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Abstract

This dissertation concerns testability of event-triggered real-time
systems. Real-time systems are known to be hard to test because
they are required to function correct both with respect to what the
system does and when it does it. An event-triggered real-time system
is directly controlled by the events that occur in the environment, as
opposed to a time-triggered system, which behavior with respect to
when the system does something is constrained, and therefore more
predictable. The focus in this dissertation is the behavior in the time
domain and it is shown how testability is affected by some factors
when the system is tested for timeliness.

This dissertation presents a survey of research that focuses on
software testability and testability of real-time systems. The survey
motivates both the view of testability taken in this dissertation and
the metric that is chosen to measure testability in an experiment. We
define a method to generate sets of traces from a model by using a
meta algorithm on top of a model checker. Defining such a method is
a necessary step to perform the experiment. However, the trace sets
generated by this method can also be used by test strategies that are
based on orderings, for example execution orders.

An experimental study is presented in detail. The experiment
investigates how testability of an event-triggered real-time system is
affected by some constraining properties of the execution environ-
ment. The experiment investigates the effect on testability from three
different constraints regarding preemptions, observations and process
instances. All of these constraints were claimed in previous work to
be significant factors for the level of testability. Our results support
the claim for the first two of the constraints while the third constraint
shows no impact on the level of testability.

Finally, this dissertation discusses the effect on the event-triggered
semantics when the constraints are applied on the execution environ-
ment. The result from this discussion is that the first two constraints
do not change the semantics while the third one does. This result
indicates that a constraint on the number of process instances might
be less useful for some event-triggered real-time systems.

Keywords: Testability, Software testing, Real-time systems, Time-
liness, Model-based testing.
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Sammanfattning

Denna avhandling handlar om testbarhet hos héandelsestyrda re-
altidssystem. Realtidssystem é&r erként svara att testa eftersom dessa
system har krav pa sig att fungera korrekt bade med avseende pa
vad systemet gor och nar det gor det. Handelsestyrda realtidssystem
styrs direkt av de héndelser som intraffar i omgivningen till skillnad
fran tidsstyrda system vars beteende med avseende pa nér systemet
gor nagot ar hart kontrollerat och ddrmed mer férutsiagbart. I den
har avhandlingen sa &r det just tidsaspekten som star i fokus och vi
visar hur testbarheten paverkas av nagra olika faktorer da systemet
ska testas for punktlighet.

Avhandlingen innehaller en Oversikt 6ver den forskning som
fokuserar pa testbarhet hos programvara och realtidssystem. Over-
sikten ligger till grund for hur avhandlingen valt att méta testbarhet
i ett experiment. Avhandlingen presenterar &ven en metod for att
generera mangder med spar i en modell med hjélp av en metaalgoritm
som arbetar mot en model checker. Metoden &r nodvandig for
att genomfbra experimentet men de spar som genereras kan dven
anvandas for testmetoder dar man fokuserar pa ordningar, exempelvis
exekveringsordningar.

Avhandlingen redovisar ett experiment av hur testbarheten hos
héndelse-styrda realtidssystem paverkas av att man infor vissa egen-
skaper hos exekveringsmiljon. Begransande egenskaper som paminner
om dem som finns hos tidsstyrda realtidssystem men som inte anses
forandra den handelsestyrda semantiken. Experimentet omfattar tre
sadana egenskaper som ror exekveringsavbrott, observationer och
antal instanser av samma processtyp. Dessa egenskaper har tidigare
pekats ut som avgorande faktorer for testbarheten. Resultaten visar
ett stod for detta vad galler de forsta tva egenskaperna medan den
tredje egenskapen inte alls tycks paverka testbarheten.

Slutligen redovisar avhandlingen hur den handelsestyrda seman-
tiken paverkas da man infor de foreslagna egenskaperna hos ex-
ekveringsmiljon. Slutsatsen fran denna diskussion &r att tva av
egenskaperna inte fordndrar semantiken medan en av dem har en
paverkan pa semantiken som innebér att den egenskapen kan vara
mindre ldmplig att infora hos vissa handelsestyrda realtidssystem.
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Chapter 1

Introduction

1.1 Introduction

Software systems today tend to be more sophisticated and complex.
A consequence of this is higher demands on the software industry to
cope with the increased complexity on all levels in the development
process. This is especially true for verification activities. As system
complexity increases, the act of verification becomes more difficult.
It is therefore necessary to identify ways to understand and control
this complexity to build safe and reliable systems. This is a problem
in many dimensions. There is a need for better test techniques that
help testers identify the most efficient and effective test suites, i.e., test
suites that reveal faults at a cost the developers can afford. Software
testing has matured during the last decade but there are areas where
there is a lack of good techniques. One such area is concurrent systems
and especially real-time systems. There is a need for better tools
that can control the test execution so that exactly the test cases are
executed that are intended to be executed. There is a need for tools
that allow us to observe the test execution and thereby recognize
erroneous behavior. Finally, system testability should be considered
already during the design phase. To do that more information is
needed together with a better knowledge about system testability
and the effect that different design choices may have on it.

This work considers relationships between system design and
system testability. If it is possible to design systems with higher
testability, the effort to test the system can decrease and testers can
perform better testing in a structured way. In turn, better testing can
help developers build higher quality systems. There are two reasons
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for this. The first reason is that with better testability testers and
developers can find and remove more faults. This will of course have
an effect on quality. The second reason is that structured testing,
where tests are controlled and observed, can help developers gain a
better understanding of the system. The better the understanding of
the system is the better is the chance to improve its quality.

The focus in this dissertation lies on dynamic, event-triggered
real-time systems, which are known to be inherently harder to test
than corresponding time-triggered real-time systems (Schiitz 1993).
The time-triggered design gives good support for testability and
is therefore often preferred. There are, however, situations when
an event-triggered design is preferred or even necessary. In these
situations, the designers have little information about how testability
can be supported by the system design. Still, such systems have to
be tested and testability will have a significant impact on both the
cost of testing and the resulting level of quality.

This work investigates a set of design choices to determine what
impact they have on the level of testability in event-triggered systems.
The specific design choices are in the form of constraints on the
execution environment.

The relation between the system testability and the execution
environment is considered to be mutual because constraints on
the execution environment may lead to improved testability and
requirements on high testability may lead to constraints on the
execution environment.

This dissertation discusses testability in the context of testing
for timeliness on a system level. Constraints on the execution envi-
ronment are selected and their impact on testability is investigated.
The choice of constraints is based on previous work by Mellin (1998)
and Birgisson, Mellin & Andler (1999) that define an upper bound
on test effort for event-triggered real-time systems. The goal with
this dissertation is to determine whether applying the proposed set
of constraints on the execution environment increases testability in
event-triggered real-time systems, as proposed in their work. This
dissertation includes an empirical study (see Chapter 6) where the
experimental goal is to see whether the results from this study
support previous work on the relation between the selected execution
environment constraints and system testability. Our results indicate
that some of the constraints affect testability while others have no
effect at all. A method for trace-set generation is also defined in this
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dissertation (see Chapter 5). The method is a necessary part of the
study but can also be used for model-based testing and opens up for
new testing criteria suitable for concurrent systems.

1.1.1 List of Publications Included in Thesis

This dissertation is based on the papers below. With each paper is an
explanation of which parts of the paper are included in what chapters
of this dissertation. Unless specified, co-authors have had the role of
advisors.

1. B.Lindstrom, A. J. Offutt and S. F. Andler. Testability of
dynamic real-time systems: An Empirical Study of Execution
environment implications, In Proceedings of The 1st IEEFE
International Conference on Software Testing, Verification and
Validation (ICST), pages 112-120, Lillehammer, Norway, April
2008.

This paper describes an empirical study that explores the
effect on testability when varying some parameter settings in
the execution environment. The major parts in this paper,
including experimental set-up, implementation, execution and
analysis, are included in Chapter 6. Conclusions and related
work from the paper are part of Chapter 8 in this dissertation.

2. B. Lindstrom, R. Nilsson, M. Grindal, A. Ericsson, S. F.

Andler, B. Eftring, and A. J. Offutt. Six Issues in Testing
Event-Triggered Systems, Technical report HS-IKI-TR-07-005,
University of Skévde, 2007.
This is a joint paper for the TETReS research group and it
contains a list of issues that are recognized to be harder when
testing dynamic systems. Part of the background and discussed
issues are included in Chapter 2. Part of the described approach
(Improving Testability) is included in Chapter 3. Birgitta wrote
about real-time systems in the background section and several
parts in the result section (including Issues in real-time systems,
Monitor execution and control and Design trade-offs). These are
the parts that are included in the thesis.

3. B. Lindstrom, P. Pettersson and J. Offutt, Generating Trace-
Sets for Model-based Testing. In Proceedings of The 18th IEEE
International Symposium on Software Reliability Engineering
(ISSRE’07), pages 171-180, Trollhdttan, Sweden, November
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2007.

This paper presents a method for generating sets of traces when
model-checking rather than single traces. The major parts in
this article, from the background to the results, are included in
Chapter 5 in this dissertation, while the discussion and related
work are included in Chapter 8. Finally, part of the problem
description and motivation are included in Chapter 4. Paul
contributed the description of timed automata and substantial
feedback on the rest of the article.

. B. Lindstréom and P. Pettersson, Model-Checking with Insuffi-
cient Memory Resources, Technical report HS-IKI-TR-06-005,
University of Skévde, 2006.

This paper presents a method that dynamically divides a state-
space into partitions during model-checking. As dynamic real-
time systems are prone to the state space explosion problem,
this method divides a problem into sub-problems that can
be solved independently, thereby mitigating the state space
explosion. The major parts from this paper, all sections from
the introduction to the results, are discussed in Chapter 5 while
the included case study is discussed in Chapter 6. Related work
is discussed in Chapter 8. Paul contributed the description of
timed automata and substantial feedback on the rest of the
article.

. B. Lindstrom, and J. Mellin, Work in Progress: Testability
Experiments, In Proceedings of Real Time in Sweden 2005
(RTiS 2005), Special Session on Testing of Event-Triggered
Real-Time Systems, pp. 101-106, 2005.

This paper presents the method and some preliminary results
of the work described in this dissertation. Background and
previous work are discussed in Chapter 3 in this dissertation
while the approach and results are discussed in Chapter 6.

. B. Lindstrém. System testability and the execution environ-
ment. Thesis proposal, University of Skovde, Sweden, 2003.
This work was presented to the Department of Computer
Science at University of Skévde. The proposal describes and
motivates the research problem. The background is included
in Chapter 2. Parts of the previous work and the problem
description in the paper are described in Chapter 3.
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7. B. Lindstrém, J. Mellin, and S. F. Andler. Testability of
Dynamic Real-Time Systems. In Proceedings of Fight In-
ternational Conference on Real-Time Computing Systems and
Applications (RTCSA2002), pages 93-97, Tokyo, Japan, March
2002.

This paper focuses on the motivation and underlying theory for
this dissertation. The introduction and discussion about system
testability are discussed in Chapter 2 in this dissertation while
the theory and the discussion about the implications from the
execution environment on testability is discussed in Chapters
3 and 6. Finally, the sections concerning conclusions, related
work, contribution and future work are discussed in Chapter 8.

1.1.2 Thesis Overview

The dissertation is arranged as follows.

The rest of this chapter gives the necessary background for this
thesis. Section 2.1 gives an overview of software testing. Section
2.2 describes two different types of design for real-time systems,
the (dynamic) event-triggered and the (static) time-triggered design.
Section 2.3 discusses efficient and effective testing.

Chapter 3 discusses previous work, which forms a basis for this
thesis and motivates the research problem. The problem statement
is also given here. Previous work is described in Section 3.1 and the
problem definition is given in Section 3.2.

Chapter 4 contains a survey of testability research and an
elaborated discussion about the author’s view on testability in real-
time systems and how it can be estimated. Chapter 5 gives a method
that uses model-checking to generate trace-sets instead of single traces
while, at the same time, mitigating the state space explosion problem.
Chapter 6 describes the impact on testability from the execution
environment. Chapter 7 contains a discussion of the effect on the
dynamic, event-triggered semantics the constraints may give.

Finally, Chapter 8 contains discussion, related work and conclu-
sions.
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Chapter 2

Background

This chapter introduces the concepts that are used throughout this
thesis and presents a background for the thesis work. This Chapter is
based on material presented in the background sections in Papers 2,
7 and 6. Section 2.1 discusses software testing. Section 2.2 presents
two different design paradigms for real-time systems and the trade-off
decisions that has to be made by the designer. Finally, Section 2.3
discusses efficient and effective testing.

2.1 Software Testing

Verification is an important activity in all development processes.
Software development is no exception from this fact. It is widely
accepted that verification activities often takes approximately 50%
of the development resources (Myers 1979, Beizer 1990). The cost
of verification goes up if the demands on the quality of service is
high, e.g., for safety-critical systems. The purpose of verification
is to gain sufficient confidence in the system behavior with respect
to requirements and general software quality attributes such as
reliability and safety (Avizienis, Laprie, Randell & Landwehr 2004).
Laprie (1994) gives the following definitions:

Definition 1. Verification: The process of determining whether a
system adheres to properties (the verification conditions) which can

be:
a) general, independent of the specification, or

b) specific, deduced from the specification.

7
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Definition 2. Static verification: Verification conducted without
exercising the system.

Definition 3. Dynamic verification: Verification involving exercising
the system.

Definition 4. Testing: Dynamic verification performed with input
values.

These definitions are adopted in this dissertation and the focus
in this dissertation is testing. Since testing is performed with input
values, a central activity is to select which inputs to execute. It is
therefore important to specify test requirements and select the test
criteria to be used.

Definition 5. A test requirement specifies one specific item that
should be targeted during testing.

Definition 6. A test criterion specifies what tests should cover in
terms of a class of test requirements.

This means that the set of test requirements is defined by the test
criterion. For example, the test criterion du-path coverage gives a set
of test requirements where each individual requirement is a unique
du-path. The relation between test criteria, test requirements and
tests is described in the following definition from Ammann & Offutt
(2008).

Definition 7. Given a set of test requirements (TR) for coverage
criterion C, a test set T satisfies C coverage if and only if for every
test requirement tr in TR, there is at least one test t in T such that t
satisfies tr.

Software can be described by; (i) graphs representing the structure
or data flow, (i) logical expressions, e.g., decisions in a program, (i)
the input domain, and (i) syntactic structures (Ammann & Offutt
2008). There is a variety of different test criteria that can be applied
to each of these models.

Which criteria to choose depend on three things; (i) the type
of faults that the tests aim to reveal, (i) the requirements on the
system with respect to failure intensity, and (7i7) what the developer
can afford. Although it can be more expensive not to test, the test
budget imposes limitations to the choice of criteria since some criteria
are more expensive than other.
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Testing is performed at different levels and for different purposes.
This dissertation uses the following definitions:

Definition 8. Unit testing - A unit is the smallest testable piece of
software. Unit testing is the testing we do to show that the unit does
not satisfy its functional specification and/or that its implemented
structure does not match the intended design structure (Beizer 1990).

Definition 9. Module testing - A module is a collection of related
units that are assembled in a file package or class. Module testing is
designed to assess individual modules in isolation, including how the
component units interact with each other and their associated data
structures (Ammann & Offutt 2008).

Definition 10. Integration testing is designed to assess whether
the interfaces between modules in a given subsystem have consistent
assumptions and communicate correctly (Ammann & Offutt 2008).

Definition 11. System testing is concerned with issues and behaviors
that can only be exposed by testing the entire system or major parts
of it (Beizer 1990).

Unit testing exercises the code on unit level e.g., a single procedure
to assess the software with respect to the implementation. Module
testing exercises a module, e.g., an object to assess the software with
respect to detailed design. Integration testing exercises a set of mod-
ules e.g., a subsystem to assess software with respect to subsystem
design. System testing assess software with respect to architectural
design. System testing includes testing for performance, security,
accountability, configuration sensitivity, start-up, and recovery.

2.1.1 Testing for Timeliness

A real-time system is a system where the correctness depends on when
the system takes an action as well as what the system does. Each real-
time task must meet a set of time constraints on its activation and
completion.

Definition 12. Deadline - A time constraint on the response time of
a task is called a deadline (Ramamritham 1995).

Definition 13. Timeliness - A system in which all timing constrains
are met is timely (Ramamritham 1995).



10 CHAPTER 2. BACKGROUND

Although software testing has matured during the last decades,
much remains to do in the area of testing real-time systems. Time
constraints, concurrency and the fact that many of these systems
are embedded are factors that together make it hard for a tester
to apply structured testing techniques on real-time systems. Some
approaches are described in Hessel, Larsen, Nielsen, Pettersson &
Skou (2003), Nilsson, Offutt & Andler (2004), Garousi (2008), and
Thane & Hansson (19990).

Testing for timeliness in a real-time system aims to determine
whether the defined constraints on the timely behavior of individual
tasks will be met or not. Whether or not the behavior of the real-time
system is timely depends not only on the software application but also
the execution environment and the hardware. For example, consider a
test case targeting response time for a certain event, e.g., the pressure
getting too high in a chemical control system. The response time
depends not only on the execution of the corresponding task, it also
depends on the frequency with which the system checks the sensor,
communication delays, scheduling, etc. Hence, testing for timeliness
is preferably done on the target system.

2.1.2 Test Effort and Testability

Definition 14. Test effort is the effort, in terms of time, money,
staff and other resources needed to test the system.

Definition 15. Testability is the degree to which a system or compo-
nent facilitates the establishment of test criteria and the performance
of tests to determine whether those criteria have been met (IEEE

1990)
The test effort depends on many different things such as:

1 Testability, which concerns properties of the test object. Low
testability implies that the test object is hard to test. For
example, low predictability can lead to a need for running the
same tests several times to gain statistical confidence for the
resulting behavior.

14 Test process, a bad process can increase the workload. For
example, if test cases are not traceable, it is hard know whether
they are still needed after a change to the system. This can lead
to extra effort due to redundant or invalid test cases.
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191 Test method, some methods are easier to automate than others
and different methods result in different size of the test suites.

1w Skill and experience, obviously a trained tester can do the work
with less effort than an unexperienced tester.

v Specifications, a specification that lacks clear information with re-
spect to expected functionality or correct (and incorrect) behavior
is not sufficiently supportive for testing activities.

Testing activities represent a significant part of the development
costs. At the same time, it can be even more expensive not to test.
The cost of providing software with low quality is sometimes hard
to estimate. For critical systems, there is a direct penalty in terms
of e.g., money, injuries or damage associated with failures. For non-
critical products such as computer games it is harder to estimate the
damage to a trademark or the economical consequences of unsatisfied
customers.

The trade-off between the cost for high reliability and the penalty
for low reliability is often a difficult dilemma. It should therefore be
of primary interest to investigate every possibility to decrease the test
effort without decreasing the test quality. In this work, focus is on
the possibility to decrease the necessary effort of testing for timeliness
at a system level. The basic idea is to investigate the effect of the
design of the real-time system on testability since system testability
has a significant impact on the effort to test the system.

2.2 Real-Time System Design Paradigms

Real-time systems typically interact with other [sub-| systems and
processes in the physical world, i.e., the environment of the real-time
system. For example, the environment of a real-time system that
controls a robot arm may consist of items coming down a conveyor
belt and messages from other robot control systems along the same
production line. The real-time system observes the state of the
environment, e.g., via sensor signals, and responds to the situation
in a timely manner, e.g., via actuators.

Figure 2.1 depicts an overview of a real-time system. Real-
time applications are often modeled as a set of tasks (pieces of
sequential code) that compete for system resources (for example,
processor-time, memory and semaphores). The response times of such
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Figure 2.1: An overview of a real-time system with the controlled
environment (i.e., robots), the application (i.e., real-time tasks), and
the execution environment (i.e., processor, memory, and real-time
protocols).

tasks depend on the order in which they are scheduled to execute.
This, in turn, is controlled by real-time protocols (e.g., scheduling
and concurrency control protocols) and properties of the execution
environment (e.g., the real-time operating system, programming
language and hardware).

The environment of a real-time system is observed periodically or
in response to some triggering event. Tasks are usually periodic or
sporadic.

Definition 16. A periodic task is activated with fized inter-arrival
times, thus all the points in time when such tasks are activated are
known.

Definition 17. A sporadic task is activated by events occurring in the
environment, but assumptions about their activation patterns, such as
minimum inter-arrival times, are used in analysis.

