
TESTING THE POLYMORPHIC RELATIONSHIPS OF
OBJECT-ORIENTED PROGRAMS:

by
Roger T. Alexander

A Dissertation
Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

the Requirements for the Degree
of

Doctor of Philosophy
Information Technology and Engineering

Committee:

__________________________________ A. Jefferson Offutt, Thesis Director

__________________________________ Paul Ammann

James M. Bieman
Colorado State University

__________________________________ Hassan Gomaa

_________________________________ Elizabeth White

Stephen G. Nash, Associate Dean for
Graduate Studies and Research

Lloyd J. Griffiths, Dean, School of
Information Technology and Engi-
neering

Date: ________________

Spring 2001
George Mason University
Fairfax, Virginia

Testing the Polymorphic Relationships of Object-oriented Programs

A dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy in Information Technology and Engineering at George Mason

University

By

Roger T. Alexander
Master of Science

George Mason University, 1994

Director: A. Jefferson Offutt
Department of Information and Software Engineering

Spring Semester 2001
George Mason University

Fairfax, Virginia

ii

Copyright 2001 Roger Thompson Alexander
All Rights Reserved

iii

Dedication

I’d like to dedicate this thesis to my family and friends who have supported me through the
years while I toiled away.

• First, to my wife and soul mate, Suzanne. Sweetheart, you’ve been there from the
beginning, and you, above all others, have had constant faith in me. You were
always there.

• To my sons, Michael and Scott.

• To my Mother and my brother Walter.

• To my life-long and very best friend, Mr. Jack L. Baldwin, who over the years
had faith and conviction in my intelligence and abilities long before I did myself.

• To my friend and mentor, Dr. Gene R. Lowrimore.

iv

Acknowledgments

I would like to acknowledgment and thank the following individuals who have contributed

to the success of this dissertation:

• Dr. Jeff Offutt, my advisor and friend. Jeff, just one more question...

• Dr. Paul Ammann, Dr. James Bieman, Dr. Hassan Gomaa, and Dr. Elizabeth
White for serving on my committee

• Dr. Gene Lowrimore for assisting with the statistical analysis, being my sounding
board, and for being a dear friend.

• Mr. Chuck Hutchinson, also for being my sounding board and friend, and for
contributing his knowledge and experiences with OO faults.

• Dr. Ye Wu for his insightful comments on OO fault modeling

• Quansheng Xiao for providing one of the subject programs used to validate the
research reported in this thesis.

• My wife, Suzanne, and my children, Michael and Scott, for putting up with me
during this difficult period, and for providing encouragement, understanding, and
their love.

Table of Contents

Abstract . xi

CHAPTER 1 Introduction and Overview . 1

1.1 Motivation . 1
1.2 Problem Statement . 3

1.2.1 System level testing techniques. 4
1.2.2 Unit level testing techniques . 4
1.2.3 Integration Testing Techniques . 6

1.3 Thesis Statement . 6
1.4 Object-oriented Programming . 6

1.4.1 Classes . 6
1.4.2 Compositional Relationships. 7
1.4.3 Polymorphism and Dynamic Binding . 8

1.5 Problems with method overriding and polymorphism 10
1.6 Organization of Dissertation . 18

CHAPTER 2 Background and Related Work . 20

2.1 Issues in Testing Object-oriented Software . 20
2.2 Test Adequacy . 22
2.3 Class Testing . 29

2.3.1 State-based Testing . 29
2.3.2 Method Sequence-Based Testing . 31

2.4 Integration Testing of Object-Oriented Programs. 36
2.5 Other Approaches of Testing Object-Oriented Software 42
2.6 Coupling-Based Testing . 43

2.6.1 Coupling-Based Testing Definitions . 43
2.6.2 Coupling-Based Testing Paths. 46
2.6.3 Coupling-Based Testing Criteria . 47
2.6.4 Relationship to the Object-oriented Coupling-based Testing Criteria . . . 48

CHAPTER 3 Inheritance and Polymorphism Faults . 50

3.1 A fault/failure model for polymorphic for object-oriented programs 53
3.1.1 Reachability . 54
3.1.2 Infection. 55
3.1.3 Propagation . 55

3.2 Inheritance Faults and Anomalies . 55
v

3.2.1 Inconsistent Type Use (ITU) . 56
3.2.2 State Definition Anomaly (SDA) . 58
3.2.3 State Definition Inconsistency due to State Variable Hiding (SDIH) 61
3.2.4 State Defined Incorrectly (SDI). 61
3.2.5 Indirect Inconsistent State Definition (IISD). 62
3.2.6 Anomalous Construction Behavior(1) (ACB1). 63
3.2.7 Anomalous construction behavior(2) (ACB2) . 64
3.2.8 Incomplete (failed) Construction (IC) . 65
3.2.9 State Visibility Anomaly (SVA) . 66

3.3 Syntactic Patterns of Inheritance. 67
3.3.1 Descendant has No Methods (DNM) . 69
3.3.2 Descendant introduces extension methods . 70
3.3.3 Descendant introduces refining methods. 77
3.3.4 Descendant Introduces Constructors . 82
3.3.5 Special cases – Complete Behavioral Redefinition. 85

3.4 Discussion . 89

CHAPTER 4 Coupling-based Analysis of Object-Oriented Programs 91

4.1 Extended Coupling Definitions . 91
4.2 Coupling Sequences. 93

4.2.1 Type I Coupling Sequences . 94
4.2.2 Type II Coupling Sequences . 95
4.2.3 Type III Coupling Sequences . 96
4.2.4 Type IV Coupling Sequences . 98
4.2.5 Other Type of Coupling Sequences. 99

4.3 Coupling Variables and Coupling Sets . 100
4.4 Coupling Paths. 101

4.4.1 I-Def Paths. 103
4.4.2 I-Use Paths. 104
4.4.3 Transmission Paths . 105

4.5 The effects of inheritance and polymorphism on coupling 106
4.6 Polymorphic coupling sequences and coupling sets . 116

4.6.1 Polymorphic Coupling Sequences. 116
4.6.2 Polymorphic Coupling Sets . 119

4.7 Coupling paths in object-oriented programs . 120
4.7.1 Non-Polymorphic Coupling Paths. 120
4.7.2 Polymorphic Coupling Paths . 123
4.7.3 Feasible and infeasible coupling sequences . 125

4.8 Summary . 126

CHAPTER 5 A Set of Criteria for Testing Object-Oriented Programs. 128

5.1 Coupling Criteria. 129
5.1.1 Definitions . 129
vi

5.1.2 All-Coupling-Sequences . 132
5.1.3 All-Poly-Classes . 133
5.1.4 All-Coupling-Defs/Some-Coupling-Uses . 134
5.1.5 All-Coupling-Uses/Some-Coupling-Defs . 135
5.1.6 All-Coupling-Defs-Uses . 136
5.1.7 All-Poly-Coupling-Defs-Uses . 137

5.2 Generation of Test Requirements . 137

CHAPTER 6 Analyzing Coupling Properties of Object-oriented Programs. 140

6.1 Definitions . 140
6.2 Identifying Coupling Sequences . 142
6.3 Identifying Coupling Sets . 143
6.4 Instrumenting OO Programs for Coupling Analysis 144

6.4.1 Coverage Mappings. 144
6.4.2 Instrumentation Requirements. 146

6.5 Instrumenting Java Programs . 147
6.5.1 Instrumentation Instructions . 148
6.5.2 An example . 150

6.6 Summary . 154

CHAPTER 7 CBAT - Coupling-based Analysis Tool . 156

7.1 Objectives of CBAT. 156
7.2 Representations provided by CBAT . 157

7.2.1 Class Graph . 157
7.2.2 Abstract Syntax Tree . 158

7.3 Architecture of CBAT . 169
7.3.1 CBAT Core . 169
7.3.2 Analysis Engine. 171
7.3.3 Instrumentation Engine . 171

7.4 Implementation . 172

CHAPTER 8 Validation . 174

8.1 Experimental design . 174
8.1.1 Subject programs . 174
8.1.2 Test adequacy criteria . 175
8.1.3 Test data. 176
8.1.4 Injected Faults . 177

8.2 Conduct of Experiments . 178
8.2.1 Test oracle derivation . 179
8.2.2 Fault injection . 180
8.2.3 Test execution . 181
8.2.4 Result evaluation . 181

8.3 Results. 182
vii

8.4 Analysis and Discussion . 183
8.4.1 Analysis of the coupling-based criteria . 190
8.4.2 Explanation of effects . 191
8.4.3 Effectiveness of the Coupling-based Criteria . 192
8.4.4 Discussion . 196

8.5 Conclusion . 197

CHAPTER 9 Contributions and Future Work. 199

9.1 Contributions . 199
9.2 Future Work . 201

9.2.1 Testing inter-method coupling sequences . 201
9.2.2 Specification and coupling-based testing of object-oriented programs. . 202
9.2.3 Integration testing within class hierarchies . 202
9.2.4 Coupling-based testing of concurrent object-oriented programs 203
9.2.5 Testing of reflective object-oriented programs . 203
9.2.6 Generation of test cases for coupling-based testing 204
9.2.7 Metrics for coupling-based testing . 204
9.2.8 Mutation testing of object-oriented programs . 204
9.2.9 CBAT Enhancements . 206
9.2.10 XML-based program representations for testing and analysis 207
9.2.11 Reverse engineering of software contracts . 208

References . 177
viii

ix

List of Tables

Table Page
3-1 Faults and Anomalies due to Inheritance and Polymorphism........................56
3-2 Syntactic Patterns of Inheritance..68
3-3 Fault/anomaly types manifested by syntactic patterns88
4-1 Summary of sample coupling paths ...113
4-2 Binding triples for ...118
4-3 Sample Coupling Paths ..122
4-4 Polymorphic coupling paths for type family A..124
6-1 Coverage Mappings..145
6-2 Instrumentation instructions ...147
6-3 Java instrumentation methods ..148
8-1 Subject program characteristics..175
8-2 Number of test cases per subject program and criterion176
8-3 Number of faults injected into method under test ..178
8-4 Experimental Results..183
8-5 Results of hypothesis tests..195

List of Figures

Figure Page
1-1 Sample aggregation example ..7
1-2 Sample Inheritance Hierarchy ..8
1-3 Sample Class Hierarchy ..10
1-4 Example class hierarchy with table of definitions and uses11
1-5 Def-use pairs resulting from A::h preceding A::i and A::j12
1-6 Different def sets between A::h and B::h ..13
1-7 Data flow anomaly due to A::h preceeding A::i ...14
1-8 d called through instance of A ..15
1-9 d called through instance of B ..16
1-10 Data flow anomaly for A::y with respect to A::u and A::j with respect to A::w ..16
1-11 d called through instance of C ..17
1-12 Data flow anomaly for A::i with respect to A::u and C::l with respect to A::v18
2-1 Chen and Kao’s shape example [20] ..39
2-2 Procedural coupling criteria ..48
3-1 Class hierarchy with refining and extension methods ..51
3-2 Example hierarchy ..54
3-3 Descendant with no overriding methods ..58
3-4 Code example showing inconsistent type usage ...58
3-5 State Definition Anomalies ...60
3-6 Example of Indirect Inconsistent State Definition (IISD)63
3-7 Example of Anomalous Construction Behavior ...64
3-8 Incomplete construction of state variable fd ...66
3-9 State Visibility Anomaly ..67
3-10 Descendant whose definitions include no methods or state variables70
3-11 Example showing interaction of extension methods ..71
3-12 Definitions and uses for extensions methods ..72
3-13 Code fragment for method Submarine::evade ..74
3-14 Code fragment for method Submarine::blowBallast ..77
3-15 Code fragment for method Submarine::submerge ..78
3-16 Code for Submarine::accelerate illustrating RUIV, RCOM, and RDIV80
3-17 Complete Behavioral Redefiniditon (2) ..87
3-18 Yo-yo effect resulting from extension method calling inherited method90
4-1 Type I Coupling Sequence ..94
4-2 Type II Coupling Sequence ..96
4-3 Type III Coupling Sequence ...98
x

4-4 Type IV Coupling Sequence ...99
4-5 Inter-method Coupling Sequences ..100
4-6 Detailed Type I Coupling Sequence ...104
4-7 Sample class hierarchy and def-use table ...107
4-8 Coupling sequence when o is bound to an instance of A108
4-9 Coupling sequence when o is bound to an instance of B110
4-10 Coupling sequences when o is bound to an instance of C111
4-11 Sample hierarchy with class D added ...112
4-12 Sample hierarchy showing modified class C ..114
4-13 Coupling sequence where o is bound to C and ..115
5-1 Hierarchy of coupling-based testing criteria ...130
6-1 Java mechanism for collecting coupling-based coverage data149
6-2 Sample hierarchy ..150
6-3 Method Client.f (without instrumentation) and corresponding CFG151
6-4 Method Client.f instrumented for coupling coverage ...154
7-1 UML Class Diagram for package ClassGraph ...158
7-2 UML class diagram for ControlTree ..160
7-3 UML Class Diagram for AST expression tree ..161
7-4 Class Diagram for package MethodGraph. ..164
7-5 CBAT architecture ..170
7-6 CBAT Instrumenter ..172
8-1 Class hierarchy with seeded shadow hierarchy for All-Poly-Classes180
8-2 Class hierarchy with seeded shadow types for All-Coupling-Defs-Uses181
8-3 Average detection effectiveness by fault type ..184
8-4 Average effectiveness for program P1 across all subject criteria185
8-6 Average effectiveness for program P3 across all subject criteria186
8-5 Average effectiveness for program P2 across all subject criteria186
8-8 Average Effectiveness for Program P5 across all Subject Criteria187
8-7 Average effectiveness for program P4 across all subject criteria187
8-10 Average effectiveness for program P7 across all subject criteria188
8-9 Average effectiveness for program P6 across all subject criteria188
8-12 Average effectiveness for program P9 across all subject criteria189
8-11 Average effectiveness for program P8 across all subject criteria189
8-13 Average effectiveness for program P10 across all subject criteria190
8-14 Observed versus fitted cell frequencies ..194
xi

ABSTRACT

TESTING THE POLYMORPHIC RELATIONSHIPS
OF OBJECT-ORIENTED PROGRAMS

Roger T. Alexander, MS

George Mason University, 2001

Dissertation Director: A. Jefferson Offutt

The emphasis in object-oriented programs is on defining abstractions that have both state
and behavior. This emphasis causes a shift in focus from software units to the way soft-
ware components are connected. Thus, we are finding that we need less emphasis on unit
testing and more on integration testing. The compositional relationships of inheritance and
aggregation, especially when combined with polymorphism, introduce new kinds of inte-
gration faults. The research presented in this thesis is based on the key insight that the pri-
mary mechanism for integration is coupling between components. Previous research
demonstrated that coupling-based testing techniques can be used for integrating compo-
nents in procedural programs. This thesis extends previous work to account for the com-
positional relationships found in object-oriented programs. The key contributions include
a formalism for representing the state interactions and behavior that result from method
calls where inheritance and polymorphism are a factor, a set of test-adequacy criteria that
are effective at detecting faults that are peculiar to object-oriented programs, a technique
for identifying data flow anomalies within inheritance hierarchies, a model of the faults
that can occur in object-oriented programs, and a graphical model for analyzing and
understanding the effects of polymorphism within a class hierarchy. This research has also
produced a proof of concept tool that demonstrates the practicality and effectiveness of the
coupling-based analysis and testing techniques.

1. Introduction and Overview

The emphasis in object-oriented languages is on defining abstractions (e.g. abstract data

types) that model concepts relative to some problem and solution domain [52]. These

abstractions appear in the language as user-defined types that have both state and behavior.

Unfortunately, while the use of abstract data types often results in a design of higher qual-

ity, the level of testing effort required to achieve a desired level of quality can increase. This

is due to the inherent complexity in the nature of the relationships found in object-oriented

languages [15]. The compositional relationships of inheritance and aggregation, combined

with the power of polymorphism, increase the difficulty in detecting faults that result from

the integration of components to form new types. This is due to the differences in how com-

ponent integration occurs in object-oriented languages [11].

The research presented in this thesis is the result of an investigation in the area of testing

these abstractions when inheritnace and polymorphaism are used. Emphasis is placed on

testing the state space interactions between methods for a given class when invoked from

another method in a different class. The following sections describe the problem and

present the motivation, present the thesis statement, and provide background concepts on

object-oriented programming.

1.1 Motivation
In procedure-oriented languages such as C and Pascal, and object-based languages such as

Modula-2 and Ada 83, the unit of integration is the procedure and module, respectively.1

The integration mechanism is simple aggregation through either procedure/function call-

1. The primary distinction between the types of languages discussed in this thesis are the mechanisms used
for abstraction. Procedure-oriented languages employ the procedure and function. In contrast, both object-
based and object-oriented languages use data abstraction as the primary abstraction mechanism.
1

2

return, or through containment when one module includes another. This is also true for

object-oriented languages, but the key difference is the presence of another integration

mechanism: inheritance. Inheritance permits new types to be defined in terms of the state

and behavior of existing types. Such new types are said to be descendants of the existing

type [50]. Inheritance differs from aggregation in that the encapsulation of the inherited

type may not be preserved. It is possible for the newly defined type to have free access to

the internal representation of the types that it based on. Together, inheritance and polymor-

phism are the key characteristics that distinguish an object-oriented language from an

object-based language [50, 52].

Another difference is the effect that polymorphism (dynamic binding) has on the integra-

tion of components when inheritance is a factor. Any object type T defines a new type fam-

ily. Members of that family include T and any of its descendants. Polymorphism allows the

type of an object to determine which version of a method executes [52]. As a result of poly-

morphism, any instance of a descendant type can be freely substituted for an instance of T.1

An instance has a memory location and a value associated with it. For example, the decla-

ration int x = 7 in the C programming language results in a new instance of the type int with

a memory location initialized to the integer value 7. Similarly, in a object-oriented lan-

guage, creating an object of a particular class results in a new instance of that class having

an associated memory location and value. Thus, inheritance combined with polymorphism

provides two forms of integration that must be dealt with when testing objects, integration

of representation and integration of abstraction. Neither of these has a procedure-oriented

counterpart.

Integration of representation addresses the issues associated with combining the state space

representation of existing classes to form the representation for a new classes. This is

accomplished through inheritance whereby the state space of a parent class becomes part

of the state space of the child. Properties and behaviors that are inherited, along with state-

1. The terms instance and object are synonymous, and used interchangeably throughout this thesis.

3

space definitions, must be carefully combined with new and overriding methods to ensure

consistency in behavior and state among the related classes.

Integration of abstraction deals with the effects of aggregation in the presence of inherit-

ance and polymorphism. The integration issue consists of ensuring that the aggregated type

and its owner work correctly together across all forms of representation that can exist for

the aggregated type. This is not just a static language issue; there also is a dynamic aspect

due to dynamic binding resulting from inheritance and polymorphism. It is possible for the

representation of an aggregated type to change dynamically at runtime. Because of this, all

possible substitutions must be tested to ensure consistent behavior with respect to the

aggregated abstraction.

As an example, an implementation of a Stack could use a class that is sequential data struc-

ture, such as an Array or LinkedList, to hold its contents. While these two data structures

can have the same sequential behavior, they are likely to be vastly different state represen-

tation. The Array could be a contiguous area of memory index by a pointer, whereas the

LinkedList would consist of a series of nodes that mutually reference one another. If both

of the classes for Array and LinkedList share a common parent, say Sequence, then Stack

can use Sequence as its state space representation. Since Array and LinkedList are children

of Sequence, either can be used to provide the behavior required by Stack. To ensure that

Stack behaves correctly, it must be tested across the extension of the type family repre-

sented by Sequence, Array and LinkedList in this case.

1.2 Problem Statement
The problem that this thesis addresses is that of finding errors in the polymorphic relation-

ships among integrated type components in object-oriented software.

Traditional testing techniques do not work effectively for object-oriented software, at least

in the sense that they are not capable of detecting the faults that programmers make in

4

object-oriented programs [17, 27]. Simply put, there are many more different types of

places where faults can hide than in traditional procedure-oriented programs.

The following sections discuss traditional approaches to software testing and their applica-

bility to the testing of software written in object-oriented languages.

1.2.1 System level testing techniques
System level testing techniques, such as the Category-Partition technique [59], usually

focus on the functional behavior of a system without regard for its structural characteristics.

These techniques treat a system as a black-box and try to determine if a given system exhib-

its the required functional behavior according to some specification. Test inputs are chosen

without regard for the structure of the system. Consequently, it may not be possible to know

what components of the system actually execute and which do not. There may be compo-

nents that are not executed by the chosen test suite even though the test suite itself is ade-

quate with respect to the system's specification. Thus, there may be faults residing at certain

locations within the system, but because those locations are not executed, there is no oppor-

tunity for a failure to be observed if one occurred.

For the types of faults outlined in Section 1.1, execution is a necessity if any confidence is

to be obtained in the correctness of an object-oriented program. This is consistent with the

first tenant of the fault/failure model, which essentially states that if a fault is to result in a

failure, then the program location containing the fault must first be executed [22, 54, 55].

Thus, black-box techniques are not sufficient to adequately test the compositional relation-

ships found in object-oriented programs.

1.2.2 Unit level testing techniques
Traditional unit-level path testing techniques used to test procedure-oriented programs,

such as statement and branch coverage [9], are effective at testing certain aspects of object-

oriented programs [25]. They are just as applicable to methods as they are to procedures

and functions, though their overall impact on quality is lessened.

5

Unit-level techniques are used to analyze various characteristics of procedures with respect

to some test adequacy criterion. For example, branch coverage measures the quality of a

particular test suite, and hence the quality of any testing effort, as the percentage of

branches covered when the procedure is executed using inputs drawn from the test suite [9].

This approach to testing is well-suited for methods as well. However, its overall effective-

ness for testing an object-oriented program may be far less than that of an equivalent pro-

cedure-oriented program [15]. This is due to the tendency for behavior in an object-oriented

program to be distributed across a set of collaborating objects instead of being relegated to

a handful of procedures and functions. The practical consequence of this is that methods

tend to be much less complex and considerably shorter, many times to a trivial extreme.

Consequently, the procedural complexity is shared among many different methods belong-

ing to different classes. Unfortunately, this reduces the effectiveness of path-based unit-

level techniques, and increases the necessity to test the compositional relationships among

classes.

Another form of testing that is prevalent in procedure-oriented software is data flow testing

[30]. These techniques explore the interrelationships among the data elements in a program

and attempt to identify faults that are associated with well-defined patterns of definition and

usage. The fault assumptions made by these techniques are that faults will be revealed if

every definition is used in some way [9, 30]. While there is evidence to suggest that these

techniques are useful for procedure-oriented programs [29], they still are not adequate for

testing the complex relationships that occur among components within object-oriented pro-

grams. In particular, these techniques do not directly support the testing of state space inter-

actions among overridden and inherited methods. Also, they are not sufficient for testing

the behavior of polymorphic substitutions [12]. However, the work of Harrold and Soffa

[34] and also of Jin and Offutt [38] has shown data flow analysis to be an effective tech-

nique for testing the integration of procedure-oriented components. It seems likely that an

augmented form of this analysis technique would be useful for analyzing and testing the

compositional relationships found in object-oriented programs.

6

1.2.3 Integration Testing Techniques
Integration testing is concerned with testing the interactions among components. Does a

component that calls another do so correctly? Are the parameters of the right types and

ranges, and do they observe the proper relationships? Does the called method actually

return the proper type and is the value in the correct range? These questions are the focus

of integration testing. Unfortunately, very little research has been conducted in this area.

Work that has been done generally emphasizes inter-procedural data flow [34]. That is,

determining whether or not that the data passed between components is used in a consistent

manner.

1.3 Thesis Statement
Coupling based testing techniques can be extended to detect the faults that result from the

polymorphic relationships among components in an object-oriented program.

1.4 Object-oriented Programming
The following sections describe the concepts and principles associated with object-oriented

programming that are relevant from a testing perspective. The reader is referred to texts

such as Meyer’s [52] for a thorough treatment of object-oriented concepts.

1.4.1 Classes
Object-Oriented Programming is an approach to the development of software that is based

on the concepts of information hiding and encapsulation [52]. The fundamental building

block is the class, which is the mechanism by which new types are defined. A class encap-

sulates state information in a collection of variables, referred to as state variables, and also

has a set of behaviors that are represented by a collection of methods that operate on those

state variables. The primary role of the class in an object-oriented program is to provide a

template for the creation of objects [52]. Thus, a class defines a type that all of its objects

share.

Object-Oriented Programming is an approach to the development of software that is based

on the concepts of information hiding and encapsulation [52, 62]. The fundamental build-

7

ing block is the class, which is the mechanism by which new types are defined. A class

encapsulates state information in a collection of variables, referred to as state variables, and

also has a set of behaviors that are represented by a collection of methods that operate on

those state variables. The primary role of the class in an object-oriented program is to pro-

vide a template for the creation of objects [52]. Thus, a class defines a type that all of its

objects share.

