CHANGE IMPACT ANALYSIS OF OBJECT-ORIENTED

SOFTWARE

By
Michelle L. Lee(Li Li)
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
In Partial Fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Information Technology
Committee:

Jeff Offutt, Dissertation Director

David Rine, Chairman

Xiaoyang Sean Wang

Daniel Carr

Stephen G. Nash, Associate Dean for
Graduate Studies and Research

Lloyd J. Griffiths, Dean, School of
Information Technology and Engineering

Date: Fall 1998
George Mason University
Fairfax, Virginia

CHANGE IMPACT ANALYSIS OF OBJECT-ORIENTED

SOFTWARE

A dissertation submitted in partial fulfillment of the requirements for the Doctor Of
Philosophy degree in Information Technology at George Mason University

By

MichelleL. Lee (Li Li)
Master of Science
George Mason University, 1995

Thesis Director: Dr. Jeff Offutt, Associate Professor
Department of Information and Software Engineering

Fall Semester 1998
George Mason University
Fairfax, Virginia

Copyright 1998 Michelle L. Lee (Li Li)
All Rights Reserved

DEDICATION

This dissertation is lovingly dedicated to my husband, Sheldon Zhou, for his endless
dedication and patience; my daughter, Stacey Zhou - who is very proud of her mom - for her
love and her company while | was working on the thesis; my farther, Jing Lee, for teaching
me to be myself and not to yield to difficulties; and my mother, GuoChai Fu, for teaching me

to be loving and responsible.

ACKNOWLEDGMENTS

| want to offer my thanks to all who has contributed to the success of this research:

My dissertation director, Dr. A. Jefferson Offutt, for his guidance and encouragement;

Dr. David Rine, Dr. S. Sean Wang, and Dr. Danial Carr for serving on my committee and

providing me much needed support;

LCC International Inc for continuing moral and financial support and for allowing me use the

company software as part of the test cases of this research.

Olivier Jojic and Will Mitchell for providing their valuable comments and insights;

Thisresearch is partially supported by the National Science Foundation under grant CCR-98-

04111.

TABLE OF CONTENTS

Page

A B ST RA CT ... ettt e e e ettt e e et e e e ettt e e e aateeeeaateeeaabaeeeeaataeeeanteeeaataeaeeabaeaeeareeeennees Xl
1 INTRODUGCTION ...oictiitiiie ittt ettt st e eteebeeaveereesbeesbeesbesbesasesaeesbeesbeenseeasessseebeasbeesbeentennrennnesnees 1
1.1 SOFTWARE MAINTENANCEuttteeiitieeestteeessteeeeeasteeeseneeeesasseeesassesssassseeesseeessassesessssesesnsesessnsesesnnnees 1
1.2 CHANGE IMPACT ANALY SIS, .. utiiiiiieteeiiteeesitteeeesteeesenseeesasseesaassesesasseasssseesaassesesasssesesnsssessnsesesnsees 4
0 R @ 0= 0o (=] e o= OSSN 5
O 1 o= (o AN o Y P RSSN 6
1.2.3 Benefits of IMPact ANGIYSIS.......cccieieiirieie e e e et st e e ene e e e neeneesnens 7
1.2.4 Object-Oriented System IMPaCt ANAIYSIS......ccoviererieererese e sre et ae e e s 11
I {7 1 = @ USRS 14
0 35 A 1 o 7= (o N o Y 14
1.3.2 Object-Oriented IMPACt ANAIYSIS.......coeieierirere e ee e e et na e enee s 16
TR T T 1 (== o 1 o S 17
1.3.4 Control Flow, Data Flow and Data DependencCycccvcvvvrereereeresesieseeeeseese e see e 17

R 3T o oo PSS 18
1.4 SCOPE AND GOALS OF THISRESEARCHccciiuuiieeiiiieeeiieeessieeeeastteesssnseeessnseeesssssesesasssssssnsssesssssenenans 19
141 Problem SatEMENT......ccie ettt et e be e b e e b e b e e b saresaeesae e nreereenns 19
142 THESIS SAEMENTviiiiiee ettt ettt ettt et et e sbe e s b e e beeareeaeeebesebeebesabesssesaeesbeesbeesreeseenns 19
1.5 BRIEF DESCRIPTION OF RESEARCH RESULTS...cccciitiiiiiiiieeiiieeeestteeessnee e s sseeesensteeesnnneeessnnanessnssnnesns 20
1.6 ORGANIZATION OF THIS DISSERTATIONceeiiuteeeitueeeesueeeessiueeeeassseessasessssssesesssssesesasssssssnsssessssesesans 22
2 BACKGROUND CONCEPTSottt ettt e ettt e e et e e e entee e e eneeeeeenreeaan 24
2.1 OBJIECT-ORIENTED CONCEPTS.....ceeiiitteieeetteeeeiteeeeeteeeeestteeeeeseeassbaeasaastesesassseassasseeassstesesasssesesassenas 24
2.2 GRAPH AND DEPENDENCY DEFINITIONS.ciiiiittieeiittieeeeiteeeeeitteeeestteeeeesteeeesasseeesssseeesassseessasseeassnsenens 26
221 Graph TREOMYccuiieieieieeeet ettt b et b et b e bt b e b st eb e sbeseeb e e b e se e bt sbesee e ebenne e 26
222 General DependenCy CONCEPLS.cuiiiierereriererieeeresreeeresreseeresseseereseeseesesseeesesseseeseseeneesens 30

3 NEW CONCEPTS/DEFINITIONS... ...ttt iteecte ettt eteeeteesreebesaesaeesbeesreesssanssneesseesesnsesnsessessrenns 33
3.1 INEW DEFINITIONS ..cectteeeeitieeessteeeestteeeesateeessaseeeesnseeasasteeesassseeesnseeesaassesesansessssnssnesannsesesansnnessnssnenn 33
3.1.1 Change Impact DEfiNITIONS........ccoeiiriieiisiie ettt s e e e e e e re e 33
3.1.2 Object-Oriented Data Dependency Graph ThEOIYccccvvvereieeeeieesesese e 43
3.2 CALCULATE REFERENCE DEPENDENCYuttiiitiieeiitteeeesteeessssesesssseeesansesssssssessssssesesssssssssnsssssssnseses 47
321 PrimitivVe SAEMENTSeccvieitieiecee ettt ettt e bt eebe et e eaeesbeesbe e besabesasesbeesaeesbeensesneesseessesssenns 47
3.22 ConditionalS aNd LOOPS.......ccceeuerirrieiiestereeieseestestestessesseeseessestessesresseessessessessessesssesessessensenns 48
3.23 Method Processing and Parameter PasSiNg........c.ccccveevererereniesieeieeseesessessesseesseseessessessessenns 49
3.24 Processing of PoiNters and REfErENCES.........coivririieie i eeesee e nens 50
3.25 ImMplementation ChanGE.........cciiiiierieeses st sre st s e e e eesresrenre e 51

G TR T 11V 1= N o 1Y, K] o] = S 51
4 ALGORITHIMSt e e ettt e e et e e e ettt e e e e ebae e e eeateeeeeaaeeaeebeeeeeanreeeeennees 55

4.1 ALGORITHMS DESCRIPTION ..utttiitteeeisurteessseesssssseessassessssseessssssesssasseesssssesssssssesssssssssssssesssssssesssnsseees 56

Vi

4.2 INPUTSAND OUTPUTS OF THE ALGORITHMS......uutieeiittieeeetrieeeiteeeeeteeesestteeesessseessnseesssssesesensseessnnns 59
i I 0 Y I == = = on R SO ORROPT SRR 60
4.4 ENCAPSULATION. ceeeetieeieettteteeeeeeeituteeeeeaeseaasstaeeeaaesaaastseeeaaesaaasntasseaeasasaastasssesasesanssssseesesessassnssnesaneann 61
4.5 THE CONTAINMENT RELATIONSHIP: FINDEFFECTINCLASS.... ..ottt e 62
4.6 THE USE RELATIONSHIP: FINDEFFECTAMONGCLIENTScutiiiiiiieeiiieeeeeitteeeeeireeeeeneeeeestbeeeeensneeeennns 64
4.7 THE INHERITANCE RELATIONSHIP: FINDEFFECTBY INHERITANCEccviiitteeiteeecireestreeereesnreeenneesnrens 66
4.7.1 Properties of INNEMTANCE......c..coiiiiieeree et 66
4.7.2 FiNdEfeCtBYINNEMTTANCE. ..ottt 71
4.8 ALGORITHMS CORRECTNESS VERIFICATIONcicutieeiitiieeeeitteeeeeteeeesseeeseatseeesessseesssseesesssesesassssessnnnes 79
5 OBJECT-ORIENTED CHANGE IMPACT METRICS. ..ottt ettt 82
5.1 OBJECT-ORIENTED CHANGE IMPACT METRIC DESCRIPTION ...cceiiitiieeeiieeeesneeeesnsneeesssneeesnnneesssnseeens 84
5.1.1 Basic Object-oriented Change IMpact MELTICS.......c.cuvvevererere e seeeesesee e se e 84
5.1.2 Derived Object-oriented Change Impact MELriCS........c.coeveverieiesesecie e 87
5.2 IMETRICS PROPERTIES....eiiiittieiitteeeiitteeeeiteeessseesesteeesaasteeesasssesssseeesaassesesasssesssnsseesanssesessssseessnseesn 91
6 INFERENCE APPROAGCHoooi ettt ettt e et eetee e s aeeesae e sateeeseeesareesseeessseenseeesreeenseneans 95
B.1 DATALOG .. euutiieeitteee e ettt e ettt e e ettt e e ettt eeeeabe e e e easeee e e baeaeaasteeesasseeaeabaeeeaastasesasseeeesnbseaeaanteeesasneeesansrenann 95
6.1.1 Factsinthe AlQOITNMS.ot 97
B.1.2 RUIBS ..ottt ettt e s e et e st e e et e e st e e e be e s b e e aaae e sabeeeareesabeeeareeabeeebenens 101
6.1.3 USer COmMPOSEA QUETTESceueieuirtereeieete ettt st sttt st sr et sb e et b e n et b e bbb b e 107
7 PROOF-OF-CONCEPT EXPERIMENTAL SYSTEMoooiiieceecee ettt 108
T.1 SYSTEM CONTEXT teeeeituteesueeeeiiuteeesaseeessseeeesssseeesassesessnsesesasssesesasssssssnsesesasssesesasssssssssesesesssesesnnseees 108
A N 2 (T 1 =g U S 109
A R T 0\ (0] d 1 0= V(Lo g I =1 = v (o) SO 111
A2 2 1 110 Lo N 0= Y 112
ARG T 1= VT OO 113
7.3 EMPIRICAL RESULTS. . .tttiiittieeiitieeeesteeeesteee e s tteeessaseeesssaeesaasteeesasseeessnsaeesaassesesanseeessnsenesannsnsesnnnns 116
7.3.1 Change Propagation INSIAE CIaSSES.........ccccveieriereieeseeeeiesees e st saesee e eenae e srennes 116
7.3.2 Change Propagation Inside a Class with Recursive Relationships........ccccoovevvveevenesennene 123
7.3.3 Change Propagation among Use and Containment Relationships..........cccocvevvveeienesienneenns 129
7.3.4 Change Propagation by Inheritance, Use and Containment Relationships............ccccevuenee. 137
7.4 A CASE STUDY FROM A COMMERCIAL INDUSTRY ENVIRONMENT ...cuvvieeeciieeeciree e e siveeeeenee e e e 146
8 CONTRIBUTIONS AND FUTURE WORKoooitiietieitee ettt ettt ete et sreeetee e sseeeevee e snneeneas 161
8.1 FUTURE WORKuoiiiitiiieectte e e eieee e ettt e e e ette e e e eatee e s etaeeeeaabeeeeasseeeaasseeaeaabaeesanssesesssesaeanbeeaeansteeesnnnes 162
APPENDIX A. ..ooooeeieeeece e OBJECT-ORIENTED CHANGE IMPACT RULES AND FACTS
166
APPENDIX B. ..ooooiiiceecee ettt sre et CLASSHEADERS OF TESTED MODULES
168

LIST OF REFERENCES.........coo oo s 187

LIST OF TABLES
Table Page
1. Impact Power of Contaminate TYPE VaAIUESc.ccuieiiririeirireise e 46
2. Object Relationship TYPE VEIUES.........coviiiieiie ettt 46

vii

viii

LIST OF FIGURES

Figure Page
1. Definethe stepsin the maintenance process [MOREQD]c.ccovvereeeeieereeseseese e e seesse e seeeenes 3
2. Typical IMPact ANAlYSIS PrOCESScccccueiieriesiesese st eteseeeesaese e e te st sreste e e e e eaeseestesrestessaensenns 10
3. RelationshipsS BEWEEN ClASSESccciieiieiice e et se e e 25
4, Class COMPONENES GIaPN......cceieiieieierese st et e e et estesresbesaesre e e e e eneeseenrenns 34
5. Impact MOdel DIMENSION VIBWccveieieieiie sttt eee e e steste e ere e esaesse e saestesne e e enaeneenseses 52
6. IMpPact SEt VENN DIBOIAM.....ccececeeeee e st e e s e st ra e e s aesbesbesneene e e e e eneeneeseens 54
7. Cal Relationships among Change Impact Analysis Algorithms.........ccccvvveeercecceveses s 55
8. Impact Set COmMPONENE GraPh........cccveieierese sttt e et e et esaesre e sreere e e e e eaeseesees 59
9. Total Effect PSBUAO COUB.......cceieeiiiirieie ettt st st 60
10. Initialization PSEUAD COUE.........ceiirieiriiieiriesie sttt sttt nnne 61
11. FindEffectiNClass PSEUAO COUEcoieeririiiririeieesiee sttt 64
12. FindEffectAmongClientS PSEUAO COUEcuviirieiiere e cee ettt na e e 65
13. FindEffectBylnheritance PSeUdO COE.........cccucveieieiiiese ettt e 72
14. ForwardInheritanCeTreeProceSs(Cp) 74
15. BackwardlnheritanCETTEEPIOCESS (Cr) .veververrrrierieeterieeitestesiestesiesseseeseessesteseesressesseesessesseseessesses 74
16. Class Diagram of Inheritance EXaMPIe.........ccveeeieieiiie s s 77
17. New FindEffectAmongClients PSeudo COdE..........ccovverieieeerieeie e 79
18. DEPENAENCY GIaPhccueeeeiesie st sttt e e see e e ettt e te s tesae et e e e e e se e tesaesrestesneeneeneenteseesrenrn 97
19. INNEritanCe EXAMPIEo ittt ettt sre st e ne e e e e e neentenne s 100
20. Method m references method nand datamember y in Cl........coccoeveievene v 102
21. Datamember x in c1 references method m and datamember y inCl.......cccccevveeecvecevvceveseene, 102
22. Component CONNECLION GIaphcccveiuerierieseseseeee e e e ste st se e s e e s resresre e e esaeseenteseesrenns 109
23, FTIMEBWOIK ...ttt ettt et b bbb e bt b e e e st e s e b s be s e st st e e enenbentens 110
24, Information Collector HIErarChy..........ccviiieie ettt s sre e 111
25, Analyzer Class HIEIrarChy.cccecueieiere sttt st s ena e e snenrenns 112
26. ChAT Analyzer Class DIAQIamcccccceieiieieieeieieeieesieseseseesresseeaesaesses e ssesressesseessessenseseessesses 113
27. Class Member Dependenciesin EXample 7.3. 1 ... ie st 117
28. All Class Tree View in EXampPle 7.3.1.....ccv ettt 118
29. Impact Only Tree View in EXampPle 7.3.1ccvcieieeeee ettt s 119
30. Thelmpact Tablein EXamMPIE 7.3.1......ccuoiiie et st st 120
31. TheClassImpact Tablein EXamMPIE 7.3.1cccvciieeeee et s 121
32. Input TablEIN EXAMPIE 7.3.1 ..c.oe ettt st e e e st re e e e e enes 122
33. Therecursive dependency iN EXAMPIE 7.3.2cvceeeeeeiere et e st 123
34, All Class Tree View in EXamMPIE 7.3.2.....ccv ettt st nes 124
35. Impact Only Tree View in EXamPIE 7.3.2 ..ottt s 125
36. Impact Table Of EXAMPIE 7.3.2......cceiececeeese sttt st sttt et s re e e ae e neas 126
37. ClassImpact Table of EXaMPIE 7.3.2 ..ottt st en 127
38. Input TablEiN EXAMPIE 7.3.2 ..c.eeceeceeee ettt st sttt et e sre e e e enes 128
39. EXample 7.3.3 header fIlES.......cccviiiieececec ettt e 129

40.
41.
42,
43.

45,
46.
47.
48.
49,
50.
51.
52.
53.

55.
56.
57.
58.
59.
60.
61.
62.
63.

65.
66.
67.

EXample 7.3.3 Class Diagraim........cccceierieririeieiesieneete sttt sttt s be e ebesn e ebesneneas 130
Class Member Dependencies of EXamMpPIE 7.3.3.......coiiiiiiiiereeeseiee e 131
All Class Tree View of EXaMPIE 7.3.3 ..ot 132
Impact Only Tree View of EXampPle 7.3.3 ...t 133
Impact Table Of EXEMPIE 7.3.3 ...t 134
Class Impact Table of EXaMPIE 7.3.3 ..ot 135
INput Table Of EXAMPIE 7.3.3 ..ottt sneae s 136
Inheritance Relationship SAmPlE COOE.........ccoiriiririeiere s 138
Class Diagram Of EXAMPIE 7.3.4 ..ottt 139
Class Member Dependenciesin EXample 7.3.4......cooieinereeree e 140
All Class Tree View of EXaMPIE 7.3.4 ..ottt e 141
Impact Only Class Tree View in EXampPle 7.3.4 ..ot 142
Impact Table Of EXBMPIE 7.3.4 ...ttt b e 143
Class Impact Table of EXAMPIE 7.3.4 ..ot e 144
INput Table Of EXAMPIE 7.3.4 ...ttt 145
Class Diagram of Notification MOUIE...............ooeiiiiireee e 147
Document Module Class DIagram.........c.coeeiieeeriinieereeeeie st snes 148
Class Diagram of Graphic MOAUIE.............coiiiiiiiiie s 149
Example 7.4.1.4 All Class TIEE VIBW.......cciiieieerieiete ettt ene e ene e 150
Example 7.4.1.4 Impact Only Class Tree VIBWccueireererieise et 151
Example 7.4.1.4 Member Impact TaDIe.........ccoiiiriiiieirese e 152
Example 7.4.1.4 Class IMPact Tal@ciiiiiiieeesee e 153
INput Table Of EXAMPIE 7.4. 1.4 ..ottt nre e 154
Example 7.4.1.5 All ClasS TIEE VIBW.......cceiiiiieirieieie ettt 156
Example 7.4.1.5 Impact Only Class Tree VIBW........cciireiiirieese ettt 157
Example 7.4.1.5 IMPACt TaI.......ccciiiieereee e 158
Example 7.4.1.5 Class IMPact Talecoiiiiiieieee e 159
The Input Table of EXaMPIE 7.4. 1.5 ... 160

ABSTRACT

CHANGE IMPACT ANALY SIS OF OBJECT-ORIENTED SOFTWARE

Michelle L. Lee (Li Li), Ph.D.

George Mason University, 1998

Dissertation Director: Dr. A. Jefferson Offutt

As the software industry has matured, we have shifted our resources from being devoted to
developing new software systems to making modifications in evolving software systems. A
major problem for developers in an evolutionary environment is that seemingly small
changes can ripple throughout the system to cause major unintended impacts elsewhere. As
such, software developers need mechanisms to understand how a change to a software
system will impact the rest of the system. Although the effects of changes in object-oriented
software can be restricted, they are al'so more subtle and more difficult to detect. Maintaining
the current object-oriented systems is more of an art, similar to where we were 15 years ago
with procedural systems, than an engineering skill. We are beginning to see "legacy" object-
oriented systems in industry. A difficult problem is how to maintain these objects in large,
complex systems. Although objects are more easily identified and packaged, features such as

encapsulation, inheritance, aggregation, polymorphism and dynamic binding can make the

ripple effects of object-oriented systems far more difficult to control than in procedural
systems. The research presented here addresses the problems of change impact analysis for
object-oriented software. Mgjor results of this research include a set of object-oriented data
dependency graphs, a set of algorithms that allow software developers to evaluate proposed
changes on object-oriented software, a set of object-oriented change impact metrics to
evaluate the change impact quantitatively, and a prototype tool (Chal) to evaluate the
algorithms. This research also results in efficient regression testing by helping testers decide
what classes and methods need to be retested, and in supporting cost estimation and schedule

planning.

1 INTRODUCTION

This dissertation presents results addressing the problem of change impact analysis on
object-oriented software. This chapter describes the basic concepts of software maintenance,
and introduces the concepts of change process and impact analysis, especialy object-
oriented system impact analysis. It discusses what has been done in this research area, the

problems, and how this research addresses these problems.

1.1 Software Maintenance

Software evolution refers to the on-going enhancements of existing software systems,

involving both devel opment and maintenance.

Software maintenance has been recognized as the most costly and difficult phase in the
software life cycle [LIWE94][SCHN87]. Over the life of a software system, the software
maintenance effort has been estimated to be frequently more than 50% of the total life cycle

cost. This maintenance cost shows no sign of declining [TURV94].

Unlike many other types of products, software products are intended to be adaptable. Even
though software neither deteriorates nor changes with age if its media are well-presented,
software maintenance is an expensive process where an existing program is modified for a
variety of reasons, including correcting errors, adapting to different data or processing

environments, enhancing to add functionality, and altering to improve efficiency [HARR93].

For programs with many interacting modules, modifying and then revalidating a program is
complex: analysis, testing, and debugging may be required for each module individually and
for the interactions among modules. The problem is further compounded because the
maintainers are rarely the authors of the code and usually lack a complete understanding of
the program. Even worse, maintainers often do not have access to specifications or design
documents — just the code. As software ages and evolves, the task of maintaining it becomes

more complex and more expensive.
Some of the other causes of software maintenance problems are:

(1) Software maintainability is often not a major consideration during design and

implementation.
(2) Maintenance has been largely ignored in software engineering (SE) research.
(3) Maintenance activities are not well understood.

Decades of research on maintenance activities in the procedural software have produced
several conclusions. Among them is the recommendation that a reduction in maintenance
cost could be achieved by a more controlled design process, and by more rigorous testing of

potential problem areas early in the life cycle.

Software maintenance can be classified into three categodaective, perfective, and
adaptive. Corrective maintenance is performed in response to software failures. Maintenance
due to changes in data and processing environments is categorazgtage maintenance.
Maintenance performed to eliminate processing inefficiencies, enhance performance, or

improve maintainability is termegkrfective maintenance [IEEE9Q].

Moreton [MORE90] defines the steps of maintenance process as. change management,
impact analysis, system release planning, change design, implementation, testing and system
release/integration. These steps, which occur sequentially as shown in Figure 1, are

supported by a further activity that continues concurrently — progress monitoring.

. - Source code Load module
Documentation Data dictionary
A A
A A T
4 3 y Y v 4
Change Im;Tagt rSe%:Eaesn; ((Ijhange Implementation| | Testin System release/
management analysis planning esign P g integration

A

Process monitoring

4

Project Quality
manangement assurance

Figure 1. Define the stepsin the maintenance process [M ORE90]

For maintenance work to be effective, it is vital to control the input to the process — the
procedure by which change requests are notified and managed in the first place. The change
management and impact analysis are the first two steps in the maintenance process. The

software maintenance process can only be optimized if precise and unambiguous information

is available about the potential ripple effects (defined in 1.2.2) of a change on an existing

system.

1.2 Change Impact Analysis

Of the total maintenance cost, 40% lies in rework (i.e. change) of software architecture,
component interaction, procedures/methods, and variables [PFLE9Q]. Experience shows that
making software changes without understanding their effects can lead to poor effort
estimates, delays in release schedules, degraded software design, unreliable software

products, and the premature retirement of the software system.

The two most expensive activities in software maintenance are the understanding of
problems or other expressed needs for change, in relation with the understanding of the
maintained software system, and the mastering of al the ripple effects of a proposed change
[BARR95]. A seemingly small change can ripple throughout the system to have mgor
unintended impacts elsewhere. As a result, software developers need mechanisms to
understand how a change to a software system will impact the rest of the system. This

processis called change impact analysis.

Change impact analysis improves the accuracy of resource estimates, provides better
scheduling, and can reduce the amount of corrective maintenance, because fewer errors will
be introduced. One example is the Year 2000 (Y 2K) problem. In the past, memory and disk
spaces were precious resources, and some old systems used two digits to express the date. As
these software systems have evolved, legacy software has not been extended to address the
date requirement of the new century. In the year 2000, software systems that just use two
digits to express the year will think year 00 (2000) is less than 99 (1999) and will often

produce incorrect results.

Organizations attempting to address the Y 2K problems have discovered that impact analysis
is essential to its solution. Without effective analysis to identify ripple-effects of changing
date variables, a great deal of time is needed to manually examine source code to identify
date variables, change them, and test them, only to find that other variables that use the date
are also impacted. Moreover, other software objects may also need to be examined and
modified to be consistent with the Y 2K changes. Those changes could in return, impact the
code that has been changed and tested. Now, this software has to be changed and re-tested
again. Articles have been published that estimate the cost to correct the Year 2000 Problem

in the industry to bein the billions of dollars.

121 Change Process

To put change impact analysis in perspective, we first need to understand the process of

change. Madhaji [MADH91] defines the process of change as:

a) ldentify the need to make a change to an item in the environment

b) Acquire adequate change related knowledge about the item

¢) Assesstheimpact of achange on other itemsin the environment

d) Select or construct a method for the process of change

€) Make changesto all theitems and make their inter-dependencies resolved satisfactorily

f) Record the details of the changes for future reference, and release the changed item back

to the environment

One key prablem in accommodating changes in an environment is to know all the factors that

impact a given change, and the consequences of this change.

1.2.2 Impact Analysis

An impact (noun) is the effect or impression of one thing on another. Impact can be thought
of as the consequences of a change. Impact analysis (IA) is used to determine the scope of
change requests as a basis for accurate resource planning and scheduling, and to confirm the
cost/benefit justification. Software change-impact analysis estimates what will be impacted
in software and related documentation if a proposed software change is made. It is defined as
the process of assessing the effects on other components of the system resulting from the
proposed change. It determines the scope of the change and the complexity of the change.
The quantitative and qualitative effects of that change on other items are the major concerns

of the study of impact analysis.

IA has been practiced in various forms for years, yet there is no consensus definition
[ARNQ93]. There are different definitions of change impact analysis. Pfleeger and Bohner
[PFLE9Q] define change impact analysis as “the evaluation of the many risks associated with

the change, including estimates of the effects on resources, effort, and schedule.” Turver and
Munro [TURV94] definechange impact analysis as “the assessment of a change, to the
source code of a module, on the other modules of the system. It determines the scope of a
change and provides a measure of its complexity.” Arnold and Bohner [ARN{288F

change impact analysis as identifying the potential consequences of a change, or estimating
what needs to be modified to accomplish a change. They emphasize the estimation of the
impacts. The Pfleeger [PFLE9Q] definition extends their definition to the evaluation of
impacts. The ripple effect of a change to the source code of a software system is defined as

the consequential effects on other parts of the system resulting from that change. These

effects can be classified into a number of categories such as logical effects, performance

effects or understanding effects.

1.2.3 Benefits of Impact Analysis

Experience has taught us that comprehensive up-front analysis of requirements during
software development pays high dividends by reducing the risk of costly rework and the
potential for errorsin planning estimates. The same concept appears to hold true for software
change impact analysis. By identifying potential impacts before making a change, we greatly
reduced the risks of embarking on a costly change because the cost of unexpected problems

generally increases with the lateness of their discovery.

Impact analysis information can be used for planning changes, making changes,
accommodating certain types of software changes, and tracing through the effects of
changes. It makes the potential effects of changes visible before the changes are implemented
to make it easier to perform changes more accurately and identifies the consequences or

ripple effects of proposed software changes during development and maintenance.

There is often more than one change that can solve the same problem or satisfy the same
requirement. Assessing the complete impact of each change is often necessary to be able to
choose which change to apply. There are also, sometimes, external constraints that must be
taken into account when designing the change, such as packages to be interfaced with or
parts of the system that must not be impacted. Impact analysis helps the maintenance team
identify software work products impacted by software changes. Such analysis not only
permits evaluation of the consequences of planned changes; it also allows trade-offs between

suggested software change approaches to be considered.

Impact analysis can be used as a measure of the cost of a change. The more the change
causes other changes, the higher the cost is. Carrying out this analysis before a change is
made allows an assessment of the cost of the change and helps management choose tradeoffs
between alternative changes. It allows managers and engineers to evaluate the
appropriateness of a proposed modification. If a change that is proposed has the possibility of
impacting large, digoint sections of a program, the change might need to be re-examined to

determine whether a safer change is possible.

Impact analysis can be used to drive regression testing, i.e., to determine the parts of a

program that need to be re-tested after a change is made. Regression test is a software
maintenance activity that refers to any repetition of tests (usually after software or data

changes) intended to show that the software’s behavior is unchanged except insofar as
required by the change to the software or data [BEIZ90]. To save effort, regression testing
should retest only those parts that are impacted by the changes. During maintenance, when
some changes have been made to the system, we need to estimate how many classes need to
be retested. Retesting too many classes in the system will increase the cost of testing, but

retesting too few classes in the system might adversely impact the quality of the software.

Impact analysis can also be used to indicate the vulnerability of critical sections of code. If a
procedure that provides critical functionality is dependent on many different parts of a

program, its functionality is susceptible to changes made in these parts.

A major goal of impact analysis is to identify the software work products impacted by
proposed changes. Evaluating software change impacts requires identifying what will be
impacted by a change and relies on the “impact assessment” to determine quantitatively what

the impact represents. Conceptually, it takes a list of software life-cycle objects — from

specifications to programs — analyzes these objects with respect to the software change, and
produces a list of items that should be addressed during the change process. Software staff
can use the information from such analysis to evaluate the consequences of planned changes

as well as the trade-offs among the approaches for implementing the change.

Examples of impact analysis activities are:

Using cross referencing listings to see what other parts of a program contain references to a

given variable or procedure

Using program slicing to determine the program subset that can impact the value of a given

variable

Browsing a program by opening and closing related files

* Using traceability relationships to identify changing artifacts

* Using configuration management systems to track and find changes

« Consulting designs and specifications to determine the scope of a change

Typical | mpact Analysis Process

A typical impact analysis process is illustrated in the following picture:

10

Proposed Change’
(" inrealworld <

o
g
68
28
o=
< g
25
o]
c
-
Viewer
Software Change (Show Impact

System Specification Result...)

Information Extractor
(Extract information from
information source)

Analyzer
(Calculate Change
Impact)

Internal
Representation
Repository

Figure 2. Typical Impact Analysis Process

Impact analysis can be broken down into following stages:

Stagel. Convert proposed change into a system change specification.

Stage2. Extract information from information source and convert into Internal

Representation Repository.

Stage3. Calculate change impact for these change proposals. Do Stage 1-3 again for

other competing change proposals.