Testing for timeliness typically tries to enforce the system to miss
its deadlines. Therefore test cases include what the tester deems to
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be worst case situations that the system may have difficulty handling
in a timely manner, e.g., bursts of sporadic events. This is further
described in Garousi (2008).

The two main different ways to design real-time systems described
in literature are the time-triggered and the event-triggered design
(Kopetz 1991, Kopetz & Verissimo 1993).

Definition 18. In the time-triggered approach all communication and
processing activities are initiated periodically at predetermined points
in time (Kopetz 1991).

Definition 19. In the event triggered approach all communication
and processing activities are initiated whenever a significant change
of state, is noticed (Kopetz 1991).

In time-triggered systems a clock controls the execution. The
system clock decides when to observe events, execute tasks, and
deliver results. In event-triggered systems, the environment has
control over the execution. Events are observed when they occur
and a decision is made on how to react in response to the event.
Such decisions are made dynamically by the system and are a major
reason why these systems are so hard to test in comparison with time-
triggered systems. The time-triggered design is usually preferred in
hard critical systems where the consequence of missing a deadline
may be catastrophic. The event-triggered design is usually preferred
in less critical systems in which deadlines can be missed occasionally.

2.2.1 Time-Triggered Real-Time Systems

A pure time-triggered real-time system has a cyclic behavior. Clock
interrupts trigger activities at predefined time points (see Figure
2.2). In time-triggered real-time systems, new inputs are observed at
predefined, periodic, points in time, so called observation points. On a
clock interrupt, the system reads all events that have occurred since
the last observation point. Tasks that correspond to the occurred
events are executed during the next time period in a pre-scheduled
order. Computations scheduled in one period must finish before the
next period starts regardless of which events have been observed.
Execution time is assumed to be worst case and results are delivered
at the next time point. This has several consequences:

1 All tasks that can be executed in a period should be known
beforehand
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Figure 2.2: Event observation and task execution in a time-triggered
system. On a clock interrupt, events are read and all triggered tasks
finish their execution before next clock interrupt.

it All resource requirements (e.g., execution time, communication,
etc) should be known beforehand,

717 The observation granularity must be coarse enough to guarantee
that all scheduled computations are finished before the next
observation point,

w All events occurring in the same interval are considered to have
the same arrival time, and

v There is only one potential execution order for each possible input
sequence

Together, these items explain why time-triggered systems have
high testability. All tasks are assigned enough resources for their
worst case execution times and the worst case situation is when all
events occur at the same time. The predefined schedule guarantees
that the behavior with respect to order and time is similar each time
this situation occurs. A typical example of a time-triggered system
is presented in Kopetz, Damm, Koza, Mulazzani, Schwabl, Senft &
R.Zainlinger (1989).
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The underlying assumption of resource adequacy in a time-
triggered system makes changes and extensions difficult.  Any
unforeseen change to the system that increases the demand on
resources (e.g., execution time or bandwidth) might necessitate a
complete redesign of the system. Moreover, resource adequacy implies
that the system is designed for the worst case demands. The static
schedules are based on assumptions about worst cases that may lead
to very low resource utilization. If the difference between worst case
and average case with respect to resource demands is big, then a time-
triggered solution will lead to low resource utilization. For example,
assume a system with several sporadic events that seldom occur but
have short, hard deadlines (such as alarm signals or sudden requests
for evasive action). A time-triggered system would have to reserve
resources and execute a periodic task that polls the environment
frequently to be able to detect and respond to such event in a timely
manner. Moreover, an unpredictable environment might require
several operational modes. As the number of modes increases, so
does the number of schedules and there is a potential risk for a
combinatorial explosion. An event-triggered system, on the other
hand, uses dynamic on-line scheduling and would only have to execute
a sporadic task as a response to the event when it actually occurs.
This leaves computation resources, as well as other resources, free
to be used for other purposes. For these reasons, an event-triggered
design is sometimes preferred.

2.2.2 Event-Triggered Real-Time Systems

In event-triggered systems, activities are triggered by events as they
occur (see figure 2.3). The computer immediately reacts to an event
by reconsidering the current schedule. A task corresponding to the
occurred event is identified. A decision is made based on scheduling
policy, current state of the system, resource requirements, and task
priorities. The task may be dropped, scheduled for execution some
time in the future, or started immediately by preempting the currently
executing task. There are several consequences from this:

1 Behavior is not cyclic
71 The schedule seldom repeats

11 There is no knowledge of future resource needs
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Figure 2.3: Event observation and task execution in an event-
triggered system. Tasks are triggered when events occur and a new
task may cause preemption of a current task.

iv There might be several potential execution orders for a single
input sequence

Together, the above items explain why event-triggered systems
have low testability. One reason is that the system does not await an
observation point to read events or a communication point to deliver
results. This means that the current state of the system, e.g., current
schedule, blocked resources, program counter, etc., is part of the test
case together with the event sequence. Moreover, small variations on
e.g., execution time affect the behavior. Finally, predictability in the
time domain is often low due to elements that are not controlled, e.g.,
the contents of a cache memory. Hence, it might be hard to repeat a
test execution.

The priority of an individual task can be decided by its period,
criticality or urgency. Results are delivered as soon as possible. This
means that new tasks can be triggered during execution. Hence,
dynamic scheduling and preemptions are necessary to guarantee
timeliness of high priority tasks. Note that figures 2.2 and 2.3 give
different behaviors although the event sequences are the same.
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Event-triggered systems are flexible and can handle an unpre-
dictable environment better than time-triggered systems because
the event-triggered design does not require full knowledge of the
resource demands. Hence, temporary overloads may occur and the
event-triggered system cannot guarantee that all deadlines always
will be met. Event-triggered systems are therefore often used for
soft real-time systems or applications with a mixed task load where
soft deadlines are tolerated to be missed occasionally under adverse
circumstances. All hard deadlines must however be met and usually
there is a limit for how long (or how often) a soft deadline can be
missed. For example, garbage collection is usually a soft task as
long as there is enough available memory. However, if the system
runs out of memory, garbage collection becomes as critical as the
most critical task in the system. The reason is of course that unless
garbage collection is made, it is impossible to run any other task. A
typical example of an event-triggered system is presented by Barrett,
Hilborne, Verissimo, Rodrigues, Bond, Seaton & Speirs (1990).

2.2.3 Trade-off Decisions

An advantage with the time-triggered paradigm, in particular when
designing safety-critical systems, is its predictability. Its cyclic
behavior and static scheduling of CPU and other resources (e.g.,
communication) enhance predictability, especially in the time domain.
The fact that it is designed for worst-case situations does, however,
make these systems expensive in comparison with event-triggered
systems. This illustrates the general design dilemma of finding
suitable trade-offs when two or more system properties are in conflict
with each other.

Unfortunately, there is little information about how real-time
system design decisions and testability relate. Hence, it is difficult
to find the optimal trade-off where testability and predictability as
well as efficiency and performance are sufficient. Moreover, sometimes
the static, time-triggered design is not an option and as long as
dynamic, event-triggered systems are built, they should be tested.
More information on how to make these systems easier to test is
therefore needed.

Pure time-triggered or event-triggered systems are rare. Instead,
a system may have characteristics from both types. A common
approach is to separate critical parts of the system from non-critical
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and use a time-triggered design only on the critical parts where the
cost is motivated by the criticality. Non-critical parts can then be
designed according to the event-triggered design type, which is less
expensive. Other solutions combine static scheduling with sporadic
server tasks or a slack stealing algorithm that enables the system to
handle a mixed task load to some extent, for example (Sprunt, Sha
& Lehoczky 1989, Lehoczky & Ramos-Thuel 1992, Davis, Tindell &
Burns 1993, Spuri & Buttazzo 1996, Isovic & Fohler 2000).

Many approaches to handle a mixed task load are based on the
assumption that the task load consists of hard periodic tasks and soft
sporadic tasks. This is not always the case. Emergency situations are
usually not periodic, they often need attention immediately and the
penalty of failing to handle the situation in a timely manner might
be very high.

2.3 Efficient and Effective Testing

Since testing is an expensive but necessary activity, it is important
that the methods and techniques used are effective and efficient with
respect to their ability to reveal faults. In this dissertation the
following definitions for effective and efficient are used.

Definition 20. A test technique is considered effective if it has a high
probability of revealing existing faults.

Definition 21. A test technique is considered efficient if it requires
a small amount of effort to use it. For example, if it requires few test
cases or is easy to automate.

Effective testing is required to achieve a high level of quality
and reliability in software (Mouchawrab, Briand & Labiche 2005).
There are several reasons for this. Software applications tend to grow
more complex and the more complex they get, the higher is the risk
that faults are introduced into the software. Also, as complexity is
increased there is a risk that faults get more complex and hard to
reveal. Today, people are surrounded by and dependent on software
in most of their daily activities and, as customers, they expect the
software to have an adequate level of quality. As software testing
techniques mature the excuse for poor software quality decreases and
customers will eventually turn to those developers that can provide a
satisfying level of quality for their products.
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A large number of testing techniques has been invented and
evaluated during the last decades. For example, techniques based
on data-flow such as (Laski & Korel 1983, Rapps & Weyuker 1985),
techniques based on the input domain such as (Myers 1979, Beizer
1990, Grindal, Lindstrom, Offutt & Andler 2006, Ostrand & Balcer
1988) techniques based on logical expressions such as (Chilenski &
Miller 1994, Vilkomir & Bowen 2002, Zhu, Hall & May 1997) and
techniques focusing on timeliness such as Nilsson et al. (2004) and
Garousi (2008).

Whenever an evaluation of a testing technique is made, there are
two questions that need an answer. How many faults were found and
how many test cases were executed, compared to e.g., random testing?
The first question focuses on effectiveness; whether the technique
targets the faults more precisely than the other technique. The second
question focuses on efficiency; whether the technique needs fewer test
cases than the other technique.

Effective test execution, whether it is manual or automatic,
requires the test object to satisfy some basic requirements. Most test
cases have specific goals, e.g., execute a certain condition with a true
outcome. Thus, it is important that the test case is executed exactly
as described and that the behavior (internal as well as external) from
the test object can be captured. This translates into the testability
properties controllability and observability (Schiitz 1993).

2.3.1 Controllability

Definition 22. Controllability is the ability to (re)execute selected
test cases.

Given any ambition to use an effective test case selection method
that targets the faults, it is important that the selected test cases are
possible to execute. When it comes to testing the logical behavior of
software, the main controllability issue is to identify the actual input
that will lead to an execution which satisfies the test requirement.
Consider the example above where the test requirement is to execute
a certain condition with a true outcome. Suppose that the variables
in the condition are internal and not among the input variables the
tester can control. The problem is that it is seldom obvious which
actual input that will take the execution to the specified location with
the internal variables set to the intended values. The first part is a
problem of reachability and the second part is known as the internal



20 CHAPTER 2. BACKGROUND

variable problem which is undecidable (Offutt 1988). The problem is
frequently addressed by work on automated test data generation, for
example (DeMillo & Offutt 1991), (Offutt, Jin & Pan 1999), (Korel
1990), (Gotlieb, Botella & Rueher 1998), (Chung & Bieman 2008),
and (Ammann & Black 2002).

Controllability is hard to achieve in real-time systems. One
reason is that an extra dimension, time, is added to the input/output
domains. Moreover, the state of the system when the input is given
might affect the behavior. The behavior does not only depend on
which input is given but also when it is given, current schedule,
program counters, blockings, etc. Time-triggered real-time systems
approach the controllability issue in two ways. The cyclic behavior
where the system completes execution during an activity interval and
then returns to an initial state implies that there is no need to control
the internal state as part of the test case input (Schiitz 1993). Also,
there is a coarse granularity with respect to observation points. To
give an input that the system observes at time ¢, the input must
be given in the interval |t-0,t], where o is equal to the elapsed time
between two consecutive observation points (Schiitz 1993). Event-
triggered systems usually have a fine granularity with respect to
observations and no cyclic behavior.

A minimum requirement on controllability, when testing for
timeliness, is that it is possible to repeatedly inject a sequence of timed
input events in the same way (Ammann & Offutt 2008). To use an
effective test strategy with selected test cases (i.e., selected sequences
of timed input events) it is necessary with a level of controllability
that allows the tester to inject timed events at the exact points (or
intervals) in time. Getting the time stamps right can be a very
challenging task when the input events are e.g., items arriving at
a sensor on a conveyor belt. Moreover, without a cyclic behavior, it
is necessary to control the internal state as well as the time for the
sensor signal (Schiitz 1993, Birgisson et al. 1999, Thane 2000). This
is a very hard challenge.

A property related to controllability is reproducibility. Repro-
ducibility is the property that the system repeatedly exhibits identical
behavior when stimulated with the same input. This property
is especially important when it comes to regression testing and
debugging (Schiitz 1994, Thane 2000). Without reproducibility it
might be difficult to activate the same error again during debugging.
Moreover, the results from correction might be inconclusive whether
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the fault was removed or not.

Reproducibility is not necessarily an issue for testing non-real-
time software since software often is predictable. However, for real-
time systems reproducibility is very difficult to achieve (Thane &
Hansson 1999a, Schiitz 1994). This is especially true for event-
triggered systems. The reason is that the actual behavior of a
system depends on elements that have not been expressed explicitly
as an input to the system. This means that what is judged to be a
repeated test case might lead to different behaviors due to elements
that cannot be controlled. For example, the response time for a task
in an event-triggered system depends not only on the given input
event (including its parameter values and time). It also depends on
the current load, blocking times, and varying efficiency of hardware
acceleration components. Moreover, timing of internal events such as
allocation and deallocation of shared resources varies for the same
reasons. This means that the outcome of a race condition can
differ between executions. It is therefore possible to get different
execution orders when a test case is repeated (Thane & Hansson
1999a, Schiitz 1994). Hence, the behavior in the time domain is non-
deterministic and it is the behavior in the time domain that testing
for timeliness tries to assess. Both Thane & Hansson (1999a) and
Schiitz (1994) identify the predictability with respect to the number
of execution orders as a direct indicator to the level of testability.
The more non-deterministic the behavior is the higher is the demand
for controllability to effectively test the system (Ammann & Offutt
2008).

2.3.2 Observability

Definition 23. Observability is the ability to observe internal and
external system behavior during test execution.

When the level of observability is low, it can be difficult to
distinguish between correct and erroneous behavior (Schiitz 1994).
Consider the case when the only visible output is a boolean value.
If the input domain is large and there is an equal probability for
true and false output, then the resulting value might not be sufficient
to let the tester decide whether the system behaved correct or not.
The probability is high that the result from execution is the same as
the expected result even if there is a fault present and the execution
activated the fault with a resulting error. When the probability for the
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erroneous state to propagate to the interface is low so is observability
and therefore also the testability (Voas & Miller 1995). Moreover,
propagation of an erroneous state to an interface does not guarantee
high observability. Software that affects hardware devises, databases
or remote files are considered to have low testability. Consider a test
case altering an item z in a database. The test engineer will easily
find out whether = was altered as expected but what if the test case
also altered something else? It is necessary to investigate the entire
database to observe such a failure.

Another problem when observability is low is that it can be
difficult to determine whether the execution reached the intended
location, i.e., whether the test requirement that was intended to be
covered by a certain test case was actually covered by the execution
of the same test case. Although reachability is a controllability issue,
determining the success of the attempt to reach a certain location is
an observability issue.

Object-oriented software imposes extra challenges with respect to
observability (Ammann & Offutt 2008). The main reason is that
the data abstraction components typically hide state information
from the test engineer. Sometimes part of the source code is not
available for the test engineer, e.g., when testing a sub-class where
part of the behavior is inherited from a, not available, super-class.
The problem with observability in object-oriented software has been
addressed by several authors such as (Binder 1994, Mouchawrab et
al. 2005, Kansomkeat & Riveipiboon 2008).

When testing software in non-real-time systems, there are basi-
cally two things can be done to increase the observability. Additional
outputs can be used to make internal states visible. For example,
a simple addition of a write statement where the current location
and the current value of an internal variable is displayed (or logged)
increases the observability. Another way to increase observability is
to throw an exception when an interesting state change is made. For
object-oriented software a requirement for additional get methods can
increase observability (Ammann & Offutt 2008).

The traditional techniques to achieve observability described
above are unfortunately less useful for real-time systems. The reason
is that these techniques introduce a probe effect (Gait 1986).

Definition 24. The probe effect is a phenomenon where the behavior
of a system may be affected due to the attempt of observing it.
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For example, alterations to the source code to produce additional
output or throw exceptions under certain conditions will add execu-
tion time. This can in turn affect the response time as well as the
time for synchronization and resource allocation. Finally, changing
the timing behavior may change the execution order and this might
affect the behavior in the value domain as well as the time domain.

Event-triggered systems are more prone to the probe effect than
time-triggered systems (Schiitz 1993). The event-triggered system
delivers a result as soon as possible. Thus, even small changes
can introduce probe effects. In time-triggered systems the time for
delivery of a result is predefined. If the probe effect is small enough,
the probe effect will not cause any detectable consequences (Schiitz
1993).

Schiitz (1993) identified three ways to handle the problem with the
probe effect in real-time systems. The probe effect can be ignored,
minimized or avoided. Ignoring the probe effect in the hope that it
will in reality not or only rarely appear is a risky approach when it
comes to testing for timeliness. The reason is that when a tester tests
for timeliness that tester tries to stress the system as much as possible
to determine whether a certain deadline will be met under the worst
possible conditions. As an event-triggered system is stressed with a
heavy load, the risk for race conditions increases and therefore the
probability of a probe effect to have an impact on the behavior is
increased (Schiitz 1993).

Minimizing the probe effect by implementing “sufficiently” ef-
fective monitoring operations or by compensating the results for
estimated probe effects is a less useful approach for event-triggered
systems than for time-triggered. The reason is that in the event-
triggered system, even the smallest change to the execution time can
affect the resulting execution order and therefore the timely behavior
(Schiitz 1993). In the time-triggered system, on the other hand, small
probes that can be executed within the allocated time frame will not
affect the behavior (Schiitz 1993).

Avoiding the probe effect can be done by employing dedicated
hardware for monitoring or by leaving all the probes in the system
after deployment (Thane 2000, Schiitz 1993, Mellin 2004). By
keeping the probes, it is possible to ensure that the tested system
is no different from the deployed. Avoiding the probe effect is a
feasible solution for event-triggered systems for example by using a
predictable event monitor (Mellin 2004).



24

CHAPTER 2. BACKGROUND



Chapter 3

Problem Statement

The work described in this thesis is motivated by and based on
previous work in the area of testability in real-time systems. By
constraining the execution environment, testability in event-triggered
systems is said to be increased. This has however, never been shown
so a major goal in this thesis is to determine whether the approach
proposed in previous work will lead to higher testability for this
type of systems. This problem has previously been discussed and
motivated in Papers 7, 2, 5 and 6.

3.1 Previous Work

The most complete work in the area of testability in real-time systems
is done by Schiitz (1993). Schiitz presents a formula for an upper
bound of the test effort for time-triggered real-time systems. He also
points out that the formula is a lower bound of the test effort of an
event-triggered real-time system. The formula assigns a significantly
higher bound for event-triggered systems than for time-triggered
systems based on the frequency with which the system observes
events in the environment. However, Schiitz (1993) points out that
the bound is a lower bound due to the fact that the formula does
not consider preemptions. Schiitz (1993) shows that testability is
greatly improved by a time-triggered architecture. Based on these
observations Schiitz presents a methodology for testing time-triggered
real-time systems.

In 1998, Mellin presented a method to define an upper bound on
test effort for event-triggered real-time systems (Mellin 1998). The
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presented formula extended Schiitz optimistic bound to include the
system state with respect to preemptions and blockings. This formula
was later refined to allow for more than one resource (Birgisson et al.
1999).

Birgisson et al. (1999) suggest that some constraints on the execu-
tion environment, such as predefined observation points, designated
preemption points, and a maximum number of concurrently executing
tasks, should be adopted in a constrained event-triggered design. The
result would still be a dynamic, event-triggered system but with a
level of testability which approaches that of time-triggered systems.

Birgisson et al. (1999) give the following formula for the upper
bound on test effort for a system where the proposed constraints are
applied. The upper bound gives all combinations of event sequences
and internal states with respect to preemptions and blockings. Since
the upper bound on test effort only reflects properties of the real-time
system itself, it should give a bound on testability, assuming that the
formula is correct.