1.4.2 Compositional Relationships
There are two types of relationships that can be used to compose types (i.e. classes) to form

new types. The first of these, aggregation, is simply the traditional notion of one type con-

taining instances of another type as part of the its internal state representation. In a proce-

dural language such as the C programming language, a struct type aggregates instances of

other types as part of its definition. For example, a struct that describes an employee record

might be composed by aggregating string instances that maintain the first, middle, and last

names of an employee, and perhaps a date instance that records the date of hire. In an

object-oriented language, the aggregation of instances is similar. Figure 1-1 provides a

simple illustration of type aggregation represented in the notation of the Unified Modeling

Language (UML)[2]. The diamond indicates the aggregating class, A in this case. The

figure illustrates a class diagram that consists of two class types, A and B, with an instance

of B being aggregated into A's state space. Thus, every instance of type A will also contain

an instance of type B.

The second form of compositional relationship is inheritance. Inheritance allows the repre-

sentation of one type to be defined in terms of the representation of a set of other types.

When this occurs, the type being defined is said to inherit the properties of its ancestors (i.e.

Figure 1-1. Sample aggregation example

A B

8

behavior and state). The definition of the ancestors becomes part of the definition of the

new descendant type. An example of this is illustrated in Figure 1-2 where the arrow points

to the ancestor class.

1.4.3 Polymorphism and Dynamic Binding
Related to both inheritance and aggregation is polymorphism and dynamic binding. Poly-

morphism permits instances of different types to be bound to a reference of another type

according to the structure of the inheritance hierarchy. Dynamic binding permits different

method implementations to execute depending upon the actual type of an instance that is

bound to a particular reference independent of its declared type [52]. As an example, con-

sider the UML class diagram shown in Figure 1-3 and the following code fragment that

provides an implementation of method p specified by class Q:

1 void Q::p(W w)
2 {
3 ...
4 w.m();
5 ...
6 }

Figure 1-2. Sample Inheritance Hierarchy

+f()

-x
-y

B

+r()

-z

C

9

Line 4 contains a call site in which the method m is invoked against the instance bound to

the object reference w. The implementation of m that actually executes depends on the type

of the instance that is bound to w. Even though the declared type of w is W, the actual type

of the bound instance can be of any of the classes shown in hierarchy depicted in Figure 1-

3. In an object-oriented language such as C++ and Java, variables that reference objects

have a static type, which is the type they are declared as, and a dynamic type that is deter-

mined at runtime. The dynamic type, or actual type, is the type of the instance that is actu-

ally bound to the variable. This can be an instance of any member of the type family defined

by the declared type of the variable. For example, if the type of the instance passed to the

method shown above is of type X, then the version of m that executes will be X::m.1 Simi-

larly, if the type is Z, then the version that will execute is Z::m. However, if the type is V,

then the version of m that will execute is W::m, because V does not provide a definition of

m.

1. The notation used here is borrowed from C++ where the scope resolution operator :: is
used to identify the namespace that a particular identifier is a member of.

10
1.5 Problems with method overriding and
polymorphism
To illustrate the problems that method overriding and polymorphism, consider the simple

inheritance hierarchy that is three classes deep, shows on the left of Figure 1-4. The root

class A contains four state variables and six methods. Its direct descendant B specifies one

state variable and three methods. Finally, class C specifies only three methods. You can

easily see which classes have methods that override inherited methods, such as B::h over-

rides A::h. The table to the right of Figure 1-4 shows the state variable definitions and uses

of some of the methods for each class in the hierarchy. The problem begins with the seem-

ingly innocuous call to A::d through the instance provided by some context variable. This

seemingly trivial example has some very complex interactions that potentially yield nasty

problems.

Figure 1-3. Sample Class Hierarchy

+m()
+n()

-v

W

+p()

Q

V

+m()

-x

X

+m()
+n()

Z

+m()
+l()

-w

Y

11
Suppose that an instance of A is bound to o and that a call to method A::h precedes calls to

A::i and A::j. The def-use pairs that can occur for this sequence is highlighted in Figure 1-

5. Note that the definitions of A::u and A::w by A::h are used by A::i and A::j. From a data

flow perspective, this not an anomaly since A::u and A::w were defined before they were

used.

Figure 1-4. Example class hierarchy with table of definitions and uses

Method Defs Uses

A::h {A::u,A::w}
A::i {A::u}
A::j {A::v} {A::w}
A::l {A::v}
B::h {B::x}
B::i {B::x}
C::i {C::y}
C::j {C::y}
C::l {A::v}

+d()
+g()
+h()
+i()
+j()
+l()

-t
-u
-v
-w

A

+h()
+i()
+k()

-x

B

+i()
+j()
+l()

C

12
Now suppose that an instance of B is used in place of the instance for A. Examining the def-

inition-use table in Figure 1-6 immediately reveals that overriding method B::h has a dif-

ferent def set than A::h does. In particular, there are state variables that A::h defines that B::h

does not (i.e. A::u and A::w).

Figure 1-5. Def-use pairs resulting from A::h preceding A::i and A::j

Method Defs Uses

A::h {A::u,A::w}
A::i {A::u}
A::j {A::v} {A::w}
A::l {A::v}
B::h {B::x}
B::i {B::x}
C::i {C::y}
C::j {C::y}
C::l {A::v}

+d()
+g()
+h()
+i()
+j()
+l()

-t
-u
-v
-w

A

+h()
+i()
+k()

-x

B

+i()
+j()
+l()

C

Suppose that A::h can
preceede A::i and A::j

13
The situation depicted in Figure 1-6 is not necessarily a problem. It depends on whether any

method called that uses one of the variables defined by A::h not defined by B::h (e.g. A::j).

Note that the sequence B::h followed by B::i is safe from a data flow perspective since the

former defines B::x and the latter uses it. Thus, if this sequence of method calls were made

in the context expecting an A but through an instance of B, no data flow anomally would

exist. However, if the call to A::h were followed by a call to A::j, an anomaly would exist

since A::w is used by A::j but was not defined because B::h was executed instead of A::h.

This is indicated in Figure 1-7.

Figure 1-6. Different def sets between A::h and B::h

Method Defs Uses

A::h {A::u,A::w}
A::i {A::u}
A::j {A::v} {A::w}
A::l {A::v}
B::h {B::x}
B::i {B::x}
C::i {C::y}
C::j {C::y}
C::l {A::v}

+d()
+g()
+h()
+i()
+j()
+l()

-t
-u
-v
-w

A

+h()
+i()
+k()

-x

B

+i()
+j()
+l()

C

Different def sets

14
To see the effects that polymorphism can have on method overriding, consider the follow-

ing code fragment that makes use of the same hierarchy:

f(A o)
{

...
o.d();
...

}

Here, method f has a formal argument o whose declared type is A. Because the type family

associted with A includes classes B and C, o can be bound to an instance of any of these.

Figure 1-8 depicts a a stylized graph, called a yo-yo graph, that depicts the flow of control

that results from a call to A::d when o is bound to an instance of A. As we see here, d calls

Figure 1-7. Data flow anomaly due to A::h preceeding A::i

Method Defs Uses

A::h {A::u,A::w}
A::i {A::u}
A::j {A::v} {A::w}
A::l {A::v}
B::h {B::x}
B::i {B::x}
C::i {C::y}
C::j {C::y}
C::l {A::v}

+d()
+g()
+h()
+i()
+j()
+l()

-t
-u
-v
-w

A

+h()
+i()
+k()

-x

B

+i()
+j()
+l()

C

If A::h can precede A::i, then
a data flow anomaly exists

15
g, which in turn calls h, h calls i, and i calls j. Presumably, this is the intent of the program-

mer of A and is correct with respect to the specification of A.

Now suppose that o is bound to an instance of B. The call o.d results in the execution

sequence beginning with of A::d shown in Figure 1-9. As before. A::d then calls A::g, and

A::g then apparently calls A::h. But, because d was called in the context of an instance of

B, B::h executes instead. As we see, B::h calls B::i, which in turn makes an explicit call to

A::i., and this the flow of control returns to purview of A’s implementation. On the surface,

this execution path looks innocuous enough. Unfortunately, this is not the case.

As Figure 1-10 indicates, there is a data flow anomaly in method A::i with respect to state

variable A::u, and method A::j with respect to state variable A::w. A::i expects that state

variable A::u to have been defined prior to its invocation, and A::j has a similar expectation

for state variable A::w, and indeed this is what the programmer of A has done. However,

through means beyond the control of A’s programmer, the flow of control and the pattern

of state definitions has been altered, with result being a violation of one of the assumptions

made in the implementation of A.

Figure 1-8. d called through instance of A

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

16
Now consider what happens when d is called through an instance of C, as depicted in

Figure 1-11. As is obvious. a much more complex pattern of method calls results (and pre-

sumably state interactions as well). The first three method invocations are consisted with

the implementation of B (though not with A). But the fourth method invocation, which is

apparently to B::i, actually results in the execution of C::i. Now C::i calls B::i, which in turn

Figure 1-9. d called through instance of B

Figure 1-10. Data flow anomaly for A::y with respect to A::u and A::j with respect to A::w

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

B h() i() k()
implic it

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

Instantiated
type

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

B h() i() k()
implic it

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

Instantiated
type

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

B h() i() k()
implic it

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

Instantiated
type

Data Flow
Anomaly!

• A::i with respect to A::u
• A::j with respect to A::w

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

B h() i() k()
implic it

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

Instantiated
type

Data Flow
Anomaly!

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

B h() i() k()
implic it

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

Instantiated
type

Data Flow
Anomaly!

• A::i with respect to A::u
• A::j with respect to A::w

17
calls A::i as before (the implementation of B has not changed). Now, A::i makes its apparent

call to A::j. This time, control returns to C with the execution of C::j, and so on. Clearly this

is a complicated situation and not without its problems. Figure 1-12 shows that two data

flow anomalies result in method A::i with respect to A::u and method C::l with respect to

A::v.

Figure 1-11. d called through instance of C

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

C

+i ()
+j ()
+l ()

C j()i() l()

B h() i() k()
implicit

Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()

B h() i() k()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

explicit

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

C

+i ()
+j ()
+l ()

C j()i() l()

B h() i() k()
implicit

Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()

B h() i() k()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

explicit

18
This example has illustrated some the complexities that can result in object-oriented pro-

grams due to method overriding and polymorphism. Along with the this induced complex-

ity comes more difficulty and required effort in testing.

1.6 Organization of Dissertation
The remainder of this dissertation is organized as follows. Chapter 2 reviews background

material and related work. This includes issues in testing object-oriented software, concepts

of test adequacy, and other testing approaches related to object-oriented software. Chapter

3 presents a discussion of faults that are peculiar to object-oriented programs as a result of

inheritance and polymorphism. Chapter 4 presents the concepts and theory of coupling-

based testing applied to object-oriented programs. Chapter 5 continues with a presentation

of the coupling-based test adequacy criteria for object-oriented programs. Chapter 6 dis-

cuss algorithms for analyzing object-oriented program to identify coupling sequences. Also

included is a discussion on program instrumentation techniques required to collect cou-

Figure 1-12. Data flow anomaly for A::i with respect to A::u and C::l with respect to A::v

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

C

+i ()
+j ()
+l ()

C j()i() l()

B h() i() k()
implicit

Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()

B h() i() k()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

explicit

Data F low
Anomaly!

• A::i with respect to A::u
• C::l with respect to A::v

A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B

+h ()
+i ()
+k ()

C

+i ()
+j ()
+l ()

C j()i() l()

B h() i() k()
implicit

Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()

B h() i() k()

A d() j()g() h() i() l()
implicitimplicitimplicitimplicit

explicit

Data F low
Anomaly!

• A::i with respect to A::u
• C::l with respect to A::v

19
pling-based coverage information. Chapter 7 presents CBAT, the proof of concept tool

developed to validate the research presented in this thesis. Chapter 8 describes the efforts

taken to validate this research. This includes a discussion of the experimental design, the

raw results, and their significance. Finally, Chapter 9 summarizes the contributions of this

research and presents a discussion of future work.

2. Background and Related Work

A number of areas are related to the research described in this dissertation. The sections that

follow discuss these areas in detail. The first section describes and discusses a number of

issues that are peculiar to testing object-oriented software. Next, the notion of test adequacy

is discussed with respect to testing object-oriented software. Following this is a discussion

of class level testing that describes both state-based and method sequence-based testing

approaches. Next, existing techniques for integration testing of object-oriented software is

described. Finally, other testing techniques are discussed that are related to this research.

2.1 Issues in Testing Object-oriented Software
A number of issues associated with object-oriented software that are not relevant in systems

written using procedure-oriented languages. Many researchers have made the assertion that

not all forms of traditional testing techniques are applicable or effective in testing object-

oriented software [35] [10] [28]. The semantics of classes are embodied in their methods

and in the representations chosen for their state. In isolation, each method appears to be a

function or procedure, equivalent to those found in the procedure-oriented languages. They

take formal arguments and interact with state variables that act as global data. Thus, it

seems reasonable to expect traditional unit testing techniques to be applicable to methods.

However, these techniques are not as effective with methods as they are with procedures.

This is because methods tend to be significantly smaller and less complex. It is not uncom-

mon to find methods with one or two statements, and many (perhaps the majority) can be

found to have less than ten [15]. A method of only a few statements is not as likely to have

statement-level faults or as many as those of procedures having tens, hundreds, or even

thousands of statements. Consequently, the prevailing wisdom is that the effectiveness of

traditional path-oriented unit testing techniques is not very high. The nature of the types of
20

21
faults that occur in object-oriented programs are such that path-oriented techniques are not

sufficient [15].

Strong encapsulation reduces or often eliminates our ability to observe the state of an object

[63] [12] [1] [8]. If the state cannot be observed, then it is often not possible to determine

if a failure has occurred. Strong encapsulation also reduces the ability to control the input

to a test [31]. This often makes it difficult to establish the necessary conditions for conduct-

ing tests (e.g. establishing initial state and determining final state), thus limiting our ability

to achieve adequate testing of a class.

A number of researchers have observed that, contrary to many widely held beliefs, object-

oriented language features actually increase the effort required to achieve adequate test-

ing.1 Binder observes that inheritance and polymorphism present opportunities for the

commission of errors that simply do not exist in procedure-oriented programs. Further-

more, he points out that testing effort is not reduced for a descendant class simply because

its parent has been thoroughly tested. This is because each new class is a different context,

and perhaps even different tests are required to achieve test adequacy [12]. Binder also

observes that testing objects is problematic because they ''...[often] exhibit sequentially

dependent behavior'' (i.e. the behavior and state of an object is a function of the history of

its method invocation) [13]. Objects can generally be viewed as state machines that transi-

tion from one state to the next as their methods are executed. Objects that exhibit modal

behavior impose limits on the order in which their methods can be executed. From a testing

perspective, this results in an increase in the effort required to establish initial states and to

test all combinations of valid method sequences.

Smith and Robson report the observation that in an object-oriented language, a class cannot

be tested directly [68]. Instead, classes must be tested indirectly by testing their instances

1. In a personal communication with the author, Gail Kasier lamented the difficulty that she and DeWayne
Perry had in publishing their paper on adequate testing of object-oriented programs because their claims and
argument went against the commonly held beliefs of the time {Kaiser:1998:PC} {Perry:1990:ATO}.

22
(objects). Testing becomes a process of sampling from the class' population of instances.

Unfortunately, this comes with the limitations associated with statistical sampling. The

quality of the testing effort will be limited as a function of the degree to which the sample

is representative of all the class' instances.

Fiedler reports on his experiences using an approach for testing classes that was used at

Hewlett-Packard's Waltham Division [26]. The approach was based on the use of a combi-

nation of black and white box testing techniques applied to a number of programs written

in Extended C++ . He reports that the approach was applied to several generic classes that

had been tested prior using traditional black-box testing techniques and that the classes

where considered to be correct. However, upon application of the approach, a number of

faults were detected that the prior testing effort had missed, but there are many possible rea-

sons for this. His main conclusions are that the unit of testing in an object-oriented program

must be the class, and that the testing activity must occur much earlier in the life-cycle. Fur-

ther, he concludes that both black and white-box testing techniques must be used.

2.2 Test Adequacy
One of the early widely-held beliefs about object-oriented technology was that inheritance

would reduce the amount of testing effort required. It was believed that once a parent class

had been adequately tested, testing a derived class would be far simpler. All that would

need to be done is to test the new methods added by the descendant, since those inherited

from the parent had already been adequately tested. The conventional wisdom was that

inheritance would reduce testing effort by either eliminating or reducing re-testing, or

allowing the reuse of tests. This belief was dispelled by Perry and Kaiser [64] who, drawing

upon the earlier work of Weyuker [69], analyzed the adequacy of tests for object-oriented

programs with respect to single inheritance, method overriding, and multiple inheritance.

Their conclusions are that these features do not reduce the amount of testing effort, and in

many cases, increase the required effort to achieve test adequacy. They make the important

observation that inheritance, in particular, makes the effects of changes ''implicit and

dependent on the various underlying, and complicated, inheritance models'' [64]. The basis

23
for their conclusions rests upon Weyuker's axiomatic basis for determining test data ade-

quacy [69]. They make use of four of the following of Weyuker's eleven axioms of test ade-

quacy to show that inheritance and method overriding do not lead to a reduction of testing

effort:

1. Antiextensionality: ''If two programs compute the same function ... a test set

adequate for one is not necessarily adequate for the other'' [64]. This is a result

of the fact that program-based test adequacy is a function of the syntactic struc-

ture of source code, not its functionality. Because of this, programs that imple-

ment the same specification are quite likely to require different test sets.

2. General Multiple Change: ''When two programs are syntactically similar (that

is, they have the same shape), they usually require different test sets'' [64].

Essentially, two programs have the same shape if their control structures are

identical, but differ in the relational operators, constants or arithmetic operators.

Two such programs would require different test sets simply because the test

data for one would most likely not result in the desired coverage objectives for

the other.

3. Antidecomposition: ''Testing a program component in the context of an enclos-

ing program may be adequate with respect to that enclosing program but not

necessarily adequate for other uses of the component'' [64]. It may be the case

that the component has code that was not reached during the test for the enclos-

24
ing program. Thus, when the enclosing program's test passed, there still remains

untested code in the enclosed component, leading to the conclusion that the

enclosed component itself has not been adequately tested.

4. Anticomposition: ''Adequately testing each individual program component in

isolation does not necessarily suffice to adequately test the entire program.

Composing two program components results in interactions that cannot arise in

isolation'' [64].

Intuitively, testing should be limited to just the modified class. However, as Perry and

Kaiser point out, the anticomposition axiom states, in effect, that just because a class has

been tested in isolation does not mean that it is adequately tested when it has been com-

posed with other classes. Thus, the authors conclude that integration testing is always nec-

essary regardless of which programming language is being used.

One side effect of object-oriented languages is that the connections between components

''tend to be explicit and obvious'' [64]. Changing a component should only require re-testing

of the changed component and the other components that are dependent. Likewise, adding

a new component should only require testing of the new component and re-testing of com-

ponents that are dependent. Unfortunately, the antidecomposition axiom comes into play

when a new subclass is added to a hierarchy. The requirement is that the methods inherited

from each ancestor class must be re-tested since the new subclass provides a new context

for these methods. However, this requirement does not apply to the case where the new sub-

class has no interaction with the ancestor class methods (or state). This implies that the sub-

class is a pure extension to its ancestors, adding its own state variables and methods [64].

Replacing an inherited method with a locally defined method (i.e. an overriding method)

requires that the subclass be retested, but with a different test set. This is governed by the

25
antiextensionality axiom; even though the overriding method and the overridden method

may be close semantically, their test sets are not likely to be mutually adequate due to their

syntactic differences. Another subtle, but significant, consequence is that it may be neces-

sary to re-test every ancestor of the subclass containing the overriding method [64].

Multiple inheritance presents compounding effects that result in the applicability of both

the antiextensionality axiom and general multiple change axiom. The problem occurs when

a subclass inherits from multiple ancestors that define methods of the same name, which

the subclass does not override. Depending upon the semantics of the particular program-

ming language, a call to one of the multiply defined methods through an instance of the sub-

class will result in a specific method being executed, the choice being determined by the

order of inheritance specified by the subclass. A test set that is adequate for an initial inher-

itance ordering may not be adequate if a change results in a new ordering [64].

Others have observed that inheritance does not necessarily reduce testing effort. Smith and

Robson observed that inheritance causes problems for testing as classes undergo evolution

[68]. Modifications to a class will affect all additional classes that are its descendants, and

will thus require some potentially significant amount of re-testing. Such class modifica-

tions will typically require modifications to the associated test suite, and thus will have an

impact on any descendant class whose test suite makes use of its parent's test suite.

Cheatham and Mellinger identify four properties that a method m in a descendant class can

have [18]. First, a method can be inherited from the parent class without any alterations.

They state that little re-testing is needed in this case. However, their conclusion is short-

sighted since m, even though it has not been modified, may fail to behave correctly due to

indirect interactions with other methods defined in the descendant through the inherited

state space. The second property for m is that it can override an identically named method

in the parent. The third property is that m can be executed in conjunction with the parent's

m by providing a wrapper that calls it. The fourth property is that m can be a new method

in the descendant that is not directly related to any member of the parent. Cheatham and

26
Mellinger state that cases two, three, and four must be treated as new methods and tested

accordingly, though they do not describe what they consider to be adequate testing. They

do state that in the third case, the parent's version of m can be treated as a black box for

purposes of testing the new m.

Harrold, McGregor, and Fitzpatrick present an approach for identifying the set of tests that

are necessary to test a class adequately, particularly when inheritance is a factor [32]. Ade-

quacy in this case means that every method is tested individually as well as its interaction

with other methods in the class. Their test suites include tests that are both specification-

based and program-based. They note that specification-based test cases can be constructed

using existing approaches. Their approach makes use of stubs for other methods and pro-

cedures called by the method under test (MUT). Driver routines are also provided for exe-

cuting the MUT. Each test suite is a triple consisting of the method, a set of specification-

based tests, and a set of program-based tests. Also, each test set includes a flag to indicate

if those tests should be run in their entirety, a subset, or none at all. This flag is used when

determining which of the parent class' attributes must be retested in a descendant.

Harrold, McGregor and Fitzpatrick base their criteria of what must be retested on the work

of Perry and Kaiser's extension (for OOPs) of Weyuker's work on the axiomatization of test

adequacy [64] [69]. Their decision of what to include dependends upon the effects of inher-

itance and the interactions that occur as the result of new and overridden attributes, and

attribute redefinition and hiding. They use a graph-based representation, called a class

graph, to determine the interactions that occur and the necessary level of re-testing

required. In their approach, they classify an attribute A (methods and state variables) as fol-

lows:

New Attribute. A is defined (i.e. given a value) in the descendant, but not by the

parent.

27
Recursive Attribute. A is defined in the parent and inherited by the child. The child

does not redefine A.

Redefined Attribute. A is defined by the parent and re-defined by the child, which

hides the parent's definition.

Virtual-new Attribute. A is specified by the parent and may have not implemen-

tation. A may also be specified in the child but its signature differs from the parent's

definition. References to A in the child refer to the local definition, but references

by other attributes in the parent refer to the parent's definition.

Virtual-recursive Attribute. A is specified in the parent, and its implementation

may be deferred. The child does not define A.

Virtual-redefined Attribute. A is specified in the parent and its definition may be

deferred. Further, A is defined in the child and has the same signature as the version

of A specified in the parent. Harrold, McGregor and Fitzpatrick's approach requires

the following types of testing to occur in a subclass [32].

• A New or Virtual-New attribute A requires individual testing since it

was not included in the parent's test suite. Due to the antiextensional

axiom, A must also be integration tested with other attributes that it

interacts with.

• Recursive or Virtual-Recursive attributes require ''very limited'' re-test-

ing since they were individually tested in the parent. The authors claim

that the specification-based and program-based test suites need not be

re-run. However, A's interaction with new or redefined attributes will

need to be re-tested.

28
• Virtual or Virtual-Redefined attributes require extensive re-testing, but

the specification-based tests defined for the parent may be reused since

the implementation of A changes.

The preceding three items form the basis for which Harrold, McGregor and Fitz-

patrick use to determine which tests can be reused and what re-testing is necessary.

Kung, Gao, Hsia, Toyoshima, and Chen observe that one of the key difficulties in testing

object-oriented software is understanding the relationships that exist among the compo-

nents [41]. This complexity results from the use of inheritance, aggregation and association

relationships among classes. Deep inheritance hierarchies and highly nested class aggrega-

tions make it difficult to determine the optimal order in which classes should be tested. The

consequences of testing in an order not optimal are that testing is not adequate because class

relationships are missed, or substantial re-testing is often required. In an effort to eliminate

this problem, the authors present an algorithm that generates the optimum order for unit and

integration testing of classes. The objective is to minimize the amount of effort required to

adequately test the classes by minimizing the number of test stubs that must be built, and

to also reuse as many previously generated test cases as possible. The authors note that their

work supplements that of Harrold, McGregor and Fitzpatrick [32].