11

Stage4. Develop resource estimates, based on considerations such as size and software

complexity.

Stage5. Analyze the cost and benefits of the change request, in the same way as for a

new application.

Stage6. The maintenance project manager advises the users of the implications of the
change request, in business rather than in technical terms, for them to decide whether to

authorize proceeding with the change [MORE9Q].

Impact Analysisis Difficult

Impact analysis is one of the most tedious and difficult parts of software change. Manual
impact analysis is labor intensive and error prone. Systematic approaches to impact analysis
are frequently not part of formal software engineering training [ARNQO96]. It is performed
only when absolutely necessary due to the cost involved. Therefore, it effectively limits the
quality, consistency, and number of changes that can be made to a software system. The tools
used in most impact analysis processes are primitive and low level, and need a substantial
human interaction to accomplish the task. Automated impact-analysis tools often provide a

rather limited analysis.

Software change processes do not adequately address impact analysis. Software change
estimates (effort, schedule, and resources) are frequently inaccurate because the

ramifications of the changes are not clear [AUTHS88].

1.2.4 Object-Oriented System Impact Analysis

Object-oriented design describes systems in terms of objects that make up the problem

domain. Applying object-oriented technology can lead to better system architectures, and

12

enforce a disciplined coding style. Rumbaugh [RUMB91] states that because the object
classes provide a natural unit of modularity, an object-oriented approach produces a clean,
well-understood design that is easier to test, maintain, and extend than non-object-oriented
designs. An empirical study [HSIA95] has addressed the relationship between the
maintainability characteristic of software and its architecture. The authors believe the

features of the object-oriented approach have a significant impact on maintainability.

Currently, maintaining object-oriented systems is more of an art (similar to where we were
15 years ago with procedural systems) than an engineering skill. We are beginning to see
"legacy" object-oriented systems in industry. A difficult problem is how to maintain these

objectsin large, complex systems.

Despite the advantages of object-oriented technology, it does not by itself ensure the quality
of the software, shield against developer’s mistakes, nor prevent faults. In object-oriented
software, the new features like encapsulation, inheritance and polymorphism make software
maintenance more difficult, including identifying the parts that are impacted when the
changes are made. Although the effects of changes in object-oriented programs can be
restricted, they are also more subtle and more difficult to detect. Rine [RINE95] mentioned
several structural errors common to object-oriented programming when objects are

dynamically introduced by pointers.

For object-oriented systems, it is relatively easy to understand the data structures and
member functions of individual classes, but the combined effect or combined functionality of
the member functionsis more difficult. Traditional, non-object-oriented software systems use
a top down approach, and emphasize control dependencies among different modules. The

control dependencies among these modules are mostly hierarchical, and control

13

dependencies only exist between the modules; hence, it is relative easy to identify the

impacted modules.

On the other hand, object-oriented techniques primarily use bottom up approaches. The
relationships among classes form a network graph. Each class could potentially interact with

each other. This makes the relationships among classes more complicated.

The complex relationships between the object classes make it difficult to anticipate and
identify the ripple effects of changes. The instance of a class, the object, has its data
structure, member functions (behavior), and state. The data dependencies, control
dependencies, and state behavior dependencies make it difficult to define a cost-effective test
and maintenance strategy to the system. An object-oriented system by implication has
structure and state dependent behavior reuse, i.e., the data members, function members and
state dependent behavior of a class can be re-used by another class. There are data
dependencies, control dependencies, and state behavior dependencies between classes in the
system. Polymorphism and dynamic binding imply that objects can take more than one form,
which is unknown until run time. All these features make object-oriented maintenance more

difficult.

To summarize, object-oriented systems maintenance is difficult for several reasons

[KUNGO4]:

1) Although it is relatively easy to understand most of the data structures and member
functions of the object classes, understanding of the combined effect or combined

functionality of the member functionsis extremely difficult.

2) The complex relationships between the object classes make it difficult to anticipate and

identify the ripple effect of changes.

14

3) The data dependencies, control dependencies, and state behavior dependencies make it
difficult to prepare test cases and generate test data to efficiently retest the impacted

components.

4) Complex relations also make it difficult to define a cost-effective test strategy to retest

the impacted components.

1.3 Related Work

Modeling data, control, and component dependency relationships are useful ways to
determine software change impacts within the set of source code. The basic impact analysis
techniques to support these kinds of dependencies are data flow analysis [KEABSS]
[WHIT92a] [HARR9Y4], data dependency analysis [MOSEQO][KEABS88], control flow
analysis [LOYA93][McCa92], program slicing [WEIS84][HORW90] [LY LE9Q][KOREQ0Q],
test coverage analysis [DEMI91][OFFU91] [OFFU95][WHIT924], cross referencing, and
browsing [BOHN95], and logic-based defects detection and reverse engineering algorithms

[HWANO7].

1.3.1 Impact Analysis

The Yau and Patkow models are useful in evaluating the effects of change on the system to
be maintained. Yau [YAUS78] focuses on software stability through analysis of the ripple
effect of software changes. A distinctive feature of this model is the post-change impact
analysis provided by the evaluation of ripple effect. This model of software maintenance
involves 1) determining the maintenance objective, 2) understanding the program, 3)
generating a maintenance change proposal, 4) accounting for the ripple-effects, and 5)

regression testing the program.

15

Rombach and Ulery [ROMB89] proposed a method for software maintenance improvement
that focuses on the goals, questions, and specific measurements associated with activities in
the context of a software maintenance organization. However, their method does not specify

aframework that supports impact analysis in the software maintenance process.

Pfleeger and Bohner [PFLEQQ] recognize impact analysis as a primary activity in software
maintenance and present a framework for software metrics that could be used as a basis for
measuring stability of the whole system including documentation. The framework is based
on a graph, called the traceability graph, which shows the interconnections among source
code, test cases, design documents and requirements. This framework provides an example
of the inclusion of software work products as part of the system, although it is anticipated

that the level of detail on the diagram isinsufficient to make detailed stability measurements.

Arnold and Bohner [ARNO93] define a three-part conceptual framework to compare
different impact analysis approaches and assess the strengths and weaknesses of individual
approaches. Their framework includes IA Application, IA Parts, and |A Effectiveness. |A
Application examines how the IA approach is used to accomplish IA. It looks at the features
offered by the IA approach interface. |A Parts examines the nature of the internal parts and
methods used to actually perform the IA. IA Effectiveness examines properties of the

resulting search for impacts, especially how well they accomplish the goals of 1A.

Bohner [BOHN95] proposed a method for conducting impact anaysis with a graph
traceability representation, and combines vertical traceability (relationships between objects
of the same kind) and horizontal traceability (relationships between objects of different

kinds) in the same analysis. He also proposed a software change process model that

16

incorporates impact analysis as a fundamental part of the process. This model depicts where

in the software change process impact analysis can be incorporated.

1.3.2 Object-Oriented Impact Analysis

Wilde and Huitt [WILD92] outline some of the main difficulties that can be expected in
maintaining OOPs and have proposed directions for possible tool support of the maintenance

process.

Kung et al. [KUNG94] describes an algorithm to identify the impacted parts of the system by
comparing the origina system and the modified version, and find the differences between
these two systems. This can be used as a post analysis tool after the change is made, but
cannot be used for change impact prediction, because there is no changed version available

for comparison befare the change impact is made.

Hsiaet a. [HSIA95] conducted a case study showing that the architecture of object-oriented
systems impacts software maintenance. Their study suggests that maintainability for systems
developed using the object-oriented techniques depends on the characteristics of the

inheritance/uses tree of the system.

Heider, Tsaim and Powell [HEIS89] present an object-oriented model of software that is
derived from maintaining software. They use ripple effect analysis as well as program slicing
to extract views of software to assist in making software changes. Kung et al. [KUNG94]
classified different types of code changes to the code, and identified the changes by

calculating the delta of two versions of software.

17

1.3.3 Inferencing

Intelligent Assistance for Software Development and Maintenance called Marvel [KAIS38]

is an environment that supports two aspects of an intelligent assistant: it providesinsight into

the system and it actively participates in development through opportunistic processing. It

has insight, which means it is aware of the user’'s activities and can anticipate the
consequences of these activities based on an understanding of the development process and
the produced software. It performs opportunistic processing, which means it undertakes
simple development activities so programmers need not be bothered with them. It models the
development process as rules that defines the preconditions and postconditions of

development activities, and gathers collections of rules into strategies.

134 Control Flow, Data Flow and Data Dependency

Control flow tools identify calling dependencies, logical decisions, and other control

information to examine control impact.

Loyall and Mathisen [LOYA93] present a language-independent definition of definition of
inter-procedural dependence analysis and have implemented it in a prototype tool. Their
prototype tool indicates different control dependencies among different procedures of a

program.

Moser [MOSE90] created a compositional method for constructing data dependency graphs
for Ada programs based on composition rules. This method combines composition rule

techniques with data dependency graphs to construct larger constructive units. These rules
match other composition-based program development techniques, and enable data
dependency graphs for complex programs to be constructed from the simpler graphs for the

units of which they are composed. The author examines composition rules for iteration,

18

recursion, exception handling, and tasking. Graphs for primitive program statements are

combined together to form graphs for larger program units.

Keables, Roberson and Mayrhauser [KEABS88] presented an algorithm that limits the scope
of recalculation of data flow information for representative program changes. Their

prototype data flow analysis program works on a subset of the Ada language.

A research project at Arizona State University that started in 1983 [COLLS88] tried to
develop a practical software maintenance environment. The ASU tool operated on simplified
Pascal programs that are expected to be error free. It displays the structure chart of the Pascal
code, displays the parameters used in the module call and the global variables referenced in

the current modul e etc.

The McCabe Battlemap Analysis Tool (BAT) [McCa92] decomposes source code into its

control elementsto create aview of the program that specifies the control flow for analysis.

1.35 Slicing

Program dlicing provides a mechanism for constraining the view and behavior of a program
to a specific area of interest [WEIS84] [HORW90]. Program slices focus attention on small
parts of the program by eliminating parts that are not essential for the evaluation of the

specific variables at a certain location.

Horwitz, Reps, and Binkley [HORW®9O0] concentrated their work on inter-procedural slicing,
and generated a new kind of graph called the system dependence graph, which extends
previous dependence representations to incorporate collections of procedures rather than just

monolith programs. Their inter-procedural slicing algorithms were restricted to certain types

19

of dlices: rather than permitting a program to be sliced with respect to program point p and an

arbitrary variable, a slice must be taken with respect to a variable that is defined or used at p.

The Unravel tool developed by James Lyle of NIST [LYLE9Q] can be used to dlice C

programs.

1.4 Scope and Goals of This Research

The moativation behind this work is to improve the maintainability of object-oriented
software systems, optimize the release planning activity and thus reduce the maintenance
effort. Reduction in effort can be achieved by reducing the time between a proposed change,
its implementation and its delivery, while at the same time maintaining quality. It allows the
mai ntenance managers and programmers to assess the consequences of a particular change to
the source code. It can be used as a measure of the effort of a change. The more the change
causes other changes to be made by rippling, in general, the higher the cost is. Carrying out
this analysis before a change is made allows an assessment of the cost of the change and

allows management to make a tradeoff between alternative changes.

1.4.1 Problem Statement

The scope of this research is to address the problem of change impact analysis of object-

oriented software.

1.4.2 Thesis Statement

The research described in this thesis address the above problem by applying algorithmic
software analysis techniques to object-oriented systems to discover relationships among

software components.

20

1.5 Brief Description of Research Results

Automated impact analysis depends on the ability to

* Create models of relationships among software objects

e Capture these relationships in software and associated representations

« Trandate a specific software change into the impacted objects and rel ationships

* Trace relationships and reasonably bound the search for impacts

* Retrandate the estimated impacted objects back into software objects

The most common use of impact analysis is to determine the ripple effect of a change after it
has been made. The primary goa of this thesis is to address the problem of change impact
analysis of object-oriented software by applying automated algorithmic analysis. We address
the problem by analyzing in depth the relationships among the components of the object-
oriented systems, and by applying algorithmic software analysis techniques to compute
transitive closure of certain relationships among these software components. We aso

propose an impact analysis model to describe the problem and solution characteristics.

Questionsto be answered in thisresearch are:

e What are the impacts a set of proposed changes can bring to a software system?

* How big is the closure of impact? If several alternative maintenance solutions are

proposed to a system, which one is the “best” in terms of cost and efficiency?

* How will the different relationships in the object-oriented system impact change

propagation?

21

e What are the maximum and minimum potential impacts, and how can they be modeled

and measured?

Our solution strategy:

* Analyze the software automatically, and save the relationships among the components in
a component relationship graph. The nodes will represent different types of objects
(components) and the edges will be weighted by the relationships of these components.
Different types of relationships will have different quantity measures to model the

propagation of changes.

» Compose a set of algorithms to retrieve the information from the graph, and calculate the
transitive closure of the impacts of the proposed changes. The different types of

relationships in the system will impact the change impact resultsin different ways.

* Create a set of object-oriented change impact metrics to measure the change impact of

object-oriented software quantitatively.

* Propose an impact model to describe the properties of the object-oriented change impact

analysis process.

» Build aproof-of-concept tool to validate the algorithms.

* Apply the proof-of-concept tool to a case study to evaluate the feasibility of the

approach.

This strategy not only permits evaluation of the consequences of planned changes, but also
alows trade-offs between suggested software change approaches to be considered. Some

impact analysis is hecessary before proj ect-planning estimates can be completed.

22

A software system should not be considered only in terms of its source code. It consists of
many other related items such as specification and design documentation. Our tool can
accept information from design, specification documents or toolkits, as long as the

information is detailed enough to provide the inputs needed by our algorithms.

We use Control Flow Graphs (CFG) and Data Flow Graphs (DFG) at the statement level to
gather def/use information. The gathered information is then transformed to Object-Oriented
Dependency Graph (described later), which is used to calculate the transitive closure of the
change dependency. The calculation results are presented at both the class level and its class

member level.

Because the relationships among objects in a object-oriented system are more complicated
and have their own characteristics compared with the control relationship in procedural
systems and because most design and specification information stays at this level, the proof-
of-concept tool developed in this research operates at the object and method level. When
necessary, it will be easy to use the traditional CFG and DFG to analyze the statements

control information inside each method or function.

1.6 Organization of This Dissertation

This chapter provides information on software maintenance and impact analysis and
discusses the difficulties in the impact analysis for object-oriented systems. It |ast defines the

research scope and described briefly our research results.

Chapter 2 addresses background concepts used in this work. Chapter 3 presents the new
concepts, definitions, theories and models developed in this research. The detailed
algorithms are described in Chapter 4, which also includes the proofs of the correctness of

the algorithms. Chapter 0 presents a set of object-oriented change impact metrics to measure

23

the change impact of object-oriented software quantitatively. Chapter 6 explores the
inference approach of the algorithms. Chapter 7 explains the architecture and implementation
details of the proof-of-concept system called ChAT that is developed for this research and
presents the empirical results measured by ChAT. Finaly, Chapter 8 outlines the

contributions and future works of this research.

2 BACKGROUND CONCEPTS

This section describes the background concepts necessary for full understanding of this
dissertation. The research is directed toward change impact analysis (CIA) of object-oriented
software, thus object-oriented concepts are described. The analysis used for CIA is based on
graphical representations of software, so general graph theory and how to represent programs

in graphs is described.

2.1 Object-Oriented Concepts

An object-oriented system is composed of objects and classes. An aobject is an abstract of a
real world entity composed of a set of properties, which define its state, and a set of
operations, which define its behavior. The state of an object encompasses all the properties
of the object plus the current values of each of these properties. Behavior is how an object
acts and reacts, in terms of its state changes and message passing [BOOC94]. The state of an
object represents the cumulative results of its behavior. The constants and variables that
serve as the representations of their instance’s state are called data members, instance
variables, or data members, depending on the programming language. Data member and data
member will be used interchangeably in this dissertation. Methods or member functions are
operations that clients may perform upon an object. A class is the specification of an object;
it is the "blueprint” from which an object can be created. A class describes an object’s

interface, the structure of its state information, and the details of its methods [MART95].

24

25

Objects are runtime instances of a class. In this dissertation, we use Booch Notation
[BOOC94] to express relationships among classes. The following figure shows Booch

Notations that indicate relationships between classes.

Class name A Class name A Class name A Classname A% Class name A *

. attributes i attributes i attributes % attributes < % attributes
operations()*, ¢/ operations()®, /' operations()®, { operations()*, / operations()-,
*._{constraints} : . {constraints} . {constraints} ~.fconstraints} ; *._{constraints}
Class name B * Class name B ° Class name B ° Class name B ; Llass hame B *
. attributes L attributes ¢ L attributes ¢ s attributes S attributes
operations() { operations() -, { operations() ., { operations()*, ~ { operations() .

~... {constraints} *...{constraints} *...{constraints} {constraints} ; . {constraints} .

A contains B by

A uses B B inherits from A A associates with B
Reference

A contains B by Value

Figure 3. Relationships between classes

Class A contains class B if the instance of class B is held in one of the instance variables of
A. This represents the "whole/part” relationship. For example, we can say a car has an

engine, or acar hasdoors.

Class A uses class B if A sends messages to B. For example, we say a person usesacar. The
person tells the car to start-up, to turn, and to stop by sending messages to the car through car

interfaces such as keys, steering wheels, etc.

Inheritance represents a hierarchy of abstractions, in which a subclass inherits from one or

more parent classes. The child class shares the structure or behavior defined in its parent

26

class. The child class differs from its parent class by modifying and adding properties. A
class can inherit the instance variables, interfaces, and instance methods of another class as if
they were defined within it. This expresses the generalization/specialization relationship. For
example, the class Sedan is a specialization of the general class Car. The class from which
another class inheritsis called its parent or super-class. The class that inherits from a parent
is called a child, subclass or derived class. If a class has more than one parent, this kind of

relationship is called multiple inheritance.

Association is a semantically weak relationship. It only states there is some relationship
between the classes expressed without explicitly stating what kind of relationship. It could be
contains, use, or inheritance. This is usually used in the analysis and design phases when
some relationships among classes are still not clear or we just want to represent a general

relationship among the classes without being concerned which kind of relationship.

2.2 Graph and Dependency Definitions

This section describes the existing definitions and theories, which will be used in this thesis.

Most of the basic definitions are referenced from Loyall and Mathisen’s paper [LOYA93].

221 Graph Theory

A directed graph G is a set G = (N Eg), where N is a finite set of nodes, ang; El (Ng %

Ng) is a finite set of edges. For each edge (W&, u is the source and v is the destination.

A path in a graph G is a finite non-null sequence of nodes P g n ne with each n; [INg,

fori=1...k and each (nn.,) U Es for j = 1...k-1. P is called a path from to n. k is the

length.

27

A control flow graph (CFG) is afinite, connected directed graph G = (Ng, Eg, Ns, Nf) where
Ng is afinite set of nodes, Eg [1 (Ng X Ng) is afinite set of edges, Ns [J Ng is the start node
and N; [Ng is the final node. A node in a CFG represents a statement or a basic block, i.e.,
a sequence of statements having the property that each statement in the sequence is executed
whenever the first statement is executed. An edge (n;,) represents a possible flow of control
between two basic blocks. The block represented by n; is executed before the basic block that

is represented by n;.

The predecessors, Pred (n), of a given node are defined as those nodes for which there is a
path to the given node. The immediate predecessors of anode n;, P (1), are all nodes, n;, such

that (nj, m) isin E.

The successors of n, SQucc (n), are defined as those nodes for which there is a path from the
given node to them. The immediate successors of a node n;, denote S (n;), are all nodes, n;,

such that (n;, nj) isin E.

A definition of a program variable is any expression that modifies that variable. A path is
said to be definition-clear (or simply clear) with respect to a given variable if the path
contains no assignment to that variable. A definition is live a a given point in a program if
there is a definition-clear path from that point to a use of the variable in question. A
definition made at node n; is said to reach node ny if nj is asuccessor of node n; and thereis at

least one clear path from n; to n;.

A data definition is an expression or part of an expression that modifies a data item. A data
use is an expression or that part of an expression that references a data item without

modifying it. A def-use pair is a definition and a use such that the definition may, under some

28

executions, reach the use without going through another definition. A data flow graph (DFG)
is a directed graph where the nodes and some edges are described by def-use relationships. A
data dependence exists when one statement provides a value subsequently used by another

statement either directly or through a chain of data definitions and references. Formally, A
def/luse graphisaset of G = (3, D, U), where G is the CFG for a procedure,) isafinite set
of symbols, data variables, D: Ng = P(>), and U: Ng = P (}). The set of symbols) isthe

set of identifiers and naming variables that occurs in procedure G. The functions D and U

map a node of G to the set of variables defined and used, respectively, in the statement

represented by the node. P () represents the power set, i.e., the set of al sets, of .

Let G= (3, D, U) be adef/use graph and let u, v [J Ng. Node u is directly data dependent on
node v if and only if there is a path vPu in G such that (D (v) n U (u)) - D (P) # 0. D (P)
denotes the union of al D (n), where n; is a node in the sequence P. Node u is data
dependent on v if and only if there exists a sequence of nodes, n;, N2, n, k = 2, such that u =

ny, v =n,, and n; is directly data dependent onn.,; fori=1, 2... k-1.

An inter-procedural control flow graph for a program is a set of grapgs (G, ..., G, C,
R), consisting of control flow graphs;G..., G representing functions or methods in the

program, a set C of call edges, and a set R of return edges. An inter-procedural control flow

graphg satisfies the following conditions:

1. There is an one-to-one mapping between C and R. Each call edge is of the fagn (u, n
U C and the corresponding return edge is of the forg () LI R, where U Ng, for some

Gi U ¢ and rj and rg; are the initial and final nodes, respectively, of some G

29

2. ¢ contains two distinguished nodes: an initial node nic = nig;, and a final node N = Neg;,

G Uc¢

An inter-procedural CFG is a set of CFGs for procedures linked together by call and return
edges. Each call edge is an edge from a node representing a procedural call to the initial node
of the CFG for the called procedure. There is a corresponding return edge for each call edge
from the final node of the called procedure’s CFG back to the node representing the
procedure call. For simplicity, we assume that there is a designated initial node and a

designated end node.

An inter-proceduratief/use graph is a se®@ = (¢, Y, D, U), whereg = (G, ..., G, C, R) is
an inter-procedural CFG, is a finite set of symbols and data variables, D5; (N ... [

NGk) > P(Z), and U: (%1 0..0 NGk) - P(Z)

The set) is the set of identifiers and variables that occur in the set of procedures represented

by ¢. The definitions and uses of actual and formal parameters at nodes represent procedure

calls.

Formally, let G G U ¢ be CFGs in the interprocedural def/use gr@plFor each nll Ng;

such that (9 ng) U C and, therefore, fg,n;) U R, D (n) includes

« Formal parameters of the called procedure into which values are passed

e Actual parameters into which values are returned (including variables into which

function values are returned)

U (no) includes

30

» Actual parameters from which values are passed

* Formal parameters of the called procedure from which values are returned.

An inter-procedural path, P, in an inter-procedurad CFG = (G, G, ..., G, C, R) is a
sequence of nodesm...n, where Rl (Ng; UNg, U ... 0 Ngy), in = 1...k, and (n n:1) U

(Ec1 UEs U ... O Egc L CU R). W satisfies the following conditions:

« P contains the sequenced¥mcv, where GLI ¢, Y is a sequence of nodes, andg v, if

and only if Y contains the subsequencgvn

* P cannot contain the sequencegn, for any GLI ¢, v [J (Ney NGz U ... T Ngy).

e P cannot contain the sequengevnig, for any GLI ¢, if and only if P = .

An inter-procedural u-v path P mrepresents a valid execution path from u to ¢.itNot

every path in a program’s inter-procedural CFG represents a valid execution path of the
program. This is because a procedure call in a program causes the procedure to be executed
exactly once and then returns to the point of the call. However, in the inter-procedural CFG
for a program there might be several return edges leading from the final node in a procedure.
There is often a path that enters a procedure from one node to a different node, although such

a path does not correspond to a valid execution of the program.

2.2.2 General Dependency Concepts

This section describes the general concepts related to program dependency, such as control

dependency and data dependency, ripple effect etc.

31

The transitive closure of arelationship R is the relation R defined by cR'd, if and only if

there is a sequence e;Re,, ℜ,..., 6,1R€,, where m >=2, c5e and d=g Traceability

refers to the ability to define and trace relationships among entities such as software work
products and their components. r&achability matrix shows the objects that could be
impacted by a change to a particular object. Such a matrix also offers the distances
associated with the impact. The distance offers some insight into the relative ripple effects

associated with each object.

Data dependencies are relationships among program statements that define or use data. A

data dependence exists when a statement provides a value that is used directly or indirectly
by another statement in a program. Data def/luse graphs are typical representations of these
dependencies. Data-flow analysis produces dependency information on what data goes where

in the software system.

Control dependencies are relationships among program statements that control program
execution. Control-flow analysis provides information on the logical decision points in
software and of the complexity of the control structure. Control-flow technology identifies
procedure-calling dependencies, logical decisions, and under what conditions the decision

will be taken.

A side effect is an “error or other undesirable behavior that occurs as a result of a
modification” [ARNO93]. Aripple effect is the “effect caused by making a small change to a
system which impacts many other parts of a system” [BOHN95]. Three major types of ripple
effects arecoding, data, anddocumentation. Other important types of ripple effects defined

by researchers [BOHN95][YAUS80][YAUS87] are the following:

e Logical: influences the function or performance of the system

32

* Requirements: influences the operation of the system

» Interface: resultsin a change in specification of the hardware or software interface

» Environment: impacts devel opment, maintenance, or test environments

* Management/logistics. cost, schedule, resource, contractual, deployment and training

impact

Ripple effect can be defined as the phenomenon where a change in one piece of a software
system impacts at least one other area of the same software system. A direct ripple effect
occurs when the change of one variable directly impacts the definition of another variable.
An indirect ripple effect occurs when the impacted variable in turn impacts other variables.
Sability refersto the ability of a program to resist ripple effects when it is modified. Stability
analysis differs from impact analysis in that it considers the sum of the potential ripple

effects rather than a particular ripple effect caused by a change.

The dlice (sometimes called backward slice) of a program with respect to program point p
and variable x consists of all statements and predicates of the program that can impact the
value of x at point p. The slice of a program with respect to program point p and variable x
consists of areduced program that computes the same sequence of valuesfor x at p. That is,
at point p the behavior of the reduced program with respect to variable x is indistinguishable

from that of the original program.

A forward dlice of a program with respect to a program point p and variable x consists of all

statements and predicates of the program that might be impacted by the value of x at point p.

3 NEW CONCEPTS/DEFINITIONS

This chapter presents the new concepts, definitions, theories and models that are developed
in this research. 3.1 defines the new concepts introduced in this research and the object-
oriented data dependency graph that are used to calculate dependencies. 3.2 discusses the
dependency calculations of different language constructions. 3.3 presents the impact models

that describe the impact analysis process.

3.1 New Definitions

This section introduces the definitions developed in this research. 3.1.1 defines the change
impact related concepts that will be used later in the algorithms. 3.1.2 defines the object-

oriented dependency graph, which is central to the research.

3.1.1 Change Impact Definitions

In structured programming, one thinks in terms of inputs, functions and outputs. In object-
oriented programming (OOP), the approach is different -- a message is passed to an object to
reguest an operation on the object. Objects have methods and data members; the methods
specify the allowable operations on the object’s private data, and the data members specify
the state information for the object. In this thesis, class member refers to either a method or
data member. When a class member changes, it could impact other classes through message

passing, inheritance etc.

33

3.1.1.1 Basic Types of Iltems

The basic component in our analysis is the class. A class is composed of member functions

and member variables. The relationships are shown in Figure 4.

Class __-ficontains%o ClassMember .
A
& %
< %
))
& =
S Q.
B 2
—Inherited from—» /) \ e,
Contain by T ", s
Reference : _
+—Contain by Value—= _-Member Function Data Fields
o——Use

Figure 4. Class Components Graph

Sometimes, users want to focus on certain parts of their systems while ignoring other parts.
They can specify the classes they are interested in through a system analysis set, which
include all the classes a user is interested in analyzing. The classes that do not belong to the
system analysis set are called opague types. In our proof-of-concept tool described later, we
view al the classes that are not compiled by the proof-of-concept system as opaque. For

example, simple types and classesin third party libraries can be treated as opaque.

35

3.1.1.2 Direct Relationship

There is a direct relationship R between class A and B (ARB) if A and B have one of the

three kinds of relationships: Containment, Use, or Inheritance. They are defined as follows:

+ Containment:

Class A contains class B if B declared as a class member of A.

* Use/Reference:

There are several ways that a use/reference relationship can be formed.

1. Containment :
If class A contains class B, then class A uses Class B. If A contains B by reference, that

means that A contains a reference to B. B'’s life span can be longer than A’s.

2. Classes passed in as method parameter:
If a method m of class A takes parameters P1, ... Pn, we say cla&ges dach p i = 1..n,

and m is in the reference sets of each;oRRan be any class and type.

3. Classes referenced in the left hand side of assignment:
If class A or one of its members is specified in the left hand side of the assignment statement,

A or its member iglefined by all the variables on the right hand side. Thus, class A (or its
member) belongs to the reference set of all those variables on the right hand side of the

equation.

4. Return type of method:
The return type of a method m is defined by m. m belongs to the reference set of this return

type. Since the parameters may not be used in the body, and their effect may not direct

36

impact the return type, we do not consider the return type to be defined by these parameter
types. If the return type is defined by a parameter, it will show up in the analysis of this

method body.

5. Variables declared in a method:
Any variable that is referenced in the method m can be considered to be used by m and can

be put into the reference set of m.

e Inheritance relationship:

Class A inheritsfrom Class B if B is declared as a super class of A.

3.1.1.3 Indirect Relationship

A has an indirect relationship with B if there exists a path By B,, .., By, such that A RB; B,

RBs, ..., B,RB, expressed by R'B.

3.1.14 Properties of Change Impact Dependency

A change impact dependengyhas the following properties:

Reflexive:

-+ CAC

Class C depends on itself. It means that if C is impacted, it will impact itself.

Trangitivity:

4~ BACand CADO BAD

It means that if B impacts C and C impacts D, then B impacts D.

37

Cyclic:

There can be cyclesin the impact dependency graph.

3.1.15 Characteristics of Impacted Member

When a member is proposed to be changed or could be impacted by another member that has
been proposed to change, it is called contaminated or impacted. The contaminated member
may or may not impact other members. According to the relationship between the impacting
member and impacted member, we classify the impact characteristics of one member to
another member into one of the four values of contaminate type: {Contaminated, Clean,
Semi-Contaminated, Semi-Clean}. If we think of impacting member as the starting node of
an edge and the impacted member as the end node, contaminate type can be thought of as the

attribute of the edge.

e Contaminated (Dirty): Start node is contaminated and it impacts the end node.

e Clean: Start node is clean and does not impact the end node.

e Semi-Contaminated (Semi-Dirty): Start node is contaminated, but it does not propagate

the contamination to the end node.

e Semi-Clean: Start node is not contaminated but it propagates the contamination to the

end node from the other source.

