archiving I-path(p2,p3):

1. p2.readFromSocket -- p3.writeToSocket

UserRequest

B-path:

port1: server_path

port2: client_path

port3: sendCGIForm_path

port4: FileIO_path

I-path:

156

UserRequest I-path(p2,p4)

1. p2.connectResponse?x -- p4.openFile

2. p2.readFromSocket -- p4.writeToFile

UserRequest I-path(p4,p3):

1. p4.close -- p3.openURL

UserRequest I-path(p3,p1):

2. p3.responsePage -- p1.writeToSocket

UserRequest I-path(p1,p2):

1. p1.readFromSocket -- p2.writeToSocket

PERL

B-path:

port1: AcceptCGIForm_path

port2: client_path;

I-path:

PERL I-path(p1,p2):

1. p1.responsePage -- p2.writeToSocket

2. p1.close -- p2.open

WebInterf

B-path:

port1: sendCGIForm_path;

port2: sendCGIForm_path;

port3: AcceptCGIForm_path;

I-path:

WebInterf I-path(p3,p1):

1. p3.responsePage -- p1.submitValues?f

2. p3.close -- p1.openURL

WebInterf I-path(p1,p2):

1. p1.responsePage -- p2.submitValues?f

157

2. p1.close -- p2.openURL

Transmitting

B-path: server_path

I-path: ∅

Config

B-path: FileIO_path

I-path: ∅

WebServer

B-path: AcceptCGIForm_path;

I-path : ∅

Individual Connector Coverage

Under current assumptions, all the roles are considered to have the same behavior as their

corresponding component ports. Therefore, the individual connector coverage shares the same B-

path as the individual component coverage.

All Direct Component-to-Component Coverage

Receiving and Packaging

C-path(Packaging.p1, Receiving.p1):

1.Packaging.p1.open -- Receiving.p1. open

2. Packaging.p1.connectResponse!x -- Receiving.p1.connectResponse?x

3. Packaging.p1.close -- Receiving.p1.close

158

C-path(Receiving.p1, Packaging.p1):

1. Receiving.p1.setConnection -- Packaging.p1.listenOnPort

Packaging and Transmitting

C-path(Transmitting.p1, Packaging.p3):

1.Transmitting.p1.open -- Packaging.p3.open

2. Transmitting.p1.close -- Packaging.p3.close

3. Transmitting.p1.connectResponse!x -- Packaging.p3.connectResponse?x

C-path(Packaging.p3, Transmitting.p1):

1. Packaging.p3.setConnection -- Transmitting.p1.listenOnPort

Packaging and Archiving

C-path(Archiving.p1, Packaging.p4):

1.Archiving.p1.open -- Packaging.p4. open

2. Archiving.p1.connectResponse!x -- Packaging.p4.connectResponse?x

3. Archiving.p1.close -- Packaging.p4.close

C-path(Packaging.p4, Archiving.p1):

1. Packaging.p4.setConnection -- Archiving.p1.listenOnPort

C-path(Packaging.p2, Archiving.p3):

1.Packaging.p2.open -- Archiving.p3.open

2. Packaging.p2.connectResponse!x -- Archiving.p3..connectResponse?x

3. Packaging.p2.close -- Archiving.p3.close

C-path(Archiving.p3, Packaging.p2):

1. Archiving.p3..setConnection -- Packaging.p2.listenOnPort

Archiving and UserRequest

C-path(Archiving.p2, UserRequest.p2):

1.Archiving.p2.open -- UserRequest.p2.open

2. Archiving.p2.connectResponse!x -- UserRequest.p2.connectResponse?x

3. Archiving.p2.close -- UserRequest.p2.close

C-path(UserRequest.p2, Archiving.p2):

1. UserRequest.p2.setConnection -- Archiving.p2.listenOnPort

159

UserRequest and Config

C-path(UserRequest.p4, Config.p1):

1. UserRequest.p4.open -- Config.p1.open

2. UserRequest.p4.readFromFile -- Config.p1.readFromFile

3.UserRequest.p4.writeToFile -- Config.p1.writeToFile

4. UserRequest.p4.failOpen -- Config.p1.failOpen

5. UserRequest.p4.close -- Config.p1.close

C-path(Config.p1, UserRequest.p4):

1. Config.p1.open -- UserRequest.p4.open

2. Config.p1.readFromFile -- UserRequest.p4.readFromFile

3.Config.p1.writeToFile -- UserRequest.p4.writeToFile

4. Config.p1.failOpen -- UserRequest.p4.failOpen

5. Config.p1.close -- UserRequest.p4.close

UserRequest and PERL

C-path(UserRequest.p1, PERL.p2):