The test order for a given class structure is based upon the dependencies that exist among

its classes and is determined by analysis of a graph-based formalism known as an Object

Relation Diagram (ORD). An ORD contains an explicit representation for the relationships

that can occur in an object-oriented program, including inheritance, aggregation, associa-

tion, using, and instantiation. The ORD is a multigraph that consists of vertices correspond-

ing to classes, and edges that model the relationships among the classes. The idea behind

Kung et al.'s algorithm is to traverse the ORD, modifying it as necessary to remove cycles.

Once this is accomplished, the test order is produced by applying a topological sort of the

nodes in the graph (that is, the classes) [41]. As an example of the effectiveness of their

29
algorithm, they report its use with the InterViews library in an experiment against a ran-

domly generated test order. There they found that the total number of stubs required for that

test order was 400, where if the optimal test order is used, only 8 test stubs are required.

2.3 Class Testing
Just as the procedure and function are the basic units of abstraction in procedure-oriented

languages, the class is the basic unit of abstraction in object-oriented languages (and object-

based). Naturally, it makes sense that testing applied to these types of languages should

focus on their primary abstraction mechanisms. This view is reflected by the proportion of

literature on testing object-oriented software that is devoted to the testing of classes [15].

2.3.1 State-based Testing
The testing of classes is largely an integration testing issue. Since a class consists of a

number of methods and a collection of variables that define its state, the testing effort must

focus on the interaction of these methods with respect to each other and with respect to their

indirect interactions through the state space. As reported in the scientific and industrial lit-

erature, the majority of class testing approaches adopt one of two perspectives. The first is

that of a class viewed as a state machine [15]. In this perspective, each class to be tested has

its behavior modeled as a finite state machine. The typical approach is to derive a collection

of modes that are based on the logical behavior of the class rather than its representation,

and a set of transitions that correspond to each of the public methods. Each mode corre-

sponds to a disjoint set of states in the underlying state space representation [66]. This has

the advantage of avoiding the explosion of states that would result if the behavior were

modeled directly on the representation. For example, a class that abstracts the notion of

stack logically has three states: full, empty, and not full and not empty. If the internal rep-

resentation chosen for the class consisted of an array and two integer index variables, the

resulting physical state space would be the cross product of all the possible values that

could occur for the array and index variables. The resulting size is too large to be of prac-

tical use from a testing perspective. However, folding the physical states into modes does

increase the tractability of the testing problem tremendously, but at the expense of intro-

30
ducing non-determininsm. From a state-based class testing perspective, this results in a sig-

nificant reduction in the amount of effort testing effort since fewer tests are required to

cover all of the logical states than would be if the states based on the representation were

tested.

Kung, Suchak, Gao, Hsia, Toyoshima, and Chen (KSGHTC) describe an approach for

modeling an object using a formalism known as a Composite Object State Diagram

(COSD), and a procedure for reverse engineering a COSD from the implementation of a

class [42]. The resulting state machine model is used to test the state dependent behavior of

an object rather than using the control or data structure of the implementation. The COSD

is comprised of other COSDs (recursively) or Atomic Object State Diagrams (AOSDs). An

AOSD is comprised solely of states, transitions, and actions. Each AOSD corresponds to

an attribute of a class' state space. Each such attribute that corresponds to an AOSD must

have an effect on the behavior of the class when the attribute changes values. That is, to be

considered a state defining attribute, there must be at least two distinct sets of values for an

attribute that will result in different observed behaviors for an object. For this to be true,

there must be conditions involving the attribute in one or more of the class' methods.

The KSGHTC approach makes use of Chow's method for generating test cases from finite

state machines [21]. The basic idea is to create a test tree for a COSD where the nodes rep-

resent the composite states in the COSD. Edges between nodes represent transitions

between states. The composite states are represented as k-tuples, where k is the number of

AOSDs in the COSD. The ith element of the k-tuple corresponds to the state of the ith

AOSD. There may be several COSD test trees due to the fact that each AOSD can have

more than one initial state. Test sequences are generated from the tree by walking its root

to its leaves. Each path corresponds to a single test sequence.

Hong, Kwon, and Cha present a technique for testing classes based on representing behav-

ior as a finite state machine (which they refer to as a Class State Machine - CSM) and using

data flow testing techniques to generate test cases [37] [36]. The CSM is used as the basis

31
for forming a Class Flow Graph (CFG) that integrates the state machine with the methods

of the class. Each node in the graph corresponds to either a state, a guard, or a transition.

State nodes in the CFG correspond to state nodes in the CSM. Guards represent predicates

that determine when a particular transition is valid. Transition nodes correspond to method

calls and have associated actions (i.e. state transitions). The CSM is transformed into a CFG

using an algorithm designed by Hong, Kwon, and Cha [37] [36]. Test cases are generated

based on the definition and usage patterns of class state variables within the class' methods

and within the guards on transitions. These are used to produce a set of definition-use asso-

ciations that form the basis of the test requirements for a class. Hong, Kwon, and Cha's

technique does not account for inheritance or aggregation relationships. Thus, their

approach is object-based and cannot be applied in general to object-oriented programs.

2.3.2 Method Sequence-Based Testing
The second perspective on class testing focuses on the externally observable behavior of

the class when it is subjected to a sequence of method invocations. This, of course, is

related to state-based testing since the state of an object is a function of the method invoca-

tions that have occurred. However, with this testing perspective, the emphasis is not on test-

ing individual states and transitions directly. Rather, it is based on idea of subjecting

different instances of a particular class to different method sequences that leave the objects

in correct states.

Binder presents the Flattened Regular Expression (FREE) approach to testing object-ori-

ented software [15] [14]. In this approach, classes and clusters of classes are modeled as

state machines. Inheritance is accounted for by flattening the class hierarchy so that each

class to be tested is self contained. Tests are regular expressions that describe method

sequences that cover all of the states and transitions. The implementation of a class is tested

by constructing a graph that connects all of the methods within a class along all of the intra-

method and inter-method dataflow paths. The regular expression that describes the state

behavior of the class is also incorporated into this graph. Each transition edge in the state

machine is replaced by the corresponding method flow graph. The transition edge is con-

32
nected to the method’s entry node, and the method's exit node is connected to the state

resulting from the transition. This resulting graph represents all of the possible paths that

can occur among the methods within the class. Binder states that this graph can be used to

support path-based test suites, though he does not give an example or describe a procedure

[15] [14].

Another approach to testing using method sequences is to subject two instances of the same

class to equivalent message sequences and observe if they both end in the same logical

state. For example, for a class implementing an abstraction of a stack, the resulting states

of the following two method sequences should be equivalent:

push(1);push(4)lpush(2);push(3);pop();pop()

push(1);push(4)

Two different instances of the stack class subjected to each of these method sequences,

respectively, should, if stack is implemented correctly, end with final states where 1 is at

the bottom of the stack, 4 is at the top, and there are no other elements on the stack.

The equivalent message sequence approach is taken by Doong and Frankl in their

ASTOOT approach to testing object-oriented software [24]. ASTOOT is based upon alge-

braic specifications and the notion of observational equivalence between sequences of

methods. They use algebraic specifications, expressed in language called LOBAS, to

define such sequences that, when applied to objects of the same class, result in the same

final state. The basis of their approach is that given two objects o1 and o2 of the same class

C, and two equivalent sequences of methods, s1 and s2, defined in C, the effect of executing

s1 on o1 and s2 on o2 should leave o1 and o2 in the same states. If so, C is deemed to be

correct with respect to s1 and s2. The sequences s1 and s2 are equivalent since the resulting

state of their executions are the same. Thus, s1 and s1 are observationaly equivalent

sequences of methods.

33
Method sequences are derived from LOBAS specifications of abstract data types. To derive

these sequences, Doong and Frankl's approach places the following restrictions on the

methods of a class [24]:

1. Methods must have no side-effects on their parameters.

2. Methods whose purpose is to return state information must be side-effect free.

3. Observers can only appear as the last method in a sequence.

4. Sequences passed as parameters to methods must not contain any observer

methods.

The above restrictions are required to make the test case generation process tractable.

Unfortunately, these restrictions also limit the applicability of the approach. Doong and

Frankl's criterion for correctness is that an implementation class C of an abstract data type

T is correct if it has the same set of signatures as T, and all states of T that can be reached

by any pair of methods sequences have a corresponding state in C that can be reached by

the same pair. A class is deemed to be correct if all test cases pass.

Another approach based on method sequences is that of Chen, Tse, Chan, and Chen [19].

In their approach, a class specification consists of a set of equational algebraic axioms.

Each axiom, consisting of one or more terms, states a rule that specifies a permissible order-

ing of message sequences. A term is simply a series of operations consisting of variables

and constants. Terms that have no variables are referred to as ground terms. A term is said

to be in normal form if it cannot be transformed any further by application of axioms con-

tained in the specification. Two terms are equivalent if they can be transformed into the

same normal form.

A test case consists of two ground terms u1 and u2 and their corresponding implementation

of method sequences s1 and s2 [19]. An error is said to occur if u1 and u2 are equivalent but

34
the application of s1 and s2 to different instances of the class under test result in observa-

tionally different objects. The test case u1,u2, and others like it, are produced by first parti-

tioning the input domain of each method into subdomains, where each subdomain

corresponds to a particular path in the method. Test points are then selected from each sub-

domain. Term rewriting is applied to the equational axioms using the test points to produce

corresponding method sequences.

A major limitation of Chen, Tse, Chan, and Chen's approach is a lack of support for inher-

itance and polymorphism. The authors state that this is not covered by their approach.

Unfortunately, they do not offer insight regarding how the lack of support for these object-

oriented features can be overcome.

McGregor presents another approach to testing classes according to their functional behav-

ior, and combines the two perspectives of state-based and method sequence-based testing

[47]. Like the approaches of Doong and Frankl, his approach tests a class by subjecting it

to a sequence of method invocations. However, unlike these other two approaches, McGre-

gor's approach does account for a strict form of inheritance where instances of subclass

must be substitutable for instance of their superclasses [45] [43]. This view restricts the

types of changes/extensions that a derived class can make with respect to its parents. In

turn, this has the effect of placing constraints on the test cases for the functional behavior

of new (derived) classes. Specifically, all of the test cases defined for the parent should con-

tinue to function correctly for the child. Further, additional test cases must be added to

account for any new substates introduced by the derived class.

McGregor's requirement that the inheritance relation be strict permits three implications to

be inferred [46] [49]. First, all states present in the parent must also be present in the child.

The child class cannot remove a state. This is fundamental to preserving the observable

behavior of the parent. Second, any new state that is introduced by the child is contained as

a substate of one of the states inherited from the parent. This includes the case where addi-

tional attributes are added. In this situation, the resulting substates are considered to be con-

35
current with the other substates of the inherited state. The third implication is that the child

class may not delete inherited transitions. This too is fundamental to the preservation of the

parent's observable behavior.

In another work, McGregor provides guidelines for the generation of functional test cases

based on a class' state machine [46]. In his approach, every method that can change the state

is considered to be a transition from all states. Those situations where such a transition is

illegal result in the generation of an exception. The following outline summarizes the pro-

cess of test case construction:

1. Construct a test case for every method that results in a state change.

2. Construct a test case for every initial state.

3. Construct a test case for every transition in the state representation.

4. Construct a test case for every ''convenience'' method in the class.1

5. Construct test cases for every destructor.

McGregor claims that tests generated using the above outline subsumes the ''all methods''

and ''all states'' test adequacy criteria, though he offers no proof of this nor a definition of

these criteria [46].

McGregor also presents an algorithm for constructing functional test cases that consist of a

sequence of messages that cover a given class specification [47] [49]. The algorithm pro-

duces a set of test cases that satisfy the following requirements:

1. Test cases are constructed for all accessor methods.

1. McGregor does not provide a definition for a convenience method.

36
2. Test cases are constructed that produce all of the post-conditions for each

method. This includes all possible outcomes: normal conditions, exceptions,

etc.

3. Each test case includes a check to ensure that the class invariant holds.

4. Each test case begins with a valid initial state for the class.

5. Test cases are generated that test every transition in the state model for a class.

Each state-based test case is a triple consisting of the initial state of the class under test, the

sequence of messages that are to be sent to the class (including whatever messages are nec-

essary to place the class in the require state for the test), and the expected outcome of the

test. The algorithm that McGregor describes satisfies the all transitions adequacy criterion

[48]. McGregor points out that the algorithm can be easily modified to provide an n-way

switch (i.e. all possible combinations of states and transitions) [47] [49].

2.4 Integration Testing of Object-Oriented Programs
While unit level testing and class testing are important approaches for testing object-ori-

ented programs, a perhaps more important form is that of integration testing. As discussed

in Section 1.1 Section 1.4 of Chapter 1, object-oriented programs consist of a number of

separate units (classes) that are built in isolation and then composed using inheritance and

aggregation relationships to form higher level units. Unfortunately, the techniques for class

testing described in the previous section are not sufficient to test these relationships. Sur-

prisingly, very little research has been conducted that focuses on this area.

In his dissertation, Overbeck presents an approach that is based on testing contracts among

client and server classes [60]. A contract is a constraint contained in the specification of a

class and specifies the preconditions and postconditions of each public method that the

class defines. Further, a contract imposes certain relationships among classes that are

37
related by inheritance. In particular, preconditions can only be weakened and postcondi-

tions strengthened in overriding methods [51]. The basic idea is to test the interactions

among classes to ensure that the client is using the server correctly, and that the results

returned from the server are understood by the client. This is done by imposing a special

test filter that sits between the client and the server and that catches method invocations on

the server. The filter checks to determine if the methods are of the right type and value, the

method is called in the proper sequence, and if the precondition of the called method is true.

If these checks pass, the call is passed on to the server for processing. Otherwise, an error

is reported and an exception thrown.

The client's ability to understand the results returned from the server is tested by varying

the conditions of each test to achieve as much diversity in the results returned from the

server as possible. Conventional unit testing techniques are used to assess the correctness

of the results. Overbeck also applies his approach to inheritance in a similar manner, but

includes tests that ensure that the correct precondition and postcondition relationships

among classes in an inheritance hierarchy are preserved [60].

Chen and Kao present an approach for the integration testing of object-oriented programs

[20]. Their approach, called Object Flow Analysis, utilizes data flow testing techniques to

generate test requirements that require identification of all possible bindings and every def-

inition-use of pair of every object. To do so, they collect and analyze information on both

intra-procedural and inter-procedural def-use (DU) pairs. To identify inter-procedural DU

pairs, they use the inter-procedural testing approach of Harrold and Soffa [34]. For identi-

fying intra-procedural DU pairs, they introduce the object control flow graph (OCFG),

which provides an abstraction for relating method calls and DU pairs both within and

between methods.

The OCFG is a directed graph that consists of super nodes and edges. Super nodes represent

methods in a class and are ordered pairs that consist of a set of nodes N and control edges

CE from a particular method M. Nodes in N correspond to statements in M that either define

38
or use objects. A control edge (ni, nj) in CE indicates that node nj is reachable from node ni

along some execution path. Edges between super nodes represent either message passing

between methods, or definitions and uses between methods (a method def-use edge). Mes-

sage passing edges indicates that method snj is called from node ni (i.e. called from line i).

A method def-use edge (sni, snj) represents a definition-use relationship between method

sni and snj where snj uses a data member that was defined by sni.

Chen and Kao use a graphic shape example, part of which is depicted by the code fragment

in Figure 2-1 to demonstrate the application of their approach [20]. In the example, they

report that definitions of the state variable shape_obj occur at lines 11, 18, and 20, and that

uses occur at lines 9, 10, 11, and 12. These are indicated by labeled arrows in the figure.

Note however, that Chen and Kao treat the binding of a variable to an instance and the def-

inition of the state of the instance through use of the variable as the same. In their example,

the former occurs at lines 18 and 20, whereas the former occurs at line 11. This clearly is a

mistake since the binding of an instance applies only to a variable and not to the instance

that the variable is bound to. Thus, the definitions of variable shape_obj at lines 18 and 20

do not affect the state of any instance that is bound or that may be bound to this variable.

39
As part of their work, Chen and Kao have defined two criteria for determining test ade-

quacy for object-oriented programs. The first, All-Bindings, requires that “every possible

binding of each object must be exercised at least once when the object is defined or used”.

The second, All-du-Pairs, requires that “every definition of every object to every use of that

definition must be exercised under some test.” Further, there must be a definition-clear path

between the statements containing the definition and use of the object. They define a defi-

nition of an object as being a state initialization, the definition of a data member, or the

invocation of a method that defines a state variable. They define an object use as the use of

one of its data members in some computation, use of a method that uses a data member, or

passing the object as an actual parameter in method call. While the first two of these make

sense with respect to the traditional definition of a use, the third does not. In fact, it is more

Figure 2-1. Chen and Kao’s shape example [20]

Definition/Use

Definition

Definition

Use

Use

Use

40
the case that passing an object as an actual parameter to a method call results in the defini-

tion of the corresponding formal parameter. That is, the formal parameter becomes bound

to the object. However, the state of the object does not change as a result of this binding,

nor is its state used. It appears that Chen and Kao have overlooked this subtle distinction.

Of the related work surveyed in this chapter, the work of Chen and Kao is the closest to the

research described in this thesis and their work was published at approximately the same

time [4, 20]. Though their work is similar, there are significant differences. First, their cri-

teria is coarse-grained. The criteria presented by Alexander and Offutt [4, 5], and described

in detail by this thesis, are a superset of those of Chen and Kao. As Chen and Kao have

defined them, their criteria require only that either all bindings or all DU pairs be covered.

In particular, they do not integrate the two, though their complete example suggests that

they are at least aware that this is important [20]. Secondly, not all bindings are feasible.

Chen and Kao do not discriminate between feasible and infeasible bindings. Third, there

likely will be DU pairs where every definition-clear path connecting them is infeasible.

Thus, their criterion All-du-Pairs is impractical from an applied testing perspective.

In his dissertation, Orso presents a technique to the integration testing of object-oriented

programs that is based on exercising polymorphic interactions among the different classes

that comprise a system [58]. His technique has two steps. The first is concerned with iden-

tifying the integration order of the classes. A system of classes has many complex relation-

ships that result from inheritance and aggregation. Thus, the order in which classes are

integrated is important from an efficiency perspective. Orso's technique defines a total

order on the set of classes and uses this to derive an integration order such that parent

classes are always tested before their children, and every class is always integrated with the

classes that it depends on. He derives this information by forming a graph representation of

the system under test. Notes of the graph are classes, and the edges correspond to the rela-

tions among classes. Analyzing the graph results in an integration order for individual

classes or clusters of classes.

41
After the integration order is chosen, a new data flow technique is used to select test cases

that are adequate for testing combinations of polymorphic calls during the integration pro-

cess. Orso extends the traditional definition and use sets with two new sets, def-p and use-

p. These sets consist of information describing possible dynamic bindings resulting from

polymorphism that are responsible for the definition or use of a given variable. He uses

these sets to define new test adequacy criteria that are similar to the traditional data flow

testing criteria of Rapps and Weyuker [65], but extended to account for these dynamic

bindings.

Orso’s technique is focused on the effects that polymorphism and dynamic binding have on

the method under test. In particular, it focuses on testing critical combinations of bindings

to variables that can affect the behavior of the method under test. While this approach does

perform an integration test of a method with the possible bindings that can occur, it is only

a one-way approach. In particular, it does not conduct an integration test of the effects that

the method under test has on the instances that bound to the variables used by the method.

This is a significant difference from the approach described in this thesis.

Jorgensen and Erickson describe an approach to integration testing that is similar in many

respects to black-box testing techniques [39]. In their approach, they define paths through

a collection of classes that form a system. Each of these paths is associated with a particular

input event and traverses those classes that participate in the system response. The path

includes all classes that are traversed through method calls, and ends when the system

output has been observed. Failures are detected whenever the system output does not agree

with what is expected. Faults are identified by tracing back along the path to each of the

participants.

Binder's FREE approach (described in Section 2.3.2) includes provisions for testing large

clusters of classes by synthesizing a system level state machine (mode machine in Binder's

terminology) [14]. The boundary of the system under test is established, with clients calling

into the system, and the system making calls into the environment (operating system).

42
States are used to identify stimulus-response pairs. These interactions are used to define the

scope of the testing effort. Similar to Jorgensen and Erickson's approach, Binder's FREE

approach identifies the inputs to the system, identifies the classes that are the recipients of

these inputs, and then traces the execution through the system.

2.5 Other Approaches of Testing Object-Oriented
Software
Offutt and Irvine report on an experiment conducted to determine if the Category-Partition

[59] [7] testing technique is effective when applied to object-oriented software [57]. In their

experiment, they seeded 23 types of faults into two C++ programs. These faults were based

on common programming mistakes reported by Meyer [53] and professional experience of

one of the authors. Their results showed that the Category-Partition technique is effective

at detecting faults that involve implicit functions, inheritance, initialization and encapsula-

tion, but not at detecting memory related faults.

Harrold and Rothermel describe an approach that applies data-flow analysis to classes [33].

In that approach, they emphasize three levels of testing: (1) intra-method testing; (2) inter-

method testing; (3) intra-class testing. Intra-method testing applies traditional data flow

techniques to data flow definitions and uses that occur within single methods. Inter-method

testing tests method within a class that interact through procedure calls. Finally, intra-class

testing tests sequences of public method class against a given class instance. To perform

these analyses, Harrold and Rothermel represent a class as a Class Control Flow Graph

(CCFG) graph consisting of a single entry and exit. The CCFG is the composite of the con-

trol flow graphs of the class' methods connected together through their call sites. They

apply the data flow analysis algorithms of Pande, Landi and Ryder [61] to the CCFG to

compute definition-use pairs for each of the three types of analyses. Harrold and Rothermel

do not describe how they apply this information in the testing procedure. Also, they only

briefly discuss the application of their approach to inheritance relationships, but unfortu-

nately, they do not provide any details.

43
2.6 Coupling-Based Testing
Jin and Offutt present an approach to integration testing that is based upon coupling rela-

tionships that exist among variables across call sites in procedures [38].1 In their work they

define three types of coupling relationships that must be tested: parameter coupling, shared

data coupling, and external device coupling. Parameter couplings occur whenever one pro-

cedure passes parameters to another. Similarly, shared data couplings occur when one pro-

cedure references global variables that are referenced by another. Finally, external device

couplings occur when a procedure accesses the same external storage medium that another

does. These concepts are cruical to, and form the basis of, the research carred out in this

dissertation, thus the are described in some detail.

Jin and Offutt's approach requires that programs under test execute from each definition of

a variable in a caller to a call site, and then to the uses of the corresponding formal argu-

ments in the called procedure. The underlying idea is that to have a high degree of confi-

dence in the resulting software, all of the definitions of variables in one procedure must be

correctly used in the called procedures.

2.6.1 Coupling-Based Testing Definitions
A number of definitions are necessary to discuss the concepts of Coupling-Based Testing.

The definitions below are from Jin and Offutt's original coupling definitions [38]. In the fol-

lowing, for program P, VP is the set of variables that are referenced by P, and NP is the set

of nodes in P. P1 and P2 are specific program units, and x and y are program variables.

• def_clear_path(P,x,i,j):Boolean: Evaluates to true if there is a definition-clear

path from i to j with respect to x, where and .

• call_site: A node such that there is a call at i from P1 to P2.

1. A call site is a location in a procedure where another procedure is invoked.

x VP∈ i j, NP∈

i NP1
∈

44
• Call(m1,m2,call_site,) : Boolean: Evaluates to true if P1 calls at call_site

and actual parameter x is mapped to formal parameter y.

• Return(v) : The nodes that return values of v to the calling unit.

• Start(P) : The first node in P, .

• Def(P,x) : The set of nodes in unit P that contain a definition of x.

• Use(P,x) : The set of nodes in unit P that contain a use of x.

• Coupling-def : A node that contains a definition that can reach a use

in P2 on some execution path. The following list formally defines the three

types of coupling definitions that occur:

1. last-def-before-call:

2. last-def-before-return :1

3. Shared-data-def :

1. Jin and Offutt restrict this definition to parameters that are passed by reference, where y is a formal argu-
ment to P2.

x y→

start P() NP∈

i NP1
∈

ldbc-def P1 call_site x, ,() i NP1
∈ x defs i()∈

def_clear_path x i call_site, ,()
∧•{

}.
=

ldbc-def P2 y,() j NP2
∈ y defs j()∈

def_clear_path y j Return y(), ,()
∧•{

}.
=

shared-def P2 g,() i NP2
∈ i defs P3 g,()∈

nonlocal P3 g,()
∧•{

}.
=

45
• Coupling-use : A node that contains a use that can be reached by a def-

inition in another unit on at least one execution path.