3.1.1.6 Change Criteria

This research requires an engineer to transfer the change requests to the change specification

that our algorithms can understand. When engineers want to specify the proposed change to

38

the system, they need to specify which parts of the system they are going to change (these
changes can be described by a set of change criteria). Our agorithms will calculate the
change impact for each criterion. The change criterion is defined as <C, CM, CT>, where C
specifies the class that is proposed to change, CM is the class member in the class C that is

proposed to change, and CT is the possible change type.

3.1.1.7 Impact Sets

FREF (x) (function reference set of X) is the set of functions that reference x; in other words,
member function mis in FREF (X) if m uses x as part of its implementation or definition.
FREF (x) represents the set of member functions that could be impacted by x if x changes.
DREF (x) (Data Member Reference Set of X) is the set of data members that use the variable
X. DREF (x) is the set of data members that can potentially be impacted by x. REF (x) is the
set of class members that reference x; REF (x) = FREF (x) U DREF (x). x belongs to the
definition set of each member in REF(X). Reference set and definition set are two

complementary sets.

The Impacted Class Set (ICS) is the set of classes that could potentialy be impacted by a
change. The Impacted Function Set of class C (IFS(C)) is the set of function membersin C
that could potentially be impacted. The Impacted Data member Set of class C (IDS(C)) isthe
set of data membersin C that could potentially be impacted. The Impacted Member Set of C
(IMS(C)) isthe set of class membersin C that are impacted, IMS(C) = IFS(C) [/ IDYC).
The Semi Impacted Member Set (Semi-IMS) contains all the class members that are semi-

contaminated.

39

The Public Impacted Function Member Set (PIFS) of C isthe subset of IFS that is composed
of public methods of C; PIFS(C) U IFS(C). The Public Impacted Data Member Set (PIDS) of
Cisasubset of IDS that is composed of public data members of C; PIDS(C) O IDS(C). The
Public Impacted Member Set of C (PIMSC)) is a set of public members in C that are
impacted; PIMS(C) O IMS(C). PIMSiis the union of PIFS and PIDS; PIMS(C) = PIFS(C) [

PIDS(C). Semi Public Impacted Member Set (Semi-PIMS) is the set of semi-contaminated

public members.

3.1.1.8 Direct Impact

Member M in class B (B.M) is directly impacted (DA) by member M in B (B.M) if it
satisfies one of the following situations:
If (A contains B) and (A.M Ref B.M) and (B J ICS) and (B.M LI IMS(B)) O
B.M DAA.M

If (A inherits from B) and (A.M partially-redefines B.M) and (B [ICS) and
(B.M IFS(B)) O B.M DAA.M

If (A inherits from B) and (A.M inherits from B.M) and (B L1 ICS) and (B.M [
IFS(B)) O B.M DAA.M

If (A inherits from B) and (A.M virtual-inherits from B.M or A.M virtual-
redefines B.M) and (M is the return type or in the parameter list) and (B [
ICS) and (B.M U IFS(B)) O B.M DAA.M

If (A usesB) and (A.M references B.M) and (B U ICS) and (B.M LI IFS (B)) O
B.M DAAM

3.1.1.9 Indirect Impact

If there exist a series of direct impact relationshipsB; AB,, ..., B,AB,then B A" B,

40

B,AB, ...,BAB 0 B,A" B,

1

3.1.1.10 Object-oriented System Dependency

A dependency in a software system is, informally, a direct relationship between entities in
the system X - Y such that a programmer modifying X must be concerned about possible

side effectsin Y [WILD92].

Wilde and Huitt classified dependencies as: (1) data dependencies between two variables, (2)
calling dependencies between two modules, (3) functional dependencies between a module

and the variables it computes, and (4) definitional dependencies between a variable and its

type.

Based on Wilde and Huitt's classification on object-oriented dependencies, we come up with

the following seven dependency classifications.

1 Class-to-Class Dependencies

a) Clis adirect super class of C2 (C2 inherits from C1)
b) Cl1is adirect sub class of C2 (C1 inherits from C2)
c) Clis an ancestor class of C2 (C2 indirectly inherits from C1)
d) C1 uses C2 (C1 references C2, include direct reference and indirect reference)
e) C1 contains C2
l. C1 contains C2 by value

I. C1 contains C2 by reference
2 Class to Method

a) Method M returns object of Class C
b) C implements method M

3. Class to Variable

41

a) Visaninstance of ClassC
c) Visaclassvariableof C
d) Visaninstancevariable of C

e) Visdefined by classC

4. Method to Variable
a) V isaparameter for method M

b) V isalocal variablein method M
¢) Visimported by M (i.e. isanon-local variable used in M)
d) Visdefined by M

5. Method to Method
a) Method M1 invokes method M2

b) Method M1 overridesM2
3.1.1.11 Types of Changes and Their Relationship

The section categorizes the different kinds of changes and their relationships. The changes
can be divided into syntactic changes and semantic changes. We focus on the syntactic

change in thisresearch. The hierarchy of syntactic changeis:

1 System level change

a) Add super class

b) Delete super class

¢) Addsubclass

d) Deletesub class

e) Delete an object pointer

f) Delete an object reference
g) Add an aggregated class
h) Delete an aggregated class

i) Change inheritance type

l. Change from public inheritance to private inheritance

. Change from private inheritance to public inheritance

Class level change

Add member

Delete member

Define/Redefine member

Change member

l. Change member access scope

1)
2)
3)
4)
5)
6)

Change from public to private
Change from public to protected
Change from protected to public
Change from protected to private
Change from private to public

Change from private to protected

Il. Change method

1)

protocol change
e name change
e parameter change

e return type change

I"l. Change Data member

1) Add data declarations

() Delete data declarations
(b) Add data definitions
(c) Delete data definitions
(d) Change data declaration
e Change datatype
e Change data name

(e) Change data definition

42

43

V. Function implementation change
€) Add/delete an external data use
f) Add/delete an external data update
g) Add/delete/change a method call
h) Add/delete a sequential segment
i) Add/delete/change a branch/Ioop
i) Change acontrol sequence
k) Add/delete/change local data
I) Change a sequence segment
3.1.2 Object-Oriented Data Dependency Graph Theory

Traditionally, dependency analysis has been performed with so-called data dependency
graphs, unfortunately misnamed since the nodes of the graph really represent statements of
the program while the edges represent dependencies between statements. Thus, the graph
makes no reference to data. Data dependency graphs normally represent every statement of

the program with al of its dependencies [MOSEQQ].

In object-oriented designs, the emphasis is on what the program does to, data, instead of what
the program does. In order to put the emphasis on the data and the data relationships, we
introduce the Object-Oriented Data Dependency Graph (OODDG) to describe data
relationships in object-oriented systems. In an OODDG, the nodes represent data items, such
as classes, class members, variables and constants. The edges represent dependencies among

these dataitems.

Following are four definitions of graphs that describe object-oriented software.

1) Definition (Intra-Method Data Dependency Graph)

Intra-Method Data Dependency Graph (Intra-Method DDG) is a directed graph G = (N, E,
R, W). N is a set of nodes that represent symbols that include all the members of the

method’s container class, local and global variables, and global functions, parameters and
return variables of this method. B (N x N) is the set of edges that describe the

dependencies between nodes. R is an attribute on E that assigns one of the contaminated type
values (Clean, Semi-Clean, Contaminated and Semi-Contaminated) to each edge. W, which
gquantitatively represents the degree of the impact from the start node to end node, is a

relation on E that assigns a numeric weight to each edge.

An intra-method DDG is used to describe the data dependency among data elements inside a
method or function. It describes the types of the dependencies, and degree of impact among

these data elements. R on the edge describes the impact contaminate type of the starting node
to the end node. This graph can be used to calculate the impacted elements inside a method

or function when certain data elements in the function are changed.
2) Definition (I nter-Method Data Dependency Graph)

An inter-method data dependency graph (Inter-Method DDG) is a set of 4-tuple® = (G, >
vi» Ry W), i = 1..k, where k is the number of intra-method DDG®ir5 is an Intra-Method
DDG and Nis the node set of graph.G represents all the nodes@ > =N; 0 N, O ...
O Nk. > represents the nodesnthat are visible to GRelation R N; 2 P(3 ;) represents
a set of edges among the sub-graphs that maps a nodia Bet of nodes in B (). P

vi) represents the power set, i.e., the set of all sefs,;.0#V; is an attribute of the relation R

that assigns a numeric weight tp R

45

The Inter-Method Data Dependency Graph (Inter-Method DDG) describes the data
dependency relationships among different methods and functions. N; is the set of al the
eligible variablesin G;.) ; is the set of symbols in the whole inter-graph that are accessible
to G,. The accessibility depends on the relationships of those symbols to G;. For example, all
global variables and global functions are accessible, the public and protected members of
super classes are accessible, and al the public members of any class inside the system are
accessible. This graph can be used to cal culate the change dependency across the boundaries

of different methods.

3) Definition (Class | mpact Weight Factor)

Class Impact Weight Factor is a numeric value used to express the impact level of one class
to another. It considers the factors of contaminate type and relationships among impacted

classes.

Contaminate Type (C,) describes the characteristics of the impact from one element to
another. C, can be assigned to one of the four values: Clean Semi-Contaminated Semi-Clean,
and Contaminated. Clean is assigned the value 0, because it means the start node of the edge
has no impact on the end node. Semi-Contaminated is assigned the value 1, it means even
though it is contaminated it will not continue to propagate the contamination. Semi-Clean
means that even though the node is not impacted, it will propagate the contamination fromits
referenced set to its referencing set; it is assigned the value of 2. Contaminated means the
start node is contaminated and it will propagate the contamination to elements that reference

it. Contaminated is assigned the highest value 3. These values are summarized in Table 1.

46

Table 1 Impact Power of Contaminate Type Values

Contaminate Type Impact Power (Value)
Clean 0
Semi-Clean 1
Semi-Contaminated 2
Contaminated 3

Object Relationship Type (C,) describes the level of the impact of relationships among

objects. C; can be assigned to one of the following values:

Table 2 Object Relationship Type Values

Object Relationship Impact Power (Value)
Use 1
Containment 2
Inheritance 4

Inheritance is assigned to the greatest impact power, with containment relationship in the

middle and use relationship the least, because we think the impact power of inheritance is

greater than the impact power of containment, and it is greater than the impact power of use.
Inheritance is considered to have the highest impact power because super class defines sub-

classes’ behavior. Any changes in the public and protected levels of the super class will
impact its sub classes. A containment relationship implies the use relationship with
additional constraints, like the life span of the contained object may be the same as that of
the container class. The contained classes’ constructors and destructors are always called by
the container class. So the impact power of containment is considered to be greater than that
of the use relationship. Since the coupling between inheritance is much higher, its impact

power is assigned a higher value than that of containment and use.

47

The classimpact weight Wis defined as

W=C+GC

4) Definition (Object-Oriented System Dependency Graph)

Object-Oriented System Dependency Graph (OOSDG) isa graph ©={N, E, R, C, W}. N is
the set of nodes representing the classes. E = (NxN) is the set of edges connecting nodes that
represent the dependency relationships between the nodes. R, C and W are attributes of
edges. R is the edge label that assigns the relationships among object classes (inheritance,
containment, use) to each edge. C is the edge attribute that assigns the contaminate type
(Clean, Semi-Clean, Contaminated, Semi-Contaminated) to each edge. W is the class impact

weight factor that assigns the numeric class impact factor to each edge.

This graph describes the class level dependencies in object-oriented systems. It captures the
types of relationships among classes, the types of impacts and the numeric impact levels

between classes. It is used to cal culate the change impact at the system level.

3.2 Calculate Reference Dependency

This section describes how to extract reference relationships among data items from different
types of statements. We describe the technique for primitive statement, if-else statements,
looping statements and switch statement. The method that contains the statements is defined

as the container method of those statements.

3.2.1 Primitive Statements

There are two kinds of primitive statements to consider: simple assignment and message

passing (procedure call).

48

* Assignment:

Vari abl e x = Expression;

Variable x depends on all the variables, constants, objects and their members on the right
hand side of assignment. Those elements that are referenced in the expression are considered
to be belong to the definition set of x. x belongs to the reference set of each of those

elements.

* For message passing (procedure call):

Variable x = object.method (P4, P, ..., R);

Both variable x and the method that contains this variable depend on the object on the right
hand side and al its parameters. So x and the container method of this statement belong to

the referencing set of objectand P;, i=1..n.

3.2.2 Conditionals and Loops

* |f-else statement

If (b) then statemenl else statement2;

The container method of this statement references all the elementsin b and in statement1 and
statement2. Since the value of b decides the execution path of the if-else statement, the
referencing set of all the data elements in b includes all the data elements in statementl and

statement?2.

e While/Repeat statement

While (b) then statements;

Repeat statements until (b)

49

The container method of the while and repeat statement references all the data elementsin b
and data elements in the statements of the looping block. Since the value of b decides
whether statements in the loop are executed and how many times they are executed, the

referencing sets of all the data elementsin b include all the data elementsin the loop.

e Switch statement

switch (b)

{
case CONST,: statenent, break;
case CONST,: statenent, break;

case CONST : statement . break;
default:

statement ;

}
The container method of the switch statement references al the data elements in b and in
statements of different switch branches. Since the value of b decides which branch to

execute, the referencing sets of all the data elementsin b include al the data elements in the

statements of all branches.
3.2.3 Method Processing and Parameter Passing

Method parameters and local variables play an important role in change propagation. When a
method is called, the actual parameter is used to substitute the formal parameter described in

the prototype.

Method name@Q;,...Q« = R is used to express the signature of methqdo@) will be

substituted by the actual parametef@®A.. If the actual parameters are changed, they will
impact other members if they are used in the body of the method. t8d)Qare considered

to be the referencing set of £0 A..

A [ReferencingSet(Q)

50

Any variables and methods that are used in the body of the method belong to the referencing
set of the current method. The formal parameters are not considered to be part of the

referencing set of the method unlessit is actually used in the method body.

The life span of the local variable is limited to the body of the method or block. Within the

block, it can propagate the change from one class member to another one. For example,

member ml of class C is impacted, there is a local variable v defined by ml, and there is

another member m2 defined by v. C::ml’s change will impacC::m2 because of. Just as

with formal parameters, the declared local variables will not automatically belong to the
referencing set of the current method unless they are actually used, referenced or defined in

the body.

3.24 Processing of Pointers and References

When the parameter passing is by value like C++, any changes to the formal parameter (Q)
inside the method body will not propagate back to the actual parameter (A) being passed in.
So Q belongs to the reference set of actual parameter A, but A is not considered to belong to

the reference set of Q.

When the parameter passing is by reference, or when the parameter passing is by value but
the parameter is passed as a pointer or reference, changes inside the method can be
propagated back to the actual parameter. So when an object is passed as a pointer or
reference, the formal parameter Q is considered to be the reference member of the actual
parameter A, and the actual parameter A is considered to be the reference set member of the

formal parameter Q.

In summary, when parameters are passed by value:

51

A [ReferencingSet(Q)

When parameters are passed by reference or as pointers:

A [ReferencingSet(Q) n Q [ReferencingSet(A)
Similarly, when a pointer is assigned to the address of another object, the dependency path is

bi-directional. It means:

P = &yj ect ,;
P [0 ReferencingSet(bject,) n pject, O ReferencingSet(P)

When P = &Object,, P and Object, set up the bi-directional dependency while the bi-

directional dependency between the P and Object; is broken.

P [0 ReferencingSet(ject,) n ject, J ReferencingSet(P) n P O
ReferencingSet (bject,)) n bject, O ReferencingSet(P)

The operations are:

Ref erenci ngSet ((bj ect,) = ReferencingSet(bject,) O P
ReferencingSet (P) = ReferencingSet(P) O Oyject,

Ref erenci ngSet (bj ect,) = ReferencingSet(ject,) - P
Ref erencingSet (P) = ReferencingSet(P) - Qyject,

3.25 Implementation Change

When the implementation details of a method/function are changed, but the interface and
semantics remain the same, the change will not propagate and impact other classes and class

members in the system. This type of change is called Semi-Clean.

3.3 Impact Models

We divide the types of impact into two dimensions: static and dynamic impact and syntactic

and semantic impact.

52

Semantic

Syntactic

Static Dynamic

Figure5. Impact Model Dimension View

The syntactic impact is calculated purely by information extracted from the source code.
This information includes the data flow, the control flow and the calling hierarchy. In
addition to syntactic knowledge, semantic knowledge is necessary to find the probable ripple

effects.

Semantic knowledge consists of programming knowledge and domain knowledge. Semantic

knowledge is more difficult to derive and more difficult to verify.

In software testing, debugging and maintenance, one is often interested in the following

question:

When can a change in the semantics of a program statement impact the execution behavior

of another statement?

This question is undecidable in general [PODG90]. Dependence analysis, like data flow
analysis, avoids problems of undecidability by trading precision for decidability. During
dependence analysis, programs are represented by def/use graphs, which contain limited
semantic information but are easily analyzed. Dependence anaysis allows semantic
questions to be answered “approximately,” because a program’'s dependencies partially

determine its semantic properties. See 0 for more detailed ideas on this subject.

53

Static impact is calculated according to static information obtained at compile time. The
calculated set will be bigger than the set calculated by run time information. For example, a

class in the method’s signature can be substituted by any of its subclasses at run time, but
which subclass cannot be known until run time. We have to approximate the result to count

all its subclasses’ effect.

While dynamic binding provides flexibility for object-oriented languages, it may also
greatly complicate the tracing of dependencies. When a message is sent to a variable holding
an object, the actual method implementation that will be called depends on the object’s class.
Since different implementations will establish different dependencies, static analysis will not

always be able to precisely identify the dependencies in the program.

There are four possible approaches to the problem of dynamic binding:

1. Perform a “worst case” analysis in which the possible effects of the message are taken to
be the union over all the relationships set up by any of the method implementations. This
method might be adequate for C++ programs that use the virtual directive sparingly; it will

be less satisfactory for systems such as Java in which every method is polymorphic.

2. Use dynamic analysis, in which the program is run for several test cases with probes
inserted to detect the real classes of the objects of interest. The problem is that the test cases
may not detect all the behaviors that the program is capable of exhibiting, and thus incorrect

conclusions may be drawn.

3. Allow human input to identify the possible classes of objects. Users can limit the scope
of a query to obtain much more focused results. In our research, we allow users to specify a

list of components that they are not interested in to cut down the scope.

4. It may be possible to analyze each message to reduce greatly the number of possible

classes for each object.

Dynamic impact is calculated by executing the program. Since we have more accurate
information at run time, such as what subclass is substituted for what base class, the

calculated sets are smaller. But the results are only related to their corresponding input cases.

The following graph shows the relations among the different sets. Max impact set is defined
as the full program. The max impact set contains the static impact set. The static impact set

contains the dynamic impact set. The dynamic impact set contains the minimum impact set.

Figure 6. Impact Set Venn Diagram

4 ALGORITHMS

In this chapter, we introduce five algorithms that work together to analyze the impact that a
set of proposed changes can have on the system. The algorithms check each class that has
been proposed to be changed, called the change-class, then check all the classes that are
related to the change-class, (such as subclasses or client classes), to see if the change-class

can impact them.

There are five separate routines for computing the change impact: Total Effect (section 4.3
page 60), Setlnit (section 4.3, page 60), FindEffectinClass (section 4.5, page 62),
FindEffectAmongClients (section 4.6, page 64), and FindEffectBylnheritance (section 4.7.2,
page 71),. The call relationships are shown in Figure 7. The next four subsections describe

the algorithms in detail.

TotalEffect

Setlnit FindEffectinClass FindEffectBylnheritance FindEffectAmongClients

Figure 7. Call Relationships among Change Impact Analysis Algorithms

55

56

This research emphasizes the class and method level, even though statement level
information is extracted from the source. In general, object-oriented programs tend to be
structured rather differently than conventional programs. For many tasks, very short methods

may be written that simply “pass through” a message to another method with very little
processing. Thus a system may consist of a large number of very small modules rather than a
relatively smaller number of larger ones. So object and message level output is more useful
in object-oriented development. The method level dependencies indicated by the tool are
closer to the software developer/maintainer’'s view of a system than statement or variable
level dependencies. Another reason to emphasize the object and its members is that the
traditional structural analyses are mainly focused on the statement level. There is already a
fair amount of research in that area while not enough work focuses on the specific
characteristics of object-oriented software. If we need to extend our work to the statement
level, the only thing we need to do is integrate our results with the traditional CFG and DFG
techniques. In other words, apply the CFG and DFG techniques to the statements inside the
methods of classes, or global functions. After all, class methods are simply functions; what

has been said about functions applies to method as well.

4.1 Algorithms Description

One important aspect of impact analysis is how to specify a change that could be understood
by our algorithms. As defined in Chapter 3, a change is represented as a @j@ét,<CT>,

whereC specifies the change-clagdy is C's class member; ar@@l is the possible change

type. When engineers want to specify the proposed change, they need to specify which parts

of the system they are going to change by specifying a set of change criteria.

57

After change criteria have been specified, our algorithms calculate the change impact for
each criterion. Our tool converts the control flow graphs (CFGs) and data flow graphs
(DFGs) of the examined functions of the change-class to object-oriented data dependency
graphs (OODDGs). The agorithms will find all member functions and data members in the
examined software that could be impacted. According to the specified change criteria, the
agorithms first calculate the impact that changes could have inside the class. After
calculating all the impacted members in the impacted class, the algorithms examine the
relationships among the objects in the system. According to the characteristics of inheritance
and encapsulation, the algorithms calcul ate the change effects by following different types of
relationships in the system. The algorithms continue until no new impacted class or impacted

class member could be found. The result is the transitive closure of the change criteria

Semantic knowledge of the analyzed system combined with syntax knowledge could be used
to make the change impact analysis more accurate. We categorize possible changes to an
object-oriented system and give each type of change an attribute according to how the
change can impact the rest of the system. The algorithms are optimized according to the
change categories. We have also devel oped an object-oriented metrics system to measure the
change impact. The algorithms are described in detail in our paper [LIOF96] and the
technical report [LIOF96a]. The technical report [LIOF96b] expresses the algorithms in

datalog rules.

A Typical Use of the I mpact System

Assume that we want to calculate the impact of a set of change criteria<C, CM, CT>. First,
the Impacted Class Set (ICS) is initialized to the set of change-classes, and initializes the

impacted function member set of C; (IFS (C;)) and impacted data member set of C; (IDS (C))

58

of each classin the ICS. For example, if class Cisin the ICS, its data member f, and method

mg have been proposed to be changed, we have:

Step 1

I CS = {set of classes proposed to change}
IFS (c) = {my}

IDS (c) = {f;}

Assumethat at step n-1, IFS, 1(C) contains all the impacted function membersin C, and IDS,.

1(C) contains all the impacted data membersin C:

Step n
IFS(c) ={ml] c| [x[O cm [J FrRerxy [x [J Ibs_, ()
L m J cy O f0 cm O rfrRer@m [¢ [IFs , (©)

The above formula means that IFS(C) at step n is the union of two sets. The first set is
composed of all the function member m in C such that there is at least one variable x for
which m belongs to the reference set of x and x belongs to the IDS set at step n-1. The
second set is composed of al the function members, m, such that at least one function
member n exists for which m belongs to the reference set of n and n belongs to the impacted

function set at step n-1.

In other words, the above formula means the IFS of C contains all the function members that
reference any data membersin IDS, 4, plus all the function members that reference any other

function membersin IFS,.1.

Step n
DS,c)={d [c;j [x[J cm [J brer) [J x [J Ibs ()

L @ [¢y O f0 cm [bprer® [¢ [IFs , (©)

The above formula means that IDS(C) at step n is the union of two data member sets. The

first set is composed of all the data members d in C such that there is at least one variable x

59

for which d belongs to the reference set of x and x belongs to the impacted data member set
calculated at step n-1. The second set is composed of all the data members, d, such that there
is at least one function member f for which d belongs to the reference set of f and f belongs

to the impacted function set of step n-1.

In other words, the above formula means the IDS of C contains all the data members that are
defined by any field in IDS,; plus al the data members that are defined by any member

functionsin IFS,.,.

4.2 Inputs and Outputs of the Algorithms

Inputs:

e Thelegacy system

* The change criteriathat users specify

Outputs:

e |CS, and IFS, IDS of each classin ICS

e A set of metrics that measure the impact

1 Impacted .
Classes Members *

Inherited from——»= / \

e——Contain by Reference—ao

{ L Impacted -
e Contain by Value——= L Impacted , = ;
i Methods . " Data Fields",

u

Figure 8. Impact Set Component Graph

60

The output of the algorithms is the Impacted Class Set (ICS), which contains a set of
impacted classes. Each class in the ICS contains one or more impacted class members. The
class members can be data members or function members. Users can also view a set of
object-oriented change impact metrics values developed in this research to measure the

change impact quantitatively.
4.3 Total Effect

The algorithm TotalEffect is the main algorithm that glues the other algorithms together.
Total Effect initializes the ICS and the IFS and IDS of each class in ICS using Setlnit ().
Setlnit () also marks each class in the ICS as unchecked. Total Effect picks an unchecked
class from the system, marks it checked, then calls the different subroutines to analyze the
impact caused by the different relationships among classes. FindEffectinClass(C) analyzes
the impact effects within the class, FindEffectBylnheritance(C) anayzes the effects
following the inheritance hierarchy in the system, and FindEffectAmongClients(C) analyzes
the effects in the system according to encapsulation and the use (reference) relationship.
During execution, if the IFS or IDS of any checked class increases, the set is marked as

unchecked again for further examination.

Al gorithm Total Effect ()
I nput: The set of changed cl asses and their changed net hods and data nenbers.
Qutput: The inpacted classes and their nethods, data menbers in the system
BEG N

Setlnit (),

WH LE (ICS Z QY)

BEG N
Pick one class fromthe ICS and mark it checked
Fi ndEf fect I nd ass(C)
Fi ndEf f ect Byl nheri t ance(C)
Fi ndEf f ect Ambngd i ent s(C)
ENDVH LE
END Tot al Ef fect

Figure9. Total Effect Pseudo Code

61

e Initialization (SetInit)

Setlnit initializes the ICS, IFS(C), and IDS(C) according to the change criteria that the user
specifies. The ICSis set to the change-classes in the criteria; and IFS(C) is set to the function
members in C that have been proposed to change. Similarly, IDS(C) is initialized to the data

members of C that have been proposed to change

Al gorithm Setlnit ()
BEG N
I CS = {the set of changed cl asses}
Mark each class in the I CS unchecked
FOR each class in the ICS
BEG N
IFS[C] = {the set of function menbers changed in C }
IDS[C] = {the set of data nmembers changed in C }
ENDFOR
END Set I nit

Figure 10. Initialization Pseudo Code

4.4 Encapsulation

In traditional programming, the basic unit is a procedure. In object-oriented programming,
methods or member functions are the actions that can be performed on objects. They
manipulate and express the state of the object, define the interface to other classes and in

many ways are not logically independent.

For each class C, IFS[C] contains all the function members that could be impacted by the
specified changes. IDS[C] holds all the data members that could be impacted by the specified
changes. Since the only way to observe the state of an object or operate on an object is
through its public members, an object’s clients can only be directly impacted by the public

members. PIFSC] contains al the public function members that could be impacted. PIDS[C]

62

holds al the public data members that could be impacted. PIFS[C] [I IFS[C] and PIDS[C] [

IDS[C].

Encapsulation is a way to separate the implementation of a data object from its specification.
An object does this by managing its own resources and limiting the visibility of what others
should know. An object publishes a public interface that defines how other objects or
applications can interact with it. An object also has a private component that implements the

methods. The object’s implementation is encapsulated -- that is, hidden from the public view.

In the presence of encapsulation, the only way to observe the state of an object is through its
interface (public methods). The class hides the properties of its instances to conceal the data
structure and the details of implementation. All the features of an object are usually hidden,
such that the only way the state can be examined or modified is by invoking part of the
interface formed by its public properties. The interface is a basis for a protocol that objects
use to communicate with each other by requesting an object to invoke one of its operations.
Class members inside the class can see all the properties within the class, so there is no scope
restriction in FindEffectinClass. Because of encapsulation, in FindEffectAmongClients,
methods or data members in a client class can only be impacted by public members of the
server class, and in FindEffectBylnheritance, methods or data members in a subclass can

only be impacted by public or protected members of the parent class.

4.5 The Containment Relationship: FindEffectinClass

FindEffectinClass (C) calculates change impacts inside a class. It examines each class

member m (including function member and data member) in C that is not in the impacted

member set (IMS). If m references any methods in IFS (FREF (m) n IFS (C) # @) or m

63

references any data membersin IDS (DREF (m) n IDS (C) # @); m could be impacted by the

changesin IFSand IDS. So it will be added to IMS and to PIMS if mis public.

This sounds reasonable, but unfortunately this calculation is not sufficient. Assume a class
has methods m1, m2, m3, m4, and m5, m1 and m2 are in IMS. m3 references m5 and m5
references m2, so m3 references m2 indirectly. Since m2 [J IMS, m3 should belong to IMS.
But when the algorithm is checking m3, m5 has not been checked yet, and m3 could not find
any reference in IMS set, so the algorithm thinks it is clean and fails to put it in IMS.
FindEffectInClass solves this problem by calculating the transitive closure of the impacted
member set. FindEffectinClass, a breadth-first search algorithm based on the d-wavefront
agorithm [QUAD91], starts from the initial impacted class members, and iterates to find all
of the members that could be impacted by the members in IFS and IDS. In other words, it

iteratesto find all of the nodes reachable from these initial nodes.

In this section, we use IMS(C) to specify the set that contains the class members of C
(IMS[C] = IFS[C] + IDS[C]). Current_IMS is used to specify the nodes found in each
iteration. IMS accumulates nodes found during different iterations of the algorithm. We
could accept the following simple approach. At the beginning of the kth iteration,
Current_IMS holds the impacted class members that could be impacted by the impacted
member in the kth iteration; the generated node is one arc away from those nodesin IMS (or
k arcs away from the initial nodes). The newly generated nodes, which form the new
Current_IMS, are put into the IMS. The iteration process continues until IMS does not
change from one iteration to another. This simple approach suffers a serious drawback when
dealing with a graph that is not alist or tree. This is because this version of algorithm has no

memory. During an iteration, it may process some nodes in the base graph, even through

those nodes might have been encountered and processed during some earlier iteration. This
type of process is redundant since it does not add any new nodes (or impacted members) to
the ones already found in earlier iteration. We can solve this problem by processing, at each
iteration, only those nodes in Current_IMS that have not been encountered during any

previous iteration.