1.UserRequest.p1.open -- PERL.p2.open

2. UserRequest.p1.setConnection -- PERL.p2.listenOnPort

C-path(PERL.p2, UserRequest.p1):

1. PERL.p2.connectResponse!x -- UserREquest.p1.connectResponse?x

2. PERL.p2.close -- UserREquest.p1.close

UserRequest and WebInterf

C-path(UserRequest.p3, WebInterf.p3):

1. UserRequest.p3.openURL -- WebInterf.p3.openFile

2. UserRequest.p3.submitFormValuees?f -- WebInterf.p3.checkFieldNames?f

3. WebInterf.p3.responsePage -- UserRequest.p3.responsePage

4. WebInterf.p3.failOpen -- UserRequest.p3.failToSubmit

WebInterf and WebServer

C-path(WebInterf.p1, WebServer.p1):

1. WebInterf.p1.openURL -- WebServer.p1.openFile

2. WebInterf.p1.submitFormValuees?f -- WebServer.p1.checkFieldNames?f

C-path(WebServer.p1, WebInterf.p1):

160

1. WebServer.p1.responsePage -- WebInterf.p1.responsePage

2. WebServer.p1.failOpen -- WebInterf.p1.failToSubmit

WebInterf and PERL

C-path(WebInterf.p2, PERL.p1):

1. WebInterf.p1.openURL -- PERL.p1.openFile

2. WebInterf.p1.submitFormValuees?f -- PERL.p1.checkFieldNames?f

C-path(PERL.p1, WebInterf.p1):

1. PERL.p1.responsePage -- WebInterf.p1.responsePage

2. PERL.p1.failOpen -- WebInterf.p1.failToSubmit

All Indirect Component-to-Component Coverage Paths

Receiving - Packaging - Archiving

1. (Receiving-Packaging C-path(p1, p1)) combine (Packaging I-path(p1,p4)) combine

(Packaging-Archiving C-path(p4, p1))

Archiving - Packaging -Transmitting

1. (Archiving-Packaging C-path(p3, p2)) combine (Packaging I-path(p3,p2)) combine

(Packaging-Transmitting C-path(p3, p1))

Packaging - Archiving - UserRequest

1. (Packaging-Archiving C-path(p4, p1)) combine (Archiving I-path(p1,p2)) combine

(Archiving-UserRequest C-path(p2, p2))

2. (UserRequest-Archiving C-path(p2, p2)) combine (Archiving I-path(p2,p3)) combine

(Archiving-Packaging C-path(p3, p2))

Config - UserRequest - WebInterf

1. (Config-UserRequest C-path(p1, p4)) combine (UserRequest I-path(p4,p3)) combine

(UserRequest-WebInterf C-path(p3, p3))

UserRequest - WebInterf - WebServer

1. (UserRequest-WebInterf C-path(p3, p3)) combine (WebInterf I-path(p3,p1)) combine

(WebInterf-WebServer C-path(p1, p1))

WebServer - WebInterf - PERL

1. (WebServer-WebInterf C-path(p1, p1)) combine (WebInterf I-path(p1,p2)) combine

(WebInterf-PERL C-path(p2, p1))

161

WebInterf - PERL - UserRequest:

1. (WebInterf-PERL C-path(p2, p1)) combine (PERL I-path(p1,p2)) combine (PERL-

UserRequest C-path(p2, p1))

PERL - UserReuest - Archiving

1. (PERL-UserRequest C-path(p2, p1)) combine (UserRequest I-path(p1,p2)) combine

(UserRequest-Archiving C-path(p2, p2))