1. First-use-after-call : For call-by-reference parameters, the set of nodes after

call_site that have a use of a formal parameter x such that there is a def-clear

path from call_site to that node with respect to x. Formally:

2. First-use-in-callee : The set of nodes in the callee that contain a use of a for-

mal parameter such that there is a def-clear path from the start node of the

unit to the node containing the use. Formally:

3. Shared-data-use : The set of nodes in a unit that have a use of a global vari-

able. Formally:

i Nm∈

fac-use P1 call_site x, ,() i NP1
∈ x uses i()∈

def-path P1 call_site x, ,() ∅=()
∧•{

}.
=

fic-use P2 y,() j NP2
c-use Ps y j, ,()

i-use Ps y i j, , ,()

p-use P2 y i j, , ,()

∨

∨

(

)

use-path Ps start Ps() j y, , ,() ∅=()

∧

•∈

.

=

shared-use P4 g,() i NP4
∈ use P4 g,() nonlocal P4 g,()∧•{ }.=

46
2.6.2 Coupling-Based Testing Paths
Jin and Offutt define a coupling path between two program units to be a path that begins

with a definition of a variable in the calling unit that extends to a corresponding use in the

called unit {Jin:1999:CBC}. They define the following three types of coupling paths:

• Parameter Coupling Path : The ordered pair (i,j) consisting of the node i that

contains the last definition of a variable x prior to a call site j, and to every first

use in the called unit. Formally:

If x is passed by reference, then a parameter coupling path also exists from each last

definition of the corresponding formal parameter prior to a return. This is defined

as:

Note that in both of these definitions, there must be definition-clear paths from the

definition to the corresponding use across unit boundaries.

• Shared Data Coupling Path : A shared data coupling path exists for each glo-

bal variable g that is defined in P1 and used in P2. The path extending from the

definition to the use must be definition-clear with respect to g. Formally:

paremeter-coupling P1 P2 call_site x y, , , ,() i j,() i, NP1
j NP2

∈,∈

i ldbc-def P1 call_site x, ,()∈

j fic-use P2 y,()∈

∧(

)

.

=

parameter-coupling P1 P2 call_site x y, , , ,() i j,() i NP1
j NP2

i ldbr-def P2 y,()∈
j fac-use P1 call_site x, ,()∈

∧
∈,∈,{

}.

=

shared-data-coupling P1 P2 g, ,() i j,() i NP1
∈ j NP2

i def P1 g,()∈
j use P2 g,()∈

∧
∈, ,{

}.

=

47
• External Device Coupling Path : Each pair of references (i,j) to a common

device along an execution path is an external device coupling.

2.6.3 Coupling-Based Testing Criteria
Jin and Offutt use their coupling-based testing formalisms to extend traditional data flow

testing criteria by defining four coupling test criteria [38]. These criteria, they claim, pro-

vide increasing amounts of coverage, but at an additional cost in terms of effort. In the fol-

lowing definitions, P1 and P2 are program units in a system:

• Call coupling : The set of paths executed by a test set must cover all call sites in

the system.

• All-coupling-defs : For each coupling-def of a variable in P1, the set of paths

executed by a test set must cover at least one coupling path to at least one reach-

able coupling-use.

• All-coupling-uses : For each coupling-def of a variable in P1, the set of paths

executed by a test set must cover at least one coupling path to each reachable

coupling-use.

• All-coupling-paths : For each coupling-def of a variable in P1, the set of tests

executed must cover all coupling paths sets from the coupling-def to all reach-

able coupling-uses. A coupling path set is a set of nodes that can appear on sub-

paths through a program unit between a coupling-def and a coupling-use. This

accounts for the case where the program unit has loops. Requiring that all cou-

48
pling paths be covered is impractical in general. However, covering all coupling

path sets does ensure that each loop body is executed at least once, but does not

require all possible executions.

A subsumption relationship exists between two test adequacy criteria A and B if and only

if for every possible program, any test set that satisfies A also satisfies B [65]. These criteria

can be arranged in a hierarchy according to the subsumption relationships. Figure 2-2

shows the subsumption hierarchy defined by Jin and Offutt for the procedural coupling cri-

teria [38]. As shown, Call-coupling is subsumed by All-coupling-defs, All-coupling-defs is

subsumed by All-coupling-uses, and so on.

2.6.4 Relationship to the Object-oriented Coupling-based Testing
Criteria
Jin and Offutt’s approach of coupling-based testing has proven effective to procedure-ori-

ented programs [38]. The fundamental building block of object-oriented programs is the

class. The building blocks for the class are state and behavior. State is manifested as a set

Figure 2-2. Procedural coupling criteria

All-coupling-paths

All-coupling-uses

All-coupling-defs

Call-coupling

49
of (usually) encapsulated variables, and behavior as a collection of methods. Methods are

the analogical equivalent to the procedures and functions found in traditional languages,

such as C and Pascal. Within in methods, we find the same type of dataflow relationships

(e.g. last definitions and first uses) that exist in their procedural counterparts. Thus, to the

degree that these syntactic constructs are present, Jin and Offutt’s approach still applies.

However, there are additional types of data flow relationships resulting from inheritance

and polymorphism that Jin and Offutt’s approach is not applicable. The research described

by this thesis extends the work of Jin and Offutt to account for those additional data flow

relationships that result from inheritance and polymorphism.

3. Inheritance and Polymorphism Faults

Like their procedural counterparts, programs written in object-oriented languages have data

flow anomalies and faults. Occasionally one of these faults manifests a failure, and correc-

tive measures are then usually taken to eliminate the fault. Fortunately, many of the testing

techniques and strategies for fault elimination are applicable to object-oriented programs,

particularly in-so-far as the syntactic and semantic constructs found in procedure-oriented

languages are also present in object-oriented languages. The power that inheritance and

polymorphism brings to the expressiveness of programming languages also brings a

number of new anomalies and fault types. Unfortunately, the techniques that we would use

for eliminating faults in procedure-oriented programs as not applicable to those found in

object-oriented programs.

In the discussion that follows, the term refining method is a synonym for overriding

method. It is used here in place of the latter as it is more indicative of the view adopted by

this thesis with respect to inheritance. In particular, the general view is that overriding

methods refine the behavior of the method it overrides, as opposed to replacing its behavior

with another. The phrase overriding method will be used generically when there is no need

to distinguish between methods that provide a refinement in behavior as opposed to those

that provide an extension to behavior.

To understand the difference between refining and extension methods, consider the class

diagram shown in Figure 3-1. Class Vehicle defines methods startEngine, stopEngine, and

accelerate. Derived from Vehicle is Submersible, which has methods submerge() and sur-

face(). Both of these methods serve to extend the behavior of Submersible with respect to

Vehicle, and are referred to as extension methods. They add behavior not present in the

parent class. The figure also shows class Submarine as a descendant of Submersible, and
50

51
having methods evade(), accelerate(), and submerge(). Method evade() is also an extension

method. In contrast, methods accelerate() and submerge() are refining methods in that they

refine the behavior of Submarine by overriding methods Vehicle::accelerate() and Sub-

mersible::submersible(). The do not provide additional behavior as does evade(), but rather

the provide a different implementation of the behavior defined and inherited from Subma-

rine’s parents.

It is possible for a refining method to also add additional behavior (that is, to extend the

behavior of the overridden method) not found in the overridden method. For example, the

method Submarine::accelerate() may, in addition to increasing the speed of a submarine,

retract the bow planes, perhaps to reduce drag. This extends the original behavior of Vehicle

by adding an additional capability that is not possessed by all vehicles that accelerate.

The definition adopted in this thesis is that a refining method, regardless of what else it

might do, is behaviorally compatible with the overridden method. Thus, Submarine also

Figure 3-1. Class hierarchy with refining and extension methods

Extension
Methods

+startEngine()
+stopEngine()
+accelerate()

Vehicle

+submerge()
+surface()

Submersible

+evade()
+accelerate()
+submerge()

Submarine

Refining
Methods

52
accelerates in a manner consistent with Vehicle in addition to retracting its bow planes. This

is consistent with the definition of inheritance that yields descendants that are sub-types of

their ancestors, and thus instances of a descendant can safely be used wherever an instance

of the ancestor is expected [45].

The following assumptions are made with respect to the discussion contained in this chap-

ter:

• Unless otherwise noted, inherited state has sufficient visibility to allow direct refer-

ence by methods defined in descendant classes. Thus, in languages such as Java and

C++, the access specifier associated with each state variable is not private.

• Inheritance results in classes that are subtypes of their parents, not sub-classing. The

use of inheritance to create sub-classes easily results in classes that cannot safely be

used where instances of parents are expected. Unfortunately, not all object-oriented

languages have mechanisms to prevent a programmer from inadvertently using a

subclass as subtype of its parent, which can easily lead to faults that are difficult to

detect and diagnose. Further, a number of researchers consider this to be a bad pro-

gramming practice and contrary to the engineering of high quality software [3, 44,

45, 52].

• The faults that we are concerned with in this thesis are dependent upon the syntactic

constructs used to represent the semantics of classes (e.g. overriding methods

directly defining inherited state variables, extension methods calling inherited meth-

ods, etc.).

53
• Methods may be overridden in a descendant class. That is, all the methods in the

ancestor are polymorphic. Lessening this restriction simply means that some of the

faults cannot occur.

• When considering the state effects of a particular method, the transitive closure of

state definitions is assumed over called methods that are locally defined in a descen-

dant class. Without loss of generality, we can ignore those non-public methods in a

descendant that affect state and that are only called by other methods also defined in

the descendant. This is safe to do since the state definitions made by those methods

cannot be called by any method defined outside of the descendant, and considering

them would add nothing to the result of the analysis presented in this thesis. Further,

the effects of these methods is captured in the transitive closure mentioned above.

This chapter explores the anomalies and faults peculiar to inheritance and polymorphism

and analyzes how they are manifested as a result of polymorphic behavior. The first section

introduces an interpretation of the fault-failure model for object-oriented programs. The

second then discusses the nature of the anomalies and faults found in object-oriented pro-

grams that result specifically from inheritance and polymorphism. The third section then

proceeds to present and analyze the syntactic patterns used in defining descendant classes

in terms of their ancestors. Finally, the fourth section discusses the added complexity that

polymorphism brings to the process of software development and provides examples of the

complex behavior patterns that can result.

3.1 A fault/failure model for polymorphic for object-
oriented programs
The fault/failure model states that there are three conditions necessary for a failure to be

observed [23, 54]. First, the location in the program containing the fault manifesting the

54
failure must be reached (Reachability). Second, after executing the location, an infection in

the state of the program must occur (Infection). Third, the infected state must be propagated

to the output of the program (Propagation).1 Faults that result from polymorphic behavior

must conform to this model, and a general failure model can be formulated in terms of this

model. Figure 3-2 depicts a UML class diagram showing the inheritance hierarchy and

client relationships that are described in the following subsections to describe the fault

model for failures that result from the use of polymorphism.

3.1.1 Reachability

1. There exists an inheritance hierarchy rooted at class T with a descendant D.

2. There is a variable o in a client C with a declared type T, and methods m′ ∈ D and m ∈
T such that m′ overrides m.

3. The actual type of the instance bound to o is D.

4. C invokes m through the instance context provided by o (e.g. o.m()).

1. Morell used Execution, Infection, and Propagation [54]. Offutt used Reachability, Sufficency, and Neces-
sity [23]. We choose to combine the two disparate sets of terms by using what we consider to be the most
descriptive.

Figure 3-2. Example hierarchy

+m()

-v

T

+m'()

D

+f()

-o : T

Client

Method Client::f calls T::m
through the context variable o

55
3.1.2 Infection
For a polymorphic fault to exist, m and m′ must modify different portions of the state space

of T. Note that m′ may define a variable with an incorrect value, but we do not consider this

to be a polymorphic fault, but a “traditional” fault.1 To model this situation, we want to

compare the portion of the state that is declared by T. Any state added by D is not relevant.

Thus: defs(m′) ∪ state(T) ≠ defs(m). That is, there is some state variable v such that m′

defines v but m does not, or m defines v but m′ does not.

3.1.3 Propagation
One of the variables defined by m′ or by m (and not both) must be used. That is: ∃ n ∈ meth-

ods(T) | C calls o.n() ∧ ∃ w ∈ state(T) | uses(n,w) ∧ ((w ∈ defs(m′) ∧ w ∉ defs(m)) ∨ (w ∉

defs(m′) ∧ w ∈ defs(m)). C need not be the same client that called o.m() earlier. The only

requirement is that at some future point in time, n is called in the context of the same

instance that m was called in.

3.2 Inheritance Faults and Anomalies
Inheritance affords creativity, efficiency, and reuse. Unfortunately, it also allows for a

number of anomalies and potential faults that anecdotal evidence has shown to be some of

the most difficult problems to detect, diagnose, and correct. This section examines several

fault types manifested by polymorphism. Table 3-1 summarizes the set of fault types that

result from inheritance and polymorphism. The goal is a complete list of faults, though we

do not make this claim. Most of the cases are language-independent. In all cases, we are

concerned with how each anomaly or fault is manifested through polymorphism in a con-

text that uses an instance of the ancestor. Thus, we assume that instances of descendant

classes can be substituted for instances of the ancestor.

1. A definition may be a direct through an assignment, as in x = y, or indirect through a method call whose
effect is to change the state of the instance bound to the variable. Without loss of generality, the (conserva-
tive) view adopted in this chapter is that any such method call always results in a state change of the
instance. However, by using static analysis techniques it is generally possible to identify those calls that
actually have a definitional effect on state.

56
The following subsections explore a number of the anomalies that can lead to problems,

and in some cases, to faults.

3.2.1 Inconsistent Type Use (ITU)
A descendant class does not override any inherited method. Thus, there can be no polymor-

phic behavior. Every instance of a descendant class C used where an instance of T is

expected can only behave exactly like an instance of T. That is, only methods of T can be

used. Any additional methods specified in C are hidden since the instance of C is being used

as if it is an instance of T. However, anomalous behavior is still a possibility. If an instance

of C is used in multiple contexts (i.e. through coercion, say first as a T, then as a C, then a

T again), anomalous behavior can occur if C has extension methods. In this case, one or

more of the extension methods can call a method of T or directly define a state variable

inherited from T. Anomalous behavior will occur if either of these actions results in an

inconsistent inherited state.

As an example, consider the class hierarchy shown in Figure 3-3.1 Class Vector encapsu-

lates a sequential data structure supporting direct access of its elements. Class Stack also

Table 3-1. Faults and Anomalies due to Inheritance and Polymorphism

Acronynm Fault/Anomaly Section

ITU Inconsistent Type Use (context swapping) 3.2.1

SDA State Definition Anomaly (possible post-condition viola-
tion)

3.2.2

SDIH State Definition Inconsistency (due to state variable hiding) 3.2.3

SDI State Defined Incorrectly (possible post-condition viola-
tion)

3.2.4

IISD Indirect Inconsistent State Definition 3.2.5

ACB1 Anomalous Construction Behavior (1) 3.2.6

ACB2 Anomalous Construction Behavior (2) 3.2.7

IC Incomplete Construction 3.2.8

SVA State Visibility Anomaly 3.2.9

57
encapsulates a sequential data structure that has a “last-in/first-out” access policy. As

shown, Stack uses methods inherited from Vector to implement its behavior. The top table

summarizes the calls made by each method, and the bottom table summarizes the defini-

tions and uses (represented as “d” and “u”, respectively) of the state space of Vector.

The extension method Stack::pop() calls Vector::removeElementAt(), and extension

method Stack::push() calls Vector::insertElementAt(). Clearly these two classes have dif-

ferent semantics. As long as an instance of Stack is used solely as an instance of Stack, there

will be no behavioral problems. Alternatively, the Stack instance could be used solely as a

instance of Vector, again without experiencing behavioral problems. However, if the usage

of the instance is mixed between Stack and Vector, behavioral problems can occur.

The code fragment in Figure 3-4 illustrates how behavioral anomalies can occur when the

type system is used to manipulate the manner in which instances of classes are used. For

the method f, the instance bound to the formal argument s is used solely as a Stack in lines

3 through 10. However, at line 12, s is passed as an actual argument to method g, which

expects an instance of Vector. There is no problem here in so far as the type system is con-

cerned since an instance of Stack is also an instance of Vector. There is a potential behav-

ioral problem that begins at line 23 where the last element of s is removed. The fault is

manifested when control returns and reaches the first call to Stack::pop() at line 14. Here,

the element removed from the stack is not the last element added.

1. This example is based on the library provided with the Java Development Kit version 1.2.

58
3.2.2 State Definition Anomaly (SDA)
In general, for a descendant and ancestor class to be behaviorally compatible, the state

interactions of the descendant must be consistent with those of its ancestor. That is, the

Figure 3-3. Descendant with no overriding methods

Figure 3-4. Code example showing inconsistent type usage

+insertElementAt()
+removeElementAt()

-array

Vector

+pop() : Object
+push() : Object

Stack
Call

Vector::removeElementAt

Vector::insertElementAt

Vector::removeElementAt

Method Called Methods

Stack::pop

Stack::push Vector::insertElementAt

array

d,u

d,u

d*,u*

Variable Vector

Method

State Variable Uses and Definitions

d*,u*

Vector::insertElementAt

Vector::removeElementAt

Stack::pop

Stack::push

* Indirect definition

 1 public void f(Stack s)

 2 {

 3 String s1 = "s1";

 4 String s1 = "s2";

 5 String s1 = "s3";

 6 ...

 7

 8 s.push(s1);

 9 s.push(s2);

10 s.push(s3);

11

12 g(s);

13

14 s.pop();

15 s.pop();

16 s.pop(); // Oops! The stack is empty!

17

18 ...

19 }

20 public void g(Vector v)

21 {

22 // Remove the last element

23 v.removeElementAt(v.size() - 1);

24 }

59
refining methods implemented in the descendant must leave the ancestor in the same (or

equivalent) state as the ancestor’s methods that are overridden. For this to be true, the refin-

ing methods provided by the descendant must yield the same net state interactions as each

public method that is overridden. From a data flow perspective, this means that the net

effect of the definitions made by a refining method against the set of inherited state vari-

ables from an ancestor class must at least provide the same definitions of the corresponding

overridden method.1,2 If this is not the case. then a potential data flow anomaly exists.

Whether or not an anomaly actually occurs depends upon the sequences of methods that are

valid with respect to the ancestor.

As an example, consider the class hierarchy and tables of definitions and uses shown in

Figure 3-5. The parent of the hierarchy is class W, having descendants X, and Y. W defines

methods m, and n, each having the definitions and uses shown in the table. Assume that a

valid method sequence is W::m() followed by W::n(). As the table of definitions and uses

shows, W::m() defines state variable W::v and W::n() uses it. Now consider class X and its

refining method X::n(). As the table shows, it too uses state variable W::v, which is consis-

tent with the overridden method and with the method sequence given above. Thus far, there

is no inconsistency in how X interacts with the state of W. In fact, because a use can never

affect future state-dependent behavior, X::n() could just as easily have used a different vari-

able.3

1. This assumes that only a subset of the ancestor's methods are overridden by a descendant. If all of the
methods are overridden, then the descendant has more flexibility in what is or is not defined, subject to the
restriction that the externally observed behavior remains consistent with the ancestor's behavior.

2. Net effect refers to all of the state interactions that occur as a result of execution of an overriding method
m, including other methods called by m.

3. There are cases where this is not true, such as when the definition received by a different variable is a
function of the variable that was used.

60
Now consider class Y and the method Y::m(), which overrides W::n() through refinement.

Observe that Y::m() does not define W::v, as W:m() does; but defines Y::w instead,. Now, a

data flow anomaly exists with respect to the method sequence m;n for the state variable

W::v. When an instance of Y is subjected to this sequence, Y::w is defined first (because

Y::m() executes), but then W::v is used by method X::n. The assumption made in the imple-

mentation of X::n that W::v is defined by a call to m prior to a call to n no longer holds, and

a data flow anomaly has occurred. In this particular example, a fault has occurred since

there is no prior definition of W::v when Y is the type of an instance being used. Note that

this will not be true in the general case since the controlling factor in whether a fault has

occurred will be a function of prior method invocations, any default initializations that were

applied, and how individual state variables are handled during instance construction.

Any extension method that is called by a refining method must also interact with the inher-

ited variables of the ancestor in a manner consistent with the ancestor's current state. Since

Figure 3-5. State Definition Anomalies

W::v W::u X::x Y::w

W::l def

W::m def

W::n use use

X::n use def

Y::l def

Y::m def

m()
n()

v
u

W

n()

x

X

m()

w

Y

61
the extension method provides a portion of the refining method’s effects, to avoid a data

flow anomaly the extension method must avoid defining inherited state variables in a

manner that would be inconsistent with the method being refined by the calling method.

The net effect of the extension method cannot leave the ancestor in a state that is logically

different from when it was invoked. For example, if the logical state of an instance of a

stack is currently not-empty/not-full, then execution of an extension method cannot result

in the logical state spontaneously being changed to either empty or full. Doing so would pre-

clude the execution of pop or push as the next methods in the sequence, respectively.

3.2.3 State Definition Inconsistency due to State Variable Hiding (SDIH)
The introduction of an indiscriminately named local state variable can easily result in a data

flow anomaly where none would otherwise exist. If a local variable is introduced to a class

definition where the name of the variable is the same as an inherited variable v, the effect

is the inherited variable is hidden from the scope of the descendant (unless explicitly qual-

ified, as in super.v). A reference to v by an extension or overriding method will refer to the

local (i.e. the descendant’s) v. This is not a problem if all inherited methods are overridden

since no other method would be able to implicitly reference the inherited v. However, this

pattern of inheritance is the exception rather than the rule. There will typically be one or

more inherited methods that are not overridden. There is a possibly for a data flow anomaly

to exist if a method that normally defines the inherited v is overridden in a descendant when

a inherited state variable is hidden by a local definition.

As an example, again consider the class hierarchy shown in Figure 3-5. Suppose the spec-

ification of class Y has the local state variable v that hides the inherited variable W::v. Fur-

ther suppose method Y::m defines v, just as W::m defines W::v. Given the method sequence

m;n, a data flow anomaly exists between W and Y with respect to W::v.

3.2.4 State Defined Incorrectly (SDI)
Suppose an overriding method defines the same state variable (or variables) v as the over-

ridden method. If the computation performed by the overriding method is not semantically

62
equivalent to the computation of the overridden method with respect to v, then subsequent

state dependent behavior in the ancestor will likely be affected, and the externally observed

behavior of the descendant will be different from the ancestor. While this problem is not a

data flow anomaly, it is a potential behavior anomaly.

3.2.5 Indirect Inconsistent State Definition (IISD)
An inconsistent state definition can occur when a descendant adds an extension method that

defines an inherited state variable. For example, consider the class hierarchy shown in

Figure 3-6a, where Y specifies a state variable x and method m(), and the descendant D

specifies method e. Since e is an extension method, it cannot be directly called from an

inherited method, in this case T::m(), because e is not visible to the inherited method.1 How-

ever, if an inherited method is overridden. the overriding method (such as D::m() as

depicted in Figure 3-6b) can call e and in so doing, introduce a data flow anomaly by having

an effect on the state of the ancestor that is not semantically equivalent to the overridden

method (e.g. with respect to T::y in the example). Whether an anomaly results is a function

1. Strictly speaking, in some object-oriented languages (e.g. Java, C++), this can be circumvented through
the use of type coercion. The implementation of the inherited method casts the instance whose context it is
executing in to the type of the descendant, and then makes the call to the descendant’s extension method. For
the example in Figure 3-6, this would could be accomplished with the Java statement ((D)this).e(). However,
does not appear to happen often in practice, and should be frowned upon from the perspective of software
engineering and object-oriented design principles.

63
of which state variable e defines, where e executes in the sequence of calls made by a client,

and what state dependent behavior the ancestor has on the variable defined by e.

3.2.6 Anomalous Construction Behavior(1) (ACB1)
The constructor of an ancestor class C calls a locally defined polymorphic function f.

Because f is polymorphic, a descendant class D can provide an overriding definition of f. If

so, then the D's version of f will execute when the constructor of C calls f, not the version

defined by C. To see this, consider the class hierarchy shown in the left half of Figure 3-7.

Class C’s constructor calls C::f(). Class D contains the overriding method D::f() that defines

the local state variable D::x. There is no apparent interaction between D and C since D::f()

does not interact with the state of C. However, C interacts with D’s state by virtue of the

apparent call that C’s constructor makes to C::f(). In some object-oriented languages (e.g.

Java and C#), constructor calls to polymorphic methods execute the method that is closest

to the instance that is being created. The class C in the hierarchy in Figure 3-7, the closest

version of f() to C is specified by C itself, and thus executes when an instance of C is con-

structed. For D, the closest version is D::f(), which means that when an instance of D is

being constructed, the call made to f() in C’s constructor actually executes D::f() instead of

Figure 3-6. Example of Indirect Inconsistent State Definition (IISD)

m()

x
y

T

m()
e()

D

Defines

Calls

Overrides

(b)

Defines

Cannot
Call!