Fi ndEf fect I nd ass(C)
//Find the effect within the class if certain data nmenbers or nethods have changed
I'nput: The | FS and | DS sets of C. They could cone frominitialization or as a result
of a previous execution.
Qutput: New | FS and IDS in dass C They include the original nmenbers plus
any new y added i npacted nenbers
BEG N
FOR (each class nenber in C)
REF[C] = MREF[C] + FREF[({
// Initialize current |M
Current_IMS[C = IMS[C

VI LE (Current_IMS[C #Z QY)
BEG N

CUrrent_lI\/B:{mg a 0 x[J c’, (m 0 REF (x)) [(x [
IMS[CT)}

// Find the IMS created in current iteration
Current_IMS = Current_IMS - IMS

IMS = IMS L] current_IMS
END VWHI LE;
PIMS ={m 0 c | m 0 ms [mis public}
IFS = {f 0 c | f 0 mMs [J fis function member}
IDS = {d 0 cjd [J ps [J disdatamember}
ENDFOR
END FindEffectinClass

Figure 11. FindEffectInClass Pseudo Code

4.6 The Use relationship: FindEffectAmongClients

If class A sends messages to class B, we say that class A is class B's client, and B is A’s
server. Encapsulation builds a wall between a class and its clients. Because of encapsulation,

the clients of A can only access this class through its public members, which means its

65

clients can only be impacted by the PIFS and PIDS of the server. FindEffectAmongClients
examines each client class and puts any class member that references any member in the

PIFS or PIDS into their own IFS or IDS or into their PIMS and PIFS if they are public..

Each change-class is marked unchecked during the initialization. Unchecked classes are
picked by Total Effect in the initial loop. We define OLDIFS and OLDIDS to be the two sets
that contain the IFS and IDS before FindEffectAmongClients starts. At the end, the algorithm
checks whether there are any new methods or data members that have been added to IFS or
IDS by comparing the IFS and IDS with the OLDIFS and OLDIDS. If there are new methods
or data members in a client class being impacted in this calculation iteration, it means these
newly added impacted members in the client class might influence more classes in the
system. This class needs to be checked again by the algorithms, so it is marked as unchecked
waiting to be picked again by the main loop in Total Effect. FindEffectAmongClientsis shown

in Figure 12.

Al gori t hm Fi ndEf f ect Atongd ients (C)
I'nput: The ICS, IM of C. They could conme frominitialization or
as a result of a previous execution.
Qut put: The expanded sets: ICS, |M PlM.
BEG N
FOR (each client class C that uses C)
BEG N
abmqg = ImMmdg
FOR each menber min C
BEG N

IF(ml] IM5 O ((REF(m N PIMS (C) # @) O (REF(m
n PIDS (C) & QY))
IM(Q =IM(Q [{m
IF (mis public)
PIMS(C) = PIMS(C) [{n}

ENDI F
ENDFOR

IF (oD Mg Z Ve[Q)
BEG N
Mark C unchecked
ics=1cs) g
ENDI F

ENDFCR each class C that uses C,
END Fi ndEf f ect Anongd i ent s

Figure 12. FindEffectAmongClients pseudo code

66

4.7 The Inheritance Relationship: FindEffectBylnheritance

Inheritance is the abstraction mechanism that allows devel opersto create new child classes --
known as subclasses or derived classes -- from existing parent classes. Different languages
accept different inheritance schemes (strict inheritance, subtyping, subclassing, etc.). Strict
inheritance is the simplest inheritance scheme; it keeps the exact behavior of its parent. The
inherited properties cannot be modified, and the derived class can only be redefined by
adding new properties. Subtyping is the most commonly used scheme. Subtyping allows the
inherited properties to be redefined when the parent’s operation is not appropriate for the
subclass. In subclassing, the derived classis not considered to be a specialization of the base
class, but a completely new abstraction that bases part of its behavior on part of another
class. This schemeis also called implementation inheritance. The derived class can therefore
choose not to inherit al the properties of its parent (sometimes called suppression). In this
research, we assume the language uses subtyping (asin C++ and Java). The algorithm can be

easily modified for other inheritance schemes.

4.7.1 Properties of Inheritance

Inheritance represents a hierarchy of abstractions, in which a subclass inherits from one or
more super classes. The child class shares the structure or behavior defined in its parent
class. The child class can express differences with its parent class by modifying and adding
properties. If the class c inherits from p, we express it as c::p. If the object is an instance of

classc, we expressit as o0:c. The signature of the method can be expressed as

Method_name@Q, ..., @ 2 T, where Qq, ... , Q are parameters and T is the return type.

Kifer and Lausen [KIFE95] express inheritance in their frame logic:

67

Inheritancereflectivity:

I > pip

Inheritance reflectivity says p can be its own parent.

Inheritance transitivity:

If | 2 p::qand|>q::r then | 3p::r

Inheritance transitivity says that if p is a subclass of q and q is a subclass of r then p is a
subclass of r.

Inheritance acyclicity:

If I >p:qand| > q::pthenl >p=gq

Inheritance acyclicity says there is no cycle in the inheritance relationship except the
inheritance relationship among itself. In other words, if two classes inherit from each other,
they are the same class.

Inheritance Inclusion:

If | 2p:qand = q::r then| 2 p : r

Inheritance Inclusion says that if p is an instance of g and q is a subclass of r then p is an
instance of r also.

Because of the inheritance, the signature of the method can have these properties:

Typeinheritance:

If I 2 p [nethod@, ...,q , 2s]andl > r:pthenl > [method@q ,...,q , 25s]

Input restriction:

68

If I =2 p [nmethod@,, ..., qi ..., qn >sjandl >q,::q, then | 2> [nehtod@,, ...,
q,..q , >s]

Output restriction:

Ifl > p[method@q , ...,qn >sjandl >r:sthenl > [method@q ,,....q , 2r]

Typeinheritancetells usthat if r is a subclass of p, then the method r inherits the signature of

p’'s method. But this does not mean r cannot modify the semantics of the method. R can
completely inherit the behavior of p, partially overwrite it or completely overwrite the
original method. Input restriction says if ¢¢ a subclass of;gthen ¢ can appear at any
place where ccan in the signature. Output restriction says that if r is a subclass of s then the

method that returns s can return r as well.

Inheritance can be thought of as an incremental modification technique that combines a
parent P with a modifier M to get a resulting class R, B¥P The subclass designer
specifies the madifier, which may contain various types of attributes that alter the parent
class to get the resulting subclass. Although M transforms P into a new class R, M does not
totally constrain R. We must also consider the inheritance relation since it determines the
effects of composing the attributes of P and M and mapping them into R. The inheritance
relation determines the visibility, availability and format of P's attributes in R. Since
inheritance is deterministic, rules can be constructed to identify the availability and visibility

of each attribute.

When a subclass redefines one of its parent's methods, it can either totally replace the method
or simply expand its functionality. The impact of the parent's method on this subclass will be
different depending on how the subclass expands the parent's method. If the subclass totally

re-implements its parent's method, the change in the parent's method will not impact the

69

subclass. If the subclass expands its parent’s service based on the service the parent’s method
provides, any change in the parent’s method could impact this subclass. Harrold and
McGregor [HARR92] proposed an attribute classification to describe the different types of
attributes according to their inheritance relationship. We extend their attributes classification
by splitting the redefine and virtual redefine into extended redefine, total redefine, virtual-
extended redefine, and virtual-total-redefine. As a result, methods in subclasses are divided

into the following extended categories:

* New attribute: A is an attribute that is defined in M but not in P, or A is a member
function attribute in M and P but has a different signature. In this case, A is bound to the
locally defined attribute in M. A is accessible within R and accessible outside R if A is

public; A isnot accessiblein P.

* Inherited attribute: A isdefined in P but not in M. In this case, A is bound to the locally
defined attribute in P. A is accessible within R and accessible outside R if A is public; A is

accessible both within and outside P.

» Extended-redefined attribute: A is defined in both P and M with the same signature. The
A in M extends the functionality of A in P by using the services of A in P. In thiscase, A is
bound to the locally defined attribute in M. A in R is accessible inside R and if it is public,

outside R; A in Ris not accessiblein P.

e Total-redefined attribute: A is defined in both P and M with the same signature. The A
in M replaces the functionality of A in P by implementing the services without using the A in
P. Inthis case, A is bound to the locally defined attribute in M. A in R is accessible within R

and accessible outside R if A ispublic; A in Risnot accessiblein P.

70

e Virtual-new attribute: A is specified in M but its implementation may be incomplete in
M to alow later definitions or A is specified in M and P and its implementation may be
incomplete in P, but A’s signature differsin M and P. In this case, A is bound to the locally
defined attribute in M. A is accessible within R and if it is public, outside R; A is not

accessiblein P.

e Virtual-inherited attribute: A is specified in P but its implementation may be incomplete
in Pto allow later definition, and A is not defined in M. In this case, A is bound to the locally
defined attribute in P. A in R is accessible within R and if it is public, outside R; A in R is

accessible both inside and outside P.

* Virtual-extended-redefined attribute: A is specified in P but its implementation may be
incomplete in P to allow for later definition and A is defined in M with the same signature as
AinP. The A in M will extend the functionality of A in P by using the servicesof A inPin
M’s implementation. In this case, A is bound to the locally defined attribute in M. A in R is

accessibleinside and if it is public, outside R; A in R is not accessiblein P.

e Virtual-total-redefined attribute: A is specified in P but its implementation may be
incomplete in P to allow for later definition and A is defined in M with the same signature
asin P. The A in M will replace the functionality of A in P by implementing the services
without using the A in P. In this case, A is bound to the locally defined attribute in M. A in

Risaccessibleinside and if it is public, outside R; A in R is not accessiblein P.

The inheritance relation determines visibility, availability and format of P's attributesin R. A
language may support more than one inheritance mapping by alowing specification of a

parameter value to determine which mapping is used for a particular definition.

71

4.7.2 FindEffectBylnheritance

This section analyzes how changes in an ICS propagate through its parent and subclasses by
inheritance and polymorphism. From the attribute categories above, we know that any
change in a child will not impact its parent because its parent cannot access the methods or
data members of its children. However, changes in a parent can impact its children. Smith
and Roberson [SMIT90] make the conservative claim that a change to a parent class can
potentially impact all descendants. We have observed that we can reduce our impacted set by
a detailed analysis of the type of inheritance. Now, we analyze the change impacts through
the inheritance categories, and find that there are many cases where a change will not effect

descendents.

* |f the method or data member A in achild classis a new attribute, A is defined in M but
not in P, or the signatures of A in M and P are different. Since A is not accessible in P, the

new attribute in R will not impact A in P, but it can impact R’s children.

* If amethod or data member A in achild classis an inherited attribute; A islocally bound

to P. Inthissituation, if A in P changes, A in R could be impacted.

+ |f the method or data member A in achild class is a total-redefined attribute, M redefines

A without using Psversion of A. So A’s changein P will not impact A in R.

+ |f amethod or data member A in a child class is an extended-redefined attribute; A is

locally bound to P. In this situation, if A in P changes, A in R could be impacted.

e If the method or data member A in achild classis avirtual new attribute, A is defined in
M but not in P, or the signatures of A in M and P are different. Since A is not accessiblein P,

the new attribute in R will not impact A in P. But it will impact R’s children.

72

* If amethod or data member A in achild classis avirtual inherited attribute, A islocally
bound to P. In this situation, if A in P changes, A in R could be impacted. If A in R changes,
A in P will not be impacted, but P::A’s client could be potentially changed because of
polymorphism. (P::A means method A in P; details of this rule will be explained in the next

section under polymorphism.)

» If a method or data member A in a child class is an virtual total-redefined attribute, M
redefines A without using P's version of A, so A's change in P will not impact A in R. On the
other hand, if A in R changes, A in P will not be impacted, but P::A’s client could potentially

be impacted because of polymorphism.

e If a method or data member A in a child class is a virtual extended-redefined attribute; A
is locally bound to P. In this situation, if A in P changes, A in R could be impacted. If Ain R
changes, A in P will not be impacted, but P::A’s client could be potentially impacted because

of polymorphism.

The following pseudo code shows the algorithm that finds the impacts of changes through
inheritance. FindEffectBylnheritance j)Ccalls ForwardInheritanceTreeProcess,) (@nd
BackwardInheritanceTreeProcess ;)(CForwardInheritanceTreeProcess p)(Gollows the
inheritance tree forward from,@o all its child nodes and calculates the impact accordingly.
BackwardInheritanceTreeProcess)(®llows the inheritance tree backward from tG all

its ancestors and marks the status of the ancestor nodes.

Fi ndEf f ect Byl nheritance (C)
BEG N
Forwardl nheritanceTreeProcess (C); // Wrk Down the inheritance tree
Backwar dl nheritanceTreeProcess (C); // Wrk up the inheritance tree
END Fi ndEf f ect Byl nheritance

Figure 13. FindEffectByl nheritance Pseudo Code

73

The following two figures presents the two algorithms ForwardinheritanceTreeProcess (Cp)
process and BackwardinheritanceTreeProcess (C.). The Cp passed to the
BackwardlnheritanceTreeProcess has been noted as C; in BackwardlnheritanceTreeProcess
for easy reading because C, in FindEffectBylnheritance is served as child in

BackwardlnheritanceT reeProcess.

Forvar dl nheritanceTreeProcess (C)
BEG N
// Wbrk down the inheritance tree
FOR (each class C that inherits fromC)
FOR (each nmethod m in C)
BEG N
CASE (inheritance type of m)
New.
Vi rtual - New:
Vi rtual - Tot al | y- Redef i ned:
BREAK
I nherit:
Ext ended- Redef i ned:
Virtual -l nherit:
Vi rt ual - Ext ended- Redef i ned:

I'F (m and m have the sane signature [m [IFS(C))
BEG N

IFS(C) = 1Fs(c) L (my
IF (m is public)
PIFS(C) = PIFS(C) [] {m}
ENDI F
ENDI F
BREAK
Q hers:
BREAK
ENDCASE;
// Handl e reference/use rel ationshi ps between
// parent and child
IF (m [IFS(C) O ((DEF (m) N IFS(C) Z (0) O (DEF (m)
n IDS (C) # QY))
BEG N
IFS(Q = IFS(Q [{m}
IF (m is public)
IFS(Q =1Fs(9 [J {m}
ENDI F

ENDI F
ENDFOR // end of for each nethod

FOR (each data member f in class C)
IF(f [J] 1DS(c) O ((DDEF (f) N 1DS(C) # @

[(FDEF (f) N IFS (Cc) # @))
BEG N

1DS(Q) = 1DS(Q L] {f}
IF (f is public)

PIDS(Q) = PIDS(Q [] {f}
ENDI F
ENDI F
ENDFOR // end of each field I oop
ENDFOR // end of for each class |oop
END // Forward | nheritance Tree Process

Figure 14. ForwardlnheritanceTreeProcess(C,)

Backwar dl nheri t anceTr eeProcess(C)
BEG N
// Work up the inheritance tree
FOR (each parent C of C)
FOR (each nethod m in C)
BEG N
CASE (inheritance type between m and m)
Vi rtual - New;
Virtual -1nherit:
BREAK;
Vi rtual - Tot al - Redefi ne:
Vi rtual - Ext ended- Redef i ne:

I'F (m and m have the sanme signature [J m 0 IFS(C])

BEG N

// Sem - ean neans the clients of this nethod coul d be inpacted,

// even this nmethod itself could be clean.
M. Cont ami nat eType = Sem - ean
ENDI F
Q hers:
BREAK;
ENDCASE
ENDFOR // end of each min C
ENDFOR // end of each parent of C
END // Backwardl nheritanceTreeProcess

Figure 15. Backwardl nheritanceT reeProcess (C,)

* Polymorphism

74

75

Polymorphism allows one reference to denote instances of various classes. It is usualy
constrained by inheritance. Polymorphism allows the same method to do different things,
depending on the class that implements it. For example, it lets two similar objects be viewed
through a common interface and allows subclasses to override an inherited method without
impacting the ancestor’s methods [ORFA96]. If the inheritance scheme is subtyping, the
denoted objects al have at least the properties of the root class of the hierarchy. Thus an
object belonging to a derived class could be substituted into any context in which an instance
of the base class appears, without causing a type error in any subsequent execution of the
code. MartinfMART95] calls this total polymorphism, as described by the Liskov

Substitution principle:

I'f for each object o, of type S, there is an object o, of type T such that for all
progranms P defined in terns of T, the behavior of P is unchanged when o, is
substituted for o, then S is a subtype of T[MART95].

Less formally, the software can always pass a pointer or reference to a derived class to a
function that expects a pointer or reference to a parent class. Since polymorphic names can
denote objects of different classes, it is impossible to predict which class will be executed
until run time. This type of inheritance is aso called strict inheritance and has the following

characteristics:

* Pre-conditions on a particular method in a class must be no stronger than those of the

same method in a parent class.

e Post-conditions on a particular method in a class must be no weaker than those on the

same method in a parent class.

e Theinvariant for aclass must be a superset of the invariant for a parent’s class.

76

These properties are useful guiding principles, but there are no languages that enforce these
constraints. For example, when the inheritance type is total-redefine or virtual total-redefine,

the method in the subclass can totally rewrite the meaning of its parent’'s method and break
the pre-conditions, post-conditions and its invariant. Especially when it is a virtual method,
this could cause the parent’s clients to malfunction if they expect the parent's method to be

executed but get the subclass method instead.

Since an object belonging to a derived class could substitute into any context in which an
instance of the base class appears, the method of the subclass will be called instead of the
base class’s method, which is specified in the program at run time. So, the behavior or

semantic change in subclass can potentially change that base class’s clients. For example:

SubClassl andSubClass2 are subclasses of claBase. ClassA is classBase's client (means

A usesBase). The methodN in ClassA referencedBase in its parameter list, for example,
void A::N (Base& b) means MethodN in A takes a reference tBase called b as the
parameterBase::M is virtual andSubClassl::M and SubClass2::M overwritesM in Base.

(The relationships are illustrated in the class diagram in FigureALf\)takesBase as a
parameter and invokdsM in N's implementation. Since, at run time, we can substitute
Subclassl or Subclass?2 asBase to A::N, and when théV is virtual, theM of the subclass
version could be called instead Bése::M (), A::N will be impacted bySubclassl::M or
ubClass2::M if they are changed. This could happen when the inheritance type is Virtual-
Total-Redefine or Virtual-Extended-Redefine. When the inheritance type of the subclass’
method is Virtual-New, the parent does not contain the protocol of this new method, and its

clients cannot see it. It will not impact the parent or the parent's clients. When the

77

inheritance type of the subclass’ method is Virtual-Inheritance, by definition, it means there

is no change to the parent’s method, thus the parent’'s method will not be impacted.

1 § 1 R

Base eference Set:

; A i Base
¢ void N(Base& b); Xirtual void M(i; X AN XM2...

: EI:

—Inherited from»

. SubClass2 A R

Contain byﬂ :

Reference : SubClassl / _ X eference Set:
«Contain by Value: -.:V|rtual void M(); _IV|rtuaI void M(;; Z.N, Y.M2...
o——Use) - ' -

Figure 16. Class Diagram of I nheritance Example

The algorithm fragment of inheritance HindEffectBylnheritance of Figure 13 shows this

logic.

// Work up the inheritance tree

FOR each parent C of C,

FOR each nethod m in C

BEG N

CASE (inheritance type between m and m)
Vi rtual - New;
Virtual -1 nherit:

BREAK;

Vi rtual - Tot al - Redefi ne:
Vi rt ual - Ext ended- Redef i ne:

I'F (m and m have the sane signature O m [IFS[C])

BEG N
// Sem -d ean nmeans the clients of this nethod coul d be inpacted,
// even this nethod itself could be clean.

78

M. Cont ami nat eType = Sem - ean
ENDI F
Q hers:
Break;
ENDCASE
ENDFOR // end of each min C

Following is the portion of the algorithm in the FindEffectAmongClients that handles

polymorphism.

FOR (all A Nin Referencing set of B:: M
If (Base::Mis Dirty 0O (B::Mis virtual [any B::Mis Sem - ean)
ANis dirty
ENDFCR

Thisisintegrated into FindEffectAmongClientsin Figure 12 as follows:

Fi ndEf fect Amongd ients (c,)
Input: The ICS, |FS, and IDS for C. They could cone frominitialization or
the result from previous execution.
CQut put: The expanded | CS, and the expanded sets: ICS, |FS, |IDS PIFS and PlDS.
BEG N
FOR (each class C that uses C)
BEG N
ap v g = IMdg
FOR (each nenber min C)
BEG N
1F (mlJ IMS) O ((REF (m) N PIFS (C0) Z Q) O (REF(m
n PIDS (C0) # QY))

IMS(c) = IMS(c) [T {n}
IF (mis public)
PIMS(c) = PIMS(c) L[] {n}
ENDI F
// Find out the | M5 caused by pol ynorphi sm
IE(ml] IM8) O (REF(m N Seni-PIMS (C) Z @)

IMS(c) = IMS(c) [T {n}
IF (mis public)
PIMS(c) = PIMS(c) [T {n}
ENDI F
ENDFCR
IF (D M[c] Z IMs[c])

BEG N
Mar k C unchecked

79

jcs=1cs] {c}
ENDI F
ENDFCR each class C that uses C,
END Fi ndEf f ect Anongd i ent s
Figure 17. New FindEffectAmongClients Pseudo Code
4.8 Algorithms Correctness Verification

Definition:

If A isthe impact source, then class C is defined to be potentially impacted if one of the

following three conditions hold:
i) C=A;CisAitself.

ii) C has adirect relationship R with A, and R is a relationship type that can propagate

change (expressed as ARC or A >C).

iii) C hasaindirect relationship with A, (A R" C), which means that there is a sequence of

class dependencies B, B, ., B, such that
ARB;RB;RB;R...RB,RC
ICSis the impacted class set generated by the algorithms.
Theorem:

Every potentially impacted classisincluded in the Impacted Class Set (ICS), if and only

if every classin thelCSis potentially impacted.
e Assumptions:

« We assume the analysis gets the correct dependency relationship among objects in the

system.

80

» Impact Dependency follows the transitivity rule: If A impacts B and B impacts C, then A

impacts C.

e Aisusedto expressall the impacted entitiesin the system.

e ICSistheimpacted class set calculated by the algorithms.

¢ Proof:

Every class in the ICS is potentially impacted - Every potentially impacted class is

included in the ICS

Assume there exists a potential impacted class C, whichisC [ICS.

If Cisapotentially impacted class, there must exist some dependency between A and C.

Case 1: If A =C, Cistheimpacted class, according to the algorithms C I ICS. This conflicts

with the assumption.

Case 2: Class C is directly impacted by A, A O ICS. According to the algorithms, C will be

included in the ICS, C O ICS, which conflicts with the assumption.

Case 3: If Class C is indirectly impacted by A, and A [ICS, then there is a relationship
transitive closure R*, A R* C. That means there exists classes By B, ., B, such that A 2> B;

- B,> Bz ... 2 B, C, R is the relationship that will propagate the change impact.
Using induction, it is obvious that the algorithm will include C in ICS[XCS). It conflicts

with the assumption.

If C O ICS, it means there is no dependency between the impact source A and C. Then C

could not be impacted, which also conflicts with the assumption.

81

So, in either case, C isamember of ICS, which contradicts our assumption. Proved.

Every potentially impacted class is included in the ICS 2 every class in the ICS is

potentially impacted.
Assume class C isamember in ICS, but class C is not potentially impacted.

Since A is the change source, C could not be impacted, meaning that A does not impact C,

directly or indirectly.

From the algorithm, for C to belong to ICS, there must either exist a series of classesB; B,, .

, Bn,suchthat A > B; 2 B,> B3z > ... 2 B, C or Cis directly impacted by A.

Case 1: If A=C, and A is impacted, then C is impacted. This conflicts with the assumption.

Case 2: C has a direct relationship R with A, A is impacted, and R is the relationship that
will propagate impact. According to the algorithms, C will be impacted. This conflicts with

the assumption.

Case 3: Assume there exists such a serieg BtB , B, such that

A->B;, 2B,>B;>...2>B,>C

According to the transitivity rule of the impact dependency relationship, C is indirectly

impacted by A.
This also conflicts with the assumption.

Proved.

5 OBJECT-ORIENTED CHANGE IMPACT METRICS

A metric is a standard of measurement. It is used to judge the attributes of something being
measured, such as quality or complexity, in an objective manner. A measurement determines
the value of a metric for a particular object [LORE94]. Mills [MILL88] (as referenced by
Champeaux [CHAM97]) defines software metrics as something that “deals with the

measurements of the software product and the process by which it is developed.”

Formally, a metric is a function from a domain of software artifacts (e.g. use cases,

inheritance graphs, and classes), to a range of assessment values [CHAM97].

u : {artifact domain} 2R’

Metrics have been primarily used for two purposes: the prediction of defects and the
prediction of effort. These predictions are based on the simple notion that the more complex
a piece of software is, the more likely it is to contain defects and the longer it will take to

build. The goal of software metrics is the identification and measurement of the essential

parameters that impact software development. More specifically, metrics attempt to:

* Measure actual development costs for a particular time period, possibly qualified per

type of development activity

* Measure development fragments in order to predict or estimate future subsequent

development costs

82

83

Measure quality aspects in order to predict or estimate subsequent development costs to

achieve acceptable product quality

Measure development aspects to enhance a general awareness of “where we are and

where we are going”

Champeaux [CHAM97] gives several desirable characteristics of a metric:

* A metric is either elementary, in that it measures only a single well-defined aspect, or
alternatively, it is an aggregation of more elementary metrics within a definition of the

aggregation function.

e It is objective in that it does not depend on the judgement of a human user and can be

preferably expressed in a machine-executable algorithm.

e It can be applied at reasonable cost.

e [tis intuitive.

« It is compositional; a metric applied to a composite artifact should be some kind of sum

of the metric applied to the components of the artifact.

* Its value domain is numeric and allows meaningful arithmetic operations.

There is a lot of research on software metrics [DEVA96][FENT91][KERNS86]
[CHER91][SNEE95], and some research on object-oriented metrics [LORE94][CHID94]
[WHIT92] [CHAM97]. We have not seen any work on the metrics of object-oriented change

impact analysis.

The object-oriented change impact metrics developed in this research provide numeric views

of the effect of a change, which allows a maintainer to evaluate the effect of alternative

changes quantitatively. These metrics allow comparisons between alternative maintenance
(and design) decisions, and allows a maintenance engineer to monitor the effect of his or her
actions on the software structure. The correlation between the metric and the effort required

to develop software can let us estimate the effort required to implement a change.

5.1 Object-Oriented Change Impact Metric Description

This section describes the metrics to measure object-oriented software change impact. The
Number of Impacted Classes, Percentage of Impacted Classes, Number of Impacted
Methods, Average Number of Impacted Methods, Weighted Number of Impacted Members
and Weighted Average Number of Impacted Members are simple and intuitive metrics.
Method Impact Level (MIL), Class Impact Level (CIL), and System Impact Level (SL) are
more elaborate and complex metrics that give more accurate estimate about the impact of the
change. These metrics are defined in the next seven subsections. Some of these formula used
constants to assign weights to different items in the formula. How to choose value for these

constants is discussed in the future work section.

511 Basic Object-oriented Change Impact Metrics

Formula 1 Number of | mpacted Classes

The Number of Impacted Classes, |, is the number of impacted classes in the system. The
smaller the number is, the less impact the change can bring to the system. The lower bound
of | isthe total number of classes involved in the change criteria, which would indicate the
proposed changes do not impact any other classes in the system. The upper bound of | is the
total number of classes in the system, which would mean the proposed changes impact the

whole system.

85

Formula 2 Percentage of | mpacted Classes
The Percentage of Impacted Classes is the number of impacted classes in the system divided
by the number of classesin the system.

Per centageOflmpactedClasses =(|/C)* 100

C — the total number of classes in the system

The smaller the result is, the less impact the changes can have on the system. Since the total
number of classes in the system is constant, the lower bound is the number of impacted
classes divided by the number of classes. The upper bound is 1, which would mean the
number of impacted classes in the system is equal to the total number of classes in the

system.

Formula 3 Number of | mpacted Members

Number of Impacted Members is the sum of all the impacted members of all the impacted

classes in the system.
|
Number Ofl mpactedMembers = Z i

I — the number of impacted members in class i

The lower bound of this metric is the number of impacted members involved in the initial

change criteria. The upper bound is the number of all the class members in the system.

Formula 4 Average Number of I mpacted Members

Average Number of Impact Members is the sum of all the impacted members divided by the

sum of all the members in the system.

86

Number ofl mpactedMembers _ Ell mi
T c

S M, S M

AverageNumber Ofl mpactedMembers =

M; — the number of members in class i

Formula5 Weighted Number of | mpacted Members

Weighted Number of Impacted Members is thesum of all the impacted members of all the

impacted classes in the system, weighted by impact powers.
| |
WeightedNumber Ofl mpactedMembers = C, * Z l, +C,* Z l4

I — the number of impacted function members in class i
lq — the number of impacted data members in class i

C,; and G are constants that assign different impact powers to function members and data
members. In an object-oriented system, when a data member or function member is changed,
the maintenance effort that can be applied to the method is much greater than the
maintenance effort that can be applied to each data member. It is the function members that
we have to change and retest to make sure they still perform the desired task requirements.
When a data member is changed, its effect will be taken into account by the algorithms and
show up in the function members that reference the impacted data member. So the constant
that adjusts the impact power of function members is much greater than the constant that

adjusts the impact power of data members(C,).

Formula 6 Average Weighted Number of | mpacted Members

87

Average Weighted Number of Impact Membersis the weighted number of impacted members

divided by the total number of membersin the system.

Wei ghtedNumber Ofl mpactedMembers

Wei ghtedNumber OflmpactedMembers =

5.1.2 Derived Object-oriented Change Impact Metrics

This section describes metrics that measure the object-oriented system in more accurate and
elaborate ways. Method Impact Level (MIL) describes the method impact power. Class
Impact Level (CIL) describes the class impact power. System Impact Level (SL) measures

the impact of a change on the whole system.

Formula 1 Method I mpact Level (MIL)

In addition to simply accounting for the number of impacted methods, the size, complexity
and modifiability of the methods play an important role on the impact of change. The Method
Impact Level (MIL) measures the impact inside the method. It considers not only the

impacted variables and statements but also the size and complexity of the method itself.

MIL (method) = C;*1s+C,* 1, + Cs*size (method) +C,* VG (method)

Cy, C,, Gy, and C, are constants that assign weights to the various terms. |5 is the number of
impacted statementsin the method, I, isthe number of impacted variables in the method. Sze
is a function that counts the token numbers or lines of code (LOC) in the method. VG is the

cyclomatic complexity of the control flow graph (CFG) of the method [McCar6].

VG (method) = (L —N +2)P

L = the number of edgesin the CFG.

88

N = the number of nodesin the CFG.
P = the number of disconnected parts in the control flow graph.

The bigger the method is the harder it is to understand and modify it, so the size impacts the
modifiability of the method. VG is used to describe the control complexity side of the
method; some smaller programs could be more difficult to understand and modify because of
their complexity. In the above formula, C,*1s+C,*I, describes the impacts on the method.
The size and complexity are included to account for the difficulty of modifying the method.
Cy1, C,, Cs, and C, are independent constants that are used to tune the metrics. The initial
values can be got by the characteristics of the elements. For example, if we think VG
(method), the complexity of the method, impacts the change impact more, we can assign
bigger value to C; compared with C;. We need to run experiments to find the best suited

vaue.

Formula 2 Class Impact Level (CIL)

Class Impact Level (CIL) measures the impact level inside the class. It considers the impacts
on methods and on variables, and the contributions of the size and the complexity of the class

to theimpact level.