162

APPENDIX D BEHAVIOR GRAPHS OF THE SUBJECT SYSTEM

open

§1

listenOnPort

connectResponse!x
readFromSocket

writeToSocket

§2close

fail §3

P1-- server

open

§1

listenOnPort

connectResponse!x
readFromSocket

writeToSocket

§2close

fail §3

P2 -- server

open

§1

setConnection

connectResponse?x

readFromSocket

writeToSocket

§2

§3

close

fail

P3 -- client

Component: Archiving

163

open

§1

setConnection

connectResponse?x

readFromSocket

writeToSocket

§2

§3

close

fail

Component: Receiving

P1 client

openFile

§

readFromFile

§
failOpen

close

writeToFile

Component: Config

P1 FileIO

164

open

§1

listenOnPort

connectResponse!x
readFromSocket

writeToSocket

§2close

fail §3

P1-- server

open

§1

listenOnPort

connectResponse!x
readFromSocket

writeToSocket

§2close

fail §3

P2 -- server

open

§1

setConnection

connectResponse?x

readFromSocket

writeToSocket

§2

§3

close

fail

P4-- client

open

§1

setConnection

connectResponse?x

readFromSocket

writeToSocket

§2

§3

close

fail

P3-- client

Component: Packaging

165

open

§1

listenOnPort

connectResponse!x

writeToSocket

§2close

fail §3

P1 server

Component: Transmitting

readFromSocket

openFile

§4

checkFieldNames

§2

§1

fieldNotMatch

responsePage close

§3failOpenFile

close

Component:WebServer

P1 AcceptCGIForm

close

166

openFile

§4

checkFieldNames

§2

§1

fieldNotMatch

responsePage close

§3failOpen

close

open

§1

setConnection

connectResponse?x

readFromSocket

writeToSocket

§2

§3

close

fail

AcceptCGIForm

ClientAction

Component: PERL

close

p1

p2

167

open

§1

listenOnPort

connectResponse!x
readFromSocket

writeToSocket

§2close

failOpen §3

open

§1

setConnection

connectResponse?x

readFromSocket

writeToSocket

§2

§3

close

failOpen

P2 clientP1 server

openURL

§4

submitValues?f

§2

§1

failToSubmit

responsePage close

§3
failOpen

close

P3 sendCGIForm

openFile

§2

readFromFile

§1
failOpen

close

writeToFile

Component: UserRequest

P4 FileIO

close

168

Component: WebInterf

openURL

§4

submitValues?f

§2

§1

failToSubmit

responsePage close

§3failOpen

close

sendCGIForm

openURL

§4

submitValues?f

§2

§1

failToSubmit

responsePage close

§3failOpen

close

sendCGIForm

openFileURL

§4

checkFieldNames

§2

§1

fieldNotMatch

responsePage close

§3failOpen

close

AcceptCGIForm

p3

p1

p2

169

REFERENCES

[AAG93] G. Abowd, R. Allen, and D. Garlan. Using Style to Understand Descriptions of Software
Architecture. In Proceedings of the First ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 9-20, Los Angeles, CA, December 1993.

[Abd-Allah96] A. Abd-Allah, Composing Heterogeneous Software Architectures. Doctoral
Dissertation, Center for Software Engineering, University of Southern California, Los Angeles, CA
90089, August 1996.

[AG94a] R. Allen and D. Garlan. Formal Connectors. Technical Report, CMU-CS-94-115,
Carnegie Mellon University, March 1994.

[AG94b] R. Allen and D. Garlan. Formalizing Architectural Connection. In Proceedings of the
Sixteenth International Conference on Software Engineering, pages 71-80, Sorrento, Italy, May
1994.

[AG94c] R. Allen and D. Garlan. Beyond Definition/Use: Architectural Interconnection. In
Proceedings of the Workshop on Interface Definition Languages, Vol 29, J. M. Wing(Ed.), ACM
SIGPLAN Notices, Portland, Oregon, January 1994.

[AG96] R. Allen and D. Garlan. A Case Study in Architectural Modeling: The AEGIS System. In
Proceedings of the Eighth International Conference on Software Specification and Design (IWSSD-
8), pages 6-15, Paderborn, Germany, March 1996.

[AGI98] R. Allen, D. Garlan, and J. Ivers, Formal Modeling and Analysis of the HLA Component
Integration Standards. In Proceedings of the Sixth International Symposium on the Foundations of
Software Engineering (FSE-6), Lake Buena Vista, Florida, November 1998.

[All96] R. Allen. HLA: A Standards Effort as Architectural Style. In A. L. Wolf, ed., In Proceedings
of the Second International Software Architecture Workshop (ISAW-2), pages 130-133, San
Francisco, CA, October 1996.

170

[All97] R. Allen. A Formal Approach to Software Architecture. Ph.D. Thesis, Carnegie Mellon
University, Technical Report Number: CMU-CS-97-144, May 1997.

[ATT93] Software Architecture Validation. AT&T Technical Journal Current, 1993.

[Bei90] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, Inc, New York, NY, 2nd
edition, 1990. ISBN 0-442-20672-0.

[BIMR97] A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti, An Approach to Integration Testing
Based on Architectural Descriptions. In Proceedings of the Third IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS97), pages 77-84, Como, Italy, September 1997.