(a)

m()

x
y

T

e()

D

Defines Defines

64
its own locally specified f(). This is illustrated by the yo-yo graph in the right half of

Figure 3-7.

The result of the behavior shown in Figure 3-7 can easily result in a data flow anomaly if

D::f() uses variables defined in the state space of D. Because of the order of construction,

D's state space will not have been constructed. Whether or not an anomaly exists depends

on if default initializations have been specified for the variables used by f(). Furthermore,

a fault will likely occur if the assumptions or preconditions of D::f() have are not satisfied

prior to construction [3].

3.2.7 Anomalous construction behavior(2) (ACB2)
Similar to ACB1 (Section 3.2.6), the constructor of an ancestor class C calls a locally

defined polymorphic function f. A data flow anomaly can occur if f is overridden in a

descendant class D and if that overriding method uses state variables inherited from C. The

anomaly occurs if the state variables used by D::f have not been properly constructed by

C::f. This is dependent upon the set of variables used by D::f and the order the variables in

the state of C are constructed, and the order in which f is called by C's constructor. Note

that it is not generally possible for the programmer of class C to know in advance which

version of f will actually execute, and which state variables that the executing version

Figure 3-7. Example of Anomalous Construction Behavior

Calls

Uses

Overrides

C()
f()

C

f()

x

D

Class C

Client D()

C() f()

f()Class D

new callcall

65
depends on. Thus, the invocation of polymorphic method calls from constructors is unsafe

and introduces non-determinism into the construction process. This is true of both ACB2

and ABC1.

3.2.8 Incomplete (failed) Construction (IC)
In some programming languages, the value of the variables in the state space of a class prior

to construction is undefined. This is true, for example, in C++ but not in Java. The role of

the constructor is to establish the initial state conditions and the state invariant for new

instances of the class. To do so, the constructor will generally have statements that define

every state variable. In some circumstances, again depending upon the programming lan-

guage, default or other explicit initializations may be sufficient. In either case, by the time

the constructor has finished, the state of the instance should be well defined. There are two

possibility for faults here. First, the construction process may have assigned an initial value

to a particular state variable, but it is the wrong value. That is, the computation used to

determine the initial value is in error. Second, the initialization of a particular state variable

may have been overlooked. In this case, there is a data flow anomaly between the construc-

tor and each of the methods that will first use the variable after construction (and any other

uses until a definition occurs).

An example of incomplete construction is shown by the code fragment in Figure 3-8. Class

AbstractFile contains the state variable fd that is not initialized by a constructor. The intent

of the designer of AbstractFile is that a descendant class provide the definition of fd prior

to its use, which is done by method open in the descendant class SocketFile. If any descen-

dant that can be instantiated defines fd, and no method is called that uses fd prior to the def-

inition, there is no problem. However, a fault will occur if either of these conditions is not

satisfied.1

Observe that while the designer's intent is for a descendant to provide the necessary defini-

tion, a data flow anomaly exists within AbstractFile with respect to fd for methods read and

1. This example was contributed by Charles D. Hutchinson.

66
write. Both of these methods use fd, and if either are called immediately after construction,

then a fault will occur. Note that this design introduces an element of non-determinism into

AbstractFile since it is not known at design time what type of instance fd will be bound to,

or if it will be bound (i.e. defined) at all. Suppose that the designer of AbstractFile also

designed and implemented SocketFile, as also shown in Figure 3-8. By doing so, the

designer has ensured that the data flow anomaly that exists in AbstractFile is abated by the

design of SocketFile. However, this still does not eliminate the problem of non-determin-

ism and the introduction of faults since, at some point in time in the future, a new descen-

dant can be added that fails to provide the necessary definition.

3.2.9 State Visibility Anomaly (SVA)
The state variables in an ancestor class A are declared private, and a polymorphic method

A::m defines A::v. Suppose that B is a descendant of A, and C of B, as depicted in Figure 3-

9a. Further, C provides an overriding definition of A::m but B does not. Since A::v has pri-

vate visibility, it is not possible for C::m to properly interact with the state of A by directly

Figure 3-8. Incomplete construction of state variable fd

 1 Class abstract AbstractFile

 2 {

 3 FileHandle fd;

 4

 5 abstract public open();

 6

 7 public read() { fd.read(...); }

 8

 9 public write() { fd.write(...); }

10

11 abstract public close();

12 }

13

14 Class SocketFile extends AbstractFile

15 {

16 public open()

17 {

18 fd = new Socket(...);

19 }

20

21 public close()

22 {

23 fd.flush();

24 fd.close();

25 }

26 }

67
defining A::v. Instead, C::m must call A::m to affect the proper interaction. Now suppose

that B also overrides m (Figure 3-9b) Then for C::m to properly define A::v, C::m must call

B::m which in turn must call A::m. Thus, C::m has no direct control on whether the data

flow anomaly is resolved due to B's overriding m. In general, when private state variables

are present, the only way that a data flow anomaly can be avoided is for every overriding

method in a descendant to call the overridden method in its ancestor class. Failure to do so

will likely result in the manifestation of a fault in the state and behavior of A.

3.3 Syntactic Patterns of Inheritance
There a number of basic syntactic patterns that can be used to extend a class through inher-

itance. The use of individual or combinations of these patterns in part determines the

semantics of a descendant class and its behavioral compatibility with its ancestor. It is this

behavioral compatibility that determines whether or not instances of the descendant can be

safely substituted for instances of the ancestor. A preliminary list of syntactic patterns is

Figure 3-9. State Visibility Anomaly

+m()

-v

A

B

m()

C

+m()

-v

A

m()

B

m()

C

Overrides

Overrides

Overrides

Private Private

(a) (b)

68
summarized in Table 3-2. Each entry gives an acronynm, a short description, and a refer-

ence to the subsection where the pattern is described.

Table 3-2. Syntactic Patterns of Inheritance

Acronym Syntactic Inheritance Pattern Section

DNM Descendant has no methods 3.3.1

DNEM Descendant introduces non-interacting extension methods

E
xt

en
si

on

ECE Extension method calls another extension method 3.3.2.2

ECI Extension method calls inherited methods 3.3.2.3

ECR Extension method calls refining method 3.3.2.4

EDIV Extension method defines inherited state variable 3.3.2.5

EDLV Extension method defines local state variable 3.3.2.6

EUIV Extension method uses inherited state variable 3.3.2.5

EULV Extension method uses local state variable 3.3.2.6

R
ef

in
em

en
t

RCE Refining method calls extension method 3.3.3.1

RCI Refining method calls other inherited method 1-10

RCR Refining method calls another refining method 3.3.3.4

RCOM Refining method calls overridden method 3.3.3.5

RDIV Refining method defines inherited state variable 3.3.3.5

RDLV Refining method defines local state variable 3.3.3.6

RUIV Refining method uses inherited state variable 3.3.3.5

RULV Refining method uses local state variable 3.3.3.6

C
on

st
ru

ct
io

n

CCIM Constructor calls inherited method 3.3.4.1

CCRM Constructor calls refining method 3.3.4.2

CCEM Constructor calls extension method 3.3.4.3

CDIV Constructor defines inherited state variable 3.3.4.4

CDLV Constructor defines local state variable 3.3.4.5

CUIV Constructor uses inherited state variable 3.3.4.4

CULV Constructor uses local state variable 3.3.4.5

Sp
ec

ia
l C

as
es CBR1 Complete behavioral redefinition(1) 3.3.5.1

CBR2 Complete behavioral redefinition(2) 3.3.5.2

69
Whether or not a descendant is compatible with its ancestor is a function of the effects that

the descendant has on the state of its ancestor. These effects are manifested through meth-

ods contained in the definition of the descendant. Each of these methods may either refine

(through overriding) a method specified by the ancestor, or reflect behavioral extensions

provided by the descendant. In either case, it is the definitional interactions of these meth-

ods with the ancestor's state that determines the substitutability of the descendant. A direct

definition interaction occurs when a state variable is used in an expression, such as an

assignment. An indirect interaction occurs when an expression calls a method that contains

an expression that has a direct interaction. A state interaction may either be a definition or

use of a state variable. In some cases, compatibility is guaranteed by virtue of the fact that

no definitional interactions are possible. This occurs when the descendant either does not

define new methods and does not override inherited methods, or when the descendant

defines new methods that do not interact directly or indirectly with the inherited state. That

is, for the latter case, the new methods at most use inherited state either by direct reference

or by calling inherited methods that return a value but do not change the state of the ances-

tor.

The following subsections discuss each of these cases and additional syntactic inheritance

patterns that affect the behavioral compatibility of a descendant class with its ancestor.

3.3.1 Descendant has No Methods (DNM)
This is the most trivial case of inheritance: the definition of the descendant contains no

methods. Its behavior is defined by the methods that it inherits. The descendant could have

its own set of state variables, but there would be little point since these variables could not

be changed.1 An example is shown in the UML class diagram depicted in Figure 3-10,

along with tables that summarize the state variable definitions and uses of each method, and

the methods that are called. Class Vehicle defines state and behavior in terms of its methods

startEngine, stopEngine, accelerate, and its state variables started and velocity. Methods

1. It could be the case that the specification of a descendant includes state variables whose default initializa-
tion results in some global state interaction, such as opening a database or network connection.

70
startEngine and stopEngine both define variable started; method accelerate uses started

and both uses and defines velocity.

As Figure 3-10 shows, the specification of class WaterCraft does not introduce methods or

state variables. Its behavior is determined entirely by Vehicle, thus it is not possible for a

client that uses an instance of WaterCraft where an instance of Vehicle is expected to dis-

cern any difference in behavior. WaterCraft, however, does serve to partition the set of all

instances of Vehicle into those that are instances of WaterCraft and those that are not. This

is useful in cases where knowing that a particular Vehicle instance is really an instance of

WaterCraft.

Faults/anomalies manifested by DNM. Since the descendant class has no methods, there

can be no faults or anomalies due to polymorphism. The only methods that could possibly

execute through an instance of the descendant are those belonging to an ancestor.

3.3.2 Descendant introduces extension methods
A descendant class can extend the behavior it inherits by defining extension methods.

Extension methods are methods contained in the specification of a descendant class. They

Figure 3-10. Descendant whose definitions include no methods or state variables

Vehicle::startEngine

Vehicle::stopEngine

Vehicle::accelerate

Method Called Methods

+startEngine()
+stopEngine()
+accelerate(in rate : float)

#started : Boolean
#velocity : float

Vehicle

W aterCraft
started velocity

Vehicle::startEngine

Vehicle::stopEngine

Vehicle::accelerate

d

d

u d, u

Variable Vehicle

Method

State Variable Uses and Definitions

71
do not override inherited methods, rather, they add additional behavior not already present

in ancestor classes. In so doing, extension methods may or may not have an affect on inher-

ited state.

Figure 3-11 shows the class diagram and table of called methods for the example used in

the remainder of Section 3.3. The corresponding definitions and uses are shown in

Figure 3-12. This example extends the Vehicle class hierarchy by adding Submarine as a

direct descendant of Submersible. This class is an abstraction of a hypothetical submarine

that has the additional capability of taking evasive action. Supporting this are behaviors for

filling and emptying ballast tanks and setting the angle of diving planes. It also refines the

inherited behaviors for submerging and accelerating.

Figure 3-11. Example showing interaction of extension methods

+startEngine()
+stopEngine()
+accelerate(in rate : float)

#started : Boolean
#velocity : float

Vehicle

WaterCraft

+submerge(in rate : float, in toDepth : float)
+surface(in rate : float)

#depth : float

Submersible

+accelerate(in rate : float, in toVelocity : float)
+evade()
+submerge(in rate : float, in toDepth : float)
#blowBallast(in toLevel : float)
#closeVents()
#fillBallast(in toLevel : float)
#openVents(in pumpIsOn : boolean)
#setDivePlanes(in toAngle : float)

#divePlaneAngle : float
#ventsOpen : boolean
#ballastTankLevel : float
#ballastPumpOn : boolean

Submarine

Vehicle::startEngine

Vehicle::stopEngine

Vehicle::accelerate

Submersible::submerge

Submersible::surface

Method Called Methods

Submarine::blowBallast

Submarine::fillBallast

Submarine::setDivePlanes

Submarine::accelerate Vehicle::accelerate

Submarine::closeVents

Submarine::evade Submarine::accelerate
Submarine::blowBallast
Submarine::fillBallast
Submarine::setDivePlanes
Submarine::submerge
Submersible::surface
Vehicle::startEngine

Submarine::fillBallast
Submarine::setDivingPlanes
Submarine::accelerate
Vehicle::startEngine

Submarine::submerge

Submarine::openVents

Submarine::closeVents
Submarine::openVents

72
3.3.2.1 Descendant introduces Non-interacting Extension Methods (DNEM)
The descendant may introduce extension methods that do not interact with inherited state.

This form of extension method does not define inherited state variables, nor does it call

inherited methods that do. As part of the extending behavior, the descendant may introduce

local state variables to support the behavior provided by the extension methods, or it may

use variables inherited from an ancestor. The latter may be achieved through either direct

reference of a state variable, or by calling some other method that uses the inherited vari-

able.

Figure 3-11 extends the example shown in Figure 3-10 to include class Submersible, a

direct descendant of WaterCraft. Submersible adds the two extension methods submerge

and surface and supporting state variable depth. As the definition/use table in the Figure 3-

12 shows, these methods do not interact with the state of Vehicle or WaterCraft (which has

no state), nor do these methods call inherited methods that alter state.

As part of a behavioral extension, a descendant class will often have its own local set of

state variables (as in the variable float that is a member of class Submersible). Collectively,

these variables serve to record the state of the descendant with respect to its set of extension

Figure 3-12. Definitions and uses for extensions methods

started

Submersible

velocity

d

d

u d, u

Variable Vehicle

Method depth

d, u

d, u

State Variable Uses and Definitions

Vehicle::startEngine

Vehicle::stopEngine

Vehicle::accelerate

Submersible::submerge

Submersible::surface

Submarine::accelerate

Submarine::blowBallast

Submarine

Submarine::fillBallast

u u,dSubmarine::evade

Submarine::closeVents

Submarine::openVents

Submarine::submerge

Submarine::setDivePlanes

u,d

d, u

u

divePlaneAngle ventsOpen tankLevel ballastPumpOn

d

d

d

u,d

u,d

d

ballastTankLevel

u,d

u,d

73
methods. To affect a local state change, one or more of the extension methods must define

each variable in the local state space. In so doing, the behavioral extension of the descen-

dant must either introduce additional states not present in the ancestor (such as when the

descendant is capable of doing things that the ancestor is not), or it must ensure that any

additional states are logically substates of the ancestor. That is, for the latter case, the state-

ful behavior of the descendant must be consistent with that of the ancestor.

Any state represented by the descendant's state space must partition each of the ancestor's

states for those cases where an extension method can change the state of the descendant.

Put another way, the stateful behavior of the descendant must fit within the state machine

of the ancestor. No transitions may be removed by the descendant, nor new transitions

added that would cause the ancestor to transition to a different state.

Faults/anomalies manifested by DNEM. Since a descendant D only has extension meth-

ods that do not interact with inherited state, there can be no faults due to polymorphism

when D is used solely in the context of its ancestor. The only methods that can execute in

this situation are those available through the ancestor’s context. There is, however, still the

possibility of inconsistent behavior due to inconsistent type usage (Section 3.2.1). This

would occur when an instance of D is used in the context of the ancestor as well as that of

the descendant. Thus, DNEM can manifest the fault type ITU.

3.3.2.2 Extension method Calls another Extension method (ECE)
Quite often, as part of a descendant’s implementation, one extension method e will call

another to achieve some desired effect. It may be that e implements a high-level algorithm

(e.g. sorting) and delegates subproblems to other methods (e.g. comparison). Regardless of

the number of methods called and the level of nested calls involved, from a client’s per-

spective, the net effect of calling e is the result of the computation performed by e directly

or through that of any methods called (directly or indirectly) by e. In terms of state space

interactions, the net effect is the set of state variables used or defined by e, or by a method

74
called by e, and so forth. Method e is said to absorb the effects of the methods it calls or

causes to be called.

ECE is illustrated in Figure 3-13, which presents an annotated code fragment of a hypothet-

ical implementation of method Submarine::evade in Java. As shown, an example of ECE

occurs at line 12 where the method blowBallast is called. This is ECE because both evade

and blowBallast are extension methods of Submarine. Though not annotated, other exam-

ples of ECE occur at lines 18 (setDivePlanes), 20 (fillBallast), and 26 (setDivePlanes).

Faults/anomalies manifested by ECE. Descendant classes that use ECE have the possi-

bility to manifest SDA anomalies if the called extension method c defines inherited state

variables or calls inherited methods that do. This will possibly result in a fault if a method

that is subsequently called depends in some way on the state defined by c.

The possibility of a local anomaly exists if c has public visibility. In this case, c provides

part of the interface of the descendant and a component of its behavior. The anomaly occurs

Figure 3-13. Code fragment for method Submarine::evade

 1 public void evade()

 2 {

 3 // Prepare for emergency dive/surface

 4 if (!started)

 5 startEngine();

 6

 7 accelerate(MAX_ACCEL, MAX_VELOCITY);

 8

 9 if (depth < 0) // Are we already submerged?

10 {

11 setDivePlanes(-MAX_PLANE_ANGLE); // Max rate of ascent

12 blowBallast(0); // Emergency blow!

13 }

14

15 else

16 {

17 // No, so dive, dive, dive!

18 setDivePlanes(+MAX_PLANE_ANGLE);

19

20 fillBallast(100.0); // Take her down ASAP!

21

22 while (depth < MAX_DEPTH)

23 depth = ...;

24

25 // Now level off.

26 setDivePlanes(0.0);

27 }

28 }

ECI

ECR

EUIV

ECE

EUIV
EDIV

75
if c uses state variables that have not yet been defined. Alternatively, c can cause an anom-

aly by defining a set of state variables that are different from those that would be defined

by the next method invocation that should occur given the current state of ancestor.

3.3.2.3 Extension method Calls Inherited methods (ECI)
Part of the behavior of a descendant class C is defined by an extension method e that calls

one or more inherited methods that directly define the state inherited from the ancestor class

A. The called methods may be specified in the same ancestor class that provides the state

variable that is defined, or they may be in another class that is also descendant of A but is

an ancestor of C. In either case, execution of the e has an effect on the inherited state space

received by C. An example of this is shown by the call to Vehicle::startEngine at line 5 in

the code fragment depicted in Figure 3-13.

Faults/anomalies manifested by ECI. If the inherited method i called by an extension

method defines state variables (in the ancestor’s context), an SDA anomaly can occur if a

subsequently called method depends upon the ancestor’s state in some way that has been

affected by i, and possibly will lead to a fault. Alternatively, an SDA anomaly will exist if

i uses state variables and is called out of sequence with respect to the current state, partic-

ularly if those state variables have not be defined by a prior method invocation.

3.3.2.4 Extension method Calls Refining method (ECR)
An extension method e in the specification of a descendant D may call a refining method r

that is also contained in D’s specification. In doing so, e interacts with the inherited state

through the computation carried out by r. Whatever state variables r defines, e effectively

defines as well (though not directly) and likewise for used variables. The nature of this

interaction is completely out of the control and influence of e; it is determined solely by the

implementation of r. However, e does have the choice of when (or if) r is called during its

execution. To preserve behavioral compatibility between the descendant and the ancestor,

the designer of e can take measures to ensure that r is called in a manner that is consistent

with the current state of the ancestor. However, there is no obligation or guarentee on e’s

designer to do so. An example of ECR is shown at line 7 of Figure 3-13.

76
Faults/anomalies manifested by ECR. The problems for ECR are similar to ECI

(Section 3.3.2.4). But in this case, a refining method r is called. If r defines inherited state

variables, an SDA anomally can occur if a subsequently called method depends upon the

ancestor’s state in some way that has been affected by r, and possibly will lead to a fault.

A fault will also occur if the state variables are defined incorrectly even though a definition

is appropriate for the current state of the ancestor. Similar to ECI, an SDA anomaly will

also exist if r uses state variables and is called out of sequence with respect to the current

state of the ancestor.

3.3.2.5 Extension method Uses/Defines Inherited state Variable (EUIV/EDIV)
The specification of a descendant class includes an extension method that directly uses

(EUIV) or defines (EDIV) one or more inherited state variables. By defining the inherited

variable, the extension method directly affects the behavior of the ancestor class. An exam-

ple is shown in Figure 3-13 at line 23 where Vehicle::depth is defined (EDIV), and at line

22 where it is used (EUIV).

Faults/anomalies manifested by EUIV and EDIV. From the perspective of polymorphic

behavior, EUIV does not yield any of the faults or anomalies described in Section 3.2. This

is not to say that there is no possibility of any type of fault or anomaly, merely that those

that can occur do not manifest themselves as the result of polymorphism. With EDIV, how-

ever, the situation is different. Since the extension method is defining inherited state vari-

ables, there is the possibility of SDA anomalies that have the potential to yielding a failure

in the context of the ancestor.

Assuming that an extension method defines an inherited state variable v at a time that is

consistent with the current state of the ancestor, an SDI fault can result if the definition

given to v is not consistent with how the variable is defined by ancestor methods.

3.3.2.6 Extension method Uses/Defines Local state Variable (EULV/EDLV)
An extension method within a descendant class C either uses (EULV) or defines (UDLV)

one or more state variables that are contained in the specification of C. As an example of

77
EDLV, again consider class Submarine (Figure 3-13). The specification of Submarine

includes the state variable ballastTankLevel. This variable is defined (EDLV) in the code

fragment shown in Figure 3-14 by the extension method Submarine::blowBallast at line 9,

and used at line 8 (EULV).

Faults/anomalies manifested by EULV and EDLV. There are no anomalies or faults

manifested directly as a result of polymorphism for EULV and EDLV. Extension methods

can only be invoked by a client outside of the descendant’s inheritance hierarchy through

an instance in the context of the descendant. That is, there must be an object reference

whose declared type is in the type family defined by the descendant. However, it is possible

for a definition of a local state variable made by an extension method to indirectly manifest

a fault through polymorphism. This can occur if the extension method is called by a refining

method (see Section 3.3.3.1). Thus, EDLV can result in an SDA anomaly. It can also result

in an SDI anomally if the state variable is defined incorrectly.

3.3.3 Descendant introduces refining methods
Method refinement allows a descendant class to modify an ancestors's behavior by provid-

ing overriding definitions of inherited methods. When an overridden method is called, the

overriding definition is invoked instead of the original inherited definition. This allows the

descendant to directly refine the behavior exhibited by the ancestor. This refinement is

manifested using any of three syntactic mechanisms: directly calling the refined (overrid-

Figure 3-14. Code fragment for method Submarine::blowBallast

 1 protected void blowBallast(float toLevel)

 2 {

 3 if (ballastTankLevel > toLevel)

 4 {

 5 openVents(true); // Force water out of tanks.

 6

 7 // Wait for tank to empty.

 8 while (ballastTankLevel > toLevel)

 9 ballastTankLevel = ...;

10

11 closeVents();

12 }

13 }

EDLV
EULV

78
den) method, replacing the refined method, or directly defining inherited state variables.

Note that the last mechanism, out of necessity, must be used in combination with only the

first two.

3.3.3.1 Refining method Calls Extension method (RCE)
As part of its behavior, a refining method can call extension methods defined by the descen-

dant. The latter can effect local state change, or simply participate in the refinement of the

overridden method. In either case, the behavior of the extension method becomes part of

the net effect of the refining method's behavior. Thus, the gross behavior of the combina-

tion of methods must be consistent with the behavior of the overridden method.

Syntactically, RCE looks just like any other free-standing method call (i.e. not through an

instance context). If an instance context is used to qualify the call, out of necessity it must

be through the context provided by the self-referencing variable used to denote the current

instance (e.g. this in Java and C++, and current in Eiffel).

An example of RCE is illustrated in Figure 3-15. At line 9, the extension method Subma-

rine::setDivePlanes is called by the refining method Submarine::submerge.

Figure 3-15. Code fragment for method Submarine::submerge

 1 public void submerge(float rate, float toDepth)

 2 {

 3 // Prepare to dive.

 4 if (!started)

 5 startEngine();

 6

 7 accelerate(NORMAL_ACCEL, DIVING_VELOCITY);

 8

 9 setDivePlanes(rate);

10

11 fillBallast(50.0); // Take her down slowly.

12

13 while (depth < toDepth)

14 depth = ...;

15

16 // Now level off.

17 setDivePlanes(0.0);

18 }

RCI

RCR

RCE

79
Faults/anomalies manifested by RCE. Anomalies and faults manifested by RCE include

SDA, SDI, and IISD. A refining method manifests SDA by failing to define the same set

of the ancestor’s state variables as the overridden method does. Similarly, if it does define

the right state variables, it could define them incorrectly (an SDI fault). Finally, the refining

method can exhibit an IISD anomally (a composite of SDA and SDI) if it calls one of the

descendant’s extension methods (see Section 3.3.2.6).