FSTAT = ESTAT « BSTAT « PSTAT (3.1)

ESTAT(s,n) = . (Z)Sk:: (Z) sF17F = (s +1)" (3.2)

q t ¢
1)t —1
PSTAT(p,q,t (E (p+1) ) = ((p—l—)—) ,where p >0

k=0 p
(3.3)
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FSTAT: Gives the upper bound for the number of combinations of event
sequences and states with respect to experienced preemptions
and current blockings for each task.

ESTAT: Gives the number of distinct event sequences for an interval
with s observation points and n distinct events that may occur
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during the same interval. Each event is either not observed in
the interval or it is observed at one of the s observation points.
Hence, there are s 4 1 possibilities for each event and (s + 1)"
possibilities for n events. ESTAT is first presented in Schiitz
(1993).

Gives the number of preemption states where ¢ is the upper
bound for concurrently executing tasks of the same type, tis the
number of task types, and p is the upper bound on the number
of allowed preemptions for a task. Example: PSTAT(3,2,4)
gives that for each of the 4 task types, there might be 0, 1,
or 2 current instances of that specific task type in any state.
Each instance has been preempted 0, 1, 2 or 3 times, i.e., there
are 4 possible preemption states for each task instance (in this
example p+ 1 = 4). Hence, for each task type there is 1 (in case
of zero instances) plus 4 (in case of one instance) plus 42 (in
case of two instances), i.e., 21 possible preemption states with
respect to a single task type. 4 task types give 21* possible
preemption states with respect to all possible task sets.

Gives all possible blocking states for a maximum of ¢ concur-
rently executing instances of ¢ task types. C'is the set of blocking
scenarios and ¢ is a blocking scenario such that ¢ € C'. Assume
that there is a blocking scenario ¢ such that ¢ = [5,3,3,2].
This blocking scenario contains four blockings, i.e., |¢] = 4.
The numbers indicate how many tasks that are involved in the
different blockings. All blocking states that have 5, 3, 3 and 2
tasks blocked on four different resources belong to this scenario.
Finally ¢; is the ith element in the scenario, i.e., ¢4 in the given
example is 2. BSTAT takes one scenario at a time from the
set C' and enumerates the number of potential blocking states
for that scenario. card(h,c) is a function that calculates the
number of A in ¢. In the given example there is card(5,c) = 1
and card(3,c¢) = 2. The function card(h,c) and an algorithm
that generates C'is presented in Birgisson et al. (1999)

From this point on, these formulae is referred to as FSTAT.
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3.2 Problem Definition

Even though time-triggered systems have higher testability than their
event-triggered counterparts, it is sometimes necessary or at least
preferable to choose an event-triggered design. One reason is the
cost. Time-triggered systems are designed to meet the resource needs
in worst-case situations. If there is a gap between the resource need
in the worst and in the average case, there will be an expensive waste
of resources. Another reason to choose an event-triggered design
is unpredictable environments. Sometimes it is difficult to foresee
changes in the environment or to determine the worst-case execution
time. In such situations event-triggered systems are unavoidable.

As discussed in chapters 2.2 and 2.3, testability is hard to achieve
in real-time systems and is especially low in event-triggered systems.
Due to the low level of testability, it is difficult and expensive to
apply effective test techniques to such systems. For example, both
Schiitz (1994) and Thane & Hansson (1999b) argue that each possible
execution order should be tested adequately. Therefore the effort
to test a system increases as the predictability with respect to the
behavior in the time-domain decreases. The consequence is that the
quality might not be sufficient. If it is possible to increase testability
in event-triggered systems, then testers will be able to perform better
testing and thereby increase quality of the delivered products.

Since event-triggered systems are common and hard to test,
it would help to increase testability in such systems. A method
for increasing testability in event-triggered systems by constraining
the execution environment was proposed by Birgisson et al. (1999).
Unfortunately, the usefulness of this method has never been shown.
It is therefore necessary to determine whether the method is useful
for obtaining increased testability in event-triggered systems or not.

Aim: This dissertation aims to determine whether applying the
proposed set of constraints on the execution environment increases
testability in event-triggered real-time systems while maintaining the
event-triggered semantics, as claimed in previous work (Mellin 1998)
(Birgisson et al. 1999).

A set of objectives are identified. The aim is considered met when
all of the following objectives are met:

Objective 1. To select a metric suitable for estimating the testability
of a real-time system



3.2. PROBLEM DEFINITION 29

Objective 2. To define a method for estimating the testability with
the selected metric

Objective 3. To apply the proposed constraints to a system model
and estimate the effect on testability

Objective 4. To compare the actual results with the results predicted
by formula 3.1, FSTAT

Objective 5. To discuss the implications from the constraints on
system semantics

There are different views on testability and how testability can
be estimated or measured. It is therefore necessary to discuss these
views and clarify which view on testability this dissertation adopts.
Without such clarification it is not possible to judge whether the
constraints have an effect on testability or not. A survey of software
testability and a discussion of some different testability definitions is
therefore given in Chapter 4. Moreover, regardless of which testability
view this dissertation adopts, it is not possible to measure testability
directly since testability is not a property that can be directly
quantified. Therefore a metric with which a reasonable approximation
of testability can be made is needed. This approximation can be used
to compare the estimated effect on testability with the upper bound
given by Formula 3.1, FSTAT. Objective 1 is therefore to identify
such metric. Moreover, the metric should go in line with previous
work on testability in real-time systems and assign the highest level
of testability to the time-triggered design type.

An event-triggered real-time system model is needed to investigate
how the constraints affect testability. The constraints need to be
included in the model in such way that they can be controlled and
their effect on testability can be estimated. Objective 3 therefore
includes applying the constraints into a real-time system model. This
gives a model of a constrained event-triggered real-time system. The
constraints are included in the model in such way that it is possible
to vary the level of each constraint.

Objective 2 is to identify a method with which testability can be
estimated in the constrained event-triggered real-time system model
with the metric identified by objective 1. The comparison of the
measured results and the expected results is reflected in objective 4.

Finally, objective 5 considers the impact from the constraints on
the semantics of the system. Is a constrained event-triggered real-
time system still an event-triggered system? The discussion includes
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a description of the characteristics of the event-triggered semantics
and the effect the constraints may have on this.

The execution environment constraints included in this disserta-
tion are:

C1) Predefined observation points. Observation of event occurrences
is delayed until the next observation point. This is necessary
to define an upper bound on the number of potential event
sequences. The reason is that an event sequence contains both
a set of events and their time stamps. With continuous time and
arbitrary observations, the number of potential event sequences
would, at least in theory, be infinite.

C2) A known upper bound on the number of preemptions a task
can experience. Tasks are only allowed to be preempted at
specific points in their execution. These points must be known
beforehand. The reason is that the preemption points limit the
number of potential interleavings.

C3) A known upper bound on concurrently executing tasks of the
same task type. This constraint is necessary to define an upper
bound on the number of states the system can enter.

3.3 Expected Results

For each execution environment constraint that this dissertation
investigates, a hypothesis for the expected result is defined. The
hypotheses are:

Hypothesis 1. Given defined observation points, the number of
observation points affects testability with O(s™) where s is the number
of observation points and n is a fized number of event types.

Hypothesis 2. Given designated preemption points in time, the
number of allowed preemptions, p, for a task affects testability with
O(p') where t is a fived number of task types, and q is a fived
mazimum number of concurrently executing tasks of the same type.

Hypothesis 3. Given designated preemption points in time, the
maximum number of concurrently executing tasks of the same type
affects testability with O(p'?) where p is a fized number of allowed
preemptions for a task and t is a fixed number of task types.
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Hypothesis 4. Formula 3.1, FSTAT expresses an upper bound on
test effort that is sufficiently tight to be used as an approximation of
system testability. For example, given that Formula 3.1 suggests an
exponential growth with respect to a variable v, the estimated effect on
testability is exponential to kv, where k is a constant and 0 < k < 1.

Hypotheses 1, 2 and 3 consider the question whether the formula
gives a true upper bound or not while hypothesis 4 considers the
question of whether the upper bound is true and tight enough to be
useful as a metric for testability.

3.4 Research Methodology

The research problem is to investigate the relation between testability
and a set of system properties. This is a problem that can best be
addressed by an empirical study where quantitative measurements
are collected and analyzed with respect to hypotheses 1 to 4.

According to Robson (1993) there are three types of research
strategies that can be used when designing an empirical study; (i) a
survey, (ii) a case study, and (4ii) an experiment. In this dissertation
the choice is to design an experiment. The reason is that the goal
is to study the effect on testability while the value of three other
variables are manipulated, i.e., the constraints on the execution
environment. To do this, full control of the manipulated variables
and full observability of the effect on testability are necessary. The
level of control is higher in an experiment than it is in a case study
(Wohlin, Runesson, Host, Ohlsson, Regnell & Wesslén 2000).

The results from the experiment are objective quantitative mea-
surements that either support or reject the above hypotheses 1 to
4.

Objective 5 is to discuss the effect on the event-triggered seman-
tics when the execution environment constraints are applied to a
system. This part of the dissertation work is better approached by
a qualitative research strategy. Qualitative studies aim to discover
and describe phenomena based on descriptions given by the subjects
of study (Wohlin et al. 2000). The discussion in this dissertation is
based on the semantical differences between event-triggered and time-
triggered systems described in literature and on the observed behavior
of the constrained event-triggered system used in the experiment.
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Chapter 4

A Metric for Testability

Testability is approximated by the number of execution orders in this
dissertation. This chapter explains why this metric is so suitable for
estimating testability when the focus is testing for timeliness of event-
triggered systems. This is the focus for this dissertation as explained
in Section 4.2. The used metric has previously been discussed and
motivated in Paper 3.

As discussed in Section 2.1.2, the test effort is affected by a number
of different aspects. This includes the test process, the degree of
automation, and the skills of the test team. One important such
aspect is the testability of the test object. But what is testability?
Recall the view on testability that is introduced in Section 2.1.2.
Testability concerns properties of the test object. Low testability
of a test object implies that the test object is hard to test. It is the
author’s opinion that testability of a test object is a property of the
test object itself and therefore testability of a test object should not
vary due to other factors such as a selected test strategy or the used
test process.

Testability is a concept that is frequently used in literature and
there is an overall agreement that low testability implies that the
test object is hard to test. However, as mentioned previously in
Chapter 2.3, different authors seem to have different interpretations
of the concept. A survey of work in the area of software testability is
therefore given in 4.1. The definition of system testability, which is
used throughout this dissertation, is presented in 4.1.2.

Section 4.2 describes some of the special issues that are related
to timeliness testability and event-triggered real-time systems. The
issues motivate the metric with which timeliness testability is approx-

33



34 CHAPTER 4. A METRIC FOR TESTABILITY

imated in the experiment.

4.1 A Software Testability Survey

McCabe (1976) argues for a need of a mathematical technique that
allows us to identify software modules which are difficult to test and
maintain. This technique will also provide a basis for modularization.
The approach is to measure and control the number of paths through
the program. Cyclomatic complexity of a program is calculated by
the number of nodes and vertices in a control graph where the nodes
represent sequences and vertices represent decisions. It is shown
that complexity is dependent on the decision structure of the graph.
There is a discussion of how the cyclomatic complexity can be used
to identify the minimal number of paths that should be tested. By
reducing the cyclomatic complexity, it is therefore possible to increase
testability.

Freedman (1991) states that a testable software component has
the following properties:

1 Small and easily generated test sets
11 Non-redundant test sets
1t Easily interpreted test outputs
1w Easily locatable software faults

In my view, these ideas are not good enough since only item three
conforms to the view on testability that this dissertation adopts. Item
1 considers the selected test criteria, item #i considers the method for
test generation, and item v considers debugging. Even though all
of these aspects clearly affect the resulting test effort, they are not
properties of the software component itself.

Schiitz (1993) shows how the distributed nature and the real-
time characteristics add to the problems of testing software. The
author describes six different fundamental problems that have to
be considered when testing a distributed real-time system. The
problems presented by Schiitz (1993) are organization, reproducibil-
ity, observability, host/target approach, environment simulation and
representativity. Schiitz (1993) shows how different requirements
affect testability and discusses the relations between the listed
problems.



4.1. A SOFTWARE TESTABILITY SURVEY 35

Binder (1994) states that the two key facets of testability are
controllability and observability. Moreover, the author gives an
argument that software testability is the result of six factors where
three of the factors (item i to 4ii) are properties of the system while
the other three (item iv to vi) refers to the test process:

1 Characteristics of the representation

11 Characteristics of the implementation

191 Built-in test capabilities

iv The test suite (test cases and associated information)
v The test support environment

vi The software process in which testing is conducted

Another example is given by Voas & Miller (1995). The authors
argue for design of software that has greater ability to fail when
faults do exist. Observability can be poor due to implicit information
loss, i.e., high domain/range ratio or explicit information loss, i.e.,
encapsulation of variables. The potential for implicit information
loss can be predicted by functional descriptions or code inspections.
Explicit information loss is less dependent on specification and more
dependent on the design of the software. Several strategies for design
of software with high testability are suggested; (7) Isolating modules
that have a high information loss, (74) minimizing reuse of variables,
and (74) increasing the number of output parameters, i.e., auxiliary
output.

Vranken, Witteman & van Wuijtswinkel (1996) describe system
testability as depending on complexity, state space, controllability,
and observability.  Testability is usually treated differently for
hardware and software but, as the authors point out, when designing
system level tests, it is often not yet decided which of the components
that will be implemented as hardware or software. Hence, it is
necessary to have methods that can handle both. The authors
approach to tackle this problem is by partitioning the system into
modules and inserting test functionality into the modules. The idea
is that partitioning leads to improved testability. By making improved
testability as the major criterion when partitioning, testability is
further improved. Discussion is held about coupling and parallelism.
The added test functionality allows control and observations of
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individual modules for testing purposes. Three kinds of test functions
are described: (i) Transparent test mode (TTM) (4i) built-in self-test
(BIST) and (#27) point of control and observation (PCO).

Byers (1997) discusses testability as the probability to execute a
particular code location given some input distribution. A probability
is associated with each edge in the control flow graph and finding
the execution probability for a program is simply to solve a set of
forward data-flow equations. Some initial work on the propagation
probability is also presented in this paper. The described work is a
static approach related to the PIE method presented in (Voas 1992)
and the view of testability is also very similar to (Voas & Miller 1995).

Dssouli, Karoui, Saleh & Cherkaoui (1999) presents a method
used for finite state machines (FSM). The authors propose a three-
dimensional classification of FSMs, based on three testability prop-
erties: minimality, specifiedness and determinism where the highest
testability is given by a reduced, complete, and deterministic FSM.
Moreover, transformations of an FSM with testability in focus can
move the FSM from one class to another class with higher testability.

Birgisson et al. (1999) present a method for reducing the test effort
for event-triggered systems. The method uses a system architecture
that inherits certain constraining properties of time-triggered systems
but still maintains the flexibility of event-triggered systems. By
applying such constraints on an event-triggered system the authors
argue that it is possible to reduce the number of test cases required
for full test coverage when testing for timeliness on a system level.
Observability and controllability are regarded as prerequisites for
testability and the authors do not distinguish between testability and
test effort.

Thane & Hansson (1999a) present a method for deterministic and
reproducible testing of distributed real-time systems. The main idea
is to make it possible to use sequential test techniques for distributed
real-time systems. The authors present a method that calculates
all possible execution orders for a system with periodic tasks only
and fixed priority scheduling. By doing this they claim that it is
possible to apply traditional test techniques for sequential programs.
The reason is that each identified execution order can be regarded as
a sequential program and therefore tested as a sequential program.
The authors present an algorithm that calculates the execution order
graph (EOG). In addition to using the EOG for testing the authors
argue that the EOG can be used to measure testability since the
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number of execution orders is a measure for the testability of the real-
time system. This measure could be used as a scheduling criterion to
generate static schedules of high testability. Hence, a schedule that
gives a small EOG should be preferred over a schedule with a large
EOG.

Wang, King & Wickburg (1999) describe how complete test
functions can be placed into components. This is an approach that is
referred to as the built-in test, BIT, approach. During maintenance
the system can be executed in test-mode and the testing is conducted
by calling the built-in test-functions.

Gao, Tsao, Wu & Jacob (2003) discuss three different approaches
to increase software testability.

1 Framework-based testing facility developed to allow engineers to
add test code into the software components

71 Built-in tests that requires developers to include test code into
the components to support self-testing

1 Automatic component wrapping for testing, which is a method
to make a component testable by wrapping the component with
code that supports testing

Mouchawrab et al. (2005) present a classification of testability
attributes for object-oriented software. The attributes are classified
according to size, cohesion, coupling and complexity with respect
to different aspects such as state behavior, structure, scenarios and
interfaces. The classification provides the reader with a set of
testability measurements that can be applied to the object-oriented
system to assess testability already during the design phase.

Kansomkeat & Riveipiboon (2008) present a technique that is
used in order to improve testability of object-oriented components.
The basic idea is to first perform an analysis on the Java component
bytecode level and then use the analysis to gather information about
control flow and dataflow. The information is then used to increase
controllability and observability by instrumentation of the code.

4.1.1 Testability Definitions

As shown in Section 4.1, there are different views of testability
but there seems to be some consensus among the authors. Most
authors identify controllability as an important part of testability,
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e.g., (Voas & Miller 1995, Byers 1997, Schiitz 1993, Vranken et al.
1996, Birgisson et al. 1999, Thane & Hansson 1999a, Dssouli et al.
1999, Wang et al. 1999, Binder 1994, Gao et al. 2003, Mouchawrab
et al. 2005, Kansomkeat & Riveipiboon 2008). Most authors also
identify observability to be a part of testability, e.g., (Freedman
1991, Schiitz 1993, Vranken et al. 1996, Birgisson et al. 1999, Thane
& Hansson 1999a, Dssouli et al. 1999, Wang et al. 1999, Binder
1994, Gao et al. 2003, Mouchawrab et al. 2005, Kansomkeat &
Riveipiboon 2008). Other properties that are suggested to be included
in the definition of testability are the size of the test set and the
support for automation, e.g., (McCabe 1976, Freedman 1991, Schiitz
1993, Vranken et al. 1996, Birgisson et al. 1999, Byers 1997, Dssouli
et al. 1999, Vranken et al. 1996, Binder 1994). In my view, size of
the test set and support for automation are properties that are tied
to the test process and the methods used to test the software. The
view in this dissertation is that the level of testability assigned to a
piece of software should be independent of how it is tested.

As a consequence of the different interpretations, the concept
of testability has proven to be hard to define. Several definitions
exist. Not surprisingly, these definitions do not always agree. Three
commonly used definitions are:

Definition 25. The degree to which a system or component facilitates
the establishment of test criteria and the performance of tests to
determine whether those criteria have been met, and (2) the degree
to which a requirement is stated in terms that permit establishment
of test criteria and performance of tests to determine whether those
criteria have been met (IEEE 1990).

Definition 26. The probability that a piece of software will fail on
its next execution during testing (with a particular input distribution)
if the software includes a fault (Voas € Miller 1995).

Definition 27. Attributes of software that bear on the effort needed
for validating the modified software (Standard ISO/IEC 9126 1991).

The first definition is the IEEE standard definition. Some of the
problems with this definition are:

i The testability of the software is mixed with the testability of the
requirements. These are two separate things and should in my
opinion, not be mixed.
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11 The definition is open for different interpretations. One such
interpretation is that testability has to do with whether the system
provides test functionality or not. Another interpretation is that
it has to do with whether a component is an off-the-shelf black
box or a white box with available code. These are only two of
many possible interpretations that are more related to test effort
than testability.

11 Software testability should be a property of the software itself.
It should not vary depending on the method used for testing the
software. This is necessary to compare the level of testability
given by different designs. It is in my opinion, not a good idea
to have a software property (software testability) depending on
anything apart from the software.

The second definition is a refinement of the IEEE standard
definition made by Voas & Miller (1995). This definition is more
precise than the IEEE definition, i.e., it is not open for different
interpretations. Given this definition, testability can be measured
(at least in theory) in probabilistic terms. The method calculates
the probability that the test suit will; (i) execute the part of the
software that contains the fault, (i) have the right parameter values
that activate the fault and (i) propagate the resulting erroneous
state so that a failure can be observed. The higher this probability is
the higher is the assigned testability.

The view described by Voas & Miller (1995) is appealing since
it clearly considers controllability and observability of the software.
However, my opinion is that this definition suffers from being tied
to the testing process (input distribution). With this definition
testability varies with the input distribution as well as with the fault
itself (different faults have different probabilities of being revealed).
The consequence is that the same piece of software may have different
testability depending on both the fault and the effectiveness of the
used test method.