[Clark00] L. A. Clarke. Improve Architectural Description Languages to Support Analysis Better.
Workshop on Evaluating Software Architectural Solutions 2000 (WESAS), http://www.isr.uci.edu/
events/wesas2000/, Irvine, CA, May 2000.

[Cle96a] P. C. Clements. A Survey of Architecture Description Languages. In Proceedings of the
Eighth International Workshop on Software Specification and Design, Paderborn, Germany,
March 1996.

[DSSA92] LTC E. Mettala and M. H. Graham. The Domain-Specific Software Architecture Program,
Technical Report, Carnegie Mellon Software Engineering Institute, CMU/SEI-92-SR-009, 1992.

[EG99] A. Egyed and C. Gacek. Automatically Detecting Mismatches during Component-Based and
Model-Based Development, In Proceedings of the 14th IEEE International Conference on Automated
Software Engineering, pages 191-198. Cocoa Beach, Florida, October 1999

[FW88] P. G. Frankl and E. J. Weyuker, An Applicable Family of Data Flow Testing Criteria, IEEE
Transactions on Software Engineering, 14(10), 1483-1498, October 1988.

[GACB95] C. Gacek, A. Abd-Allah, B. K. Clark and B. Boehm. On the Definition of Software
System Architecture. In Proceedings of the First International Workshop on Architectures for
Software Systems - In Cooperation with the 17th International Conference on Software Engineering.
D. Garlan (ed.), pages 85-95, Seattle, April 1995, .

[GACEK98] C. Gacek. Detecting Architectural Mismatches During Systems Composition. Doctoral
Dissertation, Center for Software Engineering, University of Southern California, Los Angeles, CA
90089, December 1998.

171

[GACEK99] C. Gacek and B. Boehm. Composing Components: How Does One Detect Potential
Architectural Mismatches? In Proceedings of the OMG-DARPA-MCC Workshop on Compositional
Software Architectures, January 1998

[GAO94] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architectural Design
Environments. In Proceedings of SIGSOFT'94: Foundations of Software Engineering, pages 175-188,
New Orleans, Louisiana, USA, December 1994.

[GAO95a] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch or Why it's Hard to Build
Systems Out of Existing Parts. In Proceedings of the 17th International Conference on Software
Engineering, pages 179--185. Association for Computer Machinery, April 1995.

[GAO95b] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why Reuse is So Hard.
IEEE Software, 12(6): pages 17--26, November 1995.

[GMW95] D. Garlan, R. Monroe, and D. Wile. ACME: An Architectural Interconnection Language.
Technical Report, CMU-CS-95-219, Carnegie Mellon University, November 1995.

[GMW97] D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Interchange
Language. In Proceedings of IBM CASCON'97, Toronto, Canada, January 1997.

[GR84] U. Goltz and W. Reisig. CSP-Programs As Nets With Individual Tokens. Lecture Notes in
Computer Sciences, Vol 188, pages169-196, 1984.

[GS93] D. Garlan and M. Shaw. An Introduction to Software Architecture: Advances in Software
Engineering and Knowledge Engineering, Volume I. World Scientific Publishing, 1993.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HR94] M. J. Harrold and G. Rothermel. Performing Data Flow Testing on Classes. Symposium on
Foundations of Software Engineering (ACM SIGSOFT 94), pages 154-163, December 1994.

[IW95] P. Inverardi and A. L. Wolf. Formal Specification and Analysis of Software Architectures
Using the Chemical Abstract Machine Model. IEEE Transactions on Software Engineering,
vol.21, no.4, pages 373-386, April 1995.

172

[Jensen97] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts. Monographs in Theoretical Computer Science, Springer-Verlag, 2nd
corrected printing 1997.

[Jin94] Z. Jin. Deadlock and Trap Analysis in Petri Nets. MS Thesis, Computer Science Department,
George Mason University, Fairfax, VA. 1994.

[JJ2000] Z. Jin, A. J. Offutt, A. Abdurazik, and E. L.White. Analyzing Software Architecture
Descriptions to Generate System-level Tests. Workshop on Evaluating Software Architectural
Solutions 2000 (WESAS), http://www.isr.uci.edu/events/wesas2000/, Irvine, CA, May 2000.

[JO 98] Z. Jin and A. J. Offutt. Coupling-based Criteria for Integration Testing. Software Testing,
Verification, and Reliability, 8(3), pages 133-154, September 1998.