3.3.3.2 Refining method Calls other Inherited method (RCI)
A refining method r calls another method m inherited from the ancestor, and m is not over-

ridden by the descendant. This has the effect of replacing the method o overridden by r with

m in terms of the state effects on the ancestor, or possibly combining with those of o should

r call it (see RCOM, Section 3.3.3.4). An example of RCI is shown in Figure 3-15 at line 5.

Faults/anomalies manifested by RCI. A refining method that calls an inherited method

(other than the overridden method o) can manifest both an SDA anomaly and an SDI fault.

This is dependent upon the state effects of the inherited method i that is called. It could be

that i defines the same set of state variables as o does, or a different set. The latter results

in the SDA anomaly. If i does define the same set of state variables as o (or a proper subset),

but the semantics of the resulting definition are different, then an SDI fault occurs.

3.3.3.3 Refining method Calls other another Refining method (RCR)
As part of its implementation, a refining method can call other refining methods. Since both

the caller and the called method are members of the descendant, the call will generally be

unqualified. However, if it is qualified, it must be through a reference to the current instance

(e.g. this in Java and C++).

Faults/anomalies manifested by RCR. From an anomaly and fault perspective, the effects

of a refining method calling another refining method are similar to a refining method call-

ing an extension (Section 3.3.3.2). Both SDA anomalies and SDI faults are possibilities.

80
3.3.3.4 Refining method Calls Overridden Method (RCOM)
Perhaps the simplest form of behavioral modification is where the refining method directly

calls the refined (overridden) method in addition to providing additional behavior. This

form of modification takes advantage of existing behavior rather than replicating or replac-

ing it completely. The result of calling the inherited method is that the refining method

interacts with the ancestor's state indirectly by virtue of having called the overridden meth-

ods. Method Submarine::accelerate shown in Figure 3-16 provides an example of RCOM.

The overridden method Vehicle::accelerate is called at line 6 through the instance context

provided by the explicit ancestor reference super.

Faults/anomalies manifested by RCOM. When a refining method r calls the overridden

method o, the net effect of o is included in r. If r does nothing but call o, then there can be

no anomalies or faults that will be manifested as a result of polymorphism. However, if r

does more, in particular, if it defines additional state variables not defined by o or if it rede-

fines those defined by o, then SDA anomalies and SDI faults are a possibility (see

Section 3.3.3.5).

3.3.3.5 Refining method Defines/Uses Inherited state Variable (RDIV/RUIV)
The refining method can interact with the state of an ancestor simply by defining or using

state variables. Definition is accomplished through direct reference, such as in an assign-

Figure 3-16. Code for Submarine::accelerate illustrating RUIV, RCOM, and RDIV

 1 public void accelerate(float rate, float toVelocity)

 2 {

 3 if (velocity < toVelocity)

 4 {

 5 // Accelerate to desired velocity.

 6 super.accelerate(rate);

 7

 8 // Continue to accelerate.

 9 while (velocity < toVelocity)

10 velocity = ...;

11

12 // Stop accelerating.

13 super.accelerate(0.0);

14 }

15 }

RUIV

RCOM

RDIV

81
ment statement, or indirectly by calling state defining methods (if the variable is a reference

to an object).1 Similarly, a state variable can be used on the right-hand side of an assign-

ment and as part of a conditional expression. If the variable is a reference to an object, then

calling a method through the instance context provided by the variable is also an example

of a use.

Both RUIV and RDIV are illustrated in Figure 3-16. At line 16, variable Vehicle::velocity

is defined (RDIV) by method Submarine::accelerate. The method also uses (RUIV) Vehi-

cle::velocity at line 3 (and also at line 8 though this is not annotated).

Faults/anomalies manifested by RDIV and RUIV. Both SDA anomalies and STI faults

are possibilities for RDIV. An SDA anomaly will occur if the refining method does not

define the same state variables as the overridden method. An SDI fault will occur if the

refining method defines an inherited variable in a manner inconsistent with how the over-

ridden method defines the same variable.

An SDIH anomaly occurs in conjunction with RDIV if the specification of the descendant

includes a local state variable v whose name is identical to one that is inherited and that is

defined by the refining method. An SDIH anomaly also occurs with RUIV if v is used to

define an inherited state variable.

3.3.3.6 Refining method Defines/Uses Local state Variable (RDLV/RULV)
Instead of interacting with the state inherited from the ancestor, the refining method can

have an effect on the local state of the descendant. As with RDIV, definition is accom-

plished through direct reference, such as in an assignment statement, or indirectly by call-

ing state defining methods (if the variable is a reference to an object). Likewise, as with

1. In some object-oriented languages, such as C++, it is possible to specify that a given method does not
change the state of an object (through the use of const methods). In other languages, this is not possible.
Thus, without the availability of knowledge to contrary, we take the conservative view that all method calls
result in a state change of the object referred to by the variable that provides the instance context of the call.

82
RUIV, a state variable can be used on the right-hand side of an assignment, or as part of a

conditional expression.

Syntactically, RDIV and RUIV are similar to the syntax for RDLV and RULV, respec-

tively. The difference is that the variables referenced are specified locally in the descen-

dant, and any qualification present must reference the current instance.

Faults/anomalies manifested by RDLV and RULV. There are no faults for RDLV or

RULV that manifest themselves as a result of polymorphism.

3.3.4 Descendant Introduces Constructors
Classes usually have special methods, called constructors, whose job is to initialize the state

of a newly created instance. At the end of the construction process, the state of the instance

should be well-defined and ready to suffer the effects of the classes’s methods.

There are a number of syntactic patterns that can be used to define the behavior required

for construction. A number of the patterns involve calls to other methods. Depending upon

the language (e.g. Java), there is inherent danger in calling polymorphic methods from a

constructor. The problem is that the designer of the constructor c can never know for sure

that the called method e will be the one executed. This is due to method overriding and

polymorphism. If e is polymorphic and is overridden by some descendant class, then when

an instance of that child class is being constructed, the overriding method will be the one

executed from the constructor call instead of e. This yields two further complications. First,

there is no guarentee that the overriding method will have the same effect on the instance

being constructed by c. Second, when the overriding method executes, it will be in the con-

text of the child class, which will not have been constructed yet. Thus, there is a strong like-

lihood that a data flow anomaly or fault will occur. Even though this is an unwise practice,

it is possible and people do it

A constructor can introduce an IC anomaly if it fails to properly initialize all state variables

defined locally to the class. This may result from the failure to assign a value to a variable,

83
assigning it the wrong value, calling the wrong method if the variable refers to an object.

Either way, the likely result will be anomalous behavior when the newly constructed

instance is used. Note that this applies to all of the syntactic patterns that involve construc-

tion.

The following sections describe in detail each of the syntactic patterns that involve con-

struction.

3.3.4.1 Constructor Calls Inherited Method (CCIM)
During the construction process, a descendant’s constructor can call a method m inherited

from an ancestor. Unless overridden by the descendant, m will execute in the context of the

ancestor, having an effect on the ancestor’s state inherited determined by its implementa-

tion. By the time that m executes, the ancestor’s construction process will have completed.

Any effects m has will place the ancestor in a state different from that provided by the con-

structor.

Faults/anomalies manifested by CCIM. A constructor can introduce an SDA anomaly by

defining a state variable v inherited from the descendant’s ancestor. This can be accom-

plished either by direct definition of v (Section 3.3.4.4), or by calling an inherited method

that defines v. Either way, an anomaly will occur if the resulting definition is not consistent

with the current state of the ancestor. Observe that by calling an inherited method, the

descendant’s constructor is effectively changing the construction process that the ancestor

has carried out. Note that if the inherited method called by the constructor is polymorphic,

then the anomalous behavior described in the introduction to Section 3.3.4 is possible.

3.3.4.2 Constructor Calls Refining Method (CCRM)
Similar to CCIM, during the construction process, a refining method r may be called. The

act of calling r might have an effect on the local state of the descendant. Presumably, this

effect will be part of the intended construction process and will contribute to the initializa-

tion of a locally well-defined state for the descendant. Note that the refining method may

84
call the overridden method (or another non-overridden inherited method). The result of

such a call will be equivalent to CCIM (Section 3.3.4.1).

Faults/anomalies manifested by CCRM. As with CCIM (Section 3.3.4.1), a data flow

anomaly will occur if the result of the called refining method r is that the state of the ances-

tor is defined in some manner that is inconsistent with its state, or if r uses portions of the

ancestor’s state that are not consistent with the assumptions made in the implementation of

r. Note that if the refining method called by the constructor is polymorphic, then the anom-

alous behavior described in the introduction to Section 3.3.4 is possible.

3.3.4.3 Constructor Calls Extension Method (CCEM)
A constructor can call an extension method e as part of the construction process. Similar to

CCRM (Section 3.3.4.2), calling e might result in an affect on the local state of the descen-

dant. Likewise, e could also call other methods (extension, refining, or inherited) that affect

either the local or inherited state.

Faults/anomalies manifested by CCEM. The fault model for CCEM is the same as for

CCRM: a data flow anomaly will occur if the result of the called extension method e is that

the state of the ancestor is defined in some manner that is inconsistent with its state, or if e

uses portions of the ancestor’s state that are not consistent with the assumptions made in

the implementation of e. Note that if the extension method called by the constructor is poly-

morphic, then the anomalous behavior described in the introduction to Section 3.3.4 is pos-

sible.

3.3.4.4 Constructor Defines/Uses Inherited state Variable (CDIV/CULV)
During the construction process, out of necessity a constructor will define one or more state

variables. Usually these are local to the class being constructed. However, it is possible for

a constructor to define an inherited state variable, either directly through assignment or

indirectly through method call (if the variable refers to an object).

85
Faults/anomalies manifested by CCRM. Both SDA anomalies and STI faults are possi-

bilities for CDIV. An SDA anomaly will occur if the refining method does not define the

same state variables as the overridden method. An SDI fault will occur if the refining

method defines an inherited variable in a manner inconsistent with how the overridden

method defines the same variable.

3.3.4.5 Constructor Defines/Uses Local state Variable (CDLV/CULV)
A constructor can as part of its implementation use both local and inherited state variables.

The key distinction between the two is that the ancestor’s construction process has com-

pleted, and the inherited state variables should be properly initialized. For local state vari-

ables, proper initializations will only have occurred prior to use if the constructor has

defined their values, or if there are suitable default initializations provided (as in Java).

Faults/anomalies manifested by CCRM. An SDIH anomaly occurs in conjunction with

CDLV if the specification of the descendant includes a local state variable v whose name

is identical to one that is inherited and that is defined by the refining method. An SDIH

anomaly also occurs with CULV if v is used to define an inherited state variable.

3.3.5 Special cases – Complete Behavioral Redefinition
There are two situations that warrant consideration in this discussion. Instead of describing

distinct patterns, both are combinations of those patterns previously described. It is entirely

possible for the behavior provided by an ancestor class to be completely replaced by refined

behavior.1 This can occur in two different ways. First, a descendant overrides all methods

inherited from the ancestor, thereby directly nullifying the behavior of the ancestor all

together. Second, a sequence of descendants incrementally overrides proper subsets the

ancestor's methods until ultimately the behavior of the ancestor is nullified. These two sce-

narios are discussed in the following subsections.

1. This is only possible if all of the ancestor's methods that are visible to the descendants are polymorphic
(i.e. they can be overridden).

86
3.3.5.1 Complete Behavioral Redefinition(1) (CBR1)
A descendant may override all methods inherited from the ancestor. In so doing, the

descendant has assumed full behavioral responsibility from the ancestor, and the state

inherited from the ancestor either becomes irrelevant or the constraints on the inherited

state change. The inherited state will become irrelevant if none of the overriding methods

references any of the state variables, either through direct or indirect use. This effectively

relegates the ancestor class to the role of providing only an interface definition to the

descendant. Clients will at least see the descendant as being an instance of the ancestor from

a syntactic perspective. However, the descendant's behavior may turn out to be inconsistent

with the ancestor's.

It may be that the descendant makes use of the inherited state. Depending upon how this is

done, the constraints on how overriding and extension methods use the inherited state may

change. If none of the overridden methods are called, then the overriding methods are free

to use the inherited state at will.1 If any of the overridden methods are called, then a data

flow anomaly may result.

3.3.5.2 Complete Behavioral Redefinition(2) (CBR2)
A sequence of descendant classes (rooted at a particular ancestor) in combination may

override the complete behavior inherited from the ancestor. Similar to CBR1

(Section 3.3.5.1), the combination has assumed full behavioral responsibility from the

ancestor. For example, consider the hierarchy shown in Figure 3-17. Class A defines a set

of methods that operate on its state. Classes B, C, D and E are descendants of A, with B, C

and D overriding disjoint subsets of A's methods, such B, C and D partition A's methods.

The further down the hierarchy we traverse, the fewer the number of A's methods that reach

1. This is subject to the constraint that the descendant must still exhibit external behavior that is logically
equivalent to the ancestor.

87
a particular descendant. Ultimately, none of A's methods are inherited by E. By the time D

is reached, a complete behavioral redefinition of A has occurred.

Unlike CBR1, there generally is not the same flexibility in how the state inherited from the

ancestor is treated. The descendants higher in the hierarchy than E (B, C and D) only over-

ride a portion of the behavior that is inherited from A. To preserve behavioral compatibility

with A, classes B, C and D must interact with the state of A in a manner consistent with the

state interactions of the methods that each inherits. For B, this means that the implementa-

tion of its overriding methods must ensure consistent state interactions with respect to the

methods they override. The same applies for C, though it must also consider the methods

Figure 3-17. Complete Behavioral Redefiniditon (2)

f()
g()
h()
i()
j()
k()

A

f()
g()

B

h()
i()

C

j()
k()

D

l()

E

{A::f, A::g, A::h, A::i, A::j, A::k}

{B::f, B::g, A::h, A::i, A::j, A::k}

{B::f, B::g, C::h, C::i, A::j, A::k}

{B::f, B::g, C::h, C::i, D::j, D::k}

Inherited Methods

Overriding
Methods

88
that it inherits from B as well as those that reach it from A. D only has to be concerned with

the state interactions of the methods that it inherits from B and C. This is because D is over-

riding the remaining methods inherited from A that have not been overridden by B and C.

Table 3-3. Fault/anomaly types manifested by syntactic patterns

ITU SDA SDIH SDI IISD ACB1 ACB2 IC SVA

DNM

DNEM

ECE

ECI

ECR

EDIV

EDLV

EUIV

EULV

RCE

RCI

RCR

RCOM

RDIV

RDLV

RUIV

RULV

CCIM

CCRM

CCRM

CDIV

CDLV

89
3.4 Discussion
For expository purposes, the discussion of the anomalies and fault types summarized in

Table 3-3 and described in Section 3.3 has primarily focused on single instances of syntac-

tic patterns of inheritance. In reality and out of necessity, the patterns are often combined

to form complex aggregates of control and data flow. Naturally, this combination of pat-

terns can result in combinations of faults.

As the examples have shown, the control flow that results from inheritance and polymor-

phism can be quire complex, and can yield very complicated faults and anomalies. In fact,

the use of polymorphism induces non-determinism to the actual flow of control [15]. Sadly,

the situation in reality can be far more complicated than the examples have indicated. If

inheritance hierarchies are deep, visibility is unrestricted, and polymorphic methods are

abundant, the flow of control resulting from a single method invocation can be inordinately

complex, depicted by the simple yo-yo graph shown in Figure 3-18. Likewise, it can be

CUIV

CULV

Table 3-3. Fault/anomaly types manifested by syntactic patterns

ITU SDA SDIH SDI IISD ACB1 ACB2 IC SVA

90
expected that the effort required to detect, diagnose, and correct the resulting faults to

increase significantly in complexity.

Figure 3-18. Yo-yo effect resulting from extension method calling inherited method

Ancestor

f e

i1 i2

r2Descendant

call
call

call

4. Coupling-based Analysis of Object-Oriented
Programs

This Chapter provides the foundation for coupling-based testing of object-oriented pro-

grams. This work extends the original coupling-based testing approach of Jin and Offutt

[38] to account for the effects of inheritance and polymorphism. The key contribution is the

coupling sequence, which is an abstraction for representing the interaction between called

methods that result from inheritance and polymorphism.

4.1 Extended Coupling Definitions
The original coupling-based testing definitions of Jin and Offutt require a number of mod-

ifications to account for the various calling contexts that occur in object-oriented programs

[38]. In the following definitions, m refers to a program unit, including methods that appear

in class specifications. Vm is the set of variables that are referenced by m, and Nm the set of

nodes in m. A node of a method is either the method’s entry node, it’s exit node, or corre-

sponds to one of the method’s statements. Each definition is expressed as a function whose

domain is given by a possibly empty set of formal arguments and a range given as a return

type. Note that use of the notation �T represents a set of elements each of which is an

instance of T, where T is the name of some type (e.g. integer, class, variable, etc.).

• def-clear-path (i, j, v) : Boolean : True if there is a definition-clear path from

node i to j with respect to v, except possibly at node i.

• def-clear-path (p, v) : Boolean : True if path p is definition-clear with respect to

v, except possibly at first(p).

• defs(i) : �Variable : The set of variables that are defined at node i.
91

92
• uses(j) : �Variable : The set of variables that are used at j.

• entry(m) : Node : The entry node of method m.

• exit(m) : Node : The exit node of method m.

• family(c) : �Class : The set of classes that belong to the type family specified by

class c. Note that c itself is a member of family(c).

• first(p) : Node : The first node in path p.

• state(c) : �Variable : The set of variables that directly or indirectly comprise the

state space of class c.

• type(m) : Class : The class whose specification contains member m.

• type(o) : Class : The class C that is the declared type of the variable o, where o is

a reference to an instance of some class that is a member of the type family

induced by C.

• i-defs(m) : �Variable : The set of variables in the state space of the class contain-

ing m that are indirectly defined by a call to m made through some instance con-

text. Formally:

• i-uses (m) : �Variable : The set of variables in the state space of the class con-

taining m that are indirectly used by a call to m made through some instance con-

text. Formally:

i-defs m() v state-vars type m()()∈ j Nm v defs j()∈•∈∃�{ }=

93
• instance(t) : object : Returns an instance (object) of type t.

• method(sj,k) : Method : Returns the method that contains coupling sequence sj,k.

• signature(m, n) : Boolean : Evaluates to true if the signature of methods m and n

match.

• overrides(m, p) : Boolean : Evaluates to true if method m is an overriding

method of p. That is,

• paths(i, j, m) : �Path : The set of paths that emanate from node i and that are

incident upon node j, where

4.2 Coupling Sequences
Coupling sequences are pairs of nodes within the body of a specific method f that corre-

spond to an indirect coupling of state variables through a common instance context that is

accessed through an object reference. There are four structural types of coupling sequence

that are of interest in coupling-based testing of object-oriented programs. Each is illustrated

by a control flow schematic, such as the one depicted in Figure 4-1. The schematic abstracts

away the details of control flow graph and shows only those nodes that are of interest from

a coupling analysis perspective. Individual methods are represented as shaded rectangles

that enclose their respective control flow. Method entry and exit nodes are depicted as non-

solid and solid ellipses, and individual statements as solid circles. Method call sites are

depicted as a smaller solid circle within a larger non-solid circle, and their corresponding

return sites are non-solid circles. Control flow is represented as undirected thin line seg-

ments connecting two nodes. Thicker undirected line segments indicate control flow that is

part of a particular coupling path. Each line segment is considered to represent one or more

i-uses m() v state type m()()∈ j Nm v uses j()∈•∈∃�{ }=

overrides m p,() type m() family type p()()∈ signature m p,().∧⇔

i j, Nm.∈

94
sub-paths that connect two nodes. A path may be annotated with a transmission set, which

consists of variables that the path is definition-clear with respect to. These variables are

listed inside a set of brackets, such as [o,o.v], which indicates that the particular path bear-

ing this annotation is definition-clear with respect to the variables o and o.v.

The following subsections discuss each of the four types of coupling sequence in detail.

4.2.1 Type I Coupling Sequences
The first coupling type is illustrated by the control flow schematic depicted in Figure 4-1.

Structurally, this type of coupling sequence is represented by calls to two different methods

through the same instance context. As the schematic shows, method f, referred to as the

coupling method, contains a coupling sequence sj,k that starts at node j with the call to o.m

Figure 4-1. Type I Coupling Sequence

i o.m()

k o.n()

j def(o.v)

h def(o)

m()

f(T o)

n()

l use(o.v)

Coupling
Sequence

sj,k
with

respect
to o.v

transmission paths
[o,o.v]

[o]

i-def paths
[o.v]

i-use paths
[o.v]

Coupling method f

Antecedent Node

Consequent
Node

Antecedent Method

Consequent
Method

Coupling Variable

Call site

Call return

Method entry

Statement

Control Flow

Coupling Path

Method exit

Transmission set[...]

95
(the antecedent method) and extends through paths that end at node k where the sequence

ends with the call to o.n (the consequent method). The nodes containing the antecedent

method and consequent method are referred to as the antecedent node and consequent node.

Note that there is at least one path between the call sites that is definition-clear with respect

to o. There is also one sub-path in which o is definition-clear with respect to the indirect

definitions made in the antecedent method that have corresponding indirect uses in the con-

sequent method. The identifier o is referred to as the context variable and such paths as

these are referred to as transmission paths (t-paths).

Formally, a Type I coupling sequence sj,k is given by the 9-tuple in Equation 4-1, where f

is the coupling method that contains the coupling sequence; o is the context variable of the

sequence and T is the coupling type (i.e. the type of instance bound to o – the declared type

of o in this case). are the antecedent and consequent nodes, respectively; m and n

are the antecedent and consequent methods used at the call sites at j and k, is the set

of variables defined by m and used by n, and is the set of transmission paths between

j and k with respect to .

Equation 4-1. Type I coupling sequence

4.2.2 Type II Coupling Sequences
A Type II coupling sequence has the structure depicted in Figure 4-2. As shown, the ante-

cedent node i contains an indirect definition through the object reference o and the corre-

sponding indirect use occurs at the consequent node j through the call to the consequent

method m. The coupling set for this sequence is and is given formally by

 where i is the antecedent node and m is the consequent

method called at the consequent node j.

j k, Nf∈

Θsj k,

Πsj k,

Θsj k,

sj k, f o T j k m n Θsj k,
Πsj k,

, , , , , , , ,()=

Θsj k,
t::v{ }=

Θsj k,
i-defs i() i-uses m(),∩=

96
Coupling paths are formed by combining elements of the t-path set from the coupling

method f with elements of the i-use set from the consequent method. Thus, the coupling

sequence sj,k extends from the antecedent node i through the call site at the consequent node

j, and through the entry node of m to node l that contains the first-use of v in m. Note that a

Type II coupling sequence does not have an antecedent method, and hence has no i-def

paths.

4.2.3 Type III Coupling Sequences
Type III coupling sequences are similar to Type II sequences in that the reference to a cou-

pling variable occurs through a single method call and object reference. However, the dif-

ference is that the roles are reversed. That is, the indirect definition is made by the method

and the indirect use through the object reference. This is depicted in Figure 4-3 which illus-

Figure 4-2. Type II Coupling Sequence

j o.m()

l use(o.v)

h def(o)

m()

f()

Coupling
Sequence

si,j
with respect

to o.v

i def(o.v)
transmission paths

i-use paths

[o]

[o,o.v]

[o.v]

Call site

Call return

Method entry

Statement

Control Flow

Coupling Path

Method exit

Transmission Set[...]

Coupling method f

Antecedent Node

Consequent
Node

Consequent
Method

Coupling Variable

97
trates the structure of the Type III coupling sequence sj,k. As shown, the antecedent node j

in the coupling method f contains a call to the antecedent method m. In m, node k contains

a definition of the coupling variable v. The corresponding indirect use occurs at the conse-

quent node l back in f. Thus, the set of coupling paths extend from node k in m to node l.

Each coupling path is formed by combining elements of the i-def set of m with the t-path

set of f. Note that a Type III coupling sequence does not have a consequent method, and

hence has no i-use paths.

The coupling set for a type III coupling sequence is given formally by

 where m is the antecedent method called at the antecedent

node j and l is the consequent node l.

Θsj l,
i-defs m() i-uses l()∩=

98
4.2.4 Type IV Coupling Sequences
The fourth type of coupling sequence is shown in Figure 4-4. Here, the coupling sequence

occurs between two nodes in the coupling method in which both the indirect definition and

use occurs through the instance context provided by o. Every coupling path in the sequence

is identical to the set of transmission paths between the antecedent and consequent nodes.

Thus, there are no i-def or i-use paths in a Type IV coupling sequence. Also, there are no

call sites at either node in the sequence.