Finally, the third definition is Standard ISO/IEC 9126 (1991).
Even though this definition does not suffer from being tied to the test
process, it is somewhat vague and it is therefore not obvious what
type of attributes it is referring to. Is it test functionality, software
complexity, etc.?” Moreover, it only concerns validation of software
after a modification.
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4.1.2 System Testability

Section 4.1.1 presents some definitions on software testability. How-
ever, when discussing testability in terms of system level testing,
software testability as a concept is less appropriate. Instead of
software testability a definition of system testability is needed.

When testing a real-time system, a point is reached where it
is necessary to test for non-functional properties such as temporal
correctness. For example, timeliness (which is the focus here) cannot
be tested for the software in isolation from the execution environment.
Instead, it should be tested at the system level and preferable on
the target. The reason is that the execution environment affects
timeliness. For example, it is not possible to state anything about
the temporal behavior without considering the policy for scheduling.
Moreover, it is not really relevant to discuss software or hardware
testability in isolation when testing for timeliness. The temporal
behavior is significantly affected by the hardware. It is therefore
the system testability rather than the software testability that is of
interest in this dissertation.

System testability is one of many contributing factors to test
effort. In particular it is the factor that is based on properties of
the system. As system testability increases, the test effort based on
these properties decreases. However, it is the author’s opinion that it
is not possible to give a definition of system testability that is precise
enough to be useful for a specific purpose and general enough to be
useful from all aspects. The reason is that testability is an emergent
property of the system itself but the support for testing that is given
by the system depends on what the tester is testing for, i.e., the test
goal. Hence, a system may have high testability with respect to the
purpose of some testing activities (for example, assessing the logical
correctness in a software unit) and low with respect to the purpose
of other (for example, assessing performance in a target system). It
is therefore my opinion that testability is a system property that can
best be defined and estimated with respect to the purpose of a testing
activity. This is also reflected in the definition of system testability
that is used here.

Definition 28. System testability is the degree to which a system has
a design or implementation that makes it easier to select, execute,
observe, and analyze tests targeting verification of required system
properties.
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The required property in focus for this dissertation is timeliness
and testability is studied with respect to this property. This is referred
to as timeliness testability. Note that even though the definition
focuses on a specific property that the test activity tries to assess, the
definition is independent of both the test process and the methods.

4.2 Testability in Event-triggered Systems

Testing an event-triggered system is harder than testing a correspond-
ing time-triggered system (Schiitz 1993). Schiitz (1993) presents a
comparison of the effort to test a system given the time-triggered
and event-triggered design approaches for real-time systems. The
comparison focuses on the number of possible event sequences that
can enter the system. It is also noted that preemptive scheduling
can further increase test effort due to the effect on the number of
execution orders.

As described in Chapter 2.3, effective test execution requires
the test object to satisfy some basic requirements with respect
to controllability, observability, and reproducibility. Concurrency,
resource allocation policy, and online scheduling are considered to
be major factors that affect testability in dynamic, event-triggered
real-time systems (Schiitz 1993, Thane & Hansson 19994, Birgisson
et al. 1999). Execution of concurrent processes is interleaved in some
order decided by a dynamic scheduler that bases each decision on
current state. Race conditions and small variations in timing may
result in different execution orders (i.e., interleavings in a task set).

Controllability includes controlling the state to start test exe-
cution from and injecting sequences of events at specified points
in time. Controlling the starting state is significantly easier with
time-triggered designs because their cyclic behaviors ensure that they
always return to their initial state before they accept any new input.
Injecting events at specified points in time is also much easier with
time-triggered solutions due to the coarse observation granularity.
The finer the observation granularity is, the higher is the required
time precision for the event injection.

In contrast to a time-triggered real-time system, the input space of
an event-triggered real-time system does not have natural partitions
of the temporal domain. An event may influence the behavior of the
system at any point in time. The lack of natural partitions has several
consequences for the tester.
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1 It produces a larger input space than in the time-triggered case.
One reason is that the finer observation granularity implies a
larger set of potential sequences of time-stamped events. Another
reason is that the state of the system must be considered as part
of the test case.

7 It makes controllability more difficult. Again, it is the fine
granularity that puts higher demands on the precision. These
demands affect the system both with respect to event injection
and to the enforcement of a specified state from which to start
the test execution.

1t It places higher demands on an environment simulator. The
reason is that the simulator must have an observation granularity
at least as fine as the target system. Also, the simulator must be
tested.

As described in Chapter 2.3, event-triggered systems are more
prone to the probe effect than time-triggered systems. The reason
is that an event-triggered system will deliver the result as soon as
it is ready. Thus, even small changes can introduce probe effects.
In time-triggered systems the time when the final result is delivered
is predefined. Given that the probe effect is smaller than the slack
time that is available before the result should be delivered, the probe
effect will not cause any detectable consequence (Schiitz 1993). There
are however, techniques to handle probe effects by e.g., predictable
monitoring (Schiitz 1993, Mellin 2004).

Reproducibility is hard to achieve in event-triggered systems since
the system behavior partly depends on elements that have not been
expressed explicitly as inputs to the system (Schiitz 1994, Thane &
Hansson 1999a, Birgisson et al. 1999). That is, the behavior is non-
deterministic when just the software in concern is considered. Hence,
what is judged to be a repeated test case might lead to different
behaviors due to elements that testers cannot control, including
hardware components. Both Schiitz (1993) and Thane & Hansson
(1999a) points out the non-determinism with respect to execution
orders as an important testability factor since all execution orders
must be adequately tested.

A common way to deal with non-deterministic behavior is to
repeat test cases several times to get statistical confidence for
the results. However, there is nothing that guarantees that the
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probability for a set of potentially different behaviors is equally
distributed. Consider a concurrent update to a shared variable z,
e.g.,  ++. x + + can be translated to three instructions by the
compiler: (7) store the value of z into the register, (i7) increase the
value stored in the register, and (i) store the register value into
2. Suppose that x is not properly protected by e.g., a semaphore.
If a process is preempted between the first instruction (i) and the
third instruction (7), then all updates to x from that point made
by other processes will be overwritten when the preempted process is
dispatched and continues its execution again. The chance to reveal
this fault, i.e., the missing semaphore operation by running the test
cases repeatedly is very small. The reason is of course that the chance
of getting a preemption between instruction (i) and (4ii) is small.

The problem is similar when testing an event-triggered system for
timeliness. Consider a race condition between two tasks for a shared
resource R, and assume that the deadline is met or missed depending
on the outcome of the race condition. There is no guarantee that
the two competing tasks have the same probability of winning the
race for R. Hence, even if the same test case is executed several times
and the deadline is met in all the executions, there might still be
a possibility that the test case can lead to a missed deadline. This
is different from time-triggered systems since such systems give one
potential execution order for each possible input sequence (Schiitz
1993).

In a pure time-triggered real-time system as described by Schiitz
(1993) and Kopetz (1991) new inputs are observed at the observation
points. Events occurring in an interval between such points are
observed by the system at the next observation point. At this point
all triggered tasks are known by the system and executed according
to an off-line schedule, i.e., a look-up table. Moreover all of these
executions are finished before the system reaches the next observation
point. The result will therefore be exactly the same regardless of the
exact point in time when the involved events occurred, as long as
they occur in the same observation interval between the same two
consecutive observation points. The result will also be exactly the
same regardless of any new event occurrences during their execution.
These new events will not be observed or considered for execution
until the next observation point.

The focus here is timeliness testing and one goal of timeliness
testing is to provoke the system to miss a deadline. Hence, it is
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important to select test inputs that have high probability to reveal
such behavior, i.e., the worst case scenarios with respect to timeliness.

In a time-triggered system, the worst case scenario with respect
to timeliness is when the highest load and worst case execution time
for all involved activities occur. In such systems, testing of timeliness
becomes equivalent to finding the input conditions that maximize
resource consumption of each task and then trigger all these tasks at
the same time.

In an event-triggered system the problem is more complex.
Occurrences of new events can affect the schedule at any point in
time. The test case is therefore a combination of current state (e.g.,
current task load, program counter and other information in the
process control blocks (PCB)) and the time and order of input events
(i.e., interrupt signals). There is nothing that guarantees that the
worst case is the test case where all involved tasks maximize their
resource consumption. For example, a task finishing earlier than its
worst case execution time might lead to a different outcome of a
racing condition between two other tasks. This might in turn affect
timeliness. Moreover, the test case where all tasks are triggered at
the same time is probably not the worst case. The reason is that
this situation implies that the scheduler has full information about
the task load and is therefore likely to find a feasible schedule if such
schedule exists. A test case where some of the urgent tasks arrive
when resources already are allocated by other tasks may be more
likely to make the system miss a deadline.

Introducing accelerating hardware such as caches and pipelines
means that the number of variations in the time domain is increased
(that is, the difference between best case and worst case with respect
to elapsed time is increased). Hence, the same input may lead
to different behavior with respect to when things happen. The
consequence is not only that it is hard to repeat tests, it also makes the
results less trustworthy since meeting a deadline on one test execution
does not guarantee it will be met the next time that same test is run.

The above described approach to get statistical confidence for the
result by repeating the test execution several times is not appropriate
for timeliness testing. This approach works better when testing for
efficiency (average response time) than when testing for timeliness
(worst response time). When running a test for timeliness, a goal
is to increase the confidence that a deadline will be met under all
circumstances. The average speed is of no concern for timeliness
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(Stankovic 1988).

A final observation is that the problem with several potential
execution orders tends to get worse when the system is stressed by
event bursts (Schiitz 1993). These are precisely the situations that a
tester would use to provoke the system to miss a deadline. From a
tester’s point of view, it is the worst cases that should be executed, by
for example, executing with overload or reduced capacity. Focusing
on the worst cases and adverse circumstances distinguishes timeliness
testing from e.g., testing for reliability, which usually focuses on test
cases representative for an operational profile.

As the number of potential execution orders increases, it becomes
harder to gain sufficient confidence for timeliness with a statistical
approach. Moreover, since each execution order must be adequately
tested, the test effort is increased when the number of execution
orders is increased (Thane & Hansson 1999a, Schiitz 1993). In this
dissertation the number of potential execution orders therefore is
considered to be a reasonable metric for estimation of timeliness
testability. This metric of timeliness testability is used in the study of
the execution environment constraints and their impact on testability.
The metric goes in line with previous work on testability in real-
time systems (Schiitz 1993, Thane & Hansson 19994a) and assigns the
highest testability to the time-triggered architecture.
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Chapter 5

A Tool for Trace-Set
(Generation

In Chapter 4, the number of execution orders is identified as being a
reasonable approximation of testability in a dynamic, event-triggered
system. In this chapter, a method is defined with which the selected
metric can be used to determine the level of testability of a real-time
system. The algorithm presented here has previously been presented
in Papers 3 and 4.

Enumerating all potential execution orders means that all possible
behaviors with respect to the interleavings among a set of tasks must
be explored. To do so on a real system or in a simulator is impractical
and therefore a model checker is chosen. With a model checker it
might be possible to explore the complete behavior of a real-time
system model given the general limitations of model checking, i.e.,
consumption of memory and time due to a large state space.

The model checker used in this dissertation is UPPAAL (Larsen,
Pettersson & Yi 1997, Amnell, Behrmann, Bengtsson, D’Argenio,
David, Fehnker, Hune, Jeannet, Larsen, Miiller, Pettersson, Weise
& Yi. 2001). UPPAAL is a tool for modeling, simulation and
verification of timed automata models (Alur & Dill 1994). The
basic idea is to model the real-time system, including the execution
environment, and then use a model checker to explore the model to
enumerate all potential execution orders.

Two problems must be solved to estimate testability with this
approach.

1 The first problem is that a model checker cannot deliver more

47
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than a single trace per invocation; a tool is needed. This tool
must keep track of the orders that are already found and force
the model-checker to search for a trace with an execution order
that differs from the ones already found. This gives a subset of
all traces and this subset covers all execution orders.

74 The second problem is that the behavior of a dynamic real-time
system model usually is too complex to explore exhaustively. This
means that the state space explosion problem must be handled to
guarantee that all potential orders are enumerated.

All execution orders cannot be enumerated by executing a real
system or a simulator. Execution in a real system or a simulator
will only give information about the orders that are covered. There
is no information about any missed orders. Model checkers on the
other hand, can sometimes prove properties of a system model by
exploring its state space. Given a set of covered execution orders it
might be possible to use a model checker for investigation of whether
it is possible to reach an order different from the already covered
orders. Model checking is therefore chosen for the experiment in this
dissertation.

Model checking (Clarke & Emerson 1981, Queille & Sifakis
1982) has developed into a powerful technique for automatic formal
verification of transition systems. A model checker can accept a state-
based model and a property, and find a trace through the model that
satisfies (or contradicts) that property if such a trace exists. Common
properties to prove are global invariants, e.g., mutual exclusion, or
showing that some state can be reached, e.g., a deadlock.

Model checking can also be used for job-shop scheduling; for
example, to find a job schedule that gives high throughput and
sufficient product quality. Another application is test case generation,
where the model checker gives a trace that covers a test requirement.
These applications all need individual traces, one for each property or
requirement. A model checker therefore typically generates a single
trace.

The addressed problem, however, requires sets of traces that
collectively cover all execution orders. A key insight of this research
is to generate sets of traces by iteratively invoking the model checker,
where each new trace must differ from the previous traces with respect
to these orders. Unfortunately iteratively invoking the model checker
is sometimes less useful for a model of a real-time system since such
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an approach requires generation of the complete state space.

Real-time models tend to be complex, with many states, and
the state-space explosion problem of model checkers (Holzmann 2003)
means it is difficult to exhaustively analyze the models. The state-
space explosion problem refers to the exponential size of state space
with respect to the size of the input model, the number of clocks
and the largest constant that is used in a clock constraint or guard.
Several attempts have been made to reduce the memory usage of
model-checking algorithms (Behrmann, Larsen, Pearson, Weise & Yi
1999, Bengtsson & Yi 2001, Bengtsson & Yi 2003). However, memory
and time still remain bottlenecks in model checking.

When iteratively asking a model checker to find new and different
traces, the model checker needs to explore more and more of the
state space for each invocation until the generated state space is too
large and the exploration fails due to memory consumption. Such
an approach is therefore likely to fail. Instead, a tool is needed
that can generate a set of traces, i.e., all execution orders, while
at the same time mitigating the problem with excessive memory
consumption. Such a tool is therefore, developed for the experimental
study described in this thesis. Without this innovative method the
included study would not have been possible to carry out. The tool
is illustrated in Figure 5.1.

The input to the tool is a timed automata model and the output
is a set of traces. Each trace is a list of edges in the model. The
file RT'S Model in Figure 5.1 contains a formal specification of a real-
time system. The RTS Model file is manually transformed into the
Modified Model, which contains special markers at each edge that
should be included in the traces. The goal is to generate a set
of execution orders, so a marker is included at each point where a
dispatch can be made. A description of timed automata is given in
Section 5.1 and the description of the model is given in Section 5.2.

The algorithm used by the calculator can force the model checker
to generate all potential execution orders given a modified model (as
in figure 5.1). The algorithm takes the modified model as input and
generates the orders by repeated invocations of the model checker.
To mitigate the state space explosion problem, each exploration is
guided into those parts of the state space where a solution might be
found. Section 5.3 describes how. The result is a file that contains all
potential execution orders. An example and a performance evaluation
of the method are given in 5.4 and 5.5.
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RTS Modified

Model =>| Model |=> Calculator =>| Traces

11

Legend Model

, Checker
[] File

D Program

—> Transformation
=) Input/output

Figure 5.1: A tool for trace-set generation. A model of a real-time
system is transformed into a modified model that includes markers
on selected edges and a guide process. The calculator then saves
all traces that are distinct with respect to the order with which the
marked edges are traversed.

5.1 Timed Automata

To describe this work with a tool for generation of execution orders, a
brief introduction to timed automata is needed. Engineers commonly
use timed automata to specify and verify real-time systems. This
section reviews definition used in this dissertation. Bengtsson & Yi
(2004) and Hessel et al. (2003) have more details on these concepts.

Clocks are represented by a finite set of real-valued variables C and
actions are represented by a finite alphabet ¥. Let B(C) denote the
set of Boolean combinations of clock constraints of the form x ~ n or
x —1y ~ n, where z,y € C, n is a natural number and ~ represents
one of the relational operators {<, <,=,>,>}.

Definition 29. A timed automaton (A) over (X,C) is a tuple
(N,lp, E, I) where:

e N is a finite set of locations
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e [y € N is the initial location
e EC N xB(C) x X x2° x N is the set of edges
o [: N — B(C) assigns invariants to locations

Consider the example in Figure 5.2. A bus is scheduled to leave a
station at 10:05. The bus is however expected to wait for passengers
arriving with a train. The bus is therefore required to stay at the
station for at least two minutes after the arrival of the train. The set

i |
Train Train_here! @
Not_arrived Arrived
Bus At_station Train_here? Train_arrived
y:=0 x<=1005 or y<=2

x>=100b and y>=2

Traveling

Figure 5.2: A timed automata model of a bus scheduled to leave
at 10:05 but required to synchronize with a train before leaving the
station.

of nodes for the bus is N = [At_station, Train_arrived, Traveling].
The initial node for the bus is lj = At_station. The set of clocks for
the bus is C = [z,y]. There are also clock constraints in the form
of a node invariant, x <= 1005 or y <= 2, and a guard y >= 35.
The clock y is reset when the train arrives while z keeps track on real
time.

Definition 30. The semantics of a timed automaton is a timed
transition system over states of the form (l,u), where | € N and u
18 a clock assignment of all clocks in C to non-negative real-numbers.
Transitions are defined by the two rules:

e (discrete transitions) (I,u) = (I',u') if (I,g,a,71")€EE, u € g,
u = [rw Olu and u' € I(I")

o (delay transitions) (l,u) <, (l,udd) ifu € I(l) and (udd) € I(1)
for a non-negative real d € R4
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where u @ d denotes the clock assignment, which maps each clock
z in C to the value u(z) + d, and [r — OJu is the clock assignment
u with each clock in r reset to zero. Basically there are two rules
for transitions because there are two kinds of transitions; the discrete
transition, which is an instant move from one node to another, and
the delay transition, which is an incrementation of the clocks but
includes no move to another node.

Definition 31. A run of a timed automaton A = (N,ly, E,I) with
initial state (lp,up) over a timed trace & = (t1,a1)(t2,a2)(ts,as)... is
a sequence of transitions:

(o, uo) B (1, wr) BB (I, ug) BB (13, uz)...

satisfying the condition t1 = dy and t; = t;_1 + d; for all © > 1. The
timed language L(A) is the set of all timed traces & for which there
ezists a run of A over &.

Definition 32. A network of timed automata Ay||...|| Ay over (3,C)
is the parallel composition of n timed automata over (X,C').

where components are required to synchronize on delay transitions
and discrete transitions are required to be synchronized on comple-
mentary actions. An action a? is complementary to al.

5.2 Creating the Input Model

This section describes how the input model, needed to generate the
sets of traces, is created.

A trace through a timed automaton is a sequence of discrete or
delay transitions that are traversed in a given order, where a discrete
transition is derived from edges while a delay transition includes no
edge. The basic idea with the approach presented here is to annotate
selected edges and then generate a trace-set with respect to these
edges. The final set of traces gives all unique sequences with which
these selected edges can be traversed in the given model. Since the
goal is to generate execution orders, the focus is on edges where tasks
can be dispatched, e.g., preemption points. Each trace is generated
and extended step-wise by guiding the model checker, so that the
search for an extension stays within the partition where the extension
can be found.
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Task(id:=1to N)

X::l,

i<execTime, x==1,
il=acqTime, i==relTime
il=relTime Release[]!
x=0, i++,
i++ x=0
e )
/Ex\em
x<=1
i==acqTime,
i==execTime x==1
Done! Preempt[id] ? Acquire[r]!
i=0 i++
Dispatched]id]?
x=0
Init[id] ? e

Figure 5.3: A simplified task model. An initiated task alters between
the states Idle and Executing until it is done. Clock constraints
implement execution time and allocation time.

Consider the following example. The automaton in Figure 5.3
specifies a simple model of a task. The task is executed by a process
that is part of a concurrent system with N processes executing similar
tasks. When initiated, the task alters between the states Idle and
Executing until it has been in state Executing for execTime time
steps. At time acqTime a request for resource r is made and at time
relTime the resource is released. It is assumed that there is a scheduler
with which the automaton synchronizes via the channels Dispatch,
Preempt and Done. The automaton synchronizes with a resource
handler via the channels Acquire and Release.