[KBA+94] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM:A Method for Analyzing the
Properties of Software Architectures. In Proceedings of the Sixteenth International Conference on
Software Engineering, May 1994, pages 81-90, 1993.

[KC94] P. Kogut and P. Clements. Features of Architecture Description Languages. Draft of a
CMU/SEI Technical Report, December 1994.

[KC95] P. Kogut and P. Clements. Feature Analysis of Architecture Description Languages. In
Proceedings of the Software Technology Conference (STC'95), Salt Lake City, April 1995.

[LKA+95] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and Analysis of System Architecture Using Rapide. IEEE Transactions on Software
Engineering, Vol. 21, no.4, pages 336-355, April 1995.

[LV95] D. C. Luckham and J. Vera. An Event-Based Architecture Definition Language. IEEE
Transactions on Software Engineering, Vol. 21, no.9, pages 717-734, September 1995.

[LVB+93] D. C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz. Partial Orderings of Event
Sets and Their Application to Prototyping Concurrent, Timed Systems. The Journal of Systems
and Software, Vol. 21, no.3, pages 253-265, June 1993.

[LVM00] D. C. Luckham, J. Vera, and S. Meldal. Key Concepts in Architecture Definition
Languages. Foundations of Component-Based Systems. G. T. Leavens and L. Sitaraman (Ed.),
Cambridge University Press, pages 23-45, New York, 2000.

173

[Med96] N. Medvidovic. ADLs and Dynamic Architecture Changes. In A. L. Wolf, ed., Proceedings
of the Second International Software Architecture Workshop (ISAW-2), pages 24-27, San Francisco,
CA, October 1996.

[Med97] N. Medvidovic. A Classification and Comparison Framework for Software Architecture
Description Languages. Technical Report, UCI-ICS-97-02, University of California, Irvine,
January 1997.

[MOT96a] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of Off-the-Shelf Components in C2-
Style Architectures. In Proceedings of the 1997 Symposium on Software Reusability(SSR'97),
pages 190-198, Boston, MA, May 17-19, 1997. Also in Proceedings of the 1997 International
Conference on Software Engineering (ICSE'97), pages 692-700, Boston, MA, May 17-23, 1997.

[MORT96b] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using Object-Oriented
typing to support architectural design in the C2 style. In Proceedings of the ACM SIGSOFT'96:
Fourth Symposium on the Foundations of Software Engineering (FSE4), pages 24-32, SanFrancisco,
CA, October 1996.

[MPW92] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and II.
Volume 100 of the Journal of Information and Computation, pages 1-40 and 41-77, 1992.

[MQ94] M. Moriconi and X. Qian. Correctness and Composition of Software Architectures. In
Proceedings of the Second ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ACM SIGSOFT Software Engineering Notes, 19(5):164-174. December 1994.

[MQR95] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Refinement.
IEEE Transactions on Software Engineering, Vol. 21, no.4, pages 356-372, April 1995.

[MT97] N. Medvidovic and R. N. Taylor. Reuse of Off-the-Shelf in C2 Style Architectures In
Proceedings of the 19 th International Conference on Software Engineering (ICSE 97). pages 692-700,
Springer, Berlin - Heidelberg - New York, May 1997.

[MTW96] N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. Formal Modeling of
Software Architectures at Multiple Levels of Abstraction. In Proceedings of the California
Software Symposium 1996, pages 28-40, Los Angeles, CA, April 1996.

174

[OA99] A. J. Offutt and A. Abdurazik. Generating Tests from UML Specifications. In Proceedings of
the Second International Conference on the Unified Modeling Language (UML99), Fort Collins, CO,
October 1999.

[OJP99] A. J. Offutt, Z. Jin, and J. Pan. The Dynamic Domain Reduction Procedure for Test Data
Generation. The Journal of Software Practice and Experience. Vol.29, no. 2, pages 167-193,
Feburary 1999.

[OYS99] A. J. Offutt, Y. Xiong and S. Liu. Criteria for Generating Specification-based Tests. Fifth
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '99), Las
Vegas, NV, October 1999.

[Perterson81] Peterson, J. L. Petri Net Theory and the Modeling of Systems, Prentice Hall,
Englewood Cliffs, NJ. 1981.

[PN86] R. Prieto-Diaz and J. M. Neighbors. Module Interconnection Languages. The Journal of
Systems and Software, Vol. 6, no. 4, pages 307-334, November 1986.

[Pur94] J. Purtilo. The Polylith Software Bus. ACM Transactions on Programming Languages and
Systems. Vol 16(1). pages 151-174, January 1994.