For the classes in the inheritance tree, there are two ways to measure the size of the class: by
considering only local members and by considering local members plus al the inherited

members. For thefirst case, CIL is:

|f\ Mf\

ClL(class) =(C,* Z'V“Lj)+(Cz* ly) +(C5~ ZSiZG(MethCI))+(C4* My)

IE

+H(C* 1) +(C*R)+(C,* D)

C, through C; are the independent constants to tune the impact powers of different factors.

M; = the total number of membersin classi

M; = the total number of function membersin classi

Mg = the total number of data membersin classi

I = the number of impacted membersin classi

I = the number of impacted function membersin classi

ls = the number of impacted data membersin classi

size (Method;) = the size of member j

l; = the depth of inheritance tree from root to classi

R, = the number of classes that reference classi

D; = the number of classes referenced by (or defined by) classi

89

In the above formula, the first two terms, C* 3° MIL+C,*l4, measure how much impact the

classi has. The next two terms, Cs* } size(method)+ C4* My, include the size of the method.

Thefina three terms, Cs* I+ Cg* Ui+ C7* R, measure the coupling and complexity of the class.

The depth of the inheritance tree (I;) measures the number of parent classes from the root

class to class i. It is the number of classes we may have to understand in order to use a

particular method. The class referencing number (R)) is the number of use and reference

relationships with other classes for the classii. It describes the number of classes we need to

understand in order to use a particular class. The referenced set (called definition set) number

of aclass (D;) measures the number of other classes called by the methods of this class. It is

90

defined as the size of the definition set for the class, which consists of all the methods of the

class and all the methods of other classes called by the methods of the class.
When the size of the class includes the inherited members, the Class Impact Level is:

| superclass# Vi,
ClL(class)=C,*) MIL, +C,* 1, +C,* size(VisibleMember)
1 JZ]. j 2 d 3 ; Jzzl
M

+C,* y size(Methd,) +Cg* My +Co* My +C,* 1, +C* U, +C, * R
=1

In the above formula, V,, is the number of the visible members, which are public and
protected members of a specified class. The size of classi is the sum of all the sizes of the
visible members of its super classes plus the sum of the local members of the classi. The rest

of the parameters are the same asin the previous calculation of CIL.

Formula 3 Cyclomatic Complexity of Object-Oriented Data Dependency Graph

The cyclomatic complexity metrics can be used to measure the complexity of the object-

oriented data dependency graph.

VG (OODDG) = (L -N +2)P
L = the number of edgesin the OODDG.
N = the number of nodesin the OODDG.

P = the number of disconnected parts in the OODDG.

Formula 4 System Impact Level (SIL)

System Impact Level (Slieasures the impact at system level.

91

Imi

SL= ZCI L +VG(OODDG)
]:

System Impact level is the sum of al the class impact level plus the complexity of the

system. VG(OODDG) is the cyclomatic complexity of the object-oriented data dependency

graph.
5.2 Metrics Properties

It is recommended that software metrics should posses certain properties to increase their
usefulness. It is desirable to have a formal set of criteria with which to evaluate proposed
metrics. Weyuker [WEY U88] has developed a formal list of desiderata for software metrics
and has evaluated a number of existing software metrics using these properties. Her
desiderata include notions of monotonicity, interaction, non-coarseness, non-uniqueness and
permutation. Most of the concrete metrics will, in fact, not satisfy one or more of these
desired features. Weyuker evaluated four complexity metrics against her properties:
statement count, cyclomatic number [McCar6], effort measure [HALS77], and data flow
complexity [OVIE8Q]. The conclusion of the study was that none of the four measures
satisfied all nine properties, but that data flow and effort measures performed best.
Cherniavsky and Smith [CHER91] presented a measure that satisfies al nine of the
properties, but which has no practical utility in measuring the complexity of a program. We
consider the Weyuker criteria to be desirable although not necessary for all acceptable

metrics.

Property 1 (Noncoar seness):

(OPR(OQ(IF=14d)

92

This property is satisfied by nontrivial measures and states that there are at least two
programs with differing measures.
Property 2:

Let ¢ be a non-negative nunber, then there are only finitely many prograns of
conplexity c.

This property states that there are only a finite number of programs of the same
complexity. Thisimpliesthat there are no arbitrarily long programs of fixed measures.
Property 3:
(Nonuni queness): There are distinct prograns P and Q such that [Pl =]|Q

This property again asserts that the measure is nontrivial, in that there are multiple

programs having the same measure.

Property 4 (Importance of Implementation):

(OP)(0Q(P = Qand [P #]|Q)
This property expresses the condition that there are functionally equivalent programs

with different complexities.

Property 5 (Monotonicity):

(OP(OQ(IPI=s|P Q and Q=[P Q)
P;Q means Q follows P. This property is satisfied for monotonic measures. It roughly

expresses that adding on to a program makes a more complex program.

Property 6a (Nonequivalence of Interaction):

(UP(OQ(UR(IPI=IQ and [P, R#[Q R)

93

This property is a contextual property. Code occurring after different but equally
complex prologues may be differently impacted by the distinct prologues (at least

regarding its complexity). Thisis an inter-program property.

Property 6b(Nonequivalence of | nteraction):

(UP(OQ(UR(IP=Q and |[R Pl #|R Q)
This property is similar to the previous one except that the identical code occurs at the

beginning of the program.

Property 7 (Nonequivalence of Permutation):

There are program bodies P and Q such that Qis formed by pernuting the order of
statenents of P and [Pl Z [Q.

This is again a contextual property, but more of an intra-program contextual property.

Thus changing the order of statements may change the complexity of the program.
Property 8:
If Pis arenanming of Q then [P =/[Q.

This property states that uniformly changing variable names should not impact a

program’s complexity.

Property 9 (Interaction I ncr eases Complexity):

(OP(DQ(IP+Q<|PQ)
P+Q means P combined with Q. |P| is used to describe the complexity of P. This property

states that a combined program may be more complex than its constituent parts.

Our object-oriented change impact metrics mentioned in this section satisfies all of

Weyuker’s criteria except property 7, which does not apply.

94

It is not surprising to have two different programs to have different impact values. There are
alot of factorsin the system that causes two program to have different impact metrics, so the
impact metrics satisfy property 1. As described above, all the impact metrics have upper

bounds and lower bounds, so they satisfy property 2.

They satisfy property 3, because two different programs can have the same level of impact.
For example, two different systems have the same isolated class or function, and this class or
function is proposed as the change source. Under this situation, the only class or function
being impacted is the class or function shown in the change criteria itself. Because the class

or the function is the same in both systems, the impact values on both systems are the same.

Aslong as two programs have different implementation classes and relationships, they might
have different impacts even if their functionality are the same. The impact metrics satisfy

property 4.

These metrics satisfy property 5. Two programs connected together can only increase the

complexity, not decrease the amount of impact a change can have, so |P| < |P; Q| and [Q| < |P,

Ql.

For property 6a and 6b, if |P; R| and |Q; R| change the dependencies between P and Q, it will
satisfy 6a and b. Our algorithms focus on method level, so property 7 does not apply to our
metrics. Renaming will not change dependency, so our metrics satisfy property 8. For
property 9, if P+Q adds more dependencies than before they are combined, [P+Q| will have
more impact than the two programs P and Q by themselves. Thus, these metrics satisfy

property 9.

6 INFERENCE APPROACH

In this section, we discuss our algorithms from another point of view. The impact calculating
algorithms described in previous sections are expressed in data base deductive rules. The
advantage of this approach is that we can take advantage of the deductive capability of logic

database to let users compose their own questions to the system.

6.1 Datalog

Datalog is alogic-based data model. Its name hints that it is a version of Prolog suitable for
database systems. Prolog statements are composed of atomic formulas, which consist of a
predicate symbol applied, as if it were a procedure name, to arguments. These arguments
may later be applied to arguments just as we would call a function in an ordinary
programming language. Predicate symbols should be thought of as producing true or false as
aresult; i.e., they are Boolean-valued functions. Function symbols, on the other hand, may be
thought of as producing values of any type one wishes. Datalog does not allow function
symbols in arguments, but allows variables and constants as arguments of predicates. Atomic
Formulas in datalog are formally defined as predicate symbols with a list of arguments, p
(Ay, ..., Ay), where p is a predicate symbol. An argument in datalog can be either avariable or

aconstant, for example, employee (Name, “Software Department”, salary, address)

95

96

In the datalog model, a literal is either an atomic formula or a negated atomic formula; a
clause is a sum (logical or) of literals. A horn clause is a clause with at most one positive

literal. It is either:

* A singlepositiveliteral, p (X, Y), which we regard as a fact.

» Oneor more negative literals, with no positive literal, which is an integrity constraint, or

* A positiveliteral and one or more negative literals, which isarule.

Logical statements, often called rules, will usually be expressed in the form of Horn Clauses.
In“B:-A1 & A, & ... & A, (read as if Aand A and ... A are true, then B is true), B is the

head of the rule and the part after ”: - “is thieody of the rule. The horn clause- p; v...v

= pn Vg is logically equivalent t@;/7 p....pn --> 0, Or q :- P1, P2, ... B Which is a
statement of the form: “If pand p and ... pare true, then q is true.” datalog program is a

set of rules.

Logic rules are often used to express dependency relationships. To do so, we can draw a
dependency graph, whose nodes are the ordinary predicates. There is an arc from predicate p
to predicate q if there is a rule with a sub-goal whose predicate is p and with a head whose
predicate is q. A logic program iscursive if its dependency graph has one or more cycles.

All the predicates that are on one or more cycles are saidrigciraive predicates. A logic

program with an acyclic dependency graphdsrecursive.

Suppose we have a relatiBarent (p, ¢), meaningp is ¢'s parent, and a relaticamcestor (a,
€), meaninga is c's ancestora is c’'s ancestor if (1pisc's parent or (2p is b's ancestor and
b is ¢'s parent.Ancestor is thetransitive closure of parent. In datalog logic rules, this is

expressed as:

97

Ancestor (p, ¢): - Parent (p, c).
Ancestor (a, ¢): - Ancestor (a, b), Parent (b, c).

This example is arecursive program, and its dependency graphis:

Figure 18. Dependency Graph

A predicate whose relation is stored in the database is called an extensional database (EDB).

A predicate defined by logical rulesis called an intentional database (IDB).
6.1.1 Facts in the Algorithms

This section lists some of the facts that the system can store as defaults, and explains their
semantics. Users can add their own facts if needed. Following is alist of facts that describe

the entity relationship of the object-oriented system.
» Class Member Category

A class member can either be a method or a data member. If a class member is not a method

it can imply that it is a data member, and vice versa.

98

member (c, m) -- misamember of classc.

method (c, m) -- mis amethod of classc.

data field (c, f) -- f isa data member of classc.

method (c, m): - member(c, m), = data field(c, m);

data field (c, m): - member(c, m), = method (c, m);

¢ Class Member Protection Level:

We assume 3 levels of class member protections. A member can be either public, protected,
or private. For example, we can aso deduct the information of private(c, m) by other
information. If m is not public or protected, we can assume it is private, so we use this

information implicitly.

public(c, m) -- misapublic member of classc.

protected(c, m) -- mis a protected member of classc.

private(c, m) -- mis a private member of classc.

public(c, m): - member(c, m), = protected(c, m), = private(c, m);

protected(c, m): - member(c, m), = public(c, m), = private(c, m);

private(c, m): - member(c, m), = protected(c, m), = public(c, m);

* Inheritance Overwriting

children (p, ¢) -- cisthe subclass of p.

99

p-overwrite (p, m, ¢, n) -- nin class c partialy overwrites min class p. It means n extends the

service of m by calling the original m.

c-overwrite (p, m, ¢, n) -- nin class c completely overwritesmin class p.

inherit (p, m, ¢, n) -- nin class c completely inherits the behavior of min p.

Methods in children’s classes can overwrite the methods in parents’ classes to have different
behavior. The children’s method can totally rewrite the parent’s method, expand the parent’'s
method by adding some operations to the original method or inherit all the service of the
parent's method without any changeherit (p, m, ¢, n) is true if n in class ¢ completely
inherits the behavior of m in mp-overwrite(p, m, ¢, n) is true if n in class c partially
overwrites m in p by using m’'s service fromgpoverwrite(p, m, ¢, n) is true if the method in

a child class completely redefines the behavior of the same method in its parent; any change
to this method of the parent will not impact the corresponding method of the child. From the
characteristics of inheritance, the parent does not depend on the children. So any change in a
child will not impact the parent. In the default system, we only store the facts and rules that
relate to the change impact of the system. For examplen a method in a child completely
overwrites the parent’s method, a change to the parent will not impact the child. So the
system will not initially store the relationship between the method of the children and the

method of the parent. Users can add their own facts and rules if needed.

Following is an example afherit andp-overwrite. Class C is a subclass of class P. Class P
has virtual methods method_1, method_2, and method_3. C has virtual methods method_1

and method_2.

class P {
public:
virtual void nethod_1(int x, int y);

100

virtual void nethod _2();
virtual void nmethod _3();
private:

}

class C: public class P {

public:
virtual void nmethod _1(int x, int y);
virtual void nethod _2();

private:

}
void C :nmethod _1(int x, int y)

{

out<<“Totally rewrite the method_1 of p”;

}
void C::method_2()

{
P::method_2();
out<<“Add my own stuff here.”

Figure 19. Inheritance Example

In class C, method 2 is a partial redefinition of parent's method 2, so p-overwrite (P,
method_2, C, method_2) is true in the above example, while method_3 in class C inherits

from P.

* Facts entered by user:

[1CS(c) -- initial impacted class set.

IIMS (¢, m) -- initial impacted member set of c.
IIFS(c, f) -- initial impacted function member set of c.
IIDS(c, f) -- initial impacted data member set of c.

IICYC) is the initial impacted class set, as specified by a UBdSC, m) is the initial

impacted member set of C, as specified by a uHeHC, f) is the initial impacted function

101

member set of C that the users specify. [IDS(C, f) is the initial impacted data member set of

C that the users specify.

6.1.2 Rules

In this section, we describe some of the default rules to calculate change impacts of an
object-oriented system and explain the semantic meanings of these rules. Users can expand
or customize the system and algorithms by adding or removing rules from the system. For
example, we define 3 levels of member and instance protections, public, protected, and
private. Some people view Java as having four levels of protection, public, protected,
private, and package. To extend the algorithm to take care of this fourth level of protection,

It is necessary to add one extra fact, package(c, m) and associated corresponding rules.

6.1.2.1 Reference Set and Definition Set

The Reference set of class member mincludes all those variables that reference m directly or
indirectly. For example, the fact that class c2's membem?2 references clagsl’'s membeml
can be represented esf (c1, ml, c2, m2). Classc2's memberm2 directly references class
cl's membeml if there is an edge from?2's m2 to c1's ml in the dependency graph (this

can be expressed dgect-ref (c1, ml, c2, m2)).

ref (c¢1, nml, c2, ng2) :- direct-ref(cl, ml, c2, nR)
ref (ci1, ml, ¢3, nB) :- ref(cl, ml, c2, n2) direct_ref(c2, ng, c3, nB)
ref (c1, ml, c2, m2) :- direct-ref (c1, mil, c2, m2) says that it2::m2 is a member ofl::ml's

direct reference set, then we can e&ym?2 is also a member afl::ml’s reference set.

ref (c1, ml, c3, m3) :- ref (c1, ml, c2, m2), direct_ref(c2, m2, c3, m3) says that ifc2::m2
belongs tacl::ml's reference set, areB::m3 belongs tac2::m2's reference set, thard::m3

belongs tacl::ml's reference set.

102

Following is an example of a method min C that references method n and data member y in

C.

void cl::m) {
c2 ve2;

cl::n();
X =cl::n2() + vo2.y,

}
Figure 20. Method m references method n and data member y in C1

In the above example, ref (c1, m, ¢1, n), ref (c1, m, c1, m2), and ref (c1, m, c2, y) are true
because mreference n, m2, and y as part of its implementation. Here is another example of a

data member x that references method m and data member y in cl.

cl obj1;
c2 obj 2;
obj2.x = objl.m+ objly;

Figure 21. Data member x in c1 references method m and data member y in cl

In this example, ref (c2, x, ¢1, m) and ref (c2, x, c1, y) are true because c2’s x references cl’s

m andy in its definition.

6.1.2.2 Inside the class

A class member defined in a class can access everything inside that class. A member could

be impacted if it references any other members in the class that have already been impacted

1) nmenber(c, f) :- nmethod (c, f)

2) nenber(c, d) :- data field(c, d)

3) IFS(c, f) :- IFS(c, m, nethod(c, f), ref(c, f, ¢, m

4) IFS(c, f) :- IDS(c, d), nethod(c, f), ref(c, f, c, d)

5) IDS(c, d) :- IFS(c, n), data_field(c, m, ref(c, d, ¢, n)

6) IDS(c, d) :- IDS(c, x), data field(c, m, ref(c, d, c, x)

103

Rule number one and number two say that method and data member are class members. Rule
number three means f is an impacted function member of class ¢ if method f in ¢ references
member min ¢, and m has been impacted. The fourth rule means f is an impacted function
member of class cif f in c references the data member d in ¢, and d has been impacted. The
same rule holds for IDS. The fifth rule means d is an impacted data member of c if d
references method m and m has been impacted. The sixth rule means d is an impacted

member of ¢ if d references data member X in ¢ and x has been impacted.

6.1.2.3 Inheritance

If aclasscisachild class of class parent, and method min parent and method min ¢ have

the same signature, there are severa rulesfor min c related to min parent:

» Each method in class ¢ could inherit the method in class parent without change. In this

situation, any change in method mwill impact the m of subclass c.

IFS(c, m :- |ICS(parent), children(parent, c), nmethod(c, m, inherit(parent, m c, m,
| FS(parent, m

The above rule says if the parent is an impacted class, ¢ is a subclass of the parent, min c
inherits the m of the parent without change, and if min the parent is impacted, then min ¢

could also be impacted.

* Themin subclass ¢ can expand the service of its parent by using the service of its parent
and adding its own functions. In this situation, any changes in m of parent will impact min

subclass ¢ also.

IFS(c, m :- ICS(parent), children(parent, c), nmethod(c, m, p-overwite(parent, m c,
m, | FS(parent, m

104

The above rule says if a parent is an impacted class, c is a subclass of the parent, min c
partially overwrites the mof parent, and if min the parent isimpacted, then min c could also

be impacted.

e If min asubclass totally redefines m without using the service of min the parent, then

any change in the m of the parent will not impact the min c.

Any member in a subclass can access any public or protected parent member, according to
the definition of the public and protected member. If the parent member referenced happen to
be impacted, these methods or data members will also be impacted. The following eight rules

encode this fact.

1) IFS(c, m :- ICS(parent), children(parent, c), nethod(c, nm, ref(parent, x, c, m,
| FS(parent, x), public(parent, x)

The above rule means if the parent is an impacted class, ¢ is a subclass of parent, method m
of ¢ references the public function member x of parent and x is impacted, then min c could

be impacted.

2) IFS(c, m :- ICS(parent), children(parent, c), nethod(c, m, ref(parent, x, c, m,
| FS(parent, x), protected(parent, x)

The above rule means if the parent is an impacted class, ¢ is a subclass of parent, method m
of c references the protected function member x of parent, and x is impacted, then min ¢

could be impacted.

3) IFS(c, m :- ICS(parent), children(parent, c), nethod(c, nm), ref(parent, n, c, m,
| DS(parent, n), public(parent, n)

The above rule means if the parent is an impacted class, ¢ is a subclass of parent, method m

of ¢ references the public data member n of parent, and n is impacted, then min c could be

impacted.

105

4) IFS(c, m :- ICS (parent), children(parent, c), nethod(c, m, ref(parent, n, c,
m, |DS(parent, n), protected(parent, n)

The above rule means if the parent is an impacted class, ¢ is a subclass of parent, method m
of ¢ references the protected data member n of parent, and n is impacted, then min c could

be impacted.

5) IDS(c, d) :- ICS (parent), children(parent, c), data field(c, d), ref(parent, Xx,
c, d), IFS(parent, x), public(parent, x)

Thisrule means if the parent is an impacted class, ¢ is a subclass of parent, data member d of
c references the public function member x of parent, and x is impacted, then d in ¢ could be
impacted.

6) IDS(c, d) :- ICS (parent), children(parent, c), data field(c, d), ref(parent, Xx,
c, d), IFS(parent, x), protected(parent, x)

Thisrule means if the parent is an impacted class, ¢ is a subclass of parent, data member d of
c references the protected function member x of parent, and x is impacted, then d in ¢ could

be impacted.

7) IDS(c, d) :- ICS (parent), children(parent, c), data field(c, d), ref(parent, m
c, d), IDS(parent, m), public(parent, m

Thisrule means if the parent is an impacted class, ¢ is a subclass of parent, data member d of
c references the public data member x of parent, and x is impacted, then d in ¢ could be
impacted.

8) IDS(c, d) :- ICS (parent), children(parent, c), data field(c, d), ref(parent, m
c, d), IDS(parent, m, protected(parent, m

Thisrule means if the parent is an impacted class, ¢ is a subclass of parent, data member d of
c references the protected member x of parent, and x is impacted, then f in ¢ could be

impacted.

106

6.1.2.4 Use Relationship

If an impacted method or data member in ¢, is public, any other class can access it and can
potentially become impacted. The following six rules are used.

1)PIFS(c, m) :- IFS(c, m), public(c, m

This rule says that if m is a public method of ¢ and m is impacted, then m is a public
impacted method.

2)PIDS(c, f) :- IDS(c, f), public(c, f)

This rule says that if f is a public data member of ¢ and f is impacted, then f is a public
impacted data member.

3) IFS(c, m :- client (c, c), method(c, m, ref(c, n, ¢, m, PIFS(c, n)

This rule says if cisaclient of ¢, ¢'s methodm referencesy’s methodn andn is a public
impacted method af,, thenm could be impacted.

4) IFS(c, m :- client (c, c), method(c, m, ref(c, f, ¢, n), PIDS(c, f)

This rule says it is a client ofcy, ¢'s methodm references,’s data membef andf is a
public impacted data member@f thenm could be impacted.

5) IDS(c, f) :- client (c, c), data_field(c, f), ref(c, n, ¢, f), PIFSc, n)

This rule says it is a client ofcy, ¢'s data membef referencexy’s methodn andn is a
public impacted method @f, thenf could be impacted.

6) IDS(c, f) :- client (c, c), data_field(c, f), ref(c, x, ¢, f), PIDS(c, x)

This rule says it is a client ofc,, ¢'s data membef referencesy’s data membex andx is a

public impacted data member@f thenf could be impacted.

107

6.1.2.5 Impacted Class Set

If a class contains any impacted member, the class itself is considered impacted and belongs

tothelCS.

1CS(c) :- 11CS(c)

1CS(c) :- IFS(c, f)

1CS(c) :- IDS(c, d)

6.1.3 User Composed Queries

One of the advantages of using datalog to model the algorithm is we can expand the original
application domain from change impact to al sorts of interesting questions that can be
expressed by datalog queries. For example, to express the query: “Find all the impacted
classes that are children @f"ove can use:

cics(c) ;- 1CS(c), children(c, c)

To express the query “Find all the classes which are not impacted” we can use:

Qean_Qass (c) - NOT 1CS(c)

To express the query “Find the impacted classes that have the fewest impacted methods," we

can use:

I FS Count(c, m cnt) :- IFS(c, m, cnt =1

| FS Count(c, m cnt) :- |FS Count(c, m cnt), IFS(c, n), cnt =cnt + 1
MN_IFS(c, m mn(<cnt>)) :- IFS Count(c, m cnt)

To express the query, “Find the impacted classes that have the most impacted methods," we

can use:

MAX_ I FS(c, m max(<cnt>)) :- |IFS Count(c, m cnt).

7 PROOF-OF-CONCEPT EXPERIMENTAL SYSTEM

This chapter describes the structure and design of the proof-of-concept system called Change
Impact Analysis Tool (ChAT). Section 7.1 describes the environment and the context of
ChAT. Section 7.2 outlines the architecture and high level design of the tool. Section 7.3

presents the empirical results used to verify the algorithms.
7.1 System Context

ChAT isimplemented in C++ and Java, and runs on multiple platforms. We have tried it on
Solaris 5.4 and NT platform. There are three major parts in ChAT: Parser, Analyzer, and
Viewer. The parser is extended from the gnu software g++ that is written in yacc, lex and C,
which is composed of roughly 445000 lines of yacc, lex and C code and 6600 lines of C++
code to interpret the tree node of g++ and transfer it to the information format the analyzer
needs. The implementation difficult in this phase lies in understanding the complicated
structures and implementation details. Analyzer consists of 2300 lines of Java code. Viewer

iswritten in Java JFC, it is about 2200 lines of Java code.

ChAT provides a convenient environment for users. The legacy programs can be compiled,
analyzed and viewed without leaving the environment. Classes in the system are shown in a
tree hierarchy. When ChAT compiles a program, it extracts information for later analysis.

After a user specifies the changes by choosing the different class members or classes in the

108

109

classtree, ChAT will calculate the impact of the change and display the impacted classes and

members.

7.2 Architecture

There are three mgjor sub-systems in ChAT: information extractor, impact analyzer, and
impact viewer. Information extractor extracts information the tool needs from the source, (it
could be source code, documentation, or output of other case tools) and stores them in the
information repository. Impact analyzer gets information it needs from the information
repository, and calculates the change impact according to the user's change criteria. The

results are passed itopact viewer for displaying and analyzing.

Figure 22 shows the analysis process.

Design Case
Tools

Information
Extractor Impact Viewer

I —

-~ @0
Information

Repository
(CFG, DFG PDG...)

Impact Analyzer

Figure 22. Component Connection Graph

110

The target of ChAT is object-oriented software written in C++. ChAT could be extended to
handle software written in other languages like Java and Small Talk by using a different
information extractor. Information extractor can also be expanded to extract information
from other information sources like document and other case tools. If the analysis target is a
design document, the information extractor could be a set of application programming
interferences (APIs) that work with the case tool to extract the relationships of the objects

described in the document. The current implementation only analyzes source code.

The framework of ChAT (shown in

Figure 23) connects the different components of the architecture. Although the tool created
for this research only handles C++, the tool is flexible enough to handle different languages,
accept different algorithms, and handle new requirements as the system evolves by plugging
in different components into the framework as long as these components follow the interface

of the framework.

Concrete
components
to choose from

Datalog
Inference
C++ Engine
Parser

Set
Analysis
Engine

Informati
on
Extractol Information

A Analy
Repository

Java zer

Parser

!

Graph
‘ Analysis

Engine
Case i

Tool
Info.
Extract
or

L

Matrix
Analyzer
Engine

Figure 23. Framework

111

7.2.1 Information Extractor

The information repository stores representations of the software and relationships among
the entities in the system, and policies of the analysis technique. It is independent of where
the information comes from, and can receive information from the parser, design documents,
or any other sources. The information extractor collects information and saves it in the
information repository. It could be a parser of any language that parses programs into
meaningful information and stores them into the information repository, or it could be a
design case tool, which can get information from the design documents and store them into
information repository. The framework can work with parsers for different languages if these

parsers produce information that the framework understands.

.__W

Abstract .
7 Information -
Inheritance—» : Extractor k
N/ Abstract Class / . Frr \
Parser Case Tool
Interface

' - Eiffel Parser ; .
C++ Parser - A et -7 Java Parser

Figure 24. Information Collector Hierarchy

112

7.2.2 Impact Analyzer

Analyzer defines the interface for the analysis techniques. As long as we keep the analyzer
interface the same, changing the analysis technique will not impact the framework. Other
possible analyzers include an analyzer that calculates change impacts by set operations, an
analyzer that uses deductive database rules, an analyzer that calculates change impacts by
graph theory, or an analyzer that calculates change impacts by a propagation matrix (as
illustrated in Figure 25). ChAT is implemented using the set operation approach. The
inference approach is discussed in chapter 0. Other implementation approaches of the

algorithms are left for future work.

Inherited from—»

e Contain by Referenceo

 Analyzer
e—Contain by Value—= { R
Use .. _—
Datalog Inference” > Set Analysis 7 :Graph Analysis .* _:Matrix Analysis

Engine . Engine ; Engine . Engine

Figure 25. Analyzer ClassHierarchy.

The class diagram in Figure 26 describes the static structure of the analyzer. Class
EffectFinder is responsible for the top-level control of the impact calculating algorithms. Its
data members include _total class set, which holds the information for al the classes in the
system, and _impacted class set, which stands for a set of impacted classes. _total_class_set
and _impacted class set are a set of objects, which are instances of Classinfo. Classinfo

contains information about a specific class. It contains a set of ClassMemberinfo classes,

113

which describes the generic information of its class members. Methodinfo and DataFieldinfo
are subclasses of ClassMemberinfo. Methodinfo contains method-specific information and
operations. DataFieldinfo contains data member specific information and operations.
MethodInfo contains a parameter information list, and alocal variable information list. Each
ClassMemberinfo contains a client-referencing dictionary that contains all the members that
references the current member. Each parameter information and local variable information
class aso inherit from the ClassMemberinfo class, so a client-referencing dictionary can take
any class member as well as parameters and local variables uniformly. Global functions and
global variables are considered to be the methods and data members of a global class,

allowing them to be treated the same as other class members.

ClientReferenceDict
<Client, MemberSet?

" DataFieldInfo .~

" EffectFinder -—- Classinfo s——————=ClassMemberinfe

ParameterL.istinfi ~ MethodInfo | ’

—Inherited from-» - ’)
Contain by ¢)
Reference _:Local Variable

«Contain by Values Listinfo

o———Use

Figure 26. ChAT Analyzer Class Diagram

7.2.3 Viewer

Maintainers need some way to sort out the components and perceive the overall architecture

of the system. A high level understanding will give a maintainer a framework to help make

114

sense of the more detailed information acquired as specific maintenance tasks are
undertaken. A calling hierarchy is a useful tool for understanding systems designed using
functional decomposition approaches in which the main packaging unit is the processing

module. In such systems, the top level “main module” will likely be a good place to start in
system understanding and, if the modules subordinate to it are reasonably cohesive,
examining them may give a quick overview of system functions. But in object-oriented
programs, the calling hierarchy is a hierarchy of methods, which has several disadvantages.
First, the dynamic binding problem makes the hierarchy difficult to compute. Second, there
may be no real “main” method in the system. This is a fact about object-oriented that
beginners tend to find disconcerting. Finally, a hierarchy of methods loses sight of the

grouping of methods in objects, which is presumably the most important aspect of the design.

An obvious understanding aid would be the object class hierarchy, but because it groups
objects with similar methods, it fails to show how the objects combine to provide the
different functional capabilities of the program. One possible high-level viewer would be a
display of the class diagram. The result is a graph rather than hierarchy. This is clearer when
there are relatively few classes in the system. When the system contains a large number of
classes, the graph becomes very difficult to understand. In general, graphs are notoriously

more difficult to display and comprehend than trees.