The problem addressed when generating sets of traces is to get a
subset of all traces that is complete and non-redundant with respect
to the execution orders. A model of a real-time system includes more
than a task set, e.g., scheduler and environment and it is only the
interleavings among the timed automata processes that model real-
time tasks that should be collected. Moreover, only the interleavings
with respect to the access of the processor should be collected.
Therefore a subset of the edges in the automaton is selected and
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the global order of the transitions is derived from these edges only.
All edges where tasks synchronize with the scheduler are therefore
selected. These edges are labeled Dispatchedfid[? in figure 5.3 on the
edge from Idle to Executing. By generating all global orderings with
which these edges can be traversed, all execution orders are collected.

An interesting note here is that this approach can be used to
generate trace-sets that cover test criteria based on orders. Depending
on which edges that are selected, the set of traces will have different
properties. For example by selecting all edges where a shared resource
r is acquired and released it is possible to generate all orders with
which the resource is used by the different tasks.

An innovative aspect of the research presented here is that all
edges that dispatch tasks are marked with special markers called p-
points. A p-point is denoted p-point[id,j|, where id is the process
identity, and j is a number associated with that p-point (e.g., the
edge and the point in execution). This is shown in Figure 5.4 on the
edge from Idle to Executing.

Task(id:=1to N)

. i==relTime,
X__]'* x==1
i<execTime,
i'=acqTime, Release[r]!
il=relTime I++,
x=0, x=0
i++
i==execTime /E)&eﬁhg
Done! x<=1
=0 i==acqTime,
Preempt[id] ? x==1
Acquire[r]!
i++
p-pointfid,j]
Dispatched[id]?
x=0
@ Initfid] 2~ =/
Idle

Figure 5.4: The simplified task model annotated with a p-point, p-
pointfid,j/, on the edge from Idle to Executing. id is the process
identity, and j is an enumeration of the p-point.
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Any trace § € L(A) will traverse a subset of the p-points in some
order. Such sequence of traversed p-points is referred to as a p-path.
Figure 5.4 contains a p-point on the edge labeled Dispatchedfid]? on
the edge from Idle to Executing. Section 5.3 shows how p-paths are
collected using the existing model checker UPPAAL (Larsen et al.
1997) and dynamic manipulation of the analyzed model.

5.3 Partitioning and Model-Checking

If the model checker can detect loops', then it can generate a finite
set of p-paths through the model in Figure 5.4. The set of p-paths in
this example describes the set of execution orders since the p-point is
placed on the edge from Idle to Executing where the task synchronizes
with the scheduler.

Definition 33. Let pp, be the sequence of p-points that a trace o €
L(A) traverses (possibly the empty sequence). Let PP be the set of
all p-paths pp of an automaton A. A trace o is said to follow a p-path

pp € PP if pp, is a prefix of pp.

The p-paths are generated by iteratively invoking the model
checker with queries that extend an existing p-path prefix by one
step. An extra, guiding automaton is used to guide the model checker
in its search for the one-step extensions. The basic idea is that the
original automaton will synchronize with the guiding automaton at
each p-point (as shown in figure 5.5). The guiding automaton uses
an array, Ppath, to store the current p-path prefix and an integer,
Length, to store the length of the p-path prefix. Synchronization at
p-point j as the (i + 1)th traversed p-point is successful only if the
following is true:

i Ppathli] = j Ni < Length, or
1 1 = Length,

where Ppath[i — 1] is the ith element of the array Ppath. Intuitively,
(1) holds if the execution follows the p-path prefix specified by Ppath,
and (2) holds if an extension to the p-path prefix is reached.

LA reasonable requirement since many model checkers do, including UPPAAL
(Larsen et al. 1997) and SPIN (Holzmann 1997).
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Figure 5.5 shows a guiding automaton (on the right). The left
automaton is the simple task model extended with two new edges
(labeled Allow! and Allowed?), which implement the p-point on
the edge from Idle to Executing in Figure 5.4. Note how the left
automaton synchronizes with the guiding automaton whenever a p-
point is reached (i.e., when the left automaton is given access to the
processor). Note also that when the end of current p-path is reached
(the edge guarded i == Length in the guiding automaton), and hence
a potential extension of the p-path is found, the identity of the current
p-point extending the p-path is stored in a variable Next and the
system deadlocks.

The guiding automaton will prevent the state-space exploration
from exploring states where extensions cannot be found. Any attempt
to abandon the current p-path during exploration is bound to fail.
The approach thereby mitigates the problem of memory consumption.
By following the p-path, the process will find an extension if one
exists. The use of p-points and a guiding automaton allow the current

Task(id:=1 to N) Guide
x==1,
i<execTime, i==relTime,
i'=acqTime, x==1
il=relTime Release[r]!
x=0 i++
e -0 FollowPath
i++ 8 x=0
v Next==0
i==execTime
Done! Allowed? .
- o . Allow? i<Length,
i=0 5:§cqhme, ) Ppath[i]==ppld
==l PPIAS | Allofved!
Preem Acquire[r]! '
i++
j=MyPppintld[i] Evaluatind
AtPpoint
Dispatched[id]?
x=0
PathExtended

g Next!=0

Figure 5.5: The simplified task model extended with a guiding
automaton, which guides the search for next p-point. A dispatch
immediately leads to a synchronization with the guide process.
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p-path to be extended if possible. It also mitigates the state-space
explosion problem since the search follows the p-path.

To generate all complete p-paths without modifying the applied
model checker, it is necessary to dynamically manipulate both the
verified safety property and the model files. The algorithm for
generating p-paths is shown in Figure 5.6.

The algorithm uses a stack, S, to store information about the
current set of generated p-paths. Each stack item is a pair (pp,n),
where pp is a p-path prefix and n is its length. € is used to represent
the empty p-path, and pp :: ¢ to represent the result of appending the
path g to pp. The algorithm also uses files that contain the model of
the system, M, and the property to be verified, (). Properties of the
form 3¢ is used to specify that a state satisfying ¢ is reachable in
the model.

The stack starts with one element (ppg,ng), where ppy = € and
ng = 0, the query in the property file is initialized to 3< Next # 0,
and the model file is modified by setting the values for the constant
array Ppath to ppg and Length to ng with values from the stack
(i.e. € and 0). The initial property is satisfied as soon as a possible
continuation is found, i.e. when a process synchronizes with the
guiding automaton at a p-point. From the diagnostic trace generated
by the model checker, a possible continuation of ppg can be extracted
from the value of Next. This value is denoted pp}. At this point, two
things are done:

i Push (ppo :: ppi,no + 1), onto the stack, and

71 Call the model checker with the extended query 3 Next # 0 A
Next # pp

This is repeated until the query 3< (Newt # OA Next # ppiA...A
Next # ppt) cannot be satisfied. At this point, there are n p-paths
on the stack: (ppi, 1),...,{pp7,1), each with length one.

A new pair (pp],n;) is popped in each iteration. These values
are used to set Ppath= pp{ and Length= n; in the model file. The
query in the property file is re-initiated to 3 & Next # 0. The above
procedure is then repeated until all possible continuations of ppf with
length n; + 1 are pushed onto the stack.

The algorithm finds a complete p-path when the initial query
3O Next # 0 returns false, meaning that there is no continuation
of the current p-path. The result is a unique sequence of p-points
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while S DO —
pop S for pp and n
Q= “dO Next #07
copy original model file to M
find and replace in M —
Ppath[0] = {} with Ppath[n] = {pp}
Length = 0 with Length =n
satis fied = true
alternatives = 0
while satisfied DO —
invoke model checker with M and @
if satisfied DO —
alternatives + +
find pp{ in generated trace
push < pp ::pp{,n%— 1> onto S

Q=0Q: “A Next ;épp{”

else if alternatives == 0 DO —
save pp # This is a complete p-path
end
end # All continuations for pp found
end # All p-paths found

Figure 5.6: P-path generating algorithm. pp is the current sub p-
path, n is its length, S is the stack, @ is the current query, and M is
the file containing the model.

defining a p-path. The algorithm terminates when the stack is empty.
At that point all p-paths are identified.

5.4 A Small Example

The approach to generate trace sets can be used to generate all orders
with respect to any kind of edges of interest. For example, it might
be interesting from a testing perspective to generate a set of orders
with respect to synchronization or resource usage.

This section illustrates the algorithm with a step-by-step example,
using the automata model in Figure 5.7. This model is simplified to
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Task 1

Initial DoSomeStuff ~ Prep2Enter

Guide
DoMoreStuff

FollowPath
Next==0

gth,

(D) _Allow! cs Allow? Ppathli]==ppld
Allowed? &/ =12, ppld=j Allowed!
Lock=1

i==Length

Task 2 Next=ppld
Initial DoSomeStuff Prep2Enter
PathExtended
LockF=1 Next!=0

DoMoreStuff

(_Allow!
Allowed? ‘& =22,
Lock=1

Figure 5.7: A simplified model using a binary semaphore Lock to
protect the critical section CS.

focus on how this algorithm works on the example. The model in this
small example does therefore, not consider time, scheduling or the
behavior of the tasks. The only detail left is a critical section (CS)
and the protocol for entry and exit.

The algorithm is used to generate all orders with which the tasks
may enter and exit CS. Hence, the edges where semaphore Lock is
used are selected and a p-point is inserted at each selected edge. An
empty sequence and a 0 are pushed onto the stack to begin the first
iteration. Each iteration begins by modifying the model file, M, with
values fetched from the stack, S. The query, @, is modified before
each invocation of the model checker.

In the first iteration (see Table 5.1) two alternatives for the first
p-point are identified, 11 and 21. The third query is falsified. The
next iteration searches for extensions to the last saved p-path, {21}.
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The second iteration (see Table 5.2) gives only one possible
extension to p-path {21}, 22. The reason is that Task 2 has entered
the critical section CS and the entry is locked for Task 1. The search
is continued from p-path {21, 22}.

There are two possible extensions to p-path {21, 22}, 11 and 21
(see Table 5.3). The search continues from the p-path {21, 22, 21} in
iteration 4.

The model checker returns false in response to the first query (see
table 5.4). This means that it is not possible to extend the p-path
{21, 22, 21} with an additional p-point without re-entering a state
that has already been visited, i.e., a loop. This p-path is complete
and therefore saved. The search is continued for extensions to {21,
22, 11} in iteration 5.

There is only one possible extension to p-path {21, 22, 11}, 12
(see Table 5.5). The search is continued from p-path {21, 22, 11, 12}.

There are two possible extensions to p-path {21, 22, 11, 12}, 21
and 11 (see Table 5.6). The search continues from the p-path {21,
22,11, 12, 11}.

No extensions to {21, 22, 11, 12, 11} were found (see Table 5.7).
This is the second complete p-path in this example and the p-path is
therefore saved. The search continues for extensions to p-path {21,
22, 11, 12, 21}.

There is only one possible extension to p-path {21, 22, 11, 12, 21},
22 (see Table 5.8). The search is continued from p-path {21, 22, 11,
12, 21, 22}.

There is only one possible extension to p-path {21, 22, 11, 12, 21,
22}, 21 (see Table 5.9). The search continues from p-path {21, 22,
11, 12, 21, 22, 21}.

No extensions to {21, 22, 11, 12, 21, 22, 21} were found (see
Table 5.10). This is the third complete p-path in this example and
it is therefore saved. The search continues for extensions to p-path
{11}.

At this point, all orders that begin with p-point 21 are covered.
The saved orders so far are {21, 22, 21}, {21, 22, 11, 12, 11}, and {21,
22, 11, 12, 21, 22, 21}. Continuing the search will give the additional
orders {11, 12, 11}, {11, 12, 21, 22, 21}, and {11, 12, 21, 22, 11, 12,
11}, as shown in Figure 5.8.
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Table 5.1: Iteration 1: Extensions to p-path {}.
Stack: I Result
Query: FONext £ 0 11
Stack: [{11}1]
Query: FONext # 0N Next # 11 21
Stack: [{11}1,{21}1]
Query: JONext #£ 0 A Next # 11 A Next # 21 False
Table 5.2: Iteration 2: Extensions to {21}.
Stack: [{11}1] Result
Query: JONext #£ 0 22
Stack: [{11}1,{21,22}2]
Query: JONext #£ 0N Next # 22 False
Table 5.3: Iteration 3: Extensions to {21,22}.
Stack: [{11}1] Result
Query: JONext #£ 0 11
Stack:  [{11}1,{21,22,11}3]
Query: FONext # 0N Next # 11 21
Stack:  [{11}1,{21,22,11}3,{21,22,21}3]
Query: FONext #£ 0 A Next # 11 A Next # 21 False
Table 5.4: Iteration 4: Extensions to {21,22,21}.
Stack:  [{11}1,{21,22,11}3] Result
Query: FONext #0 False
— Save {21,22,21}
Table 5.5: Iteration 5: Extensions to {21,22,11}.
Stack: [{11}1] Result
Query: FONext £ 0 12
Stack:  [{11}1,{21,22,11,12}4]
Query: FONext # 0 A Next # 12 False

5.5 Performance Evaluation

To evaluate the performance of the algorithm, it is compared to
ordinary model checking where the model checker is asked to return
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Table 5.6: Iteration 6: Extensions to {21,22,11,12}.

Stack: [{11}1] Result
Query: FONext #0 21
Stack:  [{11}1,{21,22,11,12,21}5]

Query: FONext # 0 A Next # 21 11
Stack:  [{11}1,{21,22,11,12,21}5,{21,22,11,12,11}5]

Query: FONext #£ 0 A Next # 21 AN Next # 11 False

Table 5.7: Iteration 7: Extensions to {21,22,11,12,11}.

Stack:  [{11}1,{21,22,11,12,21}5] Result
Query: JONext #£ 0 False
— Save {21,22,11,12,11}

Table 5.8: Iteration 8: Extensions to {21,22,11,12,21}.

Stack: [{11}1] Result
Query: FONext £ 0 22
Stack:  [{11}1,{21,22,11,12,21,22}6]

Query: FONext # 0 A Next # 22 False

Table 5.9: Iteration 9: Extensions to {21,22,11,12,21,22}.

Stack: [{11}1] Result
Query: JONext #£ 0 21
Stack:  [{11}1,{21,22,11,12,21,22,21}7]

Query: FONext # 0 A Next # 21 False

Table 5.10: Iteration 10: Extensions to {21,22,11,12,21,22,21}.

Stack: [{11}1] Result
Query: JONext #£ 0 False
— Save {21,22,11,12,21,22,21}

complete p-paths, one at a time. This approach requires a defined
final state S. The initial query asks the model checker if S is reachable
(3¢ S). The resulting trace gives a complete p-path, pp;. The query
is then extended to 3< S A —ppy. This is repeated until the query
FO S A =pp1 A ... A —ppy, s falsified, meaning there are no more p-
paths. This procedure is automated and is referred to as the base-line
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Figure 5.8: A tree showing all orders with which the p-points can be
traversed in the model given in Figure 5.7.

algorithm.

The baseline approach only invokes the model checker once per
p-path and it does not require the model to be altered during the
search. The consequence is that the first p-paths are found rather
quickly compared with the new algorithm described in this chapter.
However, the search is not guided and the model checker has to
explore a larger part of the state-space for each additional p-path.
The final invocation, which falsifies the query for an additional p-
path, forces the model checker to explore the complete state-space.
Hence, if the model is too complex for exhaustive search, then at some
point in the search, the baseline algorithm will run out of memory.
This leaves part of the state space unexplored and the set of p-paths
found incomplete.

We applied the new algorithm and the baseline algorithm to the
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Table 5.11: Comparison of p-path coverage.
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same model?. The complete set of p-paths contained 35 different
orders. Table 5.11 shows that the new algorithm covered all p-
paths in the model within 3 hours and the p-paths were found with
a constant rate. The baseline algorithm delivered the first p-paths
quickly but the performance dropped severely after 20% coverage. It
only managed to find nine p-paths, giving less than 26% coverage. At
that point the model checker stopped with an “out of memory” error
message.

The new trace-finding algorithm split the search space into partitions
along the p-paths. The algorithm finds one p-path at a time, using
a stack to remember where to continue the search. However, it is
important to note that, due to the tree structure and the fact that
the search begins at the root node, each item on the stack contains
enough information for an independent search for all continuations of

2The model included a total of 34 TA processes, eight of them modeling tasks
annotated with p-points as shown in Figure 5.5. The experiment was performed
on US-II sparc 12 CPU multiprocessor with 400MHz, 4Mb cache, and 6144Mb
memory. The search order option in the model checker was set to depth-first.
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that particular p-path prefix. Hence, this algorithm is particularly
suitable for parallelization. It is possible to distribute the search over
several processors, thereby performing a more time-efficient search.

The experiments was conducted on a 12 CPU multiprocessor,
which increased efficiency by an order of magnitude. The limitation
of this approach is, of course, the size of the partitions. Threading on
a multiprocessor implies shared memory and might create a memory
consumption problem. If this happens, the partitions can easily be
distributed over separate processors. The cost for distribution in
terms of communication is bounded by the number of partitions since
there is only need for one message per p-path.

5.6 Termination and Correctness

Introducing the iterator i in the guiding automaton in figure 5.5 might
cause loops to be unfolded in the state space. The reason is that
the model checker cannot recognize a previously explored state (and
thereby avoid exploring it again) if i is incremented. Variable i is
therefore declared as a hidden (or meta) variable. Such variables are
used to annotate a model, but are not considered when states are
compared during the state-space generation. This means that states
that only differ by the value of i will be considered to be equivalent
by the model checker. Using a hidden variable guarantees that the
number of p-paths is finite and that the algorithm will terminate.
Hidden variables are common in model checking tools like SPIN
(Holzmann 1997) and UPPAAL (Larsen et al. 1997).

The described algorithm for generation of trace sets is sound
since it does not introduce any new states. The Guide process does
not change any global variables and the only global variable that is
touched by the Task process at the p-point (i.e., at the transitions
between the two states AtPpoint and Executing) is the integer j
which is introduced to communicate the p-point identity with the
Guide process. j is not used anywhere else in the model. Moreover,
there are no delay transitions introduced by the p-point; (i) channel
Allow is an urgent channel and since the Guide process is ready to
synchronize, the synchronization will occur before there is a change
to the clock values, (ii) state Evaluating in the Guide process is a
committed state meaning that the Guide process is not allowed to
delay in that state. The only effect the Guide process and the p-
points can have on the state space is a reduction since transitions
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that abandon the current p-path immediately leads to a deadlock.

The described algorithm for generation of trace sets is complete
since it generates all p-paths. Consider Figure 5.8, there are three
ways to miss a p-path:

1 the algorithm has missed a branch somewhere in the tree
71 the algorithm has missed a continuation of a leaf of the tree
711 the algorithm stops before all p-path prefixes are explored.

Case i cannot happen for the following reason. Given an arbitrary
node in the tree, the p-path prefix is used to find continuations. All
traces that traverse the p-points in the order specified by the p-path
prefix are allowed. The query that is given to the model checker is
an open reachability query, i.e., is there any trace that reaches a
consecutive p-point, which is different from the ones already found.
As long as the answer is yes, the traversed p-points (including the
continuation) is saved as a p-path prefix on the stack and the query
repeated to find other continuations. When the answer is no this
implies that it is not possible for any trace to traverse the p-points
in the specified order and continue to any other p-point than the ones
that are already found, i.e., no such branch exists.

The argument for case 7 not to happen is very similar. There is
a leaf node only if the model checker returns no to the first query for
the current p-path prefix. This means that it is not possible for any
trace to traverse the p-points in the specified order and continue to
any consecutive p-point. Hence, if the model checker itself is correct,
Case i and 47 cannot occur.

Case it differs since it concerns the stack and how it is used. The
reason that case 74 cannot occur is that each identified continuation
to a p-path prefix results in a new p-path prefix, which is pushed
onto the stack. The algorithm does not halt until the stack is empty.
It is therefore not possible for the algorithm to stop until all p-path
prefixes are explored.



Chapter 6

Impact on Testability

This chapter describes an investigation of the impact on testability
from a set of execution environment constraints when these are
applied to a system model. The theory (see Chapter 3.1) predicts
a certain impact on testability. The purpose of the work described in
this dissertation is to evaluate the usefulness of previous theoretical
work. The experiment and its results has been presented and
discussed in Paper 1. The experimental setup with the steel plant
is used as a case study in Paper 4. Some of the material has also been
presented as work in progress in Papers 5 and 7.