[ROS98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[Rosen00] D. S. Rosenblum. Challenges in Exploiting Architectural Models for Software Testing.
Workshop on Evaluating Software Architectural Solutions 2000 (WESAS), http:// www.isr.uci.edu/
events/wesas2000/, Irvine, CA, May 2000.

[Rosen97] D. S. Rosenblum. Adequate Testing of Component-Based Testing. Technical Report 97-
34, Dept. of Information and Computer Science, University of California, Irvine, CA. August 1997.

[RR96] J. E. Robbins and D. Redmiles. Software Architecture Design From the Perspective of
Human Cognitive Needs. In Proceedings of the California Software Symposium (CSS'96), Los
Angeles, CA, USA, April 1996.

[RT86] G. Rozenberg, and P. S. Thiagarajan. Petri Nets: Basic Notions, Structure and Behavior.
Lecture Notes in Computer Science. Vol. 224, pages 585-668 Springer-Verlag, Berlin, Germany.
1986.

175

[RW96] D. J. Richardson and A. L. Wolf. Software Testing at the Architectural Level. In
Proceedings of the Second International Software Architecture Workshop (ISAW-2), San Francisco,
California, pages 68-71. October 1996

[SC93] P. Stocks and D. Carrington. Test Templates: A Specification-Based Testing Framework. In
Proceedings of the 15th International Conference on Software Engineering, pages 405-414,
Baltimore, MD, May 1993.

[SDK+95] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions
for Software Architecture and Tools to Support Them. IEEE Transactions on Software Engineering,
pages 314-335, April 1995.

[SG94] M. Shaw and D. Garlan. Characteristics of Higher-Level Languages for Software
Architecture. Technical Report, CMU-CS-94-210, Carnegie Mellon University, December 1994.

[SG95] M. Shaw and D. Garlan. Formulations and Formalisms in Software Architecture.
Springer-Verlag Lecture Notes in Computer Science, Vol. 1000, pages 307-320, 1995.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, 1996.

[Spi89] J. M. Spivey. The Z notation: A Reference Manual. Prentice Hall, New York, 1989.

[SRW97] J. A. Stafford, D. J. Richardson, and A. L. Wolf. Chaining: A Software Architecture
Dependence Analysis Technique. Technical Report CU-CS-845-97, University of Colorado,
September 1997.

[SRW98] J. A. Stafford, D. J. Richardson, and A. L. Wolf. Aladdin: A Tool for Architecture-level
Dependence Analysis of Software Systems. University of Colorado Technical Report, CU-CS-858-
98, 1998.

[STARS93] Software Technology for Adaptable, Reliable Systems [STARS]. Conceptual
Framework for Reuse Processes (CFRP), Volume I: Definition, Version 3.0, STARS-VC-
A018/001/00, 25 October, 1993.

[Tra93] W. Tracz. LILEANNA: A Parameterized Programming Language. In Proceedings of the
Second International Workshop on Software Reuse, pages 66-78, Lucca, Italy, March 1993.

176

[Ves93] S. Vestal. A Cursory Overview and Comparison of Four Architecture Description
Languages. Technical Report, Honeywell Technology Center, February 1993.

[Ves96] S. Vestal. MetaH Programmer's Manual, Version 1.09. Technical Report, Honeywell
Technology Center, April 1996.

[Web] www-ast.tds-gn.Imco.com/arch/ Software Architecture Technology Guide

[Wey86] E. J. Weyuker. Axiomatizing Software Test Data Adequacy. IEEE Transactions on
Software Engineering, Vol. 12, no. 12, pages 1128-1138, December 1986.

[Wolf96] A. L. Wolf, editor. In Proceedings of the Second International Software Architecture
Workshop (ISAW-2), San Francisco, CA, October 1996.

[Wolf97] A. L. Wolf. In Proceedings of the Second International Software Architecture Workshop
(ISAW-2). ACM SIGSOFT Software Engineering Notes, pages 42-56, January 1997.

[Wrighttool] http://www.cs.cmu.edu/afs/cs/project/able/ftp/Wright-tutorial.ps

[You96] E. Yourdon. Software Quality Assurance in the 1990s. Technical report, Honeywell
Technollogy Center, April 1996.

[ZHM97] H. Zhu, P. A. V. Hall, and H. R. J. May. Software Unit Test Coverage and Adequacy. ACM
Computing Surveys, 29(4), pages 366-427, December 1997.