The prototype toolChAT presents the results in five types of displaly:class tree view,

impact only tree view, change input table, member impact table, andclass impact table. The

all class tree view shows the hierarchy of all the classes in the system. Each class node
includes amember view node, a children classes node, and aclient classes node. Member

view node contains all the members of that claSkildren classes node displays all its sub-

classes andlient classes node contains all the classes that reference this class. Classes and

115

members picked by the user are displayed in magenta and times roman font (initial change
mode), the impacted classes and their members are displayed in red and arial black font
(impacted mode), and the not impacted ones are displayed in blue and courier font (clean
mode)’. Impact only tree view is similar to all class tree view, but instead of showing all the
classes and their class members, it only displays the impacted classes and their impacted
members. This figure allows users to concentrate on analyzing the impacted parts of the
system. Member impact table lists all the impacted class members and their member impact
level. Class impact table lists al the impacted classes and related metrics such as number of
impacted members in the class, average number of impact membersin the class and the class
impact level. The change input table displays only initial change classes that are specified by

the user.

! Fonts are added to express the node states, for readers to view clearly in normal print out.

116

7.3 Empirical Results

This section demonstrates, by a set of examples, how the technique presented in this research

can help developers keep track of change impacts in their software. There are five
subsections in this section. Each subsection presents an example that is designed to capture

the different relationships in object-oriented software. Some of the examples put more
emphasis on one kind of relationship while others combine different relationships together to

simulate a real world problem. Section 7.3.1 presents an example explaining how changes
propagate inside the class when there are no dependency relationship among class members.

Section 7.3.2 gives a similar example but with a cyclic dependency relationship among class
members. Section 7.3.3 shows how the algorithms handle the use and containment
relationships among classes through an example. Section 7.3.4's example helps us
understand how the changes propagate through inheritance and how polymorphism plays a
role in the change propagation. Section 7.4 ap@®esT to some modules of a commercial
product, and analyzes the change impacts among these modules when changes are invoked

from different modules.
7.3.1 Change Propagation Inside Classes

This section uses a simple example to explain how changes propagate inside the class among
class members. This example has only one class with an acyclic dependency relationship

among its class members.

/* The exanpl e tests propagation inside the class */
class dassA {
public:

int Anethl();

int Aneth2() {

_A field2 = A_meth1();

117

_Afieldl = Afield2 + A field3 * 8.0;

}
int A_meth3();

private:

float _A field1;

int_A_field2;

int_A_field3;
}’.
ClassA has six class members, A_methl(), A meth2(), A_meth3(), _A fieldl, A field2, and
_A fidd3. As shown in Figure 27, Method A meth2() references _A fieldl, _A field2,
_A fidd3, and A_methl(), datamember _A fieldl is defined by both data member _A field2

and _A field3, and datamember _A field2 is defined by A _meth1().

ClassA::A_meth2()

ClassA:_A_field2
ClassA:_A_field3

ClassA:_A_field1 ClassA::A_methl()

Figure 27. Class Member Dependenciesin Example 7.3.1

This acyclic dependency relationship means the change propagation goes in one direction.
For example, if _A fieldl is changed it will impact A_meth2(), but A meth2()’s change will

not impact_A fieldl.

118

Figure 28 through Figure 31 show the results yielded when A methl() in ClassA is specified

astheinitial change class member.

The tree in Figure 28 shows all the members in ClassA with A_meth1() in initial change

mode, A meth2(), A fieldl and _A field2 in impacted mode, and other not impacted

members in clean mode. The metrics result box shows that there are 4 impacted method

numbersin this example.

i Change Impact Analysiz Tool [ChAT] [_ (O] x|
File Options Wiew Tree
= "w Root
, Start Specify Changes... Start Calculating... 2w Classes Wie
EI\: CECLS'M d ean node
TresvionPand] - o Memberview
[-wold ClassA (wveld)
~Clagssh = (voldeg
All Class YWiew

@@

Impact Only Clazs Wiews

Show handles

€0

~int A meths3
-int A_meth2 (void)
~int A methl (void)
~int A Tield3
~irt _A_field2

~float _A_field1

(void)

-~ Children Classes

S e et ZwClient Classes
Tree Operations B CEG.S'.S:A
2w Membe rvig
Expand All... Collapze All... s Affected npde
~aroid Clg i
Clear All... Initial change node C lassh = (veglid :'
~int A meth (wol
M etrics: =il A_meth2 O.l'd)
Impacted C # Impacted M #

2 of Impacted C

Aovg Impacted b #

System impact Level

Metrics Result: 4

Feady...

B BB B e RS

Mint A methl (void)
—int A field3
—int _A_field?
~-float _A_field1

-~ Children Classes
E-—=Client Classes

Figure 28. All Class Tree View in Example 7.3.1

119

Figure 29, the impact only class view, displays only the impacted classes and their impacted

class members with A _methl() in initial change mode and A _meth2(), _A field2 and

_A field1 in impacted mode.

i Change Impact Analyzis Tool [ChAT)

=] E3
Filz Options Yiew Tree
= “w Root
' Start Specify Changes. .. Start Calculating. .. E|‘g Classes View
B~ ClassA
TreeWiewPansl w EI“‘:: MemberView
— -A_meth2()
\a Al Class Visw ~A_methl()
_A_field?2
@ Impact Only Class View - _A_ffe.’df
----- wChildren Classes
- m—=Clilent Classes
o handles

@0

Show root

Tree Operations

Expand All .. Collapze All .
Clear All..
Metrics:
Impacted C # Impacted M #

% of Impacted C

Avg Impacted M #

System Impact Level

Metrics Result:

Ready...

3
3
3
|
3
El
3
(5]

Figure 29. Impact Only Tree View in Example 7.3.1

120

Figure 30, the impact table, displays the impacted classes and their impacted class members
in atable. The table shows ClassA::A_methl(), ClassA::A_meth2(), ClassA::_A fieldl, and
ClassA::_A field2 are impacted, and their impact level are 24, 12, 3, and 3. The average
impacted method number of this example is 0.5, which means half of the members in this

example are impacted (as shown in metrics result box.)

i Change Impact Analyzis Tool [ChAT) =] E3
File Options Wiew Tree
I Impacted Clazz M... | Impacted Method ... Impact Level |
’ Start Specify Changes. . Start Calculating. . Clazzd, A_meth2 24.0
Clazzh, Atk 12.0
Clazzd _A_field2 3.0
ImpactedT able w Classs _&_field1 3.0

Al Clazs View

Impact Only Clazs View

e

Show handles

Shows root

€6

Tree Operations

Expand All... Collapze All. .
Clear &ll...
Metrics:
Impacted C # Impacted M #
* of Impacted C Lovg Impacted M #
Sygtem Impact Level

[EE)
BEE
E]E)
EIE)
EE
BEE
EE
(S]]
EIE)
S]]
BEE
EE
(S]]
EE

Metrics Fesult:

[=)
o
e o] s] e

u

Ready...

Figure 30. The Impact Tablein Example 7.3.1

121

Figure 31, the class impact table, shows the impacted classes and their related class level
change impact metrics. The table shows ClassA is the impacted class. Its number of impacted
members is 4, its average number of impacted member is 0.5, and its class impact level is 42.
The metrics result box shows the system impact level is 42. Because ClassA is the only class

in this example, the system impact level isequal to ClassA’s class impact level.

: Change Impact Analysiz Tool [ChAT) M=l B3
File Optiong Wi Tree

Claszd, 4 0.5 42

' Start Specify Changes... Start Calculating...

Ilmpacted Cla...| # of Impacte...| Average # of...| Clags Impact...

Irnpacted!

All Clazs View

Impact Only Clazs Wiew

X))

Shows handles

Shawy root

e

Tree Operations

Euxpand All.. Collapse Al ..
Clear &ll...
M etrics:
Impacted C H# Impacted M #
% of Impacted C Ayvg lmpacted b B
Syztem Impact Level

S|}
EE
5]}
GlE
(Els}
S|}
(5]}
5]}
GE
(S|}
S|}
S|}
[EE
S}

Metrice Besult: 420

L L] s L

™

Ready. ..

Figure 31. The Class Impact Tablein Example 7.3.1

122

Users can review the initial change classes and the initial change class members in the input

table. Figure 32 shows the initial impacted class member is ClassA:: A methl.

i Change Impact Analysiz Tool [ChAT] M=] E3
File Optionz View Tree
Initial Impacted Clazs Mames | Initial Impacted kMethod Hame
' Start Specify Changes... Start Calculating... Clazsd A_meth
b 4
All Clazs View

@@

Impact Only Class Yiew

Show handles

Show root

Q@

Tree Operations

Ewxpand All... Collapze All...
Clear All...
hetrics:
Impacted C # Impacted 4 #
% of Impacted C Ayvg Impacted b #
Syztem Impact Level

BEE s B EEE 55

420

Metricz Result:

Ll g[S[S

|

Feady...

Figure 32. Input Tablein Example 7.3.1

123

7.3.2 Change Propagation Inside a Class with Recursive Relationships

This section demonstrates how the algorithms handle recursive dependencies among the
members of the same class. ClassA (presented in the previous section) is modified to contain
a recursive (cyclic) dependency relationship among its members. Figure 33 shows the
recursive dependency relationship: A_methl() references A_meth2(), A_meth2() references

A meth3(), A meth3() uses A fieldl, and A fieldl is defined by A_methl().

ClassA::meth_1()

ClassA::meth_2() ClassA::_field_1

ClassA::meth_3()

Figure 33. The recursive dependency in Example 7.3.2

When _A fieldl is specified to be changed, it will impact A meth2(), A meth3() and
_A field1l. A change to any member in this dependency cycle could potentially impact all
other members. Figure 34 through Figure 37 show the yielded results when _A fieldl in

ClassA is changed.

124

The tree in Figure 34 shows all the members in ClassA with _A field1 in initial change
mode, A_meth1(), A_meth2(), and A_meth3() in impacted mode. It shows in the metrics result

box that there are 4 impacted membersin this example.

i Change Impact Analysis Tool [ChAT]) I]
File Options Wiew Tree
_ _ wClaszes View
' Start Specify Changes... Start Calculating. .. EI\: CIM.S:A
=xMemberView
TreeViewPanel /0 [B void Classh (void
----- Classh = (wvolid)

------ int A_meth3 (void)
------ int A_meth2 (void)
------ int A methi (void)
------ int A field3
------ int A fieldZ

Al Clazs View

@ e

Impact Only Clazs Wiew

Show handles o
@ ----- float A fieldl
----- wChildren Classes
Sl v ewClient Classes
Tree Operations B> CEQSSA
Expand All... Collapse All...
Clear All...
M etrics:
Impacted C # Impacted b #
% of Impacted C &g Impacted M #
Swvztem Impact Lewvel

Metricz Result:

o i o oy (ST

Ready. ..

Figure 34. All Class Tree View in Example 7.3.2

125

Figure 35, the impact only class view, displays only the impacted classes and their impacted
class members with _A field1 ininitial change mode, A_meth1(), A_meth2(), and A_meth3()
in impacted mode, and other not impacted members in clean mode. Its metrics result box

shows that the average impacted method numbers in this example is 0.5, which means half

the class members are impacted by the proposed change.

i Change Impact Analysiz Tool [ChAT) =] E3
File Optionz Wiew Tree
' wClassez View
5 5 ify Chi 5 Calculating. ..
tark Speciiy anges tark Calculating El\u C.Ea..f&‘l
=w Membe rview
TreeviewFanel . . _____ A me th3o
—A_meth2()
@ &1l Class Wiew - A_methi)
A fieldl
@Impactﬂnlﬁlﬂass\f’iew ----- wChildren Classes
e-wClient Classes
= ClassAd

Show handles

Show root

e

Tree Operations

Expand All.. Collapze All..
Clear All...
b etrics:
Impacted C # Impacted k4 #
= of Impacted C Avg Impacted b H
System Impact Level

Metrics Result:

Ready. ..

Figure 35. Impact Only Tree View in Example 7.3.2

126

Figure 36, the impact table, displays the impacted classes and their impacted class members
in a table. The table shows that ClassA::A_meth3(), ClassA::A_meth2(), ClassA A_methl(),
and ClassA::_A field1 areimpacted, and their impact level are 35, 24, 12, and 3. The metrics

result box indicates that the system level impact is 74.

: Change Impact Analyziz Tool [ChAT] =] E3
File Option: Yiew Tree
Impacted Clasz Mames | Impacted Method Mame Impact Lewvel
' Start Specify Changes... Start Calculating... Clazsf &_meth3 B0
Clazsh, A_meth2 24.0
Clazzf, A_methl 120
M Clazsf, _A field a0

All Class View

Impact Only Class Yiew

@@

Show handlez

©e

Show root

Tree Operations

Expand Al Collapze Al
Clear all..
I etrics:
Impacted C # Impacted M #
% of Impacted C Awg Impacted b #
Swztern Impact Lewvel

BlEE e e e e

Metrics Result:

e e) 1 [TET

Ready...

Figure 36. Impact Table of Example 7.3.2

127

Figure 37, the class impact table, shows the impacted classes and the related class level
change impact metrics. The table lists ClassA as the impacted class. ClassA’snumber of
impacted members is 4, the average number of impacted member is 0.5, and the class impact
level is 74. The metrics result box shows the system impact level is 74. Because ClassAis
the only class in this example, the system impact level is equal to the class impact level of

ClassA

i Change Impact Analysiz Tool [ChAT]) =] E3
File Options Wiew Tree

’ Start Specify Changes. .. Start Calculating. . Claszé, 4 0.5 74

I Impacted Clazz .| # of Impacted ... | Average # of Im.. | Clazs Impact Le. ..

ImpactedClazsT able

All Class Wiew

@

Impact Only Class Wiew

Show handles

e

Show root

Tree Operations

Expand All... Collapze All...
Clear &ll...
M etrics:
Impacted C # Irmpacted M #
% of Impacted C Avg Impacted b #
Suystem Impact Lewel

Metrics Result:

Ready...

Figure 37. Class Impact Table of Example 7.3.2

128

Users can review the initial change classes and the initial change class members in the input

table. Figure 38 shows the initial impacted class member is ClassA::_A fieldl

i Change Impact Analysis Tool [ChAT] [_ O] x|
File Optionz Yiew Tree

Initial Impacted Clazs Mames Initial Impacted Method Mame
' Start Specify Changes... Start Calculating... Clazsd, _Afield

v

Al Clazs Yiew

Impact Only Clazz Wiew

Qe

Show handles

Show root

OfC)

Tree Operations

Expand All... Collapse Al..
Clear All..
b etrics:
Impacted C # Impacted M #
% of Impacted C g Impacted b #
Syztem Impact Level

ECsib oo

Metrics Result

o e [e e e e 1] [ET]

Ready...

Figure 38. Input Tablein Example 7.3.2

129

7.3.3 Change Propagation among Use and Containment Relationships

This section exhibits how ChAT handles use and containment relationships. The header files

are show in Figure 39, and Figure 40 shows the class diagram of this example.

/* Exanple to test the propagation anpng use and contai nment rel ationships */
class dassA {
public:
voi d A _methl(){... A_meth2(); ... _A bclass->B_methl(); ... }
int A_meth2();
int A_meth3();
private:
ClassB* _A_bclass;
¥
class ClassB {
public:
int B_methl1(ClassDé& d, ClassC*c) {
int x;
if (c->C_meth1())
X =d.D_meth1();

}
int B_meth2(ClassD& d) { ...; d.D_meth2(); ... }
int B_meth3(ClassCé& c) {...; c.C_meth2(); ... }
2
class ClassC {
public:
int C_meth1(ClassA& aparam) { ... aparam.A_meth2(), ... }
int C_meth2();
2
class ClassD {
public:
int D_meth1();
private:
int D_field1;
2

Figure 39. Example 7.3.3 header files

130

ClassA
) “public:
/ void A_methl1()
int A_meth2()
int A_meth3() <
private:
.. ClassB* _aBClass

ClassB

- “"ClassC
__ public: pubilc: ’
sint B_methl(ClassD& dé_- —int C_methl(CIassA&_);

ClassC* c); .
i int B_meth2(ClassD& d);
_int B_meth3(ClassC& c);;

\ .ClassD

public:
int D_meth1();
private:
int D_field1;

int C_meth2();

e——Contain by Value—=

o Use

Figure 40. Example 7.3.3 Class Diagram

There are four classes in Figure 40, ClassA, ClassB, ClassC, and ClassD. ClassA has
A meth1(), A meth2(), A meth3(), and a private field A bclass pointing to ClassB. ClassB
has B_meth1(), B_meth2(), and B_meth3(). ClassC has C_methl and C_meth2, and ClassD

has D_methl and D_field1.

As shown in Figure 40, ClassA contains ClassB as one of its field members, and ClassB

references ClassC and ClassD. In turn, ClassC references ClassA.

Figure 41 displays the dependencies at the class member level. As indicated in the figure,
ClassA:: A _methl() references ClassA::A_meth2() and ClassB::B_methl(),
ClassB::B_methl() references ClassC::C_methl() and ClassD::D_methl(),
ClassB::B_meth2() references ClassD::D_methl(), ClassB::meth3() references

ClassC::C_methl(), and ClassC::C_meth1() references ClassA::A_meth2().

131

ClassB::B_meth3()

ClassA::A_methl()
ClassA::_A_bclass | ClassA::A_meth2() | ClassB::B_methl() ClassB::B_meth2()

ClassA::A_meth3() ClassD::D_meth1()

Figure4l1. Class Member Dependencies of Example 7.3.3

If we choose to change D _methl() of ClassD, ClassD::D_methl() will impact
ClassB::B_methl() and ClassB::B_meth2(). The impact to ClassB::B_methl() will in turn

impact ClassA::methl1(). The following four figures show the result.

Thetreein Figure 42 shows al the classes in the example, and all the membersin each class.
ClassD::D_methl is shown in initial change mode, and ClassB::B_methl(),
ClassB::meth_2(), and ClassA::A_methl1() are shown in impacted mode. All the other items
are shown in normal mode. The metrics result box shows that the percentage of impacted

classesin this example is 75%.

132

i Change Impact Analysis Tool [ChAT) M= E3
File Options View Tree

|»

wClasses View

' Start Specify Changes... Start Calculating... [j Sy ijsD

B Membe rview

void ClassD (void |

TreeviewPanel v C l asz=D — (VO l d)

= ~int D methl (void)

~int D fieldl

~~Children Classes

m—=Client Classes

- ClassC

B Membe rview
EVoid ClassC (void)
~ClagsC = (void)
hint C methZ {void)
int C _methl (Classhs

~wChildren Classes

m—=Client Classes

Tree Operations [l CI&SSB

All Clazs Wiew

@

Impact Only Clazs Yiew

&

Show handles

Show root

(O

~ClassB* A bclass

e Membe rview
Expand AlL. Collapse Al wvoid ClassB (void)
~int B meth3 (ClassCs
Clear &l ~int B_meth2 (ClassD&)
_ ~int B_meth1 (ClassC*)
Metrics: ~ClagssB = (wvoid)
Impacted C # Impacted M # ~~Children Classes
% of Impacted C Avg Impacted M # = Cllent Classes
= ClassA
Sustemn Impact Level El\: Membe rView
~yold Classh (vold)
BESECBEREEREEl o 1..on - (void)
il ~int A meth3 (void)
Metrics Fesult: 7hE % E ~1nt .T—l_me th? |: vold :l |
= -void A_methi (void)
:
[

Feady...

Figure42. All Class Tree View of Example 7.3.3

133

The tree in Figure 43 shows only the impacted classes and their impacted members.

ClassD::D_methl is shown in initia

change mode,

and ClassA::A methl(),

ClassB::B_methl() and ClassB::meth 2() are shown in impacted mode. The metrics result

box shows that the number of impacted classes in this example is 3. ClassC is hot shown in

thistree sinceit is not impacted.

i Change Impact Analysiz Tool [ChAT) Mi=] E
File Options Wiew Tree
, Start Specify Changes... Start Calculating... \j Classes View
-y ClassD

| 5w MembervView

TreeWiewFanel v D_mefh]@
----- wChildren Classes
All Class View =—>Client Classes

@ e

Impact Only Class Yiew

Show handles

Show root

CXC)

Tree Dperations

Expand All. . Collapse All...
Clear All...
b etrics:
Impacted C # Impacted b #

*% of Impacted C Aovg Impacted M #

Syztem Impact Lewvel

Sls{sieieiiolo{5{sls{sio

3

Metrics Result:

=
5] o s o [ET]

Ready...

=~ ClassB

é---x_. MemberView
-B_meth2()
-B_meth1()

wChildren Clasgses

m=>Client Classes

=y ClassA

5w Memberview
-A_meth1()

wChildren Classes

#-—=Client Classes

Figure43. Impact Only Tree View of Example 7.3.3

134

Figure 44, the impact table, displays the impacted classes and their impacted class members
in atable. The table shows that ClassD::D_meth1(), ClassB::B_meth2(), ClassB::B_methl(),
and ClassA_methl are impacted, and their impact level are 45, 67, 45, and 26. The metrics

result shows that the number of impacted membersin this exampleis 4.

i Change Impact Analyziz Tool [ChAT)

File Optionz “iew Tree

Impacted Class Mames | Impacted Method Mame Impact Level
' Start Specify Changes... Start Calculating... ClazsD O methl 150
ClazsB B_meth E7.0
w ClazsB B_methl 450
Clazsd &_methl 26.0

All Clazs Wigw

Qe

Impact Only Clazz Wiew

Show handlez

Show root

@e

Tree Dperations

Expand All... Collapse All. .
Clear All...
Metrics:
Impacted C # Impacted M #
% of Impacted C Avg Impacted M #
Syztem Impact Level

hdetrics Result:

Ready...

Figure 44. Impact Table of Example 7.3.3

135

Figure 45, the class impact table, shows the impacted classes and the related class level

change impact metrics. The figure shows ClassD, ClassB and ClassA are the impacted

classes. The class related metrics, such as number of impacted members in each class, the

average number of impacted members, the class impact level are listed in the table. The

metrics result box shows that the average number of impacted membersis 0.211.

: Change Impact Analyziz Tool [ChAT)

File Optionz iew

Tree

I [=] E3

’ Start Specify Changes...

Start Calculating...

Impacted Class ...

1 of Impacted M. ..

Ayerage 8 of Im...

Clazz Impact Level

ClazsD

1

0.25

45

ClazsB

2

0.4

112

Clazsh

1

017

26

@ £l Class Wiew
@ Impact Only Clazs Wiew

Show handles

Show root

CIC)

Tree Operations

Expand All... Collapse &ll...
Clear All...
M etrice:
Impacted C # Impacted M #

% of Impacted C

Ay Impacted M #

Syztem Impact Level

Ietice Result:

Ready...

Figure 45. Class Impact Table of Example 7.3.3

136

Users can review the initial change classes and the initial change class members in the input
table. Figure 46 shows the initial impacted class member is ClassD::D_methl. The metrics

result box in this figure shows that the system impacted level caused by ClassD::D_methl is

183.

i Change Impact Analyziz Tool [ChAT]

File Option: “iew Tree

Iritial Impacted Clags Mames Iritial Impacted Method Mame
' Start Specify Changes... Start Calculating... ClassD D methl

[rputT able w

@ Al Class View

Impact Only Clazz Vigw

@

Show handles

Shaw root

ee

Tree Operations

Expand All... Callapze Al
Clear Al...
Metrics:
Impacted C # Impacted M #
% of Impacted C Ay Impacted b #
Swster Impact Level

hetrics Result

Ready...

Figure 46. Input Table of Example 7.3.3

137

7.3.4 Change Propagation by Inheritance, Use and Containment

Relationships

This section demonstrates how changes propagate in an inheritance relationship, and how
polymorphism impacts the change propagation. The class headers are shows in Figure 47,

and Figure 48 shows the class diagram of this example.

/ *
* The exanpl e tests the change propagation in inheritance and use
* rel ationships. It denpnstrates how inheritance and pol ynorphi sm i npacts
* the change propagation.

*/

/* d assA contains dassB */
class dassA {

public:
voi d A nethli();
int A neth2();
i nt A neth3();
private:
d assB* _A bcl ass;
}i
/ *

* O assB inherits fromd assA and overwites A nethl() in d assA by
* referencing A nmethi() in A
*/
class dassB : public dassA {
public:
void A nethi() {
/7. ..
// Reference the A nethl in the parent class
d assA: ;A nethl();
/7. ..
}
virtual int B neth2();
int B neth3(dassC& c),

138

/ *
* O assCinherits O assA but does not overwite any nethods in O assA,
* C neth2 references O assB's virtual function B nmeth2 ().
*/
class dassC: public dassA {
public:
int Cnethl(d assA& aparan;
int Cneth2(dassB& b) {

/...
b. B et h2();
/...

}

Iy

/*

* O assD inherits fromdd assB, and overwites its virtual function B nmeth2().
*/
class dassD : public dassB {

public:
int D nethl();
virtual int B neth2() {
/7. ..
d assB: : B neth2();
/7. ..
}

private:
int Dfieldl;

};:

/ *

* O assk inherits O assB and overwites the virtual function B nmeth2().
*/
class dasse : public dassB {

public:
int E nmethl();
virtual int B neth2() {
/7. ..
d assB: : B neth2();
/7. ..
}
private:
int E fieldl;
};:

Figure 47. Inheritance Relationship Sample Code

139

Inherited from——») ClassA
public:
o——Use——— i void A_meth1();

int A_meth2(); A
int A_meth3();
) private:
CGlassB* _aBClass;’

"ClassB

public: ClassC
void A_methl(); : pubilc:
int B_meth1(); ¢/ int C_meth1(ClassA&);

_ virtual int B_meth2(); . int C_meth2(ClassB&);"
“-.jnt B_meth3(ClassC& c); - R I

- ClassE T s ClassB

public: ; ; public:
virtual int B_meth2(); > virtual int B_meth2();
int E_meth1(); < g int D_meth1();
private: ; E private: ;
int E_fieldl; - T int D_field1; .

Figure 48. Class Diagram of Example 7.3.4

Figure 48 shows the relationship at the class level: ClassA is the parent of ClassB and

ClassC. ClassB is the parent of ClassD and ClasskE. ClassC uses ClassB.

At the class member level, ClassB overwrites ClassA's A methl() by reusing
ClassA::A_methl()'s service. Any change in ClassA::A methl() will impact
ClassB::A_methl(). SinceA _methl() is not virtual, changes iGlassB::A_meth1() will not
impactClassA. ClassD andClassE overwrite the virtual functio8_meth2() of ClassB and
reuse ClassB::B_meth2()'s serviceClassC::C_meth2()uses ClassB::B_meth2() Since

ClassDand ClassEare ClassBs children and overwrite€ClassB's B_meth2(), a change to

140

ClassB::B_meth2() will impact B_meth2() in ClassE and ClassD. Because ClassC uses
ClassB in ClassC::C_meth2(ClassB& b), b can be substituted at run time by a reference to an
object of ClassB and an object of any class that inherits from ClassB. b.B_meth2() could
refer to any B_meth2() that comes from any subclass of ClassB. So, if the B_meth2() in
ClassD or ClassE are changed, they could impact the client class of ClassB, ClassC. Figure

49 shows the member dependenciesin this example

ClassB::B_meth2() ClassB::A_methl()

ClassC::C_meth2()

ClassD::B_meth2()

ClassA::A_methl()

ClassE::B_meth2()

Figure 49. Class Member Dependenciesin Example 7.3.4

If we choose B_meth2() in ClassB to be the initially changed class member, the results of

ChAT are shown in Figure 50 through Figure 53.

Thetree in Figure 50 shows all the classes in the example, and all the members in each class.
ClassB::B_meth2() is shown in initidl change mode, and ClassC::C_meth2(),

ClassD::B_meth2(), and ClassE::B_meth2() are shown in impacted mode. All the other

141

items are shown in normal mode. The metrics result box shows that the number of impacted

classesin this exampleis 4.

i Change Impact Analysis Tool [ChAT] =]

File Options Wi Tree

-

wClasses View
’ Start Specify Changes... Start Calculating... L—__|\1 CIaSSE

2w Membe r'vi ew
~int E methl {(wvoid)
wvold ClassE (wvoid)
int E fieldl
-yirtual int B_meth?2 {void)
“ClassE = (void)
m-—=Children Classes
m-—=C]1ient Classes
- ClassD
aw Membe rview
~roid ClassD (void)
virtual int B_meth2 (void)
ClassDh = {(wvoid |
dint D methl (void)
winmt D fieldl

TreeviewPanel v

@

All Clazs View

Impact Only Class YWiew

@

Show handles

e 6

Show raat m—Children Classes
m—=C]lient Classes
Tree Operations =™ CfaSSC

2w Membe r'view

Expand All... Collapze All.. H Vold ClaSSC (Vold :I
ClassC = {wvoid)
Clear &l ~virtual int C_meth2 (ClassB&)
—int C methl (Classh&)
Metrics: m-—=Children Claszses

m-—=C]1ient Classes

Impacted C # Impacted kM # By CEG,S'.S'B

B Membe rview

~wroid ClassB (wvoid)
int B meth3 (ClassCé& |
virtual int B _meth2 (void)
ClassE = (wold)
~wvold A methl (void)
m-—=Children Classes
m-—=C]1ient Classes
BwClassh

G
E
E
E
E . =
uuuuuuuuuuuuuu o T TR PR - - R
4 | »

% of Impacted C Aoeg Impacted M #

Spstem Impact Lewvel

S S e B S

Metrics Result

Feady...

Figure 50. All Class Tree View of Example 7.3.4

142

The tree in Figure 51 shows only the impacted classes and their impacted members in the
example. ClassB::B _meth2 is shown in initial change mode, while ClassC::C_meth2(),
ClassD::B_meth2() and ClassE::B_meth2() are shown in impacted mode. The metrics result

box shows that the number of impacted classes in this example is 4. ClassA is not shown in

thistree sinceit is not impacted.

i Change Impact Analysis Tool [ChAT) M=] E3
File Opticns Wisw Tree

wClasses View
5 =1 ifp Ch 5 Calculating. ..

’ tart Specify anges tart Caleulating E|\: CfaSSE
= Membe rview

TreeviewPanel w P B me thzo
~wChildren Classes

@AIICIaSS'\-"iew ~~Client Classes

= ClassD
@ Impact Only Clazs Wiew EI\‘ Memb erview

-B_meth2()
wChildren Claszses
wryClient Classes

Show handles

eé

-~ ClassC
Shows rook B Membe r™View
: - C_imeth2()
Tree Operations -
----- wChildren Classes
Expand All... Collapseal... || 0 i D]l ient Clascseo
= ClassB
Clear Al .
== = Membe rivView
M etrics: b B_methQ
Impacted C # Impacted b # H-—=Children Clas=ses
% of Impacted C Avg Impacted M # = Cllent Classes
Suystem Impact Lewvel

Metrics Resulk:

Ready. ..

Figure51. Impact Only Class Tree View in Example 7.3.4

143

Figure 52, the impact table, displays the impacted classes and their impacted class members

in atable. The table shows that ClasskE::B_meth2(), ClassD::B_meth2(), ClassC::C_meth2(),

and ClassB::B_meth2() are impacted, and their impact level are 56, 23, 34, and 34. The

metrics result shows that the percentage of impacted members in this example is 80%.

i Change Impact Analysis Tool [ChAT]

File: Options Wiew

Tree

S[=] E3

' Start Specify Changes. ..

Start Calculating. ..

Impacted Clazs Ma...

Impacted kMethod ...