The equations (FSTAT, see Equations 3.1 to 3.4) provide ap-
pealing models, but they must be verified empirically to be useful.
Specifically, this dissertation seeks the answer to three questions: (1)
do the proposed constraints (the values of s, ¢ and p) affect testability
in the same way as suggested by the formula FSTAT, (i) does
the FSTAT give a true upper bound for testability, and (i) is the
FSTAT an appropriate approximation of testability as it is measured
in this dissertation (is the bound sufficiently tight).

This chapter presents an empirical study where testability is
estimated as the degree of the constraints is varied in a model of
a dynamic real-time system and its execution environment. The
results show that some of the factors, previously identified as possibly
impacting testability, do not have an impact, while others do. The
innovative idea to use p-points together with the algorithm and the
guide process described in Chapter 5 is what makes this investigation
of testability possible.

Aside from constraints on the execution environment, constraints
might also arise from other sources, e.g., internal dependencies such

67
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as cause-effect relations. For example, a task that is triggered by
an object arriving on a moving conveyor belt will not be triggered
unless something is placed on the conveyor belt and the conveyor
belt is moving. Moreover, the exact time for a sensor registration of
an arrival is decided by the speed of the conveyor belt and the exact
point in time when the item was placed. Such time dependencies
among tasks and also between tasks and the controlled environment
are of course common and do affect the number of potential execution
orders. Other dependencies arise from the fact that there are shared
resources. Exclusive access to a shared resource implies that some
interleavings are prohibited. Hence, it is likely that the actual
impact on testability is much lower than the theoretical upper bound
suggests.

The main idea for the experimental setup is to model an applica-
tion as a dynamic real-time system. A set of triggering events and
task types that respond to such events are therefore identified. Each
task is assumed to be executed by a process. Internal dependencies
and the execution environment together with the proposed constraints
are included in the model.

The model is created in a number of variants. These differ only in
the values of the parameters representing the investigated constraints.
Everything else is kept fixed. A set of test scenarios (i.e., input
sequences) is selected and applied to all variants. For each test
scenario, testability is estimated by counting the potential execution
orders in each variant with the model checker UPPAAL (Larsen et
al. 1997).

The number of execution orders is likely to grow exponentially as
the parameter values are varied. Hence, this experiment has to be
limited to a small model. A subset of the identified tasks is therefore
selected for the study. However, even though the study is conducted
on a subset of all tasks, the results are still useful for showing the
relation between the investigated constraints and testability since
adding more tasks is not likely to reduce the impact.

6.1 Subject of Study

The subject of the study presented here is a control application
of a steel plant, SIDMAR. The steel plant has been previously
described in detail and used in several studies, e.g., by Behrmann,
Hune & Vaandrager (2000), Hune, Larsen & Pettersson (2000), Boel
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(2000), Boel & Montoya (2000) and Fehnker (1999). This application
suits the purposes of this study well in the sense that the detailed
description of the plant behavior makes it easy to derive a subset of
tasks with natural dependencies among them with respect to timing
and shared resources. This means that the real-time tasks in the
subset have built-in constraints on their timely behavior.

6.1.1 Plant Layout

The physical SIDMAR plant is located in Gent, Belgium. The steel
plant consists of two cranes, two convertor vessels, five machines,
two normal tracks, a buffer, a storage place, a holding place, and a
continuous casting machine (figure 6.1). The plant is used in case
studies of scheduling problems where the goal is to find an optimal
job schedule or to verify properties (Fehnker 1999). The steel plant
has a number of physical components (see Figure 6.1).

i Convertor vessels: This is where the pig iron (raw cast iron) enters
the system. It is poured portion-wise into steel ladles.

71 Tracks: The ladles can move autonomously along two normal
tracks. Moving from one track to another requires a crane.

11 Cranes: Two cranes are available to move the ladles between
tracks, the buffer, the storage place and the holding place. The
crane is also needed for moving empty ladles from the casting
machine to the storage place.

iv Machines: SIDMAR has five machines of three different types.
Machines #1 and #4 are identical as are machines #2 and #5.
The quality of the steel depends on the order with which the
machines treat the iron.

v Continuous casting machine: This is where the steel leaves the
system. The casting machine consists of two parts, a holding
place and the casting machine itself. The casting machine works
as a merry go round. An empty ladle can only leave the casting
machine when the holding place has a full ladle.

vi Buffer: The buffer can hold at most five ladles and can be used
to pass ladles between the cranes.
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vii Storage place: Empty ladles are placed on the storage place. An
empty ladle can only be transported to the storage place if the
holding place contains a full ladle. Moving an empty ladle from
the casting machine requires a crane.

crane #1
convertor *
vessel #1
machine #1 machine #2 machine #3
; } track #1 m
convertor
vessel #2

machine #4 machine #5
m track #2

crane #2

buffer

storage
place

Fr===="

continous
casting
machine

N ’
N 7
N4

holding
place

Figure 6.1: Layout of the steel production plant. The Figure is based
on Fehnker (1999).

The steel plant is a typical example of a real-time system. The
behavior of the controlled environment, where steel ladles arrive on
conveyor belts to be handled by machines and cranes, does not differ
much from e.g., any factory where components arrive on conveyor
belts to be assembled by industrial robots.

6.2 The Timed Automata Model

A formal model of the system is developed in timed automata (TA).
The model, summarized in Figure 6.2, has three parts:
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Figure 6.2: An overview of the modeled system including controlled
environment, application and execution environment.

1 Application: All tasks that are involved in the execution orders
are part of the application 71, ..., 7,,, where 7; is a timed automata
process corresponding to a real-time task.

71 Controlled environment: This part is restricted to a set of events:
e1, ..., én, where ¢; is a timed automata process corresponding to
an event (e.g., a sensor signal).

111 Execution environment: This part consists of an observer, a
scheduler, and a resource handler. The observer observes events in
the controlled environment and communicates with the scheduler.

6.2.1 Application

A dynamic approach is assumed for a steel plant application with
small real-time tasks triggered by sensor signals. It is easy to identify
a large number of task types in this application. However, a subset
of these is selected to be included in the model. The reason is that
the tasks are modeled in timed automata and it must be possible
to elaborate with the number of concurrently executing tasks of the
same type. With a large number of task types this would soon lead
to an infeasible large model. The model must be sufficiently small
to enable verification. Therefore, a small subset of task types are
selected, i.e., four types. This means that the number of potential
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execution orders that this study gives is with respect to this subset
of task types only. Hence, each order in the study can be viewed as
a class of execution orders, where members of a class have the same
order among the subset of tasks but differ with respect to interleavings
with other tasks not included in this study.

The selected task types are:

1 Start_machine. This task is triggered by a sensor signaling the
arrival of a steel ladle at the end of a conveyor belt. The task
starts the processing of steel by the current machine.

11 Stop_machine. This task is triggered when processing in a machine
is finished. The steel ladle is removed from the machine and placed
on the conveyor belt ready to continue to the next position.

112 Between_machines. This task is triggered when a steel ladle
arrives at the center of track #1 or #2. A decision is taken
whether the ladle should continue to next machine on the same
track or the other track, or whether it should be placed on the
buffer.

1w On_buffer. This task is triggered when a steel ladle is placed on
the buffer. As soon resources are available (i.e., crane, conveyor
belt, and machine) the ladle is removed from the buffer and placed
on the corresponding track.

Fach task type is modeled as a timed automata template.

6.2.2 Controlled Environment

The controlled environment in the used model is simply a set of event
occurrences, i.e., sensor signals. Each event type is modeled as a
timed automata process that synchronizes with the observer included
in the execution environment.

In previous work with the steel plant, physical parts and their
movements were modeled (Fehnker 1999). This is of no interest in
this study and therefore such processes are replaced by timers. The
reason for using a timer rather than ignoring the physical processes
is that they take time and this imposes a time constraint on some of
the tasks. For example, suppose a task Start_machine is triggered by
an event At_machine. That event can only occur a certain time after
a ladle has been placed on a track and the conveyor belt started to
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Start Start_timer[T]? Wait
x<delay_max
x=0
Signal_event[E]! x>delay_min
Expired
(e
N

Figure 6.3: A timer that ensures timing constraints among two tasks.
A local clock x is reset when the timer is started. The timer expires
after a minimum of delay, and delayq, time units.

move. Modeling movements with timers makes it possible to maintain
such constraints. Moreover, the timers make it possible to simulate
a more unpredictable environment since the time constraint is likely
to be a short time interval rather than an exact point in time. For
example, consider a ladle placed on a conveyor belt at time ¢. The
corresponding event At_machine will occur when the ladle has been
transported by the conveyor belt to the end of the corresponding track
where a sensor is placed. The sensor signal informing the system of
the arrival will be given sometime in the interval [t + delaymin,t +
delaymaz]. A TA process implementing such timer is shown in figure
6.3.

A test scenario in this application is a sequence of steel ladles that
enter the system at certain points in time. The ladles are placed on
one of the tracks leading to machine #1 or #4. In actual operation,
when a ladle reaches one of the machines an event is generated. In
the model, this arrival is simulated by starting a timer (start node in
Figure 6.3) when a ladle is placed on the track. The timer expires
after a time interval that corresponds to the time it would take for
the ladle to reach the machine.

6.2.3 Execution Environment

In addition to the application and the controlled environment, the
execution environment is included in the model. To investigate how
the execution environment affects testability, the selected execution
environment constraints must be implemented. Other constraints
that arise naturally due to scheduling, resource handling, precedence,
etc must also be considered. This is therefore included in the model.

A simple scheduler is added to the model. The scheduler keeps all
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active tasks in a ready queue and permission to proceed in execution
is only given to the task that is first in line of that queue. The
currently used scheduling policy is earliest deadline first (EDF). The
goal of this experiment is not to compare different scheduling policies
and evaluate them or to guarantee deadlines. Hence, a sophisticated
scheduler is not needed. It is sufficient with a simple scheduler that
selects tasks according to priorities derived from their deadlines since
a deadline driven policy is likely to be used in a dynamic real-time
system. A task is inserted into the ready queue when it is triggered
or when it is unblocked. A task is removed from the queue when it is
done or blocked. If the currently executing task has a later deadline
than a task entering the queue, the current task is preempted at the
next preemption point. Preemption points are equally distributed
over the time of task execution. This means that there is a known
maximum time delay associated with each preemption point.

The role of the observer is to observe events in the controlled
environment and communicate observations to the scheduler. The
observer ensures that event occurrences are observed by the system at
the next observation point. Observation points are equally distributed
over time. This means that there is a known maximum time delay
from an event occurrence to the point in time when a corresponding
task is triggered.

Tasks are triggered on event observations and scheduled according
to their deadlines in an earliest deadline first manner. Execution
of tasks is conducted in non-preemptive intervals separated by the
designated preemption points. If there is a task in the ready queue
with higher priority than the task that is currently executing, the
current task is preempted on arrival at next preemption point as long
as the number of preemptions a task can experience is unbounded.
However, if the number is bounded to M AX_P and the task already
has been preempted M AX _P times, other actions must be made to
maintain the constraints. For example the task can be aborted or
continue its execution in a non-preemptive mode.

To simulate execution of tasks that share resources, a resource
handler is implemented. The resource handler manages a queue for
each shared resource and the queue policy currently used is first-in-
first-out (FIFO). Hence, this resource handler implements the same
behavior as a set of FIFO semaphores, one for each shared resource.
The policy can easily be altered to give priority according to deadline
or criticality.
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Figure 6.4: This pattern occurs when a task tries to allocate a shared
resource. The task synchronizes with the resource handler on a
channel associated with the resource. No response is required. If
the task is blocked, the condition for executing is falsified until the
task has allocated both the resource and the CPU.

A task that tries to allocate a shared resource is blocked if the
resource is not free (i.e., the semaphore is 0). The resource handler
gives the resource to a blocked task, if any, when the resource is freed.
If no tasks are blocked on the freed resource, the semaphore is set to
1.

The patterns that occur in a task when allocating or de-allocating
resources are shown in figures 6.4 and 6.5. Figure 6.6 shows the
simplified task model from Chapter 5 extended with these patterns.
Full descriptions of all variables, channels and functions used in the
figures are given in tables 6.1 to 6.4.

The basic semantics in these designated preemption points is
that when the scheduler decides to preempt a task, the task is not
preempted immediately. Instead, the preemption occurs when the
task reaches its next preemption point. This means that execution of
the task can be viewed as execution of a number of non-preemptive
segments. The longer these non-preemptive segments are and the
lower the number of allowed preemptions is, the lower the number of
potential interleavings is.

The pattern for preemption points used in the model is shown
in figure 6.7. The point consists of three states, NonPreemptable,
Preemptable and Wait. The condition to continue from W ait
is set to true when the task is dispatched and set to false when
the task is preempted, blocked or finished. The task stays in
NonPreemptable for ExecutionInterval time units and then moves
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Real-time task Scheduler

Schedule?
insert(readyQueue,pid)

: Release(r]! :

Resource handler size(blockedQueuel[r])==0
Resource[r]=1

Release][r]? >

@ -©

Schedule! =y size(blockedQueue[r])>0
pid=TaskPid =/ TaskPid=removeHd(blockedQueue]r])

Figure 6.5: This pattern occurs when a task is deallocating a
resource. The task synchronizes with the resource handler on a
channel associated to the resource. No response is required. If tasks
are blocked, the first task is removed from the queue and the scheduler
is informed.

to state Preemptable. A preemption will occur when the task is in
state Preemptable if two conditions are fulfilled;

(i) The scheduler tries to synchronize with the task on channel
Preemptlid)

(i) The task has not yet been preempted M AX _P times

If a preemption occurs, the task moves to state Wait until it is
scheduled again. If the task is not preempted, the task will move to
state NonPreemptable after one time unit and continue its execution
for another FxecutionInterval time units. Figure 6.8 shows the
simplified task model extended with a designated preemption point.
In the model, the remaining execution is considered non-preemptive
when the task has reached a maximum number of preemptions. This
is probably not desired for all applications, which means that when
such situations occur it might be necessary to abort the task in favor



6.2. THE TIMED AUTOMATA MODEL 7

Task(id:=1to N)

x==1, x==1,

i<execTime, i==relTime

i'=acqTime, Release]r]!

il=relTime i+,

x=0, x=0

i++

ﬁx\e{m\

i==exgcTime x<=1 iI==acqTime,
Done! K==l
i=0 Acquire[r]!

Preempt[id] ?  Executipg[id]==1 ::;rigéid
x=0

R
@ Init[id] 2 %
Figure 6.6: The simple task model extended with the pattern for
resource handling.

of executing a more critical task. Another possibility, if the worst case
execution time is known, is to ensure that the number of preemption
points equals the maximum number of allowed preemptions.

For each kind of event E and associated task type, there is a
timed automata process, Observer, shown in Figure 6.9. When an
event occurs, the observer process receives it and waits for condition
O_flag == 1, which is satisfied as soon as the next observation point
is reached. As soon as the condition is true, the time for observation
is set. Thereafter, the task is triggered and the scheduler notified. A
new event of the same event type cannot occur until the local clock
x is incremented. This means that two events of the same type can
never have the same time stamp. This agrees with the assumptions
made by Birgisson et al. (1999). The process setting the flag for
observations is shown in Figure 6.10.

Fach task type is modeled as a template in timed automata. The
number of instances of each template is determined by the system
assignments and definition. Hence, there’s no need for a special design
pattern for this constraint. All that is needed is to instantiate the
number of tasks.
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Preemptable

Preemptions<MAX_P, x<=1

y==Execlnterval

x=0

Preemptions<MAX_P
Preempt[id]?
Ppoint=MyPpointsj],
Preemptions++

Executing[id]=1
NonPreemptable Xfo‘ .

" ! =0 Wait
y<=Executioninterval

Figure 6.7: This is the pattern for a preemption point in a timed
automata process.

Table 6.1: Global variables used for communication.

‘ Name H Description ‘

pid Parameter used to communicate a task
identity.

r Parameter used to communicate a resource
identity

Ppoint Parameter used to communicate a preemption
point identity

Executing Executing[i]==1 if task 7 has access to the
CPU. Executing]i] is set to 0 whenever task ¢
is preempted, blocked or finished.

ObslInterval Constant defining the observation granularity

O_flag Flag that is set to 1 when arriving at an
observation point and to 0 when leaving the
observation point.

T Integer that keeps track of global time

6.3 Creating Variants

A timed automata model of the set of tasks from the steel plant
application was implemented as described in 6.2. A number of
variants were then created from this model. Each variant differs
from the original model only with respect to a set of controlled
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Task(id:=1to N)
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X<" T i==relTime,

:,:e;(; |Ime (y!'=Execlnterval || Preemption _P)

i'=relTime, Release][r]!

(y!'=Execlnterval || Preemptions==MAX_P) i++,

x=0
x=0,
i++
y==ExeclInterva IX::::alchlme,
i==exeqTime Preemptie . \
Done! x=0, Acqulre[r].
i=0 i++, e,
’ pid=id

=0 j+H+

Executing[id]=
x=0,
y=0

Preempt[id]?

Ppoint=MyPpoints][j],
Preemptions++

R
@ Init[id] ? M

Figure 6.8: The simple task model extended with designated
preemption points and resource allocation.

variables. These variables represent the constraints on the execution
environment that the experiment aims to investigate, i.e., p, s andgqin
Formulae 3.1 to 3.4. Inherited constraints from the application (e.g.,
causal ordering, execution time, resource blocking time, etc.) remain
fixed.

The first controlled variable defines an upper bound on the
number of preemptions that a task can experience. As described
above, preemptions are restricted to designated preemption points.
Execution is performed in non-preemptable intervals between these
points. The constraint gives a defined maximum on the number of
preemptions for each task. Preemption points are included in the
model according to the pattern shown in Figure 6.7.

Preemptions are only allowed in certain states. Preemption will
only occur at next preemption point if the dispatcher tries to preempt
the task and the condition for preemption is true. The condition
ensures that there may be at most MAX_P number of preemptions,
where MAX_Pis a constant that can be set to different values to study
the effect of constraining preemptions as suggested by Birgisson et al.
(1999).

The second controlled variable defines the observation granularity.
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Schedule?
Timer insert(readyQueue,pid)
@ Signal_event[E]! >O
Scheduler
Observer O_flag==1

Signal_event[E]’?\m Init[Task]!
Task=getld() N Request_time[Task]=T

Schedule!

pid=Task,
O

x<=1

x==1

Figure 6.9: The timed automata process Observer ensures that
observations are delayed until the next predefined observation point
where the Observer synchronizes with the Scheduler.

x==1,
y==0bslInté
T++,
x=0, <=0,
)(/):OF’Ia N O_Flag=0
_rlag=

Figure 6.10: A timed automata process which keeps track of time
pacing and sets the flag O_Flag, which is true at observation points
and false otherwise.

Whenever an event occurs, the observation of that event is delayed
until the condition O_Flag == 1 is satisfied (i.e., an observation
point). The request time for the triggered task is set according to the
time of observation, not the time of occurrence (figure 6.9). Hence,
the potential request time for tasks is limited to the set of observation
points. The flag O_Flag is set to 0 after 1 time interval.

The distance between the observation points is decided by the
value of a constant ObsInterval (see Figure 6.10). By setting
ObsInterval to different values, it is possible study the effect of
constraining observations as suggested by Birgisson et al. (1999).

The third controlled variable defines the maximum number of
concurrently executing tasks of the same task type. Each task type is
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Table 6.2: Local variables and clocks.

‘ Name H Description

x and y Clocks

iand j Counters

id Task identity, local to the task

MAX_P Constant that defines the maximum number
of preemptions allowed

execTime Constant that defines the execution time for
the task

acqTime Constant that defines the point in execution
where a request for a resource is made

relTime Constant that defines the point in execution
where an allocated resource is released

Preemptions Counter for the number of preemptions the
task has experienced

ExecInterval Constant defining the length between two
consecutive preemption points

MyPpoints Array containing preemption point identities

TaskPid Task identity, local to the resource handler

Resource Array of resource identities

readyQueue Queue of tasks ready for execution, local to

the scheduler
blockedQueue || Array of queues. blockedQueue[r] contains
tasks blocked on resource r

delay_min, de- || Constants that define the bounds of a delay,
lay_max i.e., the timer expires after a delay that is at
least delay_min and at most delay_max time
units long.