The coupling set for a type IV coupling sequence is given formally by

 where j and k are the antecedent and consequent nodes,

respectively. Type IV coupling sequences are not discussed further in this thesis as they are

Figure 4-3. Type III Coupling Sequence

j o.m()

k def(o.v)

i def(o)

m()

f()

Coupling
Sequence

sj,l
with respect

to o.v

transmission paths

i-def paths

[o]

[o.v]

Call site

Call return

Method entry

Statement

Control Flow

Coupling Path

Method exit

Transmission Set[...]

l use(o.v)
[o,o.v]

Coupling Method f

Antecedent Node

Consequent
Node

Antecedent Method

Coupling Variable

Θsj k,
i-defs j() i-uses k(),∩=

99
covered by traditional data flow testing criteria [30, 65]. They are included here merely for

the sake of completeness.

4.2.5 Other Type of Coupling Sequences
The research presented in this thesis focuses on coupling sequences where the calls to the

antecedent and consequent methods are both in the coupling method. There are other more

complicated situations where coupling sequences occur in object-oriented programs. In

essense, all of these situations can be characterized as the calls to the antecedent and con-

sequent methods do not both occur in the coupling method. An example of this is illustrated

in Figure 4-5 where the coupling method f does not contain either call. Instead, the call sites

j and k invoke methods that contain the calls to the antecedent and consequent methods.

Though the coupling between the antecedent and consequent methods does not occur

directly from f, the coupling sequence sj,k exists in f between nodes j and k, but is referred

to as an indirect coupling sequence (alternatively an inter-method coupling sequence) of f.

Figure 4-4. Type IV Coupling Sequence

j def(o.v)

i def(o)

f()

Coupling
Sequence

sj,k
with respect

to o.v

transmission paths

[o]

Call site

Call return

Method entry

Statement

Control Flow

Coupling Path

Method exit

Transmission Set[...]

k use(o.v)
[o,o.v]

Coupling method f

Antecedent Node

Consequent
Node

Coupling Variable

100
Indirect coupling sequences are not discussed further in this thesis, but are instead are left

for future research.

4.3 Coupling Variables and Coupling Sets
Every coupling sequence sj,k has an associated set of state variables that are defined by the

antecedent method and subsequently used by the consequent method with respect to the

Figure 4-5. Inter-method Coupling Sequences

j A(o)

k B(o)

i def(o)

f(T o)

n()

use(p.v)

def(p.v)

m()

A(T p)

B(T p)

d p.m()

e p.n()

Call site

Call return

Method entry

Statement

Control Flow

Coupling Path

Method exit

Antecedent
Node

Consequent
Node

Antecedent
Method

Antecedent
Method

Coupling Method f

Indirect
coupling
sequence

sj,k

101
coupling type t. This set of variables is referred to generically as the coupling set of

sj,k and is defined as the intersection of those variables defined by m (an indirect-def, or i-

def) and used by n (an indirect use, or i-use) through the instance context provided by a con-

text variable o that is bound to an instance of t. Note that the particular m and n that execute

are determined by the actual type t of the instance bound to o. Each member of this set is

called a coupling variable. Coupling sets are formally defined by Equation 4-2.

Equation 4-2. Coupling Sets

For a Type I coupling sequence, the indirect definition occurs in the antecedent method

called at node j and the indirect use occurs in the consequent method called at node k. For

example, the coupling set for the sequence sj,k shown in Figure 4-1 is: and

the definition of the coupling variable v occurs in the antecedent method m, and the corre-

sponding indirect use occurs in the consequent method n.

4.4 Coupling Paths
Each coupling sequence has an associated set of paths, called coupling paths, in which an

indirect definition of a variable v is transmitted to the corresponding indirect use. That is,

the path between the nodes having the indirect definition and indirect use is definition-clear

with respect to v, thus the definition of v is transmitted by the path.

Each path consists of up to three sub-paths, or segments: indirect-def sub-paths, indirect-

use sub-paths, and transmission sub-paths. The indirect-def sub-path is the portion of the

coupling path that occurs in the antecedent method a, extending from the last (indirect) def-

inition of a coupling variable to the exit node of a. Similarly, the indirect-use sub-path is

the portion of the consequent method c that extends from the entry node of c to the first

(indirect) use of a coupling variable. Finally, the transmission sub-path is the portion of the

coupling path that extends from the antecedent node to the consequent node, such that the

Θsj k,

t

Θsj k,

t
i-defs o.m() i-uses o.n()∩=

Θsj k,
t::v{ }=

102
value of the path’s coupling variable and the coupling sequence‘s context variable is trans-

mitted without redefinition.

The type of sub-paths that each coupling path has is determined by the mechanism used to

affect the indirect definitions and uses of the coupling sequence. A Type I coupling

sequence has coupling paths that contain all three types of sub-path since the indirect def-

inition occurs in the antecedent method and the indirect use occurs in the consequent

method. In contrast, coupling paths of Type IV coupling sequences only have a transmis-

sion sub-path since the indirect definition and use occurring in the coupling method itself.

The coupling paths of Type II sequences have a transmission sub-path and an indirect-use

sub-path. There is no indirect-def sub-path since the indirect definition occurs in the cou-

pling method. A Type III coupling sequence is just the opposite of a Type II sequence. The

coupling paths of a Type III sequence includes an indirect-def sub-path and a transmission

sub-paths, but not a indirect-use sub-path.

For a given coupling sequence, there is a single set of coupling paths for each type of cou-

pling sub-path. These sets are used to form coupling paths by matching together elements

of each set. For example, the set of coupling paths for a Type I coupling sequence is formed

by combining elements of the indirect-def sub-path set with an element from the transmis-

sion sub-path set, and then adding an element of the indirect-use sub-path set. The complete

set of coupling paths is formed by taking the cross product of these three sets.

The sets of coupling sub-path segments form the foundation of the source code analysis

used to identify coupling sequences in object-oriented programs. Each of these sets is

described in detail in the sub-sections below.

The following definitions are used to provide access to the individual components of the

coupling sequence sj,k:

• a-node(sj,k) : Node: The antecedent node j of sj,k.

103
• c-node(sj,k) : Node: The consequent node k of sj,k.

• a-method(sj,k) : Method: The antecedent method m of sj,k.

• c-method(sj,k) : Method : The consequenct method n of sj,k.

• context(sj,k) : Variable : The variable that contains an object reference that refers

to an instance providing context at the call sites of sj,k (e.g. o.m()).

4.4.1 I-Def Paths
For a given coupling sequence sj,k, there are a set of paths in the antecedent method m that

begin at nodes that have last-definitions-before-return (see Section 2.6.1 on page 43) of the

variables contained in the coupling set . For each such node l, the path to exit(m) is

definition-clear with respect to the corresponding coupling variable defined at l. These

paths constitute the indirect-def path set (or i-def-path-set) of the coupling sequence. Each

of these paths is referred to as an indirect definition path (or i-def-path). Equation 4-3 gives

the formal definition for the set i-def-paths, where m is the consequent method of sj,k and

V is a subset of the coupling variables for sj,k.

Equation 4-3. Indirect def path set

Figure 4-6 shows an example of the i-def-paths for the coupling sequence sj,k. As the figure

shows, there are three i-def-paths (labeled a, b, and c) that emanate from nodes in o.m such

that each i-def-path has a last-definition-before-return of the coupling variable o.v. As indi-

cated, each of these paths is definition-clear with respect to the coupling variable o.v. Col-

lectively, these paths constitute the indirect-def path set for the coupling sequence sj,k.

Θsj k,

i-def-paths m V,() p v,() first p() last p() Nm∈,
p paths first p() last p() m, ,()

last p()
∧∈

exit m()
v V∈ state class m()()
v defs first p()()∈
def-clear-path first p() last p() v, ,()

∧
∧

⊆
∧=

∧�{

}

=

104
4.4.2 I-Use Paths
Referring again to Figure 4-6, the set of paths in the consequent method n that begin at

entry(n) and end at a node such that l has a first-use-in-callee of a coupling variable

contained in the state of the class that specifies n is referred to as the indirect-use path set

(or i-use-path-set) of the antecedent method n for coupling sequence sj,k. Each path in this

set is definition-clear with respect to the particular coupling variable used in the consequent

method. Equation 4-4 formally defines i-use-paths for a given pair of node and state vari-

able. In the equation, n is the consequent method of sj,k and V is some subset of the coupling

variables for sj,k.

Figure 4-6. Detailed Type I Coupling Sequence

d e f
g h i

First use of o.v

l o.n()

k o.m()

a b c

Last definition of o.v
before return

Definition-clear
with respect

to o.v

Definition-clear
with respect to o

i-def-paths

i-use-paths

t-paths

Coupling
Sequence

sk,l

Antecendent
Method

j def(o)

[o]

Antecendent
Node

Consequent
Node

Consequent
Method

Call site

Call return

Method entry

Statement

Control Flow

Coupling Path

Method exit

Transmission Set[...]

Definition-clear
with respect

to o.v

m()

n()

l Nn∈

105
Equation 4-4. i-use-paths

In Figure 4-6, the elements of the i-use-set for sj,k are g, h, and i. Each of these nodes ends

at a node having a first use of o.v, and each is definition-clear with respect to o.v.

4.4.3 Transmission Paths
For every coupling sequence sj,k, there is a set of paths that connect the antecedent

node j and the consequent node k, such that for each t is definition-clear with

respect to some subset These paths transmit the value of each from

where it is indirectly defined by the execution of the antecedent node, to where it is indi-

rectly used by execution of the consequent node. Equation 4-5 presents the formal defini-

tion for t-paths.

Equation 4-5. T-Paths(sj,k)

The penultimate clause of the set expression in Equation 4-5 requires that the transmission

path p be definition-clear with respect to the object reference that defines the context of the

coupling sequence, and the last clause requires p to be definition-clear with respect to the

coupling variable v.

If there is no transmission path between the antecedent node j and the consequent node k,

then In this case, the coupling sequence sj,k is a vacuous coupling

i-use-paths n V,() p v,() first p() last p(), Np

p paths first p() last p() n, ,()∈
first p() entry n()
v V∈ state class n()()
v uses last p()()∈
def-clear-path first p() last p() v,(),()

∧
•⊆

∧=

∧ ∧
∈(

)

�{

}

=

Πj k,

t Πj k, ,∈

θsj k,
Θsj k,

.⊆ v θsj k,
∈

t-paths sj k,() p v,() p paths a-node sj k,()

c-node sj k,() method sj k,()

,
,

(

)

∈

v Θsj k,

def-clear-path first p() last p() context sj k,(), ,()

def-clear-path first p() last p() v, ,()

∧
•∈

∧
�{

}

=

t-paths sj k,() ∅.=

106
sequence, and hence the coupling path set of sj,k is empty. Note that this can only occur if

there is not at least one definition-clear path from j to k for some

In Figure 4-6, the set of paths labeled T-Paths consisting of the elements d, e, and f, consti-

tute the transmission path set for the sequence sj,k. Note that each path in the transmission

set must be definition-clear with respect to the coupling variable that it transmits and with

respect to the object reference that defines the context of the coupling sequence (o in the

example).

4.5 The effects of inheritance and polymorphism on
coupling
To see the effects of inheritance and polymorphism on path sets, consider the class diagram

shown in Figure 4-7a. The type family that corresponds to this hierarchy includes the three

classes A, B, and C, with each having one ore more methods or state-variables. Class A

defines methods m and n and state variables u and v. Class B defines methods n and l, where

n is an overriding method of A's n (A::n). Likewise, class C defines method m, which over-

rides A::m. The corresponding definitions and uses for each of these methods is shown in

Figure 4-7b.

v Θsj k,
.∈

107
Figure 4-8 shows the coupling paths that result from the hierarchy in Figure 4-7a. Observe

that the declared type of the coupling variable provided by o is A. The coupling sequence

sj,k extends from the node j where the antecedent method m is called, to the call site of the

consequent method at node k. As shown, the corresponding coupling set for sj,k when o is

bound to an instance of A is Thus, the set consists of the coupling paths

for sj,k that extend from node e in A::m to the exit node of in A::m, back to the consequent

node k in the coupling method, and through the entry node of A::n to node g. There is no

coupling path with respect to A::u because A::u does not appear in the coupling set for A::m

and A::n.

Figure 4-7. Sample class hierarchy and def-use table

Method Defs Uses
A::m {A::u,A::v}
A::n {A::v}
B::n {A::u}
B::l {A::v}

C::m {A::u}

A

+m()
+n()

-u : X
-v : Y

B

+n()
+l()

-w : Z

C

+m()

(a)

(b)

Θsj k,

A
A::v{ }.=

108
Figure 4-8. Coupling sequence when o is bound to an instance of A

Call site

Call return

Method entry

Statement

Control Flow

Coupling Path

Method exit

Transmission Set[...]

bind(o,A)

o.m()

o.n()

def(A::v) def(A::u)

[A::v] [A::u]

[o]

[o,A::v]

use(A::v)

[A::v]

j

i

k

sj,k

Θ A::m,A::n = {A::v}

Coupling method

e

A::n()

transmission paths

Antecedent Method

Consequent
Method

Antecedent Node

Consequent
Node

Declared
type of o is
A

Coupling Variable

f

g

A::m()

A::ma A::mb

fc

A::nd

A::mb Subpath

109
Now, consider the affect on the elements that comprise the set of coupling paths when o is

bound to an instance of B, as shown in Figure 4-9. The coupling set for this case is different

from when o was bound to an instance of A. This is because B provides an overriding

method B::n that has a different use set than the overridden method A::n has. Thus, the cou-

pling set is different with respect to the antecedent method A::m and the consequent method

B::n yielding In turn, this results in a different set of coupling paths as

depicted by the Figure 4-9. The set of coupling paths now extend from node f in A::m back

through call site at node k in the coupling method and through the entry node of B::n to

node g of B::n.

Figure 4-10 depicts the coupling sequence that results when o is bound to an instance of C.

First, observe that execution of the node j in the coupling method results in the invocation

of the antecedent method, which is now C::m. Likewise, execution of node k results in the

invocation of the consequent method n. Since C does not provide an override for m. and

because C is a descendant of B, the version of n that is invoked is actually B::n. Thus, the

coupling set for sj,k is taken with respect to the antecedent method C::m and the consequent

method B::n, which yields The corresponding coupling path set includes

those paths that begin at node e in C::m and extend to the exit node of C::m, then back node

j of the coupling method, and through the entry node of B::n to node g, also in B::n.

Θsj k,

B
A::u{ }.=

Θsj k,

C
A::u{ }.=

110
Figure 4-9. Coupling sequence when o is bound to an instance of B

bind(o,B)

o.m()

o.n()

def(A::v) def(A::u)

[A::v] [A::u]

[o]

[o,A::u]

use(A::u)

[A::u]

j

i

k

sj,k

Θ A::m,B::n = {A::u}

Coupling method

A::m()

B::n()

transmission paths

Antecedent Method

Consequent
Method

Antecedent Node

Consequent
Node

Declared
type of o is
A

Coupling Variable

e f

g

Call site

Method entry

Method exit

Statement

Control Flow

Coupling Path

Transmission Set[...]

Call return

A::mb

A::mb Subpath

A::ma

fc

B::nd

111
Figure 4-10. Coupling sequences when o is bound to an instance of C

bind(o,C)

o.m()

o.n()

def(A::u)

[A::u]

[o]

[o,A::u]

use(A::u)

[A::u]

j

i

k

sj,k

Θ C::m,B::n = {A::u}

Coupling method

C::m()

B::n()

transmission paths

Antecedent Method

Consequent
Method

Antecedent Node

Consequent
Node

Declared
type of o is
A

Coupling Variable

e

g

C::m a

fc

B::nd

A::mb Subpath

Transmission Set[...]

Coupling Path

Control Flow

Statement

Method exit

Method entry

Call return

Call site

112
Not every class c in a particular type family will have methods that participate in a coupling

sequence as a result of inheritance and polymorphism for a particular coupling method.

This will be true whenever c does not provide overriding definitions for methods that are

invoked by the antecedent or consequent nodes. For example, suppose a new class D that

has no overriding methods used in the coupling sequence shown in Figure 4-8 is added to

the sample class hierarchy given above, as illustrated in Figure 4-11. In this situation,

whenever o is bound to an instance of D, the coupling sequence that results will be the same

as when o is bound to an instance of A. This is because the antecedent and consequent meth-

ods that execute (m and n, respectively) are those defined by A. Because of this, we can

safely ignore consideration of D from the coupling analysis.

Table 4-1 summarizes the coupling paths for the example shown in Figure 4-6 on page 104

and the corresponding control flow schemata depicted in Figure 4-7, Figure 4-8, and

Figure 4-9. Paths are represented as a sequence of comma delimited nodes. Each node is of

the form method(node), where method is the name of the method that contains the node,

Figure 4-11. Sample hierarchy with class D added

A

+m()
+n()

-u : X
-v : Y

B

+n()
+l()

-w : Z

C

+m()

D

113
and node is the node identifier within the method. Note that the prefixes “call” or “return”

are appended to the names of nodes that correspond to call or return sites.

Another situation can exist in which a class c in a particular type family will not have meth-

ods participating in a coupling sequence. This will occur when c provides a definition of an

overriding method that does not define the same set of coupling variables as the overridden.

For example, suppose that class C has been changed such that its overriding definition for

m no longer defines the same set of coupling variables as does the overridden method A::m,

as shown in Figure 4-12a and Figure 4-12b. The on the coupling sequence sj,k is shown in

Figure 4-13. As the figure shows, there are no coupling paths for sj,k with respect to C::m

and B::n, and thus, sj,k is a vacuous coupling sequence whenever o is bound to an instance

of C. This is because the coupling set is empty with respect to C::m and B::n is empty,

Table 4-1. Summary of sample coupling paths

Type Coupling Path

A �A::m(e), A::m(exit), f(j.return), f(k.call), A::n(entry), A::n(g)�
B �A::m(e), A::m(exit), f(j.return), f(k.call), B::n(entry), B::n(t)�
C �C::m(s), C::m(exit), f(j.return), f(k.call), B::n(entry), B::n(t)�

114
 That is, there are no coupling variables defined by C::m that are subsequently

used by B::n.

Figure 4-12. Sample hierarchy showing modified class C

Θsj k,

C ∅.=

Method Defs Uses
A::m {A::u,A::v}
A::n {A::v}
B::n {A::u}
B::l {A::v}

C::m {A::v}

A

+m()
+n()

-u : X
-v : Y

B

+n()
+l()

-w : Z

C

+m()

-v : V

(a)

(b)

115
Figure 4-13. Coupling sequence where o is bound to C and

bind(o,C)

o.m()

o.n()

def(C::v)

[C::v]

[o]

[o,A::u]

use(A::u)

[o.u]

j

i

k

sj,k

Coupling method

C::m()

B::n()

transmission paths

Antecedent Method

Consequent
Method

Antecedent Node

Consequent
Node

C m B n:: , ::

No coupling sequence
when o is bound to

instance of C

Declared
type of o is
A

A::ma

fc

B::nd

A::mb Subpath

Call site

Call return

Method entry

Method exit

Statement

Control Flow

Coupling Path

Transmission Set[...]

defs C::m() defs A::m()�

116
Pragmatically, the effects of inheritance and polymorphism have the potential to result in a

combinatorial explosion of path sets. The number of path sets is a function of the depth and

breadth of the inheritance hierarchy. However, as an optimization to reduce the number, as

noted earlier, those types that do not have overriding methods will have an empty type set.

This is possible since any coupling path that could be executed through the type will nec-

essarily appear in the path sets of other ancestor types that are members of the same type

family.

4.6 Polymorphic coupling sequences and coupling sets
Inheritance increases the number of possible bindings that can occur for a given coupling

sequence. As a result of this, the actual methods that execute and the variables indirectly

defined and used can vary at runtime. Since the depth and breadth of inheritance is always

finite, there is an upper limit on the amount of variation that can occur at runtime. In the

worst case, every member of the type family that corresponds to the coupling type can pro-

vide an instance context for the coupling sequence.

The following subsections present modified definitions of coupling sequences and cou-

pling sets that take polymorphism into account.

4.6.1 Polymorphic Coupling Sequences
To account for the possibility of polymorphic behavior at a call site, the definition of a cou-

pling sequence given by Equation 4-1 must be amended to handle all methods that can pos-

sibly execute. To accomplish this, we introduce the notion of a binding triple. A binding

triple for a coupling sequence consists of the antecedent node m, the consequent node n,

and the set of coupling variables that result from the binding of the context variable to an

instance of a particular type. The triple matches together a pair of methods p and q that can

potentially execute as the result of an invocation at the call sites of the antecedent and con-

sequent nodes j and k. Neither of these methods is required to be from the class c that pro-

vides the instance context for the coupling sequence. Each may be from different classes

that are members of the type family defined by c, and provided that p is an overriding

117
method for m or q is an overriding method for n. Note that there will be exactly one binding

triple for each class that defines an overriding method for either m or n.

Classes that do not define such overriding methods are excluded.

To modify the coupling sequence definition, we add a set of binding triples into the

definition of a Type I coupling sequence. This set is the extension of all possible binding

triples for a given coupling sequence. Thus, the new definition for a coupling sequence

becomes:

Equation 4-6. Polymorphic coupling sequence

where f, m, n, o, and are as defined for Equation 4-1, t is the type of instance bound

to o, is the set of coupling variables for the sequence, and is the set of binding

triples for sj,k.

The definition of the set of binding triples for a Type I coupling sequence is given in

Equation 4-7.

Equation 4-7. Type I binding triple sets

where t is the actual type of the instance bound to o and

Equation 4-7 accounts for the possibility of polymorphic behavior in a coupling sequence,

and is interpreted as follows:

1. The classes that define methods p and q are members of the type family defined

by the declared type of o.

d family c()∈

Φj k,

sj k, f m n o Φj k,
t Πj k, Θj k,

t, , , , , ,()=

Πj k,

Θj k,
t Φj k,

t

Φ o m n, ,() p q Θp q,
t, ,() type p() family type o()()

type q() family type o()()

p m overrides p m,()∨=()

q n overrides q n,()∨=() Θp q,
t∧ i-defs p() i-uses q()∩=()

∧

•∈∧

∈{

}

=

t family type o()().∈

118
2. Method p is either the antecedent method m, or is a method that overrides m.

Likewise, method q is either the consequent method n, or is a method that over-

rides n.

3. The coupling set is the intersection of the set of state variables that are indi-

rectly defined by p and subsequently indirectly used by q.

Note that for a Type I coupling sequence the set induced by will never be empty. There

will always be at least one binding triple that corresponds to the antecedent and consequent

methods. This occurs when the type family defined by the context of the coupling sequence

does not contain any members that provide overriding methods for both the antecedent and

consequent methods. Thus, the only member of the binding triple set will correspond to the

declared type of the context variable, assuming that the type is not abstract. If the type is

abstract, then an instance of the nearest concrete descendant to the declared type is used.

As an example, the set of binding triples for the coupling sequence sj,k

shown in Figure 4-8 on page 108, Figure 4-9 on page 110, and Figure 4-10 on page 111 are

given in Table 4-2. The type hierarchy corresponding to the coupling type is shown in

Figure 4-7 on page 107.

Type II and III coupling sequences have definitions that are slightly different, as given by

equations Equation 4-8 and Equation 4-9, respectively. In Equation 4-8, j is the antecedent

Table 4-2. Binding triples for

t p q

A A::m A::n {A::v}

B A::m B::n {A::u}

C C::m B::n {A::u}

Θp q,
t

Φ

Φ o A::m A::n, ,()

Φ o A::m A::n, ,()

Θp q,
t

119
node and n the consequent method, and in Equation 4-9 m is the antecedent method and k

the consequent node. As with Type I coupling sequences, there will also be at least one

binding triple that corresponds to the antecedent node and consequent method, and vice-

versa for Types II and III, respectively.

Equation 4-8. Type II binding triple sets

Equation 4-9. Type III binding triple sets

4.6.2 Polymorphic Coupling Sets
The original definition of a coupling set for a coupling sequence only considers the ante-

cedent and consequent methods (for a Type I sequence) in the context of the declared type

of the coupling variable. This is no longer sufficient since inheritance and polymorphism

can result in different methods being executed. Instead, the coupling sets of all permissible

method combinations must be combined to form an aggregate coupling set for the

sequence. Thus, the coupling set is defined as the union of all the coupling sets for

each binding triple in Formally, is given by Equation 4-10, where is the cou-

pling set for binding triple t. The coupling set for a sequence is the union of all the

coupling sets for the individual pairs of methods that could potentially execute through the

call sites at the antecedent and consequent nodes.