Impact Lewvel

ImpactedT able

ClassE B_methz 56.0
Claz=D B_methz 23.0
Claz=C C_methz 34.0
Clas=B B_methz 34.0

@ &l Class View

Impact Only Clazs Wiew

Q

Show handles

Show root

©e

Tree Operations

Expand All.. Collapse Al
Clear All..
Metrics:
Impacted C # Impacted kM #

% of Impacted C

Ayvg lmpacted M #

System Impact Lewvel

betrics Result:

Ready. ..

|
|
|
|
|
|
|
3|

Figure52. Impact Table of Example 7.3.4

144

Figure 53, the class impact table, shows the impacted classes and the related class level
change impact metrics. The figure shows Classk, ClassD, ClassC and ClassB are the
impacted classes. The class related metrics, such as number of impacted members, the
average number of impacted members, and the class impact level are listed in the table. The

metrics result box shows the system impact level is 147.

i Change Impact Analysis Tool [ChAT] M=] E3
File Options Wisw Tree

Impacted Cla...| # of Impacte... | Average # of...| Clags Impact ...

' Start Specify Changes. .. Start Calculating... ClassE 1 0.z 56
ClazzD 1 0.2 23
ClazzlC 1 0.25 24
ClazzB 1 0.2 24

ImpactedClas

@ &l Class Wiew
@ Impact Only Clazs Wiew

@ Show handles

Tree Qperations

Show root

Expand All... Collapse All...
Clear &ll...
Metrics:
Impacted C # Impacted M #
% of Impacted C Aovg Impacted M #
System Impact Lewvel

betrics Result:

Ready...

Figure 53. Class Impact Table of Example 7.3.4

145

Users can review the initial change classes and the initial change class members in the input
table. Figure 54 shows that the initial impacted class member is ClassD::D_methl. The

metrics result box in this figure shows that the average number of impact member is0.16.

i Change Impact Analysis Tool [ChAT]
File Options Wi Tree

Initial Impacted Clazs Mames | Initial Impacted bMethiod Mame
’ Start Specify Changes. . Start Calculating. .. Claz=B B_meth2

InputT able

@ &)l Class Wiew
\@ Impact Only Clazs Yiew

Show handles

@ Show root

Tree Operations

Expand All.. Collapse All...
Clear All...
tetrics:
Impacted C # Impacted b #
% of Impacted C Avg Impacted M #
Spstemn Impact Lewvel

EE)
=)
EE)
GE|
EE)
GE|
EE)
EE)
EE)
EE)
EE)
EE)
=)
EE)

tetrics Result:

=
-
o
el [L L L]

Ready...

Figure54. Input Table of Example 7.3.4

146

7.4 A Case Study From a Commercial Industry Environment

To demonstrate realistic applicability of this tool, we applied ChAT to LCC International’s
Golf product, a wireless frequency planning tdebcument, notification, and graphic are

three major modules in Golf. Thetification module, with 20 classes and 2,624 lines of
code, provides a system wide mechanism for the propagation of information among classes
and functions. Thelocument module, with 48 classes and 10,000 lines of code, provides
basic functionality to manage multiple layers of data. gtephic module, with 63 classes

and 16,884 lines of code, provides the drawing capability.

Users can view more than one kind of data at the same time. For example, terrain elevations
are drawn as one layer of data to express the height of the terrain in the covered area, while
highway layer is the layer to draw highways in that area. Users can overlay the highway on
top of terrain. There are other kinds of data such as building data, morphology data, and the
signal strength covering that area etc. Users can add more layers to the view, remove layers
from the view, and shuffle the order of layers. Whenever an action is triggered by the users,
the document module will use thenctification module to send out the corresponding
notification to all listeners that are registered for that kind of action. All the listeners will do
their respective work after receiving the notification, such as change the user interface status
or update the graphic view. Instead of accessingldbement directly, thegraphic module is

one of its listeners. Whenever the graphic class gets a notification, it performs the drawing.
For example, when a user presses Ittael terrain button, Golf will create an icon to
represent the loaded terrain on the screen, and draw the terrain in different colors according
to their heights. When tHead terrain button is pressed, instead of directly calling the icon

view object to create the icon and calling the graphic object to draw the terrain layer, the

147

button just sends out a load terrain notification. When the icon view object that is
responsible for creating the terrain icon receives the notification, it creates the terrain layer
icon. When the graphic object that is responsible for drawing receives the notification, it
draws the terrain layer on the view. This design isolates the different tasks in different
modules and objects to minimize the coupling between different objects. Ignoring the
detailed design information, we focus on the relationships among the interface classes of
these modules because it is the interfaces that will impact classes in other modules. To
understand the relationships among these modules better, we need to know the interface

classes in each of these three modules.

7.4.1.1 Notification Module

The interface classes of the notification modules, Interest, Notification, Notifier, and
Receiver, are the classes that are accessible to classes outside of the module. Changes to

these classes tend to impact the classes in other modules more heavily.

LNotifier —

void-AddRer Reciever&) ~ LAbsRecejiver T W
/void RemoveReciever(LReceiver&) \ vct»d Addinterést(LInterest&, |_AEsSI=unctor\)1
. Bool HasReceiver(); P o void Removelnterest(LInterest&) __—
> P
e Notify(LNotifidation&) void RemovelntereStWrapper(Llnlerest&
C virtual void Reglster(Llnteresl \ ~—— LABSFuNctor&); /,
. LABSFunctor®); —Bool HasIntetestQi—
\ertual vold DeReg/ster(Lln;ere—sl*?)
\ \ P
\ /7\/ /777 P 7\/ \\
~ otification ~ Interest <
\
C P C p
—~ N S

Figure55. Class Diagram of Natification Module

* |nterest identifies an event or action.

148

* Notification conveys news of actions to receivers. When a sender wants to propagate an
action, it uses the appropriate interest, and possibly additional specific data, to create a

notification. Clients use notifications to communicate with each other.

* Notifier is the action dispatcher. Senders use the notifier to send out notification to

receiversthat have registered.

* Receivers are the action listeners, they get notified whenever the action they have

registered for happens.

7.4.1.2 Document Module

The interface classes of the document module are DocLayer, DocPage, and Document.
Document holds a list of DocPages. DocPage holds a list of DocLayer. Figure 56 displays

the class diagram of this module.

DocLayer m ’ DocPage

" Document

Figure 56. Document M odule Class Diagram

149

e A DoclLayer is the super class of all concrete data layers, for example, terrain layer,

highway layer.

* A DocPage owns a queue of DocLayers, and is responsible for adding, removing, and
shuffling the order of these layers. Whenever a DocLayer is added, removed or shuffled, a

notification is sent.

e« A Document holds a list of DocPages. It is responsible for adding and removing

document pages.

7.4.1.3 The Graphic Module

Receiver

- GraphicLayer
void handleLayerAdded (LNotification&);
void handleLayerRemoved (LNotification&);
void handlePageAdded (LNotification&); .
void handlePageRemoved (LNotification&); =
void handleLayerShuffled (LNotification&)};

Figure 57. Class Diagram of Graphic Module

The graphic module is responsible for the graphic viewing of the document layer. Class
GraphicLayer is a sub-class of Receiver. Whenever the document module performs an

action, the notifier will invoke the corresponding handler from GraphicL ayer.

150

7.4.1.4 Example One: Change in the Notification Module

Since the document and graphic modules use the notification to communicate, changes in the
notification interface will heavily impact the other two. Document uses L Notification to send
notifications, graphic module uses LNotification to get specific information while it is
handling the notification. So, if we change the LNotification::_interest, the classes in both
document and graphic modules will be impacted. Figure 58 through Figure 61 shows the

yielded results when LNotification::_interest is changed.

Thetree in Figure 58 shows all the classes in the example, and all the members in each class.
LNotification::_interest is shown in initial change mode, and class Document, DocPage,
DocLayer, and GraphicLayer are shown in impacted mode. The not impacted items are
shown in norma mode. The metrics result box shows that the number of impacted classesin

thisexampleis 5.

IEIE=IHII"WHHHIWEI_“=
1 & i
. oo S e
W pwargn faie I s prarr
a5 w4
| - bl | b — Lt d S
F | [o
hﬂ“"— Tdamt L EAL =2
= L TR L
. Lam 2ot
.ﬂ e Lt EN | =1
JFTalnt T
e d AT F i
- ——
{ gk '
JEaT L E
--"__" rictuaml Leocdi®i T-F . 1
e ——— — - el Dofirrrarvroas fLinfeooes ol §
4 rkE1iml - i ok LEled 4§ 4 2k
& = b =B | rady e
1-i i - 5]
I rTi I 1
ik 1 i
1l =T 1 TisT 1.7
i i i I
T it I o= s il T
[_ferfarrness § CEarPderfasrees § weeadol)
1.a7d T3 1T i Tk LB T
I
I

Figure 58. Example 7.4.1.4 All Class Tree View

151

Figure 59, the impact only class view, displays only the impacted classes and their impacted

class members. Lnotification::_interest is shown in initiad change mode, and classes

Document, DocPage, DocLayer, and GraphicLayer are shown in impacted mode. The

metrics result box shows that the percentage of impacted classes in this example is 41%.

: Change Impact Analysis Tool [ChAT)
File Options Wiem Tree

=] E3

’ Start Specify Changes. ..

Start Calculating. ..

wClasses View
= DocPage

E-w Membe rview
TreeviewPanel v putLayerBefowO
----- showAt()
----- putlLayerOnTop()
@ AllClass¥iew putlayerToBottom()
..... show()
@ Impact Only Class Miew 7 e moveo
------ movelLayerlUp()
----- ~DocPage()
@ Showhandles e movel ayerDown()
----- setCurrentLayer{)
______ add()
@ shewest putl ayerAbove()
e ——————————————— fride()
------ DocPage()
Expand All... Collapse &ll.. ||| @ wChildren Clasgoeco
m-=Client Classes
Clear Al =-— Documaent
— =-— GraphicLayer
=-— DoclLayer
Impacted C # Impacted kM # By LNOfIyﬁCGfIOH
% of Impacted C torg Impacted M # EI w MembervView

Sypstem Impact Lewvel

Setinterest{)

Metrics Result:

Ready...

- interest

- Getinterest()
~~Children Classes
m—-Client Classes

Figure 59. Example 7.4.1.4 Impact Only Class Tree View

152

Figure 60, the impact table, displays the impacted classes and their impacted class members

in a table. Each line contains the impacted class hame, impacted member name, and the

impact level of that impacted member. The metrics result box shows that the number of

impacted membersis 33.

Ready. ..

i Change Impact Analysis Tool [ChAT] =] 3
File Optionz View Tree
Impacted Clazz Mames | Impacted kethod Mame Impact Level
, Start S pecify Changes. .. Start Calculating. . DocPage putl ayerB elow 8.0
DocPage showdt oo
DocPage putLaperOnT op 5.0
v DocPage putlaperT oB ottom 5.0
DocPage show a.0
DocPage IEMOYE an
DocPage movel aperllp 5.0
@ All Class iews DocPage ~DocPage 5.0
DocPage rmiovvel aperDomn 40
DocPage setCurrentLayer a0
@ Impact Only Clazs Yiew DocPage add an
DocPage hide 5.0
DocPage putlapendbove g0
@ Sl el DocPage DocPage a0
Docunnent clearsl g0
Document hideLayer ndllPages 5.0
@ Show raot Document zetCurentPage 1.0
Docunnent RemovePage 20
- Document showLayernallPages a.0
s Wil Dacunient Removel aper an
Expard Al.. Callapse Al EEZE:Z:E iji:f:[gg
GraphicLayer handlel ayerShuffled 34.0
Clear &ll... GraphicLayer handlePagetdded 34.0
GraphicLayer handlel ayerR emoved 4.0
b etrics: GraphicLayer handleLayerfdded 4.0
GraphicLayer handlePageR emoved 340
Impacted C # Impacted b # GraphicLayer handlePageR esized 34.0
% of Impacted C Awg Impacted M # Doclaper Doclaper 0.0
DocL ayer destroy 5.0
System Impact Level LM otification Setlnterest 1.0
LM atifization _interest an
EEEEEEEEEEEEEE LM otification Getlnterast 1.0
3
3]
etrics Result 33 %
3]
3
‘ o

Figure 60. Example 7.4.1.4 Member Impact Table

153

Figure 61, the class impact table, lists the impacted classes and the related class level change

impact metrics. This table shows that DocPage, Document, GraphicLayer, DocLayer, and

Lnotification are the impacted classes. The related change impact metrics are listed for each

impacted class. The metrics result box shows that the average number of impacted members

is0.186.
+ Change Impact Analysis Tool [ChAT) _ O]
File Options View Tree
Impacted Class Mames 1 of Impacted Members Average # of Impacted Members Class Impact Level

' Start Specify Changes.. Start Caloulating... DocPage 14 042 &7

Documert g 0.23 il

[GraphicLaper f 046 13
ImpactedClassTable | G, DocLayer 2 018 5

L Notification 3 013 5

@ Al Class Yigw

Impact Only Class View

<7

Show handles

Shiow root

e e

Tree Operations

Expand All.. Collapse All.. ‘
Clear &ll..
Metiics:
Impacted C # Impacted M i

% of Impacted C

fivg Impacted M #

System Impact Level

hetrics Fesult:

L [e g g [STTET

Feady...

Figure 61. Example 7.4.1.4 Class Impact Table

154

Users can review the initial change classes and the initial change class members in the input
table. Figure 62 shows that the initial impacted class member is Lnotification::_interest. The

metrics result box shows that the system level impact caused by the LNotification::_interest

changeis 243.
i Change Impact Analysis Tool [ChAT] M=] E3
File Optionz View Tree
Initial Impacted Class Mames |nitial Impacted tethod Mame
’ Start Specify Changes... Start Calculating... LMotification _interest

v

Al Clazs Wiew

@ e

Impact Only Clazs Wiew

Show handles

Shiow oot

OJC)

Tree Operations

Expand All. . Collapze Al
Clear All..
M etrics:
Impacted C # Impacted M #
% of Impacted C Ava Impacted M #
Syzterm Impact Level

Metricz Result:

ot [e ot o 1 ST ST

Ready...

Figure 62. Input Table of Example 7.4.1.4

155

7.4.1.5 Example Two: Change in the Document Module

Since the document holds the data the graphic layer needs, we might think there are a lot of
dependencies between these two modules. But, since these two modules communicate
through the notification, the coupling between these two modules is very weak. For example,
when AddPage() in Document is changed, the following figures show that there is no effect
on the graphic and notification modules. It means whenever the classes in the document
module are changed, the classes in the graphic module are not impacted. Conversely,
whenever the classes in the graphic module are changed, the classes in the document module
are not impacted. This approach decreases the coupling among the modules, and makes the

system easy to expand and maintain.

Thetree in Figure 63 shows all the classes in the example, and all the members in each class.
Document: : AddPage(DocPage&) is shown in initial change mode. Since DocPage's
constructor uses the service Dbcument:: AddPage(DocPage&), DocPage::DocPage() is
impacted. SoDocPage class is shown in impacted mode. Other not impacted items are
shown in normal mode. The metrics result box shows that the number of impacted classes in

this example is 2.

i Change Impact Analpsis Tool [ChAT)

File — Options View Tree

156

M=l

Start Calculating...

' Start Specify Changes. ..

v

B
B
B
B
B
B
B
B
Al Class View B
B

Impact Only Clags Yiew

@ @

Shiow handles

Show oot

e O

Tree Operations

Expand All... Collapse All...
Clear All..
M etics:
Impacted C # Impacted M #

% of Impacted C Avyg Impacted M #

System Impact Level

Metrics Result:

E

1~ [Recelver

¢ GraphicLayer

1= Doclayer

- LActionQuene

1~ LABSWrapper

1~ LNotifierConnection

= LInterest

1~ DocPa...

+-—» LABSACtion

> LNotifier

- Document

=\ MemberView

~-void clearAll (void)

----- vold ~Document (void |

----- PList<DocPage> pagelList (void |

----- vold hidelayerInhAllPages (DocLayerd |
----- LInterest pageCreatedInterest

------ DocPage currentPage (void |

----- String getUnigString (Stringé& |
-vold setCurrentPage (DocPage?*)

------ LInterest pageDestroyedInterest

----- Document = {(void)

------ ILNotifier notifier

----- LInterest layerRemovedInterest

----- LInterest layerhAddedInterest

------ PList<Document> theirDocumentList
----- PList<DocLayer> layerList (void |
------ LInterest currentPagelnterest
-vold RemovePage (DocPaged |

------ DocPage* itsCurrentPage

-v0ld showlLayerInAllPages (DocLavers |
----- PList<Document> theirlList (void)
----- vold Removelayer (Doclayer§ |
-vold getLayer (vold)

------ DoclLayer getlLayer (Stringé& |
-yvold Document (void)

-vold AddLayer (DocLayers |

----- void AddPage (DocPage&)

----- PList<DocLayer> itslLayerList

Ready...

Figure 63. Example 7.4.1.5 All Class Tree View

157

Figure 64, the impact only class view, displays only the impacted classes and their impacted class
members. Document: : AddPage() is shown in initial change mode, and class DocPage is shown in
impacted mode. Other not impacted items are not shown in the figure. The metrics result box

shows that the percentage of impacted classesin this exampleis only 16%.

: Change Impact Analysis Tool [ChAT) HE= E
File Options Yiew Tree
= ™ Root
' Start Specify Changes... Start Calculating... E|\1 Classes Wiew
= DocPage
TreeViewPanel v E]\' Memberview
; ~DocPage()
 »NChildren Classes
@ﬁﬂclassview - m—=Client Classes
2w Document
@ Impact Only Clazz Wiew E]\' Memb = I'Vl 2
—AddPage()
~wZhildren Classes
shaw handles .»Client Clas=zes

Shaows root

@6

Tree Operations

Expand All.. Callapze All...
Clear all...
Metricz:
Impacted C # Impacted M #
% of Impacted C Aeeg Impacted M #
System Impact Level

BEE BB HEE s

3
3

Metrics Result: 16%

Ready...

Figure 64. Example 7.4.1.5 Impact Only Class Tree View

158

Figure 65, the impact table, displays the two impacted classes and their impacted class
member in atable, Document: : AddPage() and DocPage: : DocPage(). Each line contains the
impacted class name, impacted member name, and the impact level of that impacted member.

The metrics result box shows the number of impacted membersis 2.

i Change Impact Analysis Tool [ChAT)

ImpactedT able

Drocurnent

3l
3
3l
3l
E]|
3l
3l
E]|
al
3l
3l
3
E]|

Bl Bl e e

Figure 65. Example 7.4.1.5 Impact Table

159

Figure 66, the class impact table, lists the impacted classes and the related class level change
impact metrics. This table shows that DocPage and Document are the impacted classes. The

metrics result box shows the average number of impacted member is 0.011.

i Change Impact Analysis Tool [ChAT)

Drocurnent

3
3l
3l
3l
3l
3l
3l
3l
3l
3l
3l
3l
3]

B S BE B E EEEE

Figure 66. Example 7.4.1.5 Class | mpact Table

160

Figure 67 shows the input table of this example.

;i Change Impact Analyzizs Tool [ChAT)

lputT able

Docurmnent

| e | weano
| cemeae [cuessn

L e e]]]] e]

BiEiEE R s e

Figure 67. Thelnput Table of Example 7.4.1.5

8 CONTRIBUTIONS AND FUTURE WORK

This dissertation has presented four major new results. First, a new analysis technique for
object-oriented software has been defined and developed. The research led to the creation of
a set of new concepts including the object-oriented data dependency graphs object-oriented
intra-method data dependency graph, object-oriented inter-method data dependency graph,
and object-oriented system dependency graph. We classified the different dependency
relationships in object-oriented software, and the different types of changes that could be
applied to object-oriented software. This analysis technique also includes a set of agorithms
to calculate the change impact according to the criteria that users specify. Second, this
analysis technique has been used to address the problem of change impact anaysis for
object-oriented software. Third, a set of metrics has been defined for object-oriented
software that can be used to quantitatively measure the object-oriented change impact.
Fourth, a proof-of-concept tool has been implemented and used to demonstrate the practical

feasibility of this approach on industrial software.

By using the technology developed in this research to identify potential impacts before
making a change, we can greatly reduce the risks of embarking on a costly change because
the later the problem is discovered the more it costs. This technology can provide visibility
into the potential effects of changes before the changes are implemented, and identify the
consequences or ripple effects of proposed software changes. As aresult, it can help software

developers and maintainers plan changes, make changes more accurately, accommodate

161

162

certain types of software changes, and trace through the effects of changes. They can also use
it to evaluate the appropriateness of a proposed modification. If a proposed change has the
possibility of impacting large, digoint sections of a program, the change might need to be re-
examined to determine whether a safer change is possible. Managers can use this technique
to run "what if" analyses on different change proposals, and choose the one that is most cost
effective. Software developers can use this technique to indicate the vulnerability of critical
sections of code. If a module that provides critical functionality is dependent on many
different parts of a program, its functionality is susceptible to changes made in these parts.
Software testers can use it to find which areas are impacted by the changes, enabling them to

focus only on those areas and till feel confident about the quality of the software.

This research also creates a set of object-oriented change impact analysis metrics that can
help software maintainers to quantitatively measure the software in regards to its
susceptibility to change. We have not seen any other concrete metrics for measuring change

impacts of object-oriented software.

We also explored the inference approach to solve the change impact analysis problem. The
impact calculating algorithms are expressed in data base deductive rules. The advantage of
this approach is that we can take advantage of the deductive capability of logic database to

let users compose their own questions to the system.

8.1 Future Work

One aspect of this research that needs to be refined is that of choosing the right constants for
the metrics developed in Chapter 0. A major undertaking would be to validate these metrics,
and explore how best to apply them to real-life software. The constants used in these metrics

are used to assign weights to different items expressing how much impact these items will

163

have to the software. We can assign the initial values to these constants according to the
characteristics of the items they applied to, the conduct various experiments to find the most

suited values.

We did not actually implement all the approaches studied in this research. For example, we
explored the inference approach and how to implement it using an inference tool called

Coral, but the prototype did not use this approach because of performance issues.

Another area to consider for further research involves analyzing software change impact
from the semantic perspective. The syntactic impact is calculated purely by information
extracted from the source code. This information includes the data flow, the control flow and
the calling hierarchy. Semantic knowledge consists of programming knowledge and domain
knowledge. Semantic knowledge is more difficult to derive and more difficult to verify
compared to syntactic knowledge because it is less concrete and tangible. We can extract
accurate syntactic information by parsing the software while the exact semantic information

such as the program’s behavior is harder to get.

As an example, using semantic analysis in software testing, debugging, and maintenance, one

is often interested in this question:

When can a change in the semantics of a program statement impact the execution behavior

of another statement?

This question is undecidable in general [PODG90]. Dependence analysis, like data flow
analysis, avoids problems of undecidability by trading precision for decidability. During
dependence analysis, programs are represented by def/use graphs, which contain limited

semantic information but are easy to analyze. Dependence analysis allows semantic

164

questions to be answered “approximately,” because a program’'s dependencies partially

determine its semantic properties.

We could improve the semantic analysis by plugging in semantics checking instruments. The
results would be impacted by semantic information that can be controlled by users. For each

method, we would expect to use pre-condition, post-condition and axiom verifications.

PRE-CONDITION: Rulel && Rule2...

Method1’s implementation

POST-CONDITION: Rulel && Rule2...
AXIOMS: Rule...
PRE-CONDITION is used to describe under what certain condition this method will start its

operations. POST-CONDITION is used to describe what this method will deliver if PRE-
CONDITION is met, and the behavior of the method has to meet whatever is described in the

AXIOM rules.

If the signature of the method remains the same, changing the method’s implementation,
while keeping the PRE-CONDITION, POST-CONDITION, and AXIOM the same will not
impact this method’s clients. This approach has the potential to dramatically reduce the

extend of the impact that is calculated from syntactic information.

Another future research possibility is dynamic change impact analysis. Static impact is
calculated according to static information obtained at compile time. Dynamic impact is
calculated by executing the program. The change impact set calculated from static analysis
will be bigger than the one calculated from dynamic analysis. For example, a class in the

method’s signature can be substituted by any of its subclasses, but the information about

165

which subclass will be substituting that base class cannot be known until run time. We have
to approximate the result to count the effect of all its subclasses in static analysis. With this
information in hand, the dynamic change impact set only needs to consider the actual
subclass that is substituting the base class, So, the result set is smaller and more accurate, but

the dynamic change analysis set is limited to the corresponding input data at that execution.

APPENDIX A.OBJECT-ORIENTED CHANGE IMPACT RULES AND

FACTS

This section summaries the facts and rules used in Section O.

ref (cl1, ml, c2, n2) :- direct-ref(cl, ml, c2, ng).

ref (cl1, mi, ¢3, nB) :- ref(cl, ml, c2, ng), direct_ref(c2, ng, c3, nB).

» Factsand rules that describes information inside the class

menmber(c, m) - nethod (¢, m

menber(c, n) - data_field(c, n)

IFS(c, m :- IFS(c, n), nethod(c, m, ref(c, m ¢, n).

IFS(c, m :- IDS(c, f), nethod(c, m ref(c, m c, f).

IDS(c d) :- IFS(c, n), data field(c, d), ref(c, d, ¢, n).

IDS(c, d) :- IDS(c, x), data field(c, d), ref(c, d, ¢, x).

* Rulesand facts about inheritance

IFS(c, m :- |ICS(parent), children(parent, c), nethod(c, m, inherit(parent, m c, m,
| FS(parent, m;

IFS(c, m :- |1CS(parent), children(parent, c), nethod(c, m, p-overwite(parent, m c,
| FS(parent, m;

IFS(c, m :- |1CS(parent), children(parent, c), nethod(c, m, ref(parent, x, ¢, m,
| DS(parent, x), public(parent, x).

IFS(c, m :- |1CS(parent), children(parent, c), nethod(c, m, ref(parent, x, c, m,
| DS(parent, x), protected(parent, x).

IFS(c, m :- |ICS(parent), children(parent, c), nethod(c, m, ref(parent, n, ¢, m,
| M5(parent, n), public(parent, n).

IFS(c, m :- I1CS (parent), children(parent, c), nethod(c, m, ref(parent, n, ¢, m,
| M5(parent, n), protected(parent, n).

IDS(c, f) :- 1CS (parent), children(parent, c), data field(c, f), ref(parent, x, c, f),
| FS(parent, x), public(parent, x).

IDS(c, f) :- 1CS (parent), children(parent, c), data field(c, f), ref(parent, x, c, f),
| FS(parent, x), protected(parent, x).

IDS(c, f) :- 1CS (parent), children(parent, c), data field(c, f), ref(parent, m c, f),
| DS(parent, m, public(parent, m.

IDS(c, f) :- 1CS (parent), children(parent, c), data field(c, f), ref(parent, m c, f),
| DS(parent, m), protected(parent, n.

166

m,

167

* Rulesand factsrelated to containment/use relationships

PIMS(c, m :- IM5(c, m, public(c, m.

PIDS(c, f) :- IDS(c, f), public(c, f).

IFS(c, m :- client (¢, c), nethod(c, m, ref(c, n, ¢, m, PIFS(c, n).
IFS(c, m :- client (¢, c), nethod(c, m, ref(c, f, ¢, m, PIDS(c, f).
IDS(c, f) :- client (¢, c), data_field(c, f), ref(c,, n, ¢, f), PIFS(c, n).
IDS(c, f) :- client (¢, c), data_field(c, f), ref(c, x, ¢, f), PIDS(c, x).

* Initialize impacted class set facts

1CS(c) :- 11CS(c).
1CS(c) :- IFS(c, m.
1CS(c) :- IDS(c, f)

APPENDIX B.CLASS HEADERS OF TESTED MODULES

#i fndef | NTEREST_H

#define | NTEREST_H

L1111 10 7707000000777 7 0777777077777 777777
// Linterest is the class used to expressed for the events
// intended to notify other classes

//

// Copyright (c) LCC LLC

//

// June 96

// Li Li

#i ncl ude <rw/cstring. h>
#i ncl ude <stdlib. h>

class Llnterest

{

public:
LI nterest(const char* operation = 0);
LI nterest(const RWCString& opStr);
LI nterest(const Llnteresté& interest);
virtual ~Llnterest();

public:
LInterest& operator = (const Llnteresté& interest);
int operator == (const Linteresté& interest) const;
int operator != (const Llnteresté& interest) const;

const RACString & Get Qperation() const;
static unsigned PtrHashFunc(const Llnterest & interest);
static unsigned Val HashFunc(const Llnterest & interest);
protected:
RVWCSt ring _operation;

#endi f // | NTEREST_H

#i f ndef _LRECEI VER H
#def i ne _LRECEI VER_H

168

#i

169

f ndef NOTI FI CATI ON_H

#def i ne NOTI FI CATI ON_H

#i

//
//
//
//
//
//

cl

{

},.

//

nclude "Notification/lnterest.h"

L1177 77/777777777
Notification class header file
Copyright (c) LCC LLC
Nov 96
Li Li
ass LNotification
public:
LNoti fication(const char* operation = 0);
LNotification(const RACString& operation);
LNotification(const Linterest& interest);
virtual ~LNotification();
public:
int operator == (const LNotification& n) const;
// sub class need to overwite the clone nethod.
// Because | cannot predict whether the notification object
// is a heap or stack object. Wien the client throw notification
// within notification, the notify action will be queued for |ater
// execution.
virtual LNotification* O one() const = 0;
public:
const Linterest& Getlnterest() const ;
voi d Setlnterest(const Llnterest& interest);
LI nterest* GetReceiverlnterest() const { return _receiver_interest; }
voi d Set Recei verlnterest(LInterest* interest) { _receiver_interest = interest; }
static unsigned PtrHashFunc(const LNotification& notification);
protected:
LNotification(const LNotification& notification);
LNotification& operator = (const LNotification& n);
private:
int _allocate_interest;
LInterest _interest;
LInterest* _receiver_interest;
LDefaul tNotification is the sinplest notification that just

// overwite the LNotificaiton's O one nethod. So, it can be
// instantiable.

class LDefaul tNotification : public LNotification

{

public:
LDefaul t Noti fication(const char* operation = 0);
LDefaul t Noti fication(const RACString& operation);
LDefaul t Notification(const Llnteresté& interest);
virtual ~LDefaultNotification();

virtual LNotification* O one() const;

protected:

LDefaul t Notification (const LDefaul tNotification& other);

},.

class LBatchNotification : public LNotification

{
public:

LBatchNotification (const Llinterest& interest) : LNotification(interest)

{
}

virtual LNotification* done() const {
return (new LBatchNotification(*this));

protected:
LBat chNot i fication (const LBatchNotification& other)
LNoti fication(other)

b
#endi f // NOTI FI CATI ON_H

170

1171777777177 777
// LNotifier only send out one notification at a tine instead of batched the

notifi

cation

// and send | ater.