Request_time Array that keeps track of the request time for
each task. This is used to derive the task
deadline

modeled as a template in timed automata. The number of instances of
each template is determined by the system assignments and definition.
An instance of a template simulates the behavior of a specific task
type in a loop. The loop starts when the task is triggered and ends
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Table 6.3: Channels used for synchronization.
‘ Name H Description

Start_Timer

Timer 7T starts when it receives a signal on
channel Start_Timer[7]

Signal_event

Synchronization on this channel simulates a
sensor signal. The observer process associated
with event F will trigger a task at the next
observation point whenever receiving a signal
on channel Signal_event[E]

Init Task 4 is triggered when it receives a signal on
channel Init[i]

Done A signal is sent on this channel when a task
finishes its execution and the schedule must
be updated

Preempt Task 7 is preempted when it receives a signal
on channel Preempt|]

Release Resource r is released when the resource
handler receives a signal on channel Release[r]

Acquire Resource r is requested when the resource
handler receives a signal on channel Acquire[r]

Schedule The schedule is updated whenever the

scheduler receives a signal on this channel

Table 6.4: Functions used in figures to reduce complexity.

‘ Name H Description
append Appends a task identity at the end of a queue.
removeHd Removes the head of a queue and returns it.
size Returns the size of a queue.
insert Inserts a task identity in a queue according to
the priority

when the task is done.

It is not possible to have more instances running than defined. A
new task cannot start unless there is a template of correct type, which
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is ready to start. Hence, the number of template instances defined in
the system decides the upper bound for concurrently executing tasks
of that type. Hence, if the upper bound is reached, the task cannot be
triggered until one of the running tasks is finished. Important to note
is that this approach is not necessarily suitable for all applications.
For instance, it might be better to reject the task or to abort a running
task to trigger a new one. This is however, considered out of scope
for this study.

6.4 Measured Effect on Testability

This section presents the experimental results. The effect on
testability from each of the investigated constraints is estimated by
varying the controlled variables and measuring the effect on the
number of potential execution orders. Section 6.4.1 describes the
effect of observation granularity on the size of the input domain while
sections 6.4.2 to 6.4.4 present the results from the experiments.

6.4.1 Time-triggered Observations and the Input Do-
main

In the study, it is assumed that the size of the input domain is of
less interest from a testability perspective compared to predictable
execution orders. However, previous work on the relation between
observation granularity and testability focused on the size of the input
domain (i.e., the number of potential event sequences). It is clear from
the following example that the size of the input domain is affected by
the observation granularity.

This example assumes time-triggered observations and shows the
effect on the number of potential event sequences when varying the
granularity of the observation interval. Consider the following two
input sequences:

ES 1 The set of input events is {e1, ez, e3}. The set of triggered tasks
is {71, 72, 73}. The actual time of occurrence for the events are
time(e1) = 2.5, time(ez) = 13.5 and time(es) = 19.

ES 2 The set of input events is {e1, €2, e3}. The set of triggered tasks
is {71, 72, 73}. The actual time of occurrence for the events are
time(e1) = 4, time(ez) = 16 and time(ez) = 18.5.
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The only difference between ES 1 and ES 2 is the time of the actual
occurrence of the three events. The time stamps that are assigned to
these events are the time of observation. With the fine observation
granularity that is used in Figure 6.11 there are two significantly
different set of time stamps. For ES 1 there are obs_time(e;) = 5,
obs_time(es) = 15 and obs_time(es) = 20. For ES 2 there are
obs_time(ey) = b5, obs_time(ez) = 20 and obs_time(es) = 20.

As shown in Figure 6.11 the difference with respect to observation
time affects the time when task 75 is initiated. Task 75 is initiated later
in the second case. Hence, it will have a later deadline. This might
lead to a lower priority and therefore possibly another placement in
the priority ordering of the tasks. A different priority ordering implies
a different execution order.

LEGEND
ES1 % e; Event i
. X ,5 10 Q\ 15 20 ,25 30 35 , time % Event interrupt
F T T T T T L— \
T \
7 !

Task i

2

7

i Task i in system

ES 2 %% I Observation point

. Triggering of tasks
10 % 20 25 ,30 35 , ftime
T T T T T L

7

D
iz

Figure 6.11: Two different input sequences, ES 1 and ES 2. The fine
observation granularity gives two different behaviors for ES 1 and ES
2.

Now assume that the time granule for observations is doubled,
that is, instead of observing the environment every fifth time unit it is
now observed every tenth time unit. As shown in Figure 6.12, the sets
of time stamps for ES 1 and ES 2 are now identical, obs_time(e;) = 10,
obs_time(eg) = 20 and obs_time(esz) = 20. The time when task 75 is
initiated is the same for ES 1 and ES 2 and so is the deadline.

Using fixed observation points thus leads to potential input event
sequences being separated into equivalence classes. Each event
sequence from such an equivalence class will be observed by the
system and reacted upon as being the same event sequence.

The magnitude of this impact depends on the granularity of the
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Figure 6.12: The same input sequences, ES 1 and ES 2, as in Figure
6.11. The coarse observation granularity gives identical behavior for
ES 1 and ES 2.

observation interval. Hence, to limit the size of the input domain,
observation granularity should be as coarse as possible. There is,
of course, a trade-off decision between testability and flexibility.
However, it is important to choose a granularity that is as coarse
as possible, given all other considerations.

6.4.2 Time-triggered Observations and Execution Or-
ders

If the goal is exhaustive testing, the large input domain implies low
testability. If the goal is to execute a set of selected test cases for
testing timeliness, then the relation is less obvious. The investigation
described here does not focus on the impact on number of potential
input event sequences (and thereby the size of the input domain for
test cases). This impact should be clear from the previous discussion
in Section 6.4.1.

The focus in this investigation is the impact on the number of
resulting execution orders for some given event sequences, selected for
testing. We refer to such event sequences as scenarios. The selection
of scenarios is made by compromising the interest of finding “difficult”
test cases to stress the system as much as possible with the limitations
given by the state space explosion problem.

The impact on testability from parameter s from Formulae 3.2 has
been explored in four different scenarios by setting the observation
granularity EzecInterval to 1, 2, 4, and 5 given a fixed time interval



86 CHAPTER 6. IMPACT ON TESTABILITY

(2500 time units). This gives the measure points s == 500, s == 625,
s == 1250, and s == 2500. The results show that testability is
affected by s. Figures 6.13 and 6.14 show the effect on the number of
potential execution orders for the four scenarios.

Each scenario give a linear growth of the number of execution
orders as s is increased. The fourth scenario gives a higher number
of execution orders, which is explained by the fact that this scenario
contains four input events while the other three only contain three,
i.e., m is assigned a higher value. However, n was never fully
investigated in this study and therefore, no further results with
respect to n is presented here.

------- Scenario 1
—s— Scenario 2

— & - - Scenario 3

Execution orders

0 500 1000 1500 2000 2500 3000

Observations

Figure 6.13: Measured effect on number of execution orders for three
different scenarios with four measure points each, i.e., s == 500,
s == 625, s == 1250, and s == 2500.

The results in figures 6.13 and 6.14 suggest that parameter s
has a linear impact on testability. Since the input domain grows
exponentially and it is not likely that the number of interesting
scenarios decreases with a growing input domain, the conclusion
is that this parameter does affect testability and that predefined
observation points with a coarse granularity therefore is a good
candidate for increasing testability.

6.4.3 Designated Preemption Points

Schiitz (1993) highlighted preemptions as being one of the factors
leading to low testability of event-triggered systems in comparison
with time-triggered systems. Moreover, the approach Birgisson et al.
(1999) suggested to increase testability includes the use of designated
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Figure 6.14: Measured effect on number of execution orders for the
fourth scenario with the same four measure points as in Figure 6.13.

preemption points and an upper bound on the number of preemptions
a task can experience during its execution. A designated preemption
point is a predefined point where a task can be preempted from the
CPU. These preemption points can be predefined in time, space, or
both.

This section describes the results concerning the effect of the
number of allowed preemptions (MAX_P, or parameter p in Formulae
3.3) on testability. The expected impact on testability according to
the formulae is exponential (p + 1)7#t@sks,

The scenarios used in previous experiments were investigated with
little result. Test results from the initial four scenarios showed no
impact on testability from this parameter. A closer analysis of the
execution showed that none of the selected scenarios were appropriate
to investigate this parameter. The reason was that in these scenarios,
with their small number of events, there were very few preemptions
even when an unlimited number was allowed. The scenarios were
selected to implement a “nice” behavior to keep a limited size of
the state space. One of the drawbacks with these scenarios was,
however, that none of the executions reached the specified maximum
of preemptions. Hence, a variation of the value of this parameter did
not affect the behavior for the used scenarios.

To study the effect of the constraint a scenario with a potentially
high number of preemptions was needed , e.g., an emergency situation
with alarm signals. The scenarios used previously only included the
normal arrival of a few steel ladles and this could not stress the
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system enough to study this parameter. Reaching the limit requires
frequent interrupts of short urgent tasks. Therefore a different type
of test scenario was selected to study the effect on testability from
this parameter. In these scenarios there are two long-running low-
priority tasks and a burst of short high-priority tasks causing frequent
interrupts. Three scenarios of this type were examined. The results
from varying parameter p in this scenario are shown in figures 6.15
through 6.17.

3500
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Figure 6.15: Result from scenario 1 when varying M AX P between
1 and 11.
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Figure 6.16: Result from scenario 2 when varying M AX_P. In this
scenario it is not possible to get more than 3 preemptions per involved
task.
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Figure 6.17: Result from scenario 3 when varying M AX_P. In this
scenario it is not possible to get more than 5 preemptions per involved
task.

The maximum number of preemptions is varied from 1 to 11
and as shown in Figure 6.15 through 6.17, the number of execution
orders increase rapidly until it stabilizes. The point of saturation is
determined by the arrival pattern of the different tasks involved in the
burst. For each such scenario, there is an upper limit on the number
of preemptions that the involved tasks may experience even without
an explicit constraint.

It is clear from the results that the maximum number of pre-
emptions has a significant impact on the number of execution orders.
The increase is exponential at first until a point of saturation (see
Figure 6.18). In the study, this point of saturation occurs after a
few preemptions, implying that constraining the number of allowed
preemptions might give little impact on testability. However, this
heavily depends on the choice of scenarios. There are a number of
things to consider here:

1 Many scenarios do not lead to race conditions and will only give
one single execution order disregarding the value of p

11 Selection of scenarios in the experiment is a trade-off between
worst case scenarios with many race conditions and what is
feasible to verify with a model checker

1 Timeliness testing however, selects worst case scenarios that are
likely to be more affected by the value of p than can be shown in
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‘ —e— Actual —s— Predicted ‘

Execution orders

Max preemptions

Figure 6.18: Zoomed in result from scenario 1 when varying M AX_P
between 1 and 7. The actual result is compared with the predicted
result given the parameter settings used.

the limited experiments

The first observation is that the behavior of the system with
respect to execution orders is not completely arbitrary. There is EDF
scheduling, which means that the scheduler is predictable unless two
tasks have the same deadline. There are FIFO queues on resources,
which means that resource allocation is predictable as long as there
is no race condition, i.e., two tasks trying to allocate a resource at
the exact same point in time. Hence, a random selection of test
scenarios would, to a high extent, generate scenarios with only one
potential execution order and few (if any) preemptions per task. For
these scenarios an upper bound on the number of allowed preemptions
would have little or no impact at all.

The second observation is that the selected scenarios are far from
worst case scenarios. The choice of test scenarios in the study is a
trade-off between the intention to stress the system with a burst of
events and the limitation imposed by model checking. Therefore the
test scenarios were selected to be as stressing as could be handled by
the model checker. The underlying assumption is that if a significant
impact is shown for these scenarios, then this impact will be at least
as significant for a test scenario where the event burst is worse.

Only two types of tasks are involved in the scenarios used and
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the load is never higher than four tasks executing concurrently in
these scenarios. The number of preemptions a task can experience is
therefore low. This is also the reason for why the point of stabilization
is reached so early. The difference between the three scenarios with
respect to execution orders is due to different arrival patterns of the
involved tasks.

The final observation is that when the purpose of testing is
verification of timeliness, the tester is likely to select test scenarios
that will stress the system as much as possible. This means that
there will be a high load of concurrently executing tasks and there
will be bursts of arriving tasks. For each of these scenarios, the
number of potential preemptions (if not limited by a constraint) will
be significantly higher than those shown in the study.

The results show that the maximum number of preemptions
has a significant impact on the number of execution orders. The
exponential growth of the number of execution orders support the
theory from previous work (Birgisson et al. 1999, Lindstrom, Mellin
& Andler 2002) and suggests that an upper bound on the number of
preemptions a task can experience is a good candidate for increasing
testability.

6.4.4 Tasks of Same Task Type

This section presents the results concerning the effect of the number
of concurrently executing tasks of the same type (parameter ¢ in
Formulae 3.3 and 3.4) on testability. The same four scenarios used to
investigate the impact from observation granularity were checked to
investigate the impact from concurrency. Parameter ¢ was varied
between 1 and 3. The experiments found no impact from this
parameter. Several explanations for this are possible:

1 The selected scenarios might not be appropriate to provoke
multiple execution orders.

11 The selected policies for scheduling and resource handling might
not be appropriate for investigating this parameter.

71t The parameter has little or no impact on testability.

It is hard to argue that the parameter has no effect on testability
just because no scenario with a shown impact was found. However,
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there are intuitive reasons to believe that this parameter is less
interesting from a testability perspective:

1 The timed automata model uses an EDF scheduling policy. A real
system might use another policy but a dynamic real-time system
bases its scheduling decisions on the tightness of the deadlines
and/or the importance (criticality) of the tasks.

7 Importance of a task is generally decided by the task type and its
associated value function (i.e., the penalty of a missed deadline).

711 Deadline of a task is decided by the type of triggering event and
the time when the event was observed by the system.

1w Two events of the same type cannot be observed at the same point
in time according to the underlying assumptions for Formula 3.2
(Birgisson et al. 1999).

Hence, if several concurrently executing tasks of the same type are
present, it is reasonable to assume that they have the same criticality
but different deadlines and therefore a predictable priority order.
This leads to a predictable execution order since the task with the
higher priority will execute first. Maybe it is possible to provoke an
execution where a task preempts a previously triggered task of the
same type, e.g., with another locking protocol and specific blocking
scenarios. However, locking protocols, such as the Stack resource
protocol (Baker 1991), are predictable and are therefore likely to have
little impact on the number of execution orders. Investigation of the
impact on testability from such protocols is therefore left for future
work.

6.5 Threats to Validity

When conducting an empirical study like the one described in this
chapter, there are always a number of threats to the validity of the
study. If these threats are left unaddressed, the results may not be
valid. Threats to validity can be of different types (Cook & Campbell
1979). This section identifies and discusses how these threats are
addressed by the study.

Construct validity concerns whether or not the experiment mea-
sures what is believed to be measured. Testability is a property that
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cannot be measured directly. It is therefore necessary to make an
approximation of testability using some other metric. A decision
is made to use the number of execution orders as such a metric.
Chapter 4 includes a survey of different views on testability and
motivates the choice of using the number of execution orders as an
approximation for testability when the system is dynamic. Since we
cannot directly measure testability, the answer to another question,
whether we actually measure the number of execution orders becomes
crucial.

The execution orders are collected using the technique described in
Chapter 5. Each time a task is dispatched, the scheduler synchronizes
with a guide automaton. Dispatches are made when the task
starts execution and when a blocked or preempted task resumes its
execution. An execution order that is found will therefore contain a
series of preemption points that indicates all points in execution where
tasks are dispatched. All preemption points have unique identities.
For example, assume two tasks p; and ps, where p; has preemption
point identities {pi,p?,...,p7"} and ps has preemption point identities
{pd.p3,...p5}. A generated execution order, e.g., {pl,pi p3,p3, pl},
can be interpreted as p; executes from start to p*i’, followed by po,
which executes from start to p3, followed by p1, which executes from
P} to p{, followed by p2, which executes from pj to the end, followed
by p1, which executes from p{ to the end. Extensions to the orders
during the search for unique execution orders are only made as a
result of a dispatch. Hence, it is not possible that preemption point
identities are inserted into the order unless it is a point where the
task gets access to the CPU.

Correctness of the algorithm is discussed in Section 5.6. The
algorithm was verified by hand for a set of small models and
automatically for a set of larger models. The automatic verification
was made by using an oracle, i.e., a redundant implementation. We
ran both the original program and the oracle on nine different models
and compared the sets of generated execution orders. The generated
sets were identical in all cases.

The main problem of using redundant implementations as de-
scribed is that failures might not be independent. Hence, there is
always a certain risk that both the implementations contain the same
fault and therefore agree on an erroneous result. In such case the
failure would be masked and not possible to detect by comparing
the results. To minimize this risk, the oracle generates the execution
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orders using a different algorithm, (3. [ uses p-points and iterative
invocations of the model checker but the similarity between the two
algorithms stops there. § uses another search mechanism, potentially
always (E[] ¢ in UPPAAL). This property holds if there is a path where
¢ is true in every state. The search is therefore guided by the query
instead of a special guide process. Hence, 3 does not need any guide
process nor any modification of the model between the invocations.

Internal validity concerns whether or not the results are affected
by additional factors that are not accounted for, i.e., factors other
than the manipulated variables. The experiment is controlled in
the sense that the models are identical apart from the manipulated
variables and all settings for the model checker is the same for each
invocation. Hence, if there is a difference, this can only depend on
the manipulated variable. However, due to the state space explosion
problem, there is always a risk that the model checker halts before
the state space is fully explored. If this happens, there might
be unidentified orders. This problem is handled by the algorithm
described in Chapter 5. The algorithm mitigates the state space
explosion problem by guiding the search into those parts of the state
space where the search may be successful. Moreover, the state space
tends to grow as the unpredictability increases. Hence, the probability
that the algorithm would occasionally miss an additional extension
to a found order is higher when the manipulated variable is set to a
higher (more allowing) value. Since the experiment shows that the
number of orders increases as the manipulated variable is set to a
higher value, the conclusion is that the actual increase in number of
orders is at least as high as the observed increase.

External wvalidity concerns the generalization of the results, i.e.,
whether the investigated object is representative enough to allow
general conclusions. The steel plant used in the experiment is a
typical environment for a real-time control application in industry.
Steel ladles arriving on conveyor belts and handled by machines and
cranes is to a large extent similar to objects arriving on conveyor
belts in a factory and assembled by industrial robots. The steel
plant only defines the controlled environment of the real-time system.
This means that all information about the timing and ordering
among different events and actions are taken from the steel plant
itself. Another environment would give other test scenarios, which
might affect the results with respect to number of execution orders.
However, the steel plant provides a rather predictable environment
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compared to, for example a telephone switch. Since an unpredictable
environment increases the probability of having a race condition,
the author concludes that the effect of constraining the execution
environment shown by the experiment, is likely to be even bigger in
a more unpredictable environment.

The choice of policies for scheduling and resource handling might
affect the results. Dynamic scheduling is necessary in dynamic
systems and dynamic priorities should be set based on deadline,
remaining slack time, or some value function. Policies for resource
handling can be based on task priorities or e.g., a simple FIFO queue.
For the experiment, the choice is to keep it simple using earliest
deadline first for the processor and a FIFO queue for shared resources.
These choices should not be controversial since FIFO semaphores are
commonly used for shared resources. However, a future direction
in this work should be to investigate the impact on testability from
different policies.
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Chapter 7

Constrained Dynamic
Systems

In this chapter the impact from the execution environment constraints
on the system semantics is discussed to determine whether the
dynamic semantics of the event-triggered system is maintained when
the constraints on the execution environment is applied.

The design types, event-triggered and time-triggered, for real-time
systems are described and compared above in Chapter 2.2. Instead of
comparing the types, the focus now lies on the discussion about the
semantic characteristics of the event-triggered type.

The first step is to establish a set of significant properties of
an event-triggered system from a semantic perspective. Each listed
property is then analyzed with respect to the behavior of the model
used in the study, described in Chapter 6, and the applied constraints
on the execution environment in the same model.

All of the properties that are listed below are known from previous
work and can be found in different sources. For example Kopetz
(1991) gives a thorough description of the event-triggered design and
its implications on the semantics.