Equation 4-10. Polymorphic coupling set

Φ o j n, ,() j q Θj q,
t, ,() type q() family type o()()

q n overrides q n,()∨=() Θj q,
t∧ i-defs j() i i-uses+ q()∩=()

•∈{

}

=

Φ o m k, ,() p k Θp k,
t, ,() type p() family type o()()∈

p m overrides p m,()∨=() Θp k,
t∧ i-defs p() i-uses k()∩=()

•{

}

=

Θsj k,

Φsj k,
. Θsj k,

Θt

Θp q,
t

Θsj k,
Θt

t Φj k,∈
∪=

120
4.7 Coupling paths in object-oriented programs
In their original work, Jin and Offutt were concerned with couplings that occur between

procedures in terms of parameters explicitly passed as arguments or through shared global

data [38]. In an object-oriented program, other cases exist that are also of interest. In par-

ticular, we care about those paths that have couplings originating at last definitions in an

antecedent method and that terminate at first uses in a consequent method.

There are two general cases in which coupling paths can occur. The most basic is where

there is no possibility of polymorphic behavior at the call sites of a coupling sequence. In

this case, the methods that execute are specified by the declared type of the context vari-

able. The most complex case is where there is a possibility of polymorphic behavior at the

call sites. As a consequence, it is not possible to determine statically which methods will

execute. At best, an approximation can be obtained by considering all possible types of

instances that can be bound to the context variable. The following subsections discuss the

coupling paths that result from each of these cases.

4.7.1 Non-Polymorphic Coupling Paths
Consider again the Type I coupling sequence shown in Figure 4-1 on page 94 where in the

body of method f there is an object reference o of declared type T. Assume that o is bound

to an instance whose actual type is T. In this scenario, there is no possibility of polymorphic

behavior. Within f, there are two instance couplings at call sites where methods m and r

(specified by T), respectively, are called successively through the instance context provided

by o.1 These two call sites are members of the coupling sequence sj,k, as described in

Section 4.2.

Ignoring polymorphism for the moment, we are interested in all of the indirect definitions

that can reach indirect uses with respect to a particular instance context. Thus, we desire to

identify all non-polymorphic coupling paths that extend from a node containing a last-def-

1. An instance coupling occurs wherever an object reference is used to access methods or state variables of
an instance.

121
before-return in an antecedent method to a node in a consequent method that contains a

first-use-in-callee with respect to the coupling variable of interest. Collectively, this set of

paths is the coupling path set for the coupling sequence sj,k. We form these paths by taking

the cross product of the i-def path set, t-path set, and i-use path set for a particular Type I

coupling sequence.

Formally, using the 9-tuple definition for a Type I coupling sequence given in

Section 4.2.1, the set of instance coupling paths for the coupling sequence sj,k is a set of

pairs consisting of a single non-polymorphic coupling path and coupling variable as

expressed by Equation 4-11, where is a subset of and t is the actual type of the

instance bound to the context variable of sj,k. The coupling path is represented as the

sequence of coupling path segments , where d, t, and u are the coupling sub-path

segments described in Section 4.4. For every there is at least one transmission

path that is definition-clear with respect to v, expressed formally as:

Equation 4-11. Instance coupling paths for Type I coupling sequences

Each non-polymorphic coupling path is formed by concatenating a single path p from each

of the coupling path segments (i-def-paths, t-paths, and i-use-paths), subject to the con-

straint that p be definition-clear with respect to a particular coupling variable v.

The diagram in Figure 4-6 on page 104 presents an abstract example of non-polymorphic

Type I coupling paths. Within method m, there are three nodes that contain last definitions

θj k,
t Θsj k,

t

d t u, ,〈 〉

v θj k,
t

,∈

v θj k,
t

t t-paths sj k,() def-clear-path first t() last t() v, ,()•∈∃• .∈∀

Ins ceCouplingPathstan sj k,() d t u, ,〈 〉 v,() v θj k,
t Θsj k,

t

def-clear-path d v,() def-clear-path t v,()

def-clear-path u v,() d i-def-path a-method sj k,() θj k,
t,()

t t-paths sj k,()∈ u i-use-paths c-method ssj k,
() θj k,

t,()∈

∧

∧

∈•

∧

∧ ∧

⊆∈�

=

122
of o.v, and associated with each are the definition-clear paths a, b and c, respectively, giving

the indirect-defs path set. On return to method m, there are three paths (d, e, and f) that are

definition-clear with respect to o and o.v that reach the node that contains the call to r. These

paths yield the set transmission path set. Within method r, there are three definition-clear

paths, (g, h, and i), to nodes that contain first uses of o.v. These last three paths give the

indirect uses path set. Taking the cross product of these three sets yields a set of 27 coupling

paths, which are shown in Table 4-3.

Type II coupling sequences are formed by taking the cross product of the t-path set with

the i-use path set for a particular type coupling sequence sj,k. This is because the indirect

definition that occurs when the antecedent node j is executed does not involve a method

call. Thus, the coupling path begins with the antecedent node. Formally, the coupling paths

for a Type II coupling sequence sj,k are defined in Equation 4-12, where is given by:

Table 4-3. Sample Coupling Paths

Number Path Number Path Number Path

1 a;d;g 10 b;d;g 19 c;d;g

2 a;d;h 11 b;d;h 20 c;d;h

3 a;d;i 12 b;d;i 21 c;d;i

4 a;e;g 13 b;e;g 22 c;e;g

5 a;e;h 14 b;e;h 23 c;e;h

6 a;e;i 15 b;e;i 24 c;e;i

7 a;f;g 16 b;f;g 25 c;f;g

8 a;f;h 17 b;f;h 26 c;f;h

9 a;f;i 18 b;f;i 27 c;f;i

Θsj k,

t

Θsj k,

t
i-defs j() i-uses c-method sj k,()().∩=

123
Equation 4-12. Instance coupling paths for Type II coupling sequence

Similar to Type II coupling sequences, Type III coupling sequences are formed by taking

the cross product of the i-def-path set with the t-path set for a particular type coupling

sequence sj,k. However, the antecedent node contains an indirect definition and the conse-

quent node contains a call to consequent method where the indirect uses occur. Formally,

the coupling paths for a Type III coupling sequence sj,k are defined by the expression in

Equation 4-13.

Equation 4-13. Instance coupling paths for Type III coupling sequence

where

4.7.2 Polymorphic Coupling Paths
The instance coupling paths described in the previous section do not take into account the

possibility of polymorphic behavior that results from dynamic variation of types that can

be bound to an object reference. With this possibility, a given instance coupling results in

one path set for each member of the associated type family. The size of these sets is deter-

mined by the number of overriding methods within a given type, either defined directly or

inherited from another type. The following subsections discuss the effects of inheritance

and polymorphism on coupling and the set of coupling paths that result.

Ins ceCouplingPathstan sj k,() t u,〈 〉 v,() v θj k,
t Θsj k,

t

def-clear-path t v,() def-clear-path u v,()

t t-paths sj k,()∈ u i-use-paths c-method sj k,() θj k,
t,()∈∧

•

∧

∧

⊆∈�

=

Ins ceCouplingPaths sj k,()tan d t,〈 〉 v,() v θj k,
t Θsj k,

t

def-clear-path d v,() def-clear-path t v,()

d i-def-paths a-method sj k,() θj k,
t,()∈ t t-paths sj k,()∈∧

•

∧

∧

⊆∈�

=

Θsj k,

t
i-defs a-method sj k,()() i-uses k().∩=

124
4.7.2.1 Type 1 Polymorphic Coupling Paths
For a Type I coupling sequence sj,k, coupling paths are formed by taking each binding triple

 as expressed by Equation 4-14. As an example, Table 4-3 presents the set of poly-

morphic coupling paths for the class hierarchy shown in Figure 4-7 on page 107, and for

the corresponding control flow schematics shown in Figure 4-8 on page 108, Figure 4-9 on

page 110, and Figure 4-10 on page 111.

Equation 4-14. Type I polymorphic coupling
paths

4.7.2.2 Type II Polymorphic Coupling Paths
For a Type II coupling sequence sj,k, coupling paths are formed by taking each binding

triple as expressed by Equation 4-15. The first element of each tripe in this set, ε,

is an empty set of i-def paths, recording the fact that the indirect definition of the coupling

variable takes place in the coupling method instead of an antecedent method.

Equation 4-15. Type II polymorphic coupling paths

Table 4-4. Polymorphic coupling paths for type family A

A B C

φ Φj k,
t∈

CouplingPaths sj k,() d t u, ,〈 〉 v,() v Θj k,
t∈ t Πj k,∈

def-clear-path t v,()

φ Φj k,
t

d i-def-paths antecedent φ() v{ },()∈
u i-use-paths consequent φ() v{ },()∈∧

•∈∃(
)

•
∧

∧
�{

}

=

A::ma fc A::nd, ,〈 〉 A::ma fc B::nd, ,〈 〉 C::ma fc B::nd, ,〈 〉

A::mb fc A::nd, ,〈 〉 A::mb fc B::nd, ,〈 〉

φ Φj k,
t∈

CouplingPaths sj k,() ε t u, ,〈 〉 v,() v Θj k,
t∈ t Πj k,∈

def-clear-path t v,()

φ Φj k,
t∈ u i-use-paths consequent φ() v{ },()∈•∃()•

∧
∧
{

}

=

125
4.7.2.3 Type III Polymorphic Coupling Paths
For a Type III coupling sequence sj,k, coupling paths are formed by taking each binding

triple as expressed by Equation 4-16. In this situation, the third element of the

binding triple is the empty sub-path set ε, corresponding to the fact that there are no i-use

paths for a Type III coupling sequence.

Equation 4-16. Type III polymorphic coupling paths

4.7.3 Feasible and infeasible coupling sequences
For a coupling sequence to exist, the context variable must be bound to some instance on a

path that reaches the antecedent node. The location in a method where a context variable o

is defined (i.e. made to refer to a particular object) is called a binding site. For a coupling

sequence to exist, there must be at least one definition-clear path with respect to o from the

binding site to the antecedent node.

For a binding site s, not all bindings to o are possible. A binding to o must be an instance

of some member of the type family induced by o’s declared type. The set of types that can

be bound to o is determined by the binding mechanism. The binding mechanism is how an

instance is bound to a variable, which can be by one of the following:

1. Parameter passing. o is passed as an actual parameter to a method.

2. Explicit instance creation. For example, o = new T().

3. Assignment of another variable to the context variable. For example, o = p,

where p’s declared type is a member of the type family induced by o’s declared

type.

φ Φj k,
t∈

CouplingPaths sj k,() d t ε, ,〈 〉 v,() v Θj k,
t∈ t Πj k,∈

def-clear-path t v,()

φ Φj k,
t∈ d i-def-paths antecedent φ() v{ },()∈•∃()•

∧
∧

�{

}

=

126
4. Assignment of the return value of a method call to o. For example, o = f(), where

the return type of f is a member of the type family induced by o’s declared type.

For binding mechanisms 2, 3, and 4, the type of the instance bound to o is restricted by the

declared type used in the mechanism. For type 2, the type of the binding is that of the type

specified in the instance creation operator (e.g. new in Java and C++). Thus, any feasible

coupling sequences involving this binding must use the same type.

For type 3, the resulting type of the binding is limited to the set S of possible bindings to p,

which is determined in turn by the binding mechanisms used at each binding site of p. S is

the union of all possible types that can be bound to p at binding sites that reach the assign-

ment o = p.

For type 4, the resulting type is limited to the set S of possible types that can be returned by

f(). If f’s declared return type is not the same as o’s declared type T, then the set of types R

that can be returned by f will be a proper subset of the type family defined by T, thus

Therefore, there is no feasible coupling sequence whose context is T. In the general case,

there will be no feasible coupling sequence whose context variable has a declared type in

4.8 Summary
This chapter has presented the extensions for handling inheritance and polymorphism to the

coupling-based testing approach of Jin and Offutt [38]. The key insight to the extensions is

in recognizing that the majority of coupling occurring in object-oriented programs resides

in the state space interactions among the methods of a class. These couplings are dependent

upon the context in which instances of the class are used, and are determined by the mech-

anisms (i.e. direct or indirect definition and use) used to alter the state of an instance. To

model this context, the coupling sequence has been defined, which captures information

about methods that are called in the context of a particular instance, the state variables for

which the interaction occurs, and the paths between the locations where the interactions

T R.∉

family T() family R().–

127
take place. This information as the basis for a code-based static and dynamic analysis, and

also as the basis for the set of test-adequacy criteria that form the coupling-based testing of

object-oriented programs. Subsequent chapters discuss these criteria in detail and how

source code is analyzed to identify coupling sequences.

5. A Set of Criteria for Testing Object-Oriented
Programs

This chapter presents a new set of integration-level testing criteria that are based on the cou-

pling theory presented in Chapter 4. These criteria are based on the data flow characteristics

of coupling sequences, and are similar in nature to the original definitions of Jin and Offutt

[38]. However, they differ in that the effects of both inheritance and polymorphism are

explicitly accounted for. The handeling of inheritance and polymorphism is the most novel

aspect of this thesis.

The definitions for coupling sequences, binding triples, and coupling paths presented in

Chapter 4 lay a foundation with which to derive a set of new test adequacy criteria. These

criteria can be used to guide the testing process and provide both requirements for testing

and decision criteria for when to stop testing.

A fundamental issue with testing is how much is enough? In a perfect world no testing

would be required, but in reality, a considerable amount is usually necessary. Typically,

experience shows that the criterion most often applied is that of date coverage: testing stops

when the amount of time allocated to the testing effort has been exhausted or eliminated.1

Unfortunately, the basis for this criterion has virtually nothing to do with the intrinsic qual-

ity of the software. The greater complexity among the connections of software components

found in object-oriented programs introduce new types of faults, thus new testing criteria

are needed.

1. Date coverage was first theorized and described by Alexander, and later presented by Offutt [56].
128

129
5.1 Coupling Criteria
The new criteria are shown in Figure 5-1 and are similar to the original data flow testing

criteria of Rapps and Weyuker [65]. The subsumptive relations of the criteria are shown in

Figure 5-1. Examining the hierarchy from the bottom up reveals a basic structuring of the

criteria along two distinct paths. At the bottom of the hierarchy is All-Coupling-Sequences,

which is the most basic criterion and does not handle inheritance, polymorphism. or state

space interactions. Moving up the left branch we find the criterion All-Poly-Classes, which

takes into account the effects of inheritance and polymorphism. Moving up the right branch

reveals a grouping of criteria that place emphasis on coupling paths based on the interac-

tions of definitions and uses of coupling variables. Just below the top of the hierarchy is the

criterion All-Poly-Coupling-Defs-Uses, which serves to unify those criteria based on defi-

nitions and uses of coupling variables, with the criterion that considers the effects of inher-

itance and polymorphism. Finally, at the top of the hierarchy is All-Coupling-Paths, which

is the most comprehensive of all the criteria, and also serves as the point of unification

between the new OO-based criteria and the original criteria of Jin and Offutt [38]. Each of

these criteria are described and discussed in detail in the sub-sections that follow.

5.1.1 Definitions
The following definitions are used in the subsections below:

• context(sj,k) : Type : Returns the type of the instance bound to the context vari-

able of the coupling sequence sj,k.

• first(p) : Node : The first node in path p.

• last(p) : Node : The last node in path p.

• family(c) : �Class : The set of classes that belong to the type family specified by

class c. Note that c itself is a member of family(c).

130
• FU(sj,k,c,v) : The set of nodes in the consequent method of sj,k with instance con-

text c that have first-uses of v.

• i-defs(m) : �Variable : The set of variables in the state space of the class contain-

ing m that are indirectly defined by a call to m made through some instance con-

text. Formally:

Figure 5-1. Hierarchy of coupling-based testing criteria

All-Poly-Classes
(Section 5.1.3)

All-Coupling-Sequences
(Section 5.1.2)

All-Coupling-Defs-Uses
(Section 5.1.6)

All-Poly-Coupling-Defs-Uses
(Section 5.1.7)

All-Coupling-Paths

All-Coupling-Defs/
Some-Coupling-Uses

(Section 5.1.4)

All-Coupling-Uses/
Some-Coupling-Defs

(Section 5.1.5)

i-defs m() v state-vars class m()()∈ j Nm v defs j()∈•∈∃�{ }=

131
• i-uses (m) : �Variable : The set of variables in the state space of the class con-

taining m that are indirectly used by a call to m made through some instance con-

text. Formally:

• LD(sj,k,c,v) : The set of nodes in the antecedent method of sj,k with instance con-

text c that have last-definitions of v.

• paths(sj,k) : �Path : The set of coupling paths for coupling sequence sj,k.

• sequences(f) : �CouplingSequence : The set of coupling sequences contained in

method f.

• trace(p,i,sj,k,c) : The coupling path (i.e. execution trace) that results from the exe-

cution of method f using input i for coupling sequence sj,k in an instance context

of the type family of c. For a Type I coupling sequence, the coupling path begins

at a node in the antecedent method of sj,k that contains a last-definition of a cou-

pling variable in sj,k, and ends at a node in the consequent method that has a first-

use of the same coupling variable. For a Type II sequence, the coupling path

begins at a node in the coupling method that defines a coupling variable directly

through an object reference. Like the Type I sequence, the coupling path ends at a

node in the consequence method that has a first use of the same coupling vari-

able. Finally, a Type III sequence, like a Type I sequence, begins at a node in the

antecedent method that defines a coupling variable. However, the coupling path

ends at a node in the coupling method that has the first-use of the coupling vari-

i-uses m() v state-vars class m()()∈ j Nm v uses j()∈•∈∃�{ }=

132
able. In all three cases, when the coupling method f is executed using input i, a

path is traced from the entry node of f to its exit node. The coupling path is a sub-

path of this path.

• : The set of test cases that satisfy coupling sequence sj,k. These are test

cases that have been verified to test sj,k.

The criteria described in the sections that follow are each presented with two definitions.

The first is a formal definition that is based on the coupling theory presented in Chapter 4.

The other is an intuitive definition stated in terms that make the criteria practical for testing

purposes, whereas the formal definition is more suited for the static and dynamic analysis

of the coupling properties of object-oriented programs.

5.1.2 All-Coupling-Sequences
Arguably, the minimum acceptable level of integration testing for an object-oriented pro-

gram should cover every coupling sequence in every method of every class. Here, coverage

means that each coupling sequence is executed by at least one test case. Accordingly, the

All-Coupling-Sequences requires that every coupling sequence in a method be covered by

at least one test case. Note that this criterion is coarse-grained in that it does not consider

the definition and use interactions that can occur for the coupling variables that participate

in a particular coupling sequence.

Observe that there is a similarity to Jin and Offutt's definition for call coupling. In their def-

inition, every call site is required to be executed by at least one test. The key difference is

that All-Coupling-Sequences considers those calls made through an instance context. Jin

and Offutt's call coupling criterion is a degenerate case of All-Coupling-Sequences. Each

procedure-oriented language program can be considered to have a single class that corre-

sponds to the system itself. In the running system, there is a single instance of that class.

Every procedure and function in the system are methods in that class. Thus, All-Coupling-

Sequences is equivalent to Jin and Offutt's call coupling criterion where every call to a pro-

TSj k,

133
cedure or function is considered to be through an implicit self instance context (similar to

this in C++ and Java). Note, however, that the converse, in general, is not true.

DEFINITION All-Coupling-Sequences: For every coupling sequence sj,k in coupling method

f, there is at least one test case such that when f is executed using t, there is a

path p in the coupling paths of sj,k that is a sub-path of the trace of f. The All-Coupling-

Sequences criterion is stated formally in Equation 5-1, where .

The symbol m indicates that the path p is a sub-path of another path. In Equation 5-1, it is

used to denote that p is a sub-path of an execution trace of f.

Equation 5-1. Criterion All-Coupling-sequences

5.1.3 All-Poly-Classes
The All-Poly-Classes criterion extends All-Coupling-Sequences to consider the effects of

inheritance and polymorphism on coupling sequences. This is achieved by requiring at least

one test for every class that could provide an instance context for each coupling sequence.

The underlying idea is to know that a particular integration is successful with respect to

every possible type substitution that can occur in a given coupling context. Each such sub-

stitution must be tested. Like All-Coupling-Sequences, All-Poly-Classes does not consider

the possible definition and use interactions that can occur for particular coupling variables.

The All-Poly-Classes criterion requires that for every coupling sequence sj,k in a method f,

and for every class c in the type family defined by the context of sj,k, there is at least one

test that covers every feasible combination of c and sj,k for f. The combination (c, sj,k) is

feasible if and only if c is the declared type T of the context variable for sj,k, or c is a proper

descendant of T and c defines an overriding method for the antecedent or consequent

method. Thus, we do not consider classes that do not override the antecedent and conse-

quent methods. We say that such a class is oblivious with respect to sj,k, because without an

overriding definition, regardless of which methods actually execute for the antecedent and

t TSj k,
∈

c family context sj k,()()∈

sj k,∀ sequences f()∈ t∃ Tsj k,
∈ p∃ paths sj k,()∈

p trace f t sj k, context sj k,(), , ,()m

•(
)

•(
)

•

134
consequent, the thread of control will not enter such a class. This assumes that for a class

c, the methods that will execute against the instance context when called in that context do

not call other polymorphic methods.1 For a class c that is a member of some type family F,

where and the effec-

tive method for m or n when the context is an instance of c will be the nearest definition of

m or n, respectively, when traversing up the inheritance hierarchy from c to F. When m is

not polymorphic, the corresponding effective method will always be in the specification of

the type that is the base of the family, F in this example.

DEFINITION All-Poly-Classes: For every coupling sequence sj,k in coupling method f, and

for every class in the family of types defined by the context of sj,k, there is at least one test

case t such that when f is executed using t, there is a path p in the coupling paths of sj,k that

is a sub-path of the trace of f.

The All-Coupling-Sequences criterion is stated formally in Equation 5-2.

Equation 5-2. Criterion All-Poly-Classes

5.1.4 All-Coupling-Defs/Some-Coupling-Uses
The criterion All-Coupling-Defs/Some-Coupling-Uses requires that for every coupling

sequence in a method f, and every coupling variable v in the sequence and corresponding

coupling-use d of v, there must be at least one test that executes a coupling path that begins

at d and ends at a coupling-use of v.

DEFINITION All-Coupling-Defs/Some-Coupling-Uses: For every coupling sequence sj,k in

coupling method f, and for every coupling variable v of sj,k and every node d in the ante-

cedent method of sj,k that contains a last definition of v, there is at least one test case t such

1. If the assumption does not hold, then it is possible that the thread of control can enter a class that is appar-
ently oblivious.

m antecedents sj k,(),= n consequent sj k,(),= n methods F()∈

sj k,∀ sequences f()∈ c∀ family context sj k,()()∈
t∃ Tsj k,

∈ p paths sj k,()∈∃ p trace f t sj k, c, , ,()∈•()•()•
•

135
that when f is executed using t, there is a coupling path p in the trace of f that begins at d

and that reaches some use of v in the consequent method of sj,k.

The All-Coupling-Sequences criterion is stated formally in Equation 5-3.

Equation 5-3. Criterion All-Coupling-Defs/Some-Coupling-Uses

5.1.5 All-Coupling-Uses/Some-Coupling-Defs
The All-Coupling-Uses/Some-Coupling-Defs criterion is the converse of All-Coupling-

Defs/Some-Coupling-Uses. For every coupling sequence in a method f, and every coupling

variable v in the sequence and corresponding coupling-use u of v, there must be at least one

test that executes a coupling path that begins at some coupling-definition of v and ends at u.

DEFINITION All-Coupling-Uses/Some-Coupling-Defs: For every coupling sequence sj,k in

coupling method f, and for every coupling variable v of sj,k and every node u in the conse-

quent method of sj,k that contains a first use of v, there is at least one test case t such that

when f is executed using t, there is a coupling path p in the trace of f that begins at a node

in the antecedent method of sj,k that has a last definition of v and that reaches the first-use

at u.

The All-Coupling-Uses/Some-Coupling-Defs criterion is stated formally in Equation 5-4.

All-coupling-sequences sj k, sequences f()∈∀�
c family context sj k,()()∈∀ v Θsj k,

m LD sj k, c v, ,() n FU sj k, c v, ,()∈,∈ v

i-defs m() v i-uses n() t Tsj k,
p

CouplingPaths sj k,()
p.first trace f t sj k, c, , ,()m first p.first() m=

last p.first() n=

∧
∧
•
∈

∃(

)

•∈∃(

)

•∈∧∈
•∀(

)

•
∈∀(

)

••

136
Equation 5-4. Criterion All-Coupling-Uses/Some-Coupling-Defs

5.1.6 All-Coupling-Defs-Uses
The criterion All-Coupling-Defs-Uses is the combination of All-Coupling-Uses/Some-

Coupling-Defs and All-Coupling-Defs/Some-Coupling-Uses. It requires that, for every cou-

pling sequence in a method f, and for every coupling variable v in the sequence, there must

be at least one test case that executes each coupling path with respect to v. That is, every

feasible coupling path between each coupling-definition and coupling-use pair for v must

be executed by at least one test case.

DEFINITION All-Coupling-Defs-Uses: For every coupling sequence sj,k in coupling method

f, and for every coupling variable v of sj,k and every node d in the antecedent method of sj,k

that contains a last definition of v, there is at least one test case t such that when f is exe-

cuted using t, there is a coupling