//

// Copyright (c) LCC LLC
// Nov 96

// Li

Li

#i fndef _NOTI Fl ER_H
#define _NOTI FI ER H

#i ncl ude "Action/ActionQueue. h"

#i nclude <rw'tpslist. h>
#i ncl ude <rw/'tvhdict. h>

#i nclude "Notification/lnterest.h"
#i nclude "Notification/PtrHashFuncTenpl ate. h"
#i nclude "Notification/Notifier.h"
#i nclude "Notification/Receiver.h"

cl ass
cl ass
cl ass

LNotification;
LNot i fi erConnection;
LABSAct i on;

typedef RWIPtrSlist<LNotifierConnection> ConnectionlList;

t ypedef RWIVal HashDi ctionary<LI nt erest,

cl ass

{
publ

LNotifier

ic:

LNotifier();

vi

publ

rtual ~LNotifier();

ic:

int operator == (const LNotifier& notifier) const

{

return (this == ¬ifier);

// public protocols

publ

//
//
//
//
//
vi
vi

ic:

Notify will not wait for outside |evel

notifier to finish, if there are any

enbeded notify. SyncNotify will save

t he whol e operation, and execute after

outer level of notifiers finish notify.

rtual void Notify (LNotification& theNotification);
rtual void SyncNotify(LNotification& theNotification);

ConnectionLi st *> | nt erest Connecti onSet Map;

171

172

virtual void BeginNotification() {}
virtual void EndNotification() {}
virtual int |[|sNotifylLocked() { return (_notify lock); }

public:
virtual void AddRecei ver(LRecei veré& receiver);
virtual void RenpveRecei ver (LRecei ver& receiver);
virtual int HasReceiver(const LReceiveré& receiver) const ;

// The Interface here applies to the classes that are not

// LReceiver and still want to register for notification.

// It is caller’s responsibility to remenber to DeRegi ster
// the interest when the interest is not |onger needed.

F e e
// Regi ster interest and function
virtual void Register(const Llnterest& const LABSW apper@&);

// Deregister all the wapper associated with the interest
virtual void DeRegister(const Llnterest&);

// Deregister the specified the interest and w apper
virtual void DeRegi sterlnterest Wapper (const Llnterest& const LABSW apper@&);

// Conveni ent nethods for different users
virtual void Renovel nterest FronAl | Recei vers(const Llnterest&);

public:
//
// public nmethods for inplenentation purpose
virtual void AddConnection(LNotifierConnection* connection);
virtual void RenpveConnection(LNotifierConnection* connection);

virtual void Addl nterest Connection(const Llnterest& interest,
LNoti fi erConnection* connection);
virtual void Renopvel nterest Connection(const Llnterest& interest,
LNoti fi erConnection* connection);

voi d AddV4i ti ngAction(LABSAction* action);
voi d RenpveWdi ti ngAction(LABSAction* action);

void DoNotify (LNotification& theNotification);

173

private:
virtual void O earAll Receivers();
virtual void C earConnectionReceiver(LNotifierConnection* con);

voi d DunpConnectionlnterest();

private:

LRecei ver _receiver_agent; // used to register nmenber function

// for classes that is not a receiver

// and register for static and global functions
I nt er est Connect i onSet Map _interest_connectionset_map;

int _notify |ock; // set to 1 if notifer is notifying
// when notifier is notifying, all
// actions cones in will be put to
// _action_waiting list.

LActi onQueue _action_waiting_queue;

},.

#endi f

1111177777 177777777777777777777777777/7777777/77777777777777
// Receiver class header

//

// Copyright (c) LCC LLC

// Nov 96

// Li Li

#i ncl ude <rw'tpslist. h>

class Llnterest;

class LNotifier;

class LNotifierConnection;
cl ass LABSW apper;

class LABSActi on;

typedef RWIPtrSlist<LNotifier> NotifierlList;

cl ass LReceiver {

public:
LRecei ver(LNotifier* notifier);
LRecei ver();
virtual ~LReceiver();

public:

//

// public interface of receivers
// add interest to receiver, this will not take effect
// until notifier Add this receiver to itself using AddRecei ver

// Note: | forgot whey LABSW apper takes a pointer instead of reference.

// Add I nterest and Wapper
virtual void Addlnterest(const Llnteresté& interest,
const LABSW apper & w apper);

// Renpve all wrappers associated with the interest fromreceiver
virtual void Renpvel nterest(const Linterest& interest);

// Renove the specified interest and wapper fromreceiver
virtual void Renovel nterest Wapper (const Llnterest& interest,
const LABSW apper & wrapper);

// Renove all interest of the receiver
virtual void RenpveAlllnterests();

public:
//
// inplenmentation interface; used by other classes in the
// framework, but not for the user.
LNotifier* GetActiveNotifier();

virtual int [|sNotifierAttached(const LNotifier* notifier) const ;

Li

174

vi rtual
vi rtual

vi rtual
vi rtual

vi rtual

private:

void AttachNotifier(LNotifier* notifier);
voi d DetachNotifier(LNotifier* notifier);

voi d DeRegi sterltSel fFromAl |l Notifiers();
voi d Regi sterRecei ver ToNotifier(LNotifier* notifier);
voi d DeRegi sterltSel fFronNotifier(LNotifier* notifier);

// inplenentation interface of receiver
voi d ActivateNotifier(LNotifier* notifier);
voi d AddActi onToRegi st eredNotifiers(LABSAction* action);

private:

// notifier |list behave |ike a stack, the item added | ast
// is at first, and becone the current active one.
NotifierList* _notifier_list;

LNoti fi erConnection* _connection;

},.

#endi f

175

#i f ndef DoclLayer_H
#defi ne DocLayer_H

111771777777 77/7777777

// The DoclLayer header file.
//

// Copyright (c) LCC LLC
// April 96

// QAivier Jojic

[11717777777777777777177777717777777777
// Inport Section

#i ncl ude <Tool s/ Port. h>

#i ncl ude <Tool s/ String. h>

#i ncl ude <Tool s/ PLi st. h>

#i ncl ude <Tool s/ Qvj ect. h>

#i nclude <Notification/Notification. h>
#i ncl ude <Notification/lnterest. h>

cl ass Docunent;

[11717777777777777777177777717777777777

// The DoclLayer abstract class

//

// A layer is a (sharable) part of a docunent.

cl ass DoclLayer
: public Object

{

public:
//Calls the destructor internally
virtual void destroy ();

// The docunment owner of this |ayer
Docunent & docunent ;

// Name and description of this |ayer.
const String nane;
String description;

// Notifications

// All notifications are generated by concrete subcl asses.
// (notifications are sent to all docunents that have a
// reference to this |ayer)

// The concrete notification is |ayer dependent.

// To register a receiver, use the notifier of the docunent.

176

177

//

// Warning: the interests below are only valid for TH S | ayer,

// ie, the registered receivers will only get notified when

// TH'S | ayer changes (for other |ayer instances use their own interests).

const Llnterest dataAddedl nterest;
const Llnterest dataRenovedl nterest;
const Llnterest dataChanged! nterest;

protected:

DoclLayer (Docunenté& const String& nane);
virtual ~DoclLayer ();

#endi f

178

#i f ndef DocPage H
#defi ne DocPage H

#i ncl ude <Tool s/ Port. h>

#i ncl ude <Tool s/ PLi st. h>

#i ncl ude <Tool s/ bj ect. h>

#i nclude <Notification/Notification. h>
#i ncl ude <Notification/lnterest. h>

#i ncl ude <DoclLayer s/ Docunent. h>

cl ass DoclLayer;

L1111 107 0077777777777 777777777777777

// The DocPage final class.

//

// A page is a part of a docunent and has a stack of |ayers.
// The | ayers nust bel ong to the docunent.

cl ass DocPage
: public VOyject

{

public:
DocPage (Docunent &) ;
~DocPage ();

Docunent & docunent ;

// The first layer in the list is the top |ayer.
// The last layer in the |ist is the bottom | ayer.
const PList<DocLayer>& | ayerList () const { return itsLayerlList; }

//Addi ng/ renoving a | ayer

// During the call of the "add()" nethod, if the |ayer does

// not belong to the Docunment of this page, it is automatically added.
voi d add (DoclLayer&);

voi d renove (DoclLayer&);

// Show hi de
//A switch to/from shown/hi dden sends the LayerNotification
//for the visibility change interest.
voi d show (DoclLayer &) ;
voi d hide (DoclLayer@&);
bool isH dden (DoclLayer& |ayer) {
return (itsH ddenLayers. has (layer)) ? true : false;

// These send a ‘ShuffleNotification’
voi d novelLayerlUp (DoclLayer@&);
voi d novelLayer Down (DoclLayer&);

179

voi d put Layer inTop (DoclLayer&);

voi d put Layer ToBott om (DocLayer &) ;

voi d put Layer Above (Doclayer& alayer, Doclayer& aTarget);
voi d put LayerBel ow (DoclLayer & alLayer, DoclLayer& aTarget);

DoclLayer* currentlLayer () const { return itsCurrentlLayer; }

voi d set Current Layer (DoclLayer*);

// Notifications
F A R E T LR TP PP
// (uses the notifier of the Docunent)

// The "instance |level " interests are only valid for TH S page,

// ie, the registered receivers will only get notified when

// this page changes.

// The "class level" interests are valid for ANY page.

// (It’s normaly a bad idea for a receiver to register for both the
// instance level and for the class |evel interest).

const Linterest currentlLayerlnterest;
const Llnterest |ayerAdded! nterest;
const Llnterest |ayerRenoved! nterest;
const Llnterest |ayerShuffledlnterest;
const Linterest layerVisibilitylnterest;

static const Linterest currentlLayerd asslnterest;
static const Llnterest |ayerAddedd asslnterest;
static const Linterest |ayerRenpvedd asslnterest;
static const Llnterest |ayerShuffledd asslnterest;
static const Linterest |ayerVisibilityd asslnterest;

// Notification sent when the current |ayer changes

class CurrentlLayerNotification : public Docunent::PageNotification {
public:

DoclLayer* const previousCurrentlLayer;

DoclLayer* const currentlLayer;

private:

Current LayerNoti fication (DocPage& t hePage,
const Llnterest thelnterest,
DocLayer * t hePrevi ousCurrent Layer,
DoclLayer * t heCurrent Layer)

Docunent : : PageNoti fication (docunment, thelnterest, thePage)
, previousCurrentLayer (thePreviousCurrentlLayer)
, currentlLayer (theCurrentlLayer)
{}

friend class DocPage;

},'

// Notification sent when a |ayer is shown or hidden

class LayerNotification : public Docunent::PageNotification {
public:

DoclLayer & | ayer;

int i ndex;
protected:
Layer Noti fication (DocPage& t hePage,
const Llnteresté& thelnterest,
DoclLayer & t heLayer,

int t hel ndex)
Docunent : : PageNot i fi cation (thePage. docunent, thelnterest,
, layer (theLayer)
, i ndex (thel ndex)
{}

friend class DocPage;

},.

// Notification sent when |ayers are shuffled

class ShuffleNotification : public LayerNotification {
public:

int const |ayersPreviouslndex;

//To get the new index of the |ayer:

//
// int new ndex = notification. page.|layerlList().indexCf
// (notification.layer);
private:
ShuffleNotification (DocPage& t hePage,
const Llnteresté& thelnterest,
DoclLayer & t heLayer,
i nt t heLayer sPrevi ousl ndex)
Layer Notification (thePage,
t hel nt er est,
t heLayer,
t hePage. | ayerLi st().indexOf (thelLayer))
, layersPreviousl ndex (theLayersPreviouslndex)
{}
friend class DocPage;
};:
private:

}'.

PLi st <DoclLayer > itslLayerlLi st;
PLi st <DoclLayer > it sHi ddenLayers;
DocLayer* itsCurrentLayer;

#endi f

t hePage)

180

#i f ndef Docunment_H

#defi ne Document _H

1171177777 7177777777777777777777777777/77777777777777777
// Docunent header file.

//

// Copyright (c) LCC LLC

// April 96

// QAivier Jojic

#i ncl ude <Tool s/ Port. h>

#i ncl ude <Tool s/ PLi st. h>

#i ncl ude <Tool s/ String. h>

#i ncl ude <Tool s/ Qbj ect. h>

#i ncl ude <Notification/Notifier.h>
#include <Notification/Notification. h>
#i ncl ude <Notification/lnterest. h>

#i ncl ude <DoclLayers/DoclLayer. h>

cl ass DocPage;

L1117177777717717777777777
// The Docunent cl ass.

// (should not be subcl assed)

//

// A docunent |s conposed of pages, each page is a stack of |ayers.

cl ass Docunent

: public Object
{
public:

// Creation/Destruction

// Static list of all docunents existing in this application.
// Wien the application quits, the remaining docunments are
// del et ed.
static const PList<Docunent>& theirlList () {

return thei rDocunentLi st;

Docunent ();
~Docunent ();

void clearAll ();

// A docunent is conposed of pages.
// A page bel ongs to one and only one docunent.

181

182

// The only way to add or renove pages is to actually
// create or destroy them (the page constructor takes a
// docunent as a paraneter).

const PLi st <DocPage>& pagelist () const {
return itsPagelist;

// 1"mnot sure the concept of "current page" shoul d be
// kept in the docunent
DocPage* currentPage () const {

return itsCurrentPage;

// Generates the "current page changed” notification
voi d set Current Page (DocPage*);

// Layers:

//

// A page is a stack of |ayers.

// For conveni ence, the docunent has its own |ist of all |ayers.

const PList<DoclLayer>& | ayerList () const {
return itslLayerlList;

DoclLayer* getlLayer (const String& alLayer Name) const;

voi d showlayer | nAl | Pages (DoclLayer@&);
voi d hi deLayer | nAl | Pages (DoclLayer&);

// Notifications:

// Notifications are sent whenever sonething changes in the

// docunent, in a page or in a layer.

// All these notification use the sane "notifier", ie, the one
// bel onging to the docunent.

LNotifier notifier;

// List of interests handl ed by the Docunent itself.

// Pages and | ayers nmay provide additional specific interests.
// Generates the current page changed notification

static const Llnterest pageCreatedlnterest;

static const Llnterest pageDestroyedl nterest;

static const Llnterest |ayerAddedlnterest;

static const Llnterest |ayerRenpved! nterest;

static const Llnterest currentPagelnterest;

// The common superclass for all notifications generated

// by a docunent, a page, or a |ayer.
class Notification : public LNotification
{
public:

Docunent & docunent;

const Linterest& interest;

virtual LNotification* Oone() const {
return (new Notification(*this));

protected:
Notification (const Notification& other)
LNot i fication(other)
, docunent (ot her. docunent)
, interest(other.interest)

Not i fication (Docunent& aDocunent,
const Llnteresté& anlnterest)
LNot i fication (anlnterest)
, docunent (aDocunent)
, interest (anlnterest)
{}
};:

// Notification sent when a page is created or destroyed.
class PageNotification : public Notification

{
public:
DocPageé& page;

virtual LNotification* done() const {
return (new PageNotification(*this));

protected:
PageNot i fication (const PageNotification& other)
Not i fication(other)
, page(ot her. page)

{

}

PageNot i fication (Document& aDocunent,
const Linterest& aCreateQ Destroyl nterest,
DocPageé& aPage)

Not i fication (aDocunment, aCreateQ Destroylnterest)
, page (aPage)
{}

friend class Docunent;

183

},.

// Notification sent when the current page changes
class Current PageNotification : public Notification
{
public:

DocPage* const previ ousCurrent Page;

DocPage* const current Page,

virtual LNotification* Oone() const {
return (new CurrentPageNotification(*this));

private:
Current PageNoti fication (const CurrentPageNotification& other)
Not i fication(other)
, previousCurrent Page(ot her. previ ousCurrent Page)
, current Page(ot her. current Page)

Current PageNot i fication (Docunent& aDocunent,
DocPage* t hePrevi ousCurrent Page,
DocPage* aPage)
Notification (aDocument, currentPagelnterest)
, previousCurrent Page (thePrevi ousCurrent Page)
, currentPage (aPage)
{}
friend class Docunent;

},.

// Notification sent when a |ayer is added or renpved.
class LayerNotification : public Notification

{
public:
DoclLayer & | ayer;
virtual LNotification* done() const {
return (new LayerNotification(*this));
}
protected:

LayerNotification (const LayerNotification& other)
Not i fi cation(other)
, layer(other.|ayer)

LayerNotification (const Llnterest& addOr Renovel nterest,
DocLayer & t heLayer)
Noti fication (theLayer. docunent, addO Renovel nterest)

185

, layer (thelLayer)
{}

friend class Docunent;

},.

// And a function usefull for the generation of uniqg nanes
// while creating interests:
static String getUniqString (const Stringé&);

private:
voi d AddPage (DocPage&);
voi d RenpvePage (DocPage&);
voi d AddLayer (DoclLayer&);
voi d RenpvelLayer (DoclLayer@&);

PLi st <DoclLayer > itsLayerlLi st;
PLi st <DocPage> it sPagelLi st;
DocPage* itsCurrent Page;

static PList<Docunent> theirDocunentlLi st;

friend cl ass DocPage;
friend class DoclLayer;
}i
#endi f

LIST OF REFERENCES

186

187

LIST OF REFERENCES

[ARNO96] R. S. Arnold and S. A. Bohner, “An Introduction to Software Change
Impact Analysis, Software Change Impact Analysis, IEEE Computer Society
Press 1996.

[ARNO93] R. S. Arnold and S. A. Bohner, “Impact Analysis - Towards A
Framework for Comparison,Proceedings of the Conference on Software
Maintenance, Los Alamitos, CA, September 1993, pp. 292-301.

[AUTH88] Lowell Jay Authur,“Software Evolution: A Software Maintenance
Challenge,” John Wiley and Sons, 605 Thrid Avenue, New York, N.Y.
10158, February, 1988.

[BARR95] S. Barros, Th. Bodhuin, A. Escudie, J.P. Queille, and J.F. Voidrot,
“Supporting Impact Analysis: A Semi-Automated Technigue and Associated
Tool,” Proceedings of the Conference on Software Maintenance, 1995. IEEE,
Piscataway, NJ, USA, 95CB35845 pp. 42-51.

[BEIZ90] Boris Beizer, Software Testing Techniques’, Second Edition, Van
Nostrand Reinhold, 115 fifth Avenue, New York, NY 10003. 1990.

[BOHNO95] S. A. Bohner, A Graph Traceahility Approach for Software Change
Impact Analysis," Ph.D. Dissertation, George Mason University, Fairfax VA,
1995.

[BOOC94] Grady Booch, Object-Oriented Analysis and Design with
Applications,” Second Edition, Benjamin/Cummings Publishing Company,
Redwood City, CA, 1994.

[CHAMO97] Dennis de ChampeauxObject-Oriented Development Process and
Metrics,” Simon & Schuster/A Viacom Company, Upper Saddle River, NJ
07458, 1997.

[CHER91] John C. Cherniavsky and Carl H. Smith, “On Weyuker's Axioms For
Software Complexity Measures”,|IEEE Transactions on Software
Engineering. Volume 17, No. 6, June 1991. pp.635-638.

188

[CHID94] Shyam R. Chidamber and Chris F. Kemerer, “A Metrics Suite for
Object-Oriented Design,”lEEE Transactions on Software Engineering,
Volume 20. No. 6, June 1994, pp.476-493.

[COLL88] James S. Collofello and Mikael Orn, “A Practical Software
Maintenance EnvironmentConference on Software Maintenance, |IEEE CS
Press, Los Alamitos, CA. October 1988, pp.45-51.

[DEMI91] Richard A. Demillo and A. Jefferson Offutt, “Constraint-Based
Automatic Test Data Generation,TJEEE Transactions on Software
Engineering, Volume 17, No. 9, September 1991, pp.900-910.

[DEVA96] Prem Devanbu, Sakke Karstu, Walcelio Melo and William Thomas,
“Analytical and Empirical Evaluation of Software Reuse Metrics,”
Proceedings-International Conference on Software Engineering, 1995, IEEE,
Los Alamitos, CA. pp.189-199.

[IEEE90] IEEE Std 610-12[729] — 1990, “Software Engineering Terminology,”
Published by thénstitute of Electrical and Electronics Engineering, Inc. 345
East 47 Street, New York, NY 10017-2349, USA, 1990.

[FENT91] Fenton, N. E.,Software Metrics, A rigorous approach,” Chapman &
Hall, New York, 1991.

[HALS77] Maurice Howard Halstead Efements of Software Science.” New
York, Elsevier-North Holland, 1977.

[HARR92] Mary Jean Harrold and John D. McGregor, "Incremental Testing of
Object-Oriented Class Structuresl4th International Conference on
Software Engineering, IEEE Computer Society, Melbourne, Australia, May
1992, pp. 68-80.

[HARR93] Mary Jean Harrold and Brian Malloy, “A Unified Interprocedural
Program Representation for a Maintenance EnvironmengEE
Transactions on Software Engineering, Volume 10, No. 6, June 1993, pp.
584-593.

[HARR94] M. J. Harrold and Gregg Rothermel, “Performing Data Flow Testing
on Classes,"Symposium on Foundations of Software Engineering, ACM
SIGSOFT, New Orleans, LA, December 1994, pp.154-163.

[HEIS89] Keisler K. G., Tsai W. T. and Powell P. A., “An Object-Oriented
Maintenance-Oriented Model for SoftwaréEEE Spring Compcon (Digest
of Papers), February 1989, pp. 248-253.

189

[HORW90] Susan Horwitz, Thomas Reps, and David Binkley, “Interprocedural
Slicing Using Dependence GraphsXCS Transactions on Programming
Languages and Systems, Volume 12, No. 1, January 1990, pp.26-60.

[HSIA95] P. Hsia, A. Gupta, C. Dung, J. Peng, and S. Liu, “A Study on the
Effect of Architecture on Maintainability of Object-Oriented Systems,”
Proceedings of the Conference on Software Maintenance, 1995, pp.4-11.

[HWAN97] Yih-Feng Hwang, Detecting Faults In Chained-Inference Rules In
Information Distribution Systems,” Ph.D. Dissertation, George Mason
University, Fairfax VA, 1997.

[KAIS88] Gall E. Kaiser, Peter H. Feller, and Steven S. Popovich, “Intelligent
Assistance for Software Developmeht and MaintenandeEE Software
Transaction, Volume 5, No. 3, May 1988, pp.40-49.

[KEAB88] J. Keables, K. Roberson, and A. von Mayrhauser, “Data Flow
Analysis and its Application to Software Maintenande;bceedings of the
Conference on Software Maintenance, IEEE CS Press, Los Alamitos, CA.,
October 1988, pp. 335-347.

[KERN86] Joseph K. Kearney, Robert L. Sedimeger, William B. Thompson,
Michael A. Grey, and Michael A. Alder, “Software Complexity
Measurement,Communications of the ACM, Volume 29, No. 11, November
1986, pp. 1044-1050.

[KORE90] Bogdan Korel and Janusz Laski, "Dynamic Slicing of Computer
Programs," The Journal of Systems and Software, Volume 13, No. 3,
November 1990, Elsevier North Holland Inc, pp. 187-195.

[KUNG94] D. Kung, J. Gar, P. Hsia, F. Wen, Y. Togoshima, and C. Chen,
“Change Impact Identification in Object-Oriented Software Maintenance,”
Proceedings of the Conference on Software Maintenance, August 1994,
IEEE, Piscatawary, NJ, USA. 94CH34385-0.. pp.202-211.

[LIOF96] Li Li and A. Jefferson Offutt, “Algorithmic Analysis of the Impact of
Changes to Object-Oriented SoftwaréEEE International Conference on
Software Maintenance, November 1996, Monterrey CA, pp. 171-184.

[LIOF964a] Li Li and A Jefferson Offutt, Algorithmic Analysis of the Impact of
Changes to Object-Oriented Software," George Mason University ISSE Dept.
Technical Report, ISSE-TR-96-02, February 1996.

[LIOF96b] Li Li and Jeff Offutt. ‘Applying Logic-based Database to Impact
Analysis of Object-oriented Software”, George Mason University ISSE Dept.,
Technical Report ISSE-TR-96-08, September 1996.

190

[LIWE94] Wei Li and Sallie Henry, “An Empirical Study of Maintenance
Activities in Two Object-oriented Systems,Journal of Software
Maintenance, Research and Practice, Volume 7, No. 2 March-April 1995,
pp.131-147.

[LYLE9O] James R. Lyle, Dolores R. Wallance, James R. Graham, Keith B.
Gallagher, Joseph P. Poole, and David W. Binkley, “Unravel: A CASE Tool
to Assist Evaluation of High Integrity Software Volume 1: Requirements and
Design”, National Institute of Standards and Technology, Computer Systems
Laboratory, Gaithersburg, MD 20899, 1990.

[LORE94] Mark Lorenz and Jeff Kidd,Object-Oriented Software Metrics,”
Prentice Hall Inc. Englewood Cliffs, NJ 07632, 1994.

[LOYA93] Joseph P. Loyall and Susan A. Mathisen, “Using Dependence
Analysis to Support the Software Maintenance ProceSsyiference on
Software Maintenance, IEEE CS Press, Los Alamito, CA. September 1993,
pp. 282-291.

[MADH91] Nazim H. Madhaviji, “Environment Evolution: The Prism Model of
Changes,”|EEE Transaction on Software Engineering, Volume 18, No. 5,
May 1992, pp.380-392.

[MART94] Robert C. Martin, “Object-Oriented Design Quality Metrics, An
Analysis of Dependencies.” 847.918.1004, August 1994.

[MART95] Robert C. Martin, "Designing Object-Oriented C++ Applications
Using the Booch MethodPrentice Hall, Inc. Englewood Cliffs, New Jersey
07632, 1995.

[McCa76] McCabe, T.J., “A Complexity MeasuréEEE Transaction Software
Engineering, Volume SE-2, No. 4, 1976, pp.308-320.

[McCa92] McCabe & Associates, Inc., “Battlemap Analysis Tool Reference
Manual,” McCabe & Associates, Inc., Twin Knolls Professional Park, 5501
Twin Knolls Road, Columbia, MD, December 1992.

[MILL88] Mills, E. E., “Software Metrics,” SEI Curriculum Module SEI-CM-
12-1.1, Carnegie Mellon University, Pittsburgh, PA, 1988.

[MORE90] Robert Moreton, “A Process Model for Software Maintenance”,
Journal Information Technology, Volume 5, 1990, pp. 100-104.

[MOSE90] Louise E. Moser, “Data Dependency Graphs for Ada Programs,”
IEEE Transactions on Software Engineering, Volume 16. No. 5, May 1990,
pp.498-509.

191

[OVIES8O] E. I. Oviedo, “Control Flow, Data Flow and Program Complexity,” in
Proceeding IEEE COMPSAC, The IEEE Society’s Fourth International
Computer Software and Application Conference, Chicago, USA, 1980,
pp.146-152.

[OFFU95] A. Jefferson Offutt and Alisa Irvine, "Testing Object-Oriented
Software Using the Category-Partition Metho&enteenth International
Conference on Technology of Object-Oriented Languages and Systems,
(TOOLS USA '95), Santa Barbara, CA, August 1995, pp. 293-304.

[OFFU91] A. Jefferson Offutt, “An Integrated Automatic Test Data Generation
System,”Journal of Systems Integration, November 1991, pp391-409.

[ORFA96] Robert Orfali, Dan Harkey, and Jeri Edward$he' Essential
Distributed Objects Survival Guide,” John Wiley & Sons, Inc., 605 Third
Avenue, New York, N.Y. 10158, 1996.

[PFLE90] Shari Lawrence Pfleeger and Shawn A. Bohner, “A Framework for
Software Maintenance Metrics,”|IEEE Transactions on Software
Engineering, May 1990, pp. 320-327.

[PODG90] Andy Podgurski and Lori A. Clarke, “A Formal Model of Program
Dependencies and Its Implications for Software Testing, Debugging, and
Maintenance,|EEE Transactions on Software Engineering, Volume 16, No.

9, September 1990, pp. 965-979.

[QUAD91] Ghassan Z. Qadah, Lawrence J. Henschen, and Jung J. Kim,
“Efficient Algorithms for the Instantiated Transitive Closure Queri¢éSEE
Transactions on Software Engineering, Volume 17, No. 3, March 1991,
pp.296-309.

[RINE95] David Rine, Sructural Defects in Object-Oriented Programming,”
Computer Science Department, George Mason University, Fairfax, VA
22030, Technical Report, May 1995.

[ROMB89] Dieter H. Rombach and Bradford T. Ulery, “Improving Software
Maintenance through Measurement,” Proceedings of the IEEE, Volume 77,
No. 4, April 1989, pp.581-595.

[RUMB91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen, “Object-Oriented Modeling and Design,”
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1991.

[SCHN87] Norman F. Schneidewind, “The State of Software Maintenance,”
IEEE Transactions on Software Engineering, SE-13, No. 3, March 1987,
pp.303-310.

192

[SMIT90] M. D. Smith and J. J. Robson, “Object-Oriented programs - the
problems of validation,”Proceedings of IEEE Conference on Software
Maintenance, San Diego, CA, November 1990, pp.272-281.

[SNEE95] Harry M. Sneed, “Estimating of Costs of Software Maintenance
Tasks,” Conference on Software Maintenance, 1995, IEEE, Piscataway, NY,
USA. 95CB35845.. pp168-181.

[TURV94] Richard J. Turver and Munro Malcolm, “An Early Impact Analysis
Technique for Software Maintenanceldurnal of Software Maintenance:
Research and Practice, Volume 6, No. 1, January-February 1994, pp.35-52.

[WEIS84] M. Weiser, “Program Slicing,1EEE Transactions on Software
Engineering, Volume 10, No. 4, July 1984, pp. 352-357.

[WEYUS88] W. Weyuker, “Evaluating Software Complexity Measurd&EE
Transactions on Software Engineering, Volume 14, No. 9, September 1988,
pp. 1357-1365.

[WHIT92a] Lee J. White, “A Firewall Concept for both Control-Flow and Data-
Flow in Regression Integration TestindEEE Transactions on Software
Engineering, 1992, pp. 262-171.

[WHIT92] S. Whitmire, “Measuring Complexity in Object-Oriented Software,”
Third International Conference on Applications of Software Measurement,
La Jolla, CA, 1992.

[WILD92] Norman Wilde and Ross Huitt, “Maintenance Support for Object-
Oriented Programs,lEEE Transaction Software Engineering, Volume 18,
No. 12, December 1992, pp.1038-1044.

[YAUS78] S. S. Yau, J. S. Collofello, and T. MacGregor, “Ripple Effect
Analysis in Software MaintenanceProceedings of IEEE COMPSAC, The
IEEE Society’s Fourth International Computer Software and Application
Conference, 1978, pp.60-65.

[YAUS80] S. S. Yau and J. S. Collofello, “Some Stability Measures for
Software Maintenance,”lEEE Transactions on Software Engineering,
Volume SE-6, No. 6, November 1980, pp.545-552.

[YAUS87] S. S. Yau and J. J. Tsai, “Knowledge Representation of Software
Component Interconnection Information Large-scale Software
Modifications,” |EEE Transactions on Software Engineering, Volume SE-13,

No. 3, March 1987, pp. 355-361

CURRICULUM VITAE

Michelle L. Lee, a US citizen since 1998, was born on June 8, 1964 in LeShan, SiChuan
Province, China. She received her Bachelor of Science (1985) and Master of Science (1988)
in Computer Engineering from Beijing University of Aeronautics and Astronautics. In
addition, she received her Master of Science degree in Computer Science from George
Mason University in 1995. Sheis a senior software system engineer with LCC International.

193