S1 The arrival pattern of tasks is often unpredictable and the com-
puter system does therefore, not necessarily have any knowledge
about future arrivals

Sla The resource needs, in terms of processor, communication
media, data items, etc., for a task is not necessarily known
before the task is triggered
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S1b There are no pre-allocated slots for the tasks to use
Slc Support for dynamic task creation possible

S1d Conflicts concerning competing tasks is solved dynamically
S2 The execution is not performed in cycles

S2a The system does not necessarily return to an initial state
before new event occurrences

S2b Dynamic preemptive scheduling is required

S3 Response is given as soon as possible

S3a Variations in execution time for a task type is visible

S3b The start point for execution of a waiting task depends on
actual execution time of other tasks

S4 An extension of the system does not require a recalculation of the
static schedules

7.1 Resource Requirements, S1

A common motivation for the event-triggered design is an unpre-
dictable environment. When the environment is unpredictable, so is
the arrival pattern of tasks. There might be bursts of events which
must be handled in a timely manner. One of the typical properties
of the event-triggered design is that knowledge about future arrivals
is not necessary. The introduction of the execution environment
constraints in the model did not change that. The scheduler that
is used in the model had no knowledge about future arrivals.

For scheduling the study described in Chapter 6 used an earliest
deadline first policy on the processor and a first-in first-out policy
for other resources. Hence, there were no pre-allocated slots for the
tasks to use. Neither the scheduler nor the resource handler had
any information about future needs. Also, variations with respect
to the resource needs in terms of processor and items were to some
extent included in the model. Conflicts with respect to race conditions
were resolved dynamically according to the policy for scheduling and
resource handling. The properties Sla, S1b and Sld are therefore
met.
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The answer to whether Slc is met in the study must however
be negative. The reason is that the model checker does not support
dynamic task creation. Dynamic task creation means that the tasks
are created at run-time and not at compile time. Timed automata
templates were used to model the different task types and the
maximum number of concurrently executing tasks were defined by
the number of instances of each template. It is not possible to create
a new instance at run-time. This is exactly the same semantics as
having a pool of threads created at compile time.

Slc was not shown in the study and the question is whether it is
possible to maintain Slc in a constrained event-triggered system. It is
the authors opinion that one of the execution environment constraints
does not support Slc. There are arguments for why it is likely that
this property cannot be met in a system where all of the investigated
execution environment constraints are applied.

There are intuitive reasons to believe that two of the investigated
constraints will have no effect on Slc. A bound on the number of
preemptions should not have any effect on Slc. The reason is that
the task is created on occurrence and not necessarily at a preemption
point. The bound on number of preemptions will affect the time when
the new task can start execution but it will not affect the possibility
to create the task. There is a delay of the creation with respect to the
observation points. This delay is however bounded by the observation
granularity and imposes no hinder for dynamic task creation.

However, the third constraint, an upper bound on the number
of tasks, has an obvious impact on the dynamic creation of tasks.
Whenever there is an event occurrence and the number of executing
task of the corresponding task type has reached the limit then the
situation must be handled.

Deciding what to do when an event occurs and the upper bound
on the corresponding task type is already reached is basically the same
problem as performing admission control during an overload. There
are different approaches to handle such a situation. For example the
event occurrence can be ignored (similar to a rejection of a new task)
or an admitted task can be aborted in favor of the new one. However,
both these methods bypass the need for dynamic task creation since
the methods make it possible to use a pool of statically created tasks
instead of creating them dynamically. If the requirement on dynamic
task creation is based on a true need for an unbounded task set, then
this constraint cannot be applied to the system.



100 CHAPTER 7. CONSTRAINED DYNAMIC SYSTEMS

7.2 Non-cyclic Schedule, S2

One of the significant characteristics of the pure time-triggered
design is the cyclic behavior, where the schedule repeats. At the
time-triggered observation point tasks are initiated and scheduled
according to a static schedule, i.e., a look-up table. Execution takes
place during an activation interval. All tasks are finished during the
activation interval and results are delivered at the end point of the
same interval. Thereafter the cycle repeats with a new observation
point.

There are two implications from the cyclic behavior. The first
implication is that the number of potential schedules is limited by the
potential combinations of events that can be observed simultaneously.
The second implication is that the system returns to the initial state
after each activation interval. Hence, the set of input events is the
only factor to be considered when selecting the schedule.

The event-triggered system does not have this cyclic behavior.
New tasks are triggered while other tasks are executing and results
are delivered as soon as possible. The scheduler therefore must adapt
to new situations and find a new schedule whenever a task arrives. If
a new task has a higher priority than the currently executing task,
the current task will be preempted in favor of the new one.

Finding an optimal schedule is usually an NP-hard problem and
due to heuristics, the scheduler might be a source of unpredictability.
The implications of this behavior are that the number of schedules is
much higher in the event-triggered system and that it is not certain
that the system ever will return to an initial state.

The constrained system used in the study has non-cyclic schedules.
Time-triggered observations are applied but this simply means a
short delay before triggering of the task. Delivery of results is not
delayed. They are delivered as soon as possible. There are no specified
activation intervals. Hence, the system is not necessarily in an initial
state when tasks arrive and therefore the property S2a is met.

Finally, dynamic preemptive scheduling is required in dynamic
event-triggered systems. The reason is that the scheduler has no
information about future tasks or their resource requirements. On
arrival of an urgent task, it must therefore be possible to preempt
an executing task that is less urgent. This is not always true for
the study. The reason is that whenever the maximum number of
preemptions was reached for a task, that task continued its execution
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in a non-preempted mode. Hence, the property S2 was not met in
the study.

To meet S2 another policy for handling such situations is needed.
One possible solution is to ensure that the bound on the number of
experienced preemptions is equal to the number of preemption points.
This can lead to longer time intervals between the preemption points
to keep a low number. On the other hand, such solution can give
a predictable length of the non-preemptive intervals and therefore a
shorter maximum delay for the next preemption point.

Although S2 was not met in the study, it is reasonable to believe
that this property can be met in a constrained system as long as the
maximum delay for a preemption plus the maximum delay for an
observation does not exceed available slack time for a waiting high-
priority task.

7.3 Response Time, S3

One of the most significant semantic differences between time-
triggered and event-triggered systems is the predictability with
respect to response time. In a time-triggered system, as described
by Kopetz (1991), the response is usually not given until the end of
an activation interval.

An activation interval starts with an observation point and ends
with a point where all responses are given, i.e., a communication point.
The allocated time slots for each task assume worst case execution
time. It does not matter whether the actual execution time is shorter.
The response will not be visible until the communication point at the
end of the activation interval.

In the event-triggered system, tasks do not have pre-allocated
execution slots and responses are given as soon as possible. If the
result of an execution is a response sent to the controlled environment
small variations of the response time will have an immediate impact
on the system behavior. If the result is an internal response to e.g., a
calling process, it will affect the internal state in some way e.g., the
calling process is unblocked and/or internal data is updated, etc.

A change of the internal state can lead to a changed task set and an
updated schedule. If the state change includes that a task is released,
finished, blocked or un-blocked, the schedule is affected. Hence,
variations in time for delivery of a result can affect the time to start
execution of other waiting tasks, if such exists. Small variations in
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execution time for single tasks can therefore add up to large variations
in the system behavior with respect to time.

As mentioned above (see Section 7.2) the results from execution
are delivered as soon as possible in the study. Moreover, tasks do not
have pre-allocated time slots for execution. As soon as one task is
done, the next scheduled task is dispatched. Hence, the properties
S3a and S3b are met in the study.

7.4 Extendability, S4

From a temporal point of view, tasks in a time-triggered system are
encapsulated. As long as the already allocated slots for execution
and communication are sufficiently large to include the changes, the
modification does not require any recalculation of the schedules. If
the modification changes the resource requirements, then it might
require a recalculation of the static schedules.

The event-triggered system does not have the same knowledge
of future arrivals and resource needs as the time-triggered. Instead
the system adapts to the situation by dynamic scheduling. Hence, a
modification or extension can easily be done. However, since the tasks
are not encapsulated from a temporal point of view, a modification
might change the timely behavior of the system.

Even very small changes can potentially propagate to the complete
system and thereby affect the behavior in other nodes as well as
the node containing the modified task. For example, changing the
execution time of a task in one node might delay the access to the
LAN for a task in another node. Hence, even though it is easier to
implement the changes in event-triggered systems, such modifications
require thorough regression testing for timeliness.

Dynamic scheduling and resource handling is used in the study
(see Chapter 6. Adding tasks or prolonging their execution time
was therefore easy and no cause to recalculation of any schedule and
property S4 is therefore met. However, the changes did have a direct
impact on the behavior from a temporal point of view. Hence, the
semantics of the constrained system conforms with the event-triggered
system semantics when it comes to extendability.



Chapter 8

Conclusions

This chapter is arranged as follows. Section 8.1 contains a retrospect
of the thesis aim and objectives and presents the conclusions made
with respect to each objective. Section 8.2 presents related work and
discusses how the work in this thesis differs from other work. The
contributions of this thesis are then stated in Section 8.3. Finally,
ideas of future directions are given in Section 8.4. This chapter is
based on the conclusion sections from Papers 1, 3, 4 and 7.

8.1 Discussion

The overall goal in this dissertation is to determine whether the set
of execution environment constraints proposed by Birgisson et al.
(1999) increases testability while maintaining the semantics of an
event-triggered real-time system. Chapter 3.2 lists a set of objectives
that must be met to fulfill this goal. In this section each objective
is discussed and the conclusions are presented with respect to the
objective and the results.

Objective 1 concerns the selection of a testability metric suitable
for the study. Chapter 4 presents a survey of testability and discusses
testability for real-time systems. The survey shows that the main
testability issues concern controllability and observability. The survey
also shows that for real-time systems the predictability with respect
to execution orders is an important testability factor. A dynamic real-
time system reacts to events in the environment by online decisions
about execution and schedule. Due to elements that are not controlled
in such systems, the behavior with respect to timing and execution
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order is less predictable in a dynamic real-time system than in a
corresponding static real-time system and this is one of the reasons
why it is so hard to test event-triggered real-time systems. The
number of potential execution orders has previously been proposed
as a testability metric by Thane (2000). The number of execution
orders is therefore chosen to be used as a testability metric for the
study. This metric goes in line with previous work on testability
of real-time systems and assigns the highest testability to the time-
triggered design (Schiitz 1993, Thane 2000).

Objective 2 concerns the establishment of a method with which
the selected testability metric can be used on a real-time system.
Chapter 5 presents a method for trace-set generation. The presented
algorithm enumerates all orders with which specified edges in a
timed automata model are traversed. By specifying the edges
where dispatches are made, all potential execution orders can be
enumerated.

Objective 3 concerns estimation of the testability level in a real-
time system model. Chapter 6 shows how the constraints from
Section 3.1 are applied to a model of an event-triggered system, and
presents a testability experiment. In this experiment the constraints
are included in the model, and varied. The effect on testability is then
estimated for each variation by enumerating the execution orders.

Objective 4 concerns the comparison of the measured effect on
testability against the impact on testability predicted by (Birgisson
et al. 1999). Chapter 6 presents the results from the testability
experiment. For each of the investigated execution environment
constraints, there is a comparison between the predicted impact and
the impact demonstrated by experiment. The comparison shows a
significant effect for two of the constraints, the number of allowed
preemptions, p, and the number of observation points, s. Hypothesis
2 predicted an impact from p of O(p'?) for a fixed number of task
types, t, and a fixed number of concurrently executing tasks of the
same type, ¢. The demonstrated impact from p, was exponential just
as expected. The demonstrated impact from s was however linear
instead of exponential. Hypothesis 1 predicted an impact of O(s")
for a fixed number of event types, n, while the demonstrated effect
suggests an impact of O(s). Hypothesis 2 is thus supported whereas
Hypothesis 1 is not.

For the third constraint, the number of concurrently executing
tasks of the same task type, no effect on testability is shown.
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Hypothesis 3 is therefore also not supported by the results from
the experiments. The discussion in Chapter 6 concludes that this
constraint probably is of less interest from a testability perspective
since it is not likely to affect the number of execution orders.

The fourth hypothesis concerns the tightness of the formulae.
Hypothesis 4 is not supported since only one of the parameters
shows an actual effect on testability similar to the effect predicted
by the formula. This means that even though two of the suggested
constraints, a maximum number of preemptions and observations, do
affect testability, the formula is not sufficiently tight to be useful as
a testability metric.

Finally, objective 5 concerns the implications from the execution
environment constraints on the system semantics. Chapter 7 gives
a discussion on the event-triggered semantics and the effects given
by the constraints. The discussion concludes that it is possible
to maintain the event-triggered semantics while using two of the
constraints, an upper bound on number of preemptions and an upper
bound on number of observation points. However, the upper bound
on the number of concurrently executing tasks of the same task type
implies that it is possible to implement the solution with, for example,
a pool of threads. This is a limitation that affects the event-triggered
semantics, because the ability to handle applications with a need for
an unbounded task set is one of the semantic differences between
time-triggered and event-triggered systems (Kopetz 1991).

8.2 Related Work

This section presents related work and points out the differences
between this dissertation and other work.

Software testability for non-real-time systems is addressed by
several authors, e.g., (Voas & Miller 1995, Byers 1997, Vranken et al.
1996, Wang et al. 1999, Binder 1994, Gao et al. 2003, Mouchawrab
et al. 2005, Kansomkeat & Riveipiboon 2008) and the issue of how
to measure testability is addressed by some of them. For example,
Voas and Miller have defined and used metrics that are based on
the probability that a test case would reach, activate and propagate
an existing fault (Voas 1992, Voas & Miller 1993, Voas & Miller
1995, Voas & Miller 1996). Mouchawrab et al. (2005) present a set
of testability measurements that can be applied to object-oriented
software. However, the focus in this dissertation is testability in real-
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time systems when testing for timeliness. Since the addressed faults
are non-functional and not necessarily depending on software only,
the metrics for software testability presented in their work are less
useful for this dissertation.

Mouchawrab et al. (2005) and Kansomkeat & Riveipiboon (2008)
survey the area of software testability. The survey presented in
Chapter 4 also includes the work on testability of real-time systems.

Thane & Hansson (19994a) and Schiitz (1993) address testability in
real-time systems. However, Thane & Hansson (1999a) assume static
scheduling and Schiitz (1993) assumes a time-triggered design. The
focus in this dissertation is event-triggered real-time systems, which
are required to have dynamic scheduling.

Schiitz (1993) describes the relation between execution orders and
testability for distributed real-time systems. Schiitz (1993) gives
a formula for testability given by different design paradigms. The
formula is based on the number of observations that the system makes
during a specified interval and allows a comparison of testability
between event-triggered and time-triggered solutions. However, while
the formula gives an upper bound on execution orders for time-
triggered systems, it only gives a lower bound for event-triggered
systems. Schiitz (1993) points out preemptions as one of the reasons
for why this formula is a lower bound for event-triggered systems.
Mellin (1998) defined an upper bound on test effort based on the
work by Schiitz. Mellin (1998) includes preemptions and task load
in the formula. This formula is improved by Birgisson et al. (1999)
to allow for shared resources. The actual effect that the execution
environment constraints have on testability has never been studied
before. This dissertation contains an investigation that studies
the effect on testability when applying the execution environment
constraints proposed by Birgisson et al. (1999) to an event-triggered
real-time system.

Thane and Hansson (Thane & Hansson 1999a) present a method
to generate all execution orders (i.e., an EOG graph) for static real-
time systems, arguing that there are not enough test methods for
concurrent programs. They also discuss testability related to the
number of execution orders in the sense that each order is similar to
a sequential program. Hence, test methods for sequential programs
can be applied to concurrent programs by testing each execution order
as a sequential program. This dissertation also presents a method to
generate all execution orders. However, the method presented in this
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dissertation does not depend on a static schedule. The execution
orders were generated for an event-triggered system with dynamic
scheduling, where we used earliest deadline first.

The idea to use a model checker to generate test cases is not new.
Whenever a test criterion can be expressed as a property verifiable
by a model checker, such techniques for test case generation are
useful. For example, Visser et al. (Visser, Pasareanu & Khurshid
2004) presented a framework built on top of the Java PathFinder
(JPF) to automatically generate test inputs for Java programs. The
basic idea is that the test criterion is expressed as a safety property
¢ and symbolic execution of a path that satisfies ¢ generates a set
of constraints. A constraint solver then gives the input that fulfills
the constraints, i.e., executes the path where ¢ is satisfied. Garganti
and Heitmeyer (Gargantini & Heitmeyer 1999) present a method for
obtaining a test input sequence from a system property and a software
cost reduction requirements specification. Ammann et al. (Ammann,
Black & Majurski 1998) present a mutation analysis approach for
test case generation with a model checker. A model checker typically
returns a single trace. With the method presented in this dissertation
it is shown that it is possible to generate a set of traces. The generated
trace set is a subset of all traces. All traces included in the generated
set are distinct with respect to the order with which they traverse
specified edges in an automaton.

8.3 Contributions

Testability experiment: The results from the experiment de-
scribed in Chapter 6 give a deeper understanding of the relation be-
tween properties of the execution environment and system testability.
The actual impact on testability from three system properties, i.e.,
execution environment constraints, is investigated. These properties
have been discussed in previous work as being important factors for
the level of testability of event-triggered real-time systems. This is
however the first time that the actual impact from these properties
has been investigated in an experiment. The results show that one of
the properties, the number of allowed preemptions, have an impact
on testability as expected. One of the properties, the observation
granularity, has less impact than expected but still significant. The
results from the experiment show no impact from the third property,
the number of concurrently executing tasks of the same type. The
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conclusions drawn here are that the third property is less interesting
from a testability perspective and Formulae 3.1 FSTAT is not
sufficiently tight to use as a testability approximation.

Dynamic trace set generation: The algorithm presented in
Chapter 5 is a new and innovative approach that can be used
to generate sets of traces from a model checker. Together these
traces cover all orderings with respect to how some of the edges
in an automaton are traversed. This algorithm was developed as
a necessary step in order to carry out the experiment described in
Chapter 6. However, the algorithm can also be useful in testing,
where sets of related traces are needed to satisfy coverage criteria.
For example, both Thane & Hansson (1999a) and Schiitz (1994) argue
that coverage of execution orders is important for real-time systems.
In a complex model, such orders are not known beforehand. The
algorithm presented in Chapter 5 therefore collects them iteratively.
By specifying certain transitions in timed automata as p-points, the
algorithm generates all potential orders with which these transitions
can be traversed. If a test method focuses on execution orders, each
transition that contains a context switch should be specified as a
p-point. In this case, the set of traces generated would cover all
execution orders. Other orders that might be interesting from a test
perspective are communication and access to shared data.

Dynamic partitioning of the state space: Memory consump-
tion is a major problem when verifying complex timed automata
models. The algorithm presented in Chapter 5 dynamically divides
the state space into smaller partitions along the traces as they are
generated. These partitions are independent, so the memory needed
by the traces is not increased. In addition, the trace generation can
easily be distributed over several computers.

Testability survey: This dissertation presents a comprehensive
survey over testability. The survey includes work in the area of
testability for both non-real-time and real-time systems.
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8.4 Future directions

This section suggests future work in directions that concern extensions
of the experiments and how to use the trace-set generation technique
for verification.

e The first suggestion for future work is to investigate whether
the results would be the same if the policies for scheduling and
resource handling were changed. There is a large variety of
policies to schedule real-time tasks and it is possible that the
choice of policy has an impact on testability.

e Three of the parameters in Formulae 3.1, FSTAT, are inves-
tigated in our study and a natural suggestion for future work
is to study the impact on testability from the two remaining
parameters, the number of task types, ¢, and the number of
event types, n.

e The results from the experiment suggest that two of the inves-
tigated properties are interesting from a testability perspective.
However, only the properties suggested by Birgisson et al.
(1999) were investigated. A future direction that is particularly
interesting is to identify other system properties that might
affect testability and investigate them.

e The fourth direction for future work suggested here is to define
test criteria based on orders, e.g., all execution order coverage.
A method for trace-set generation is defined and the orders
might be very useful for model-based testing but it is not yet
shown how effective such a test strategy is with respect to other
strategies. A next step would therefore be to compare, e.g.,
all execution order coverage to e.g., random testing. These are
important steps to determine the practical relevance of the novel
technique presented in Chapter 5.

e The final suggestion for future work presented here is to investi-
gate the practical use in general model checking problems of the
algorithm presented in Chapter 5. The algorithm mitigates the
problem of space limitations in model-checking algorithms based
on state-space exploration. The state space is partitioned by the
algorithm and the analysis problem can thereby be divided into
sub-problems, which can be analyzed independently. To use



110 CHAPTER 8. CONCLUSIONS

this approach in model-checking algorithms, a formal proof of
correctness with respect to completeness is however, needed.
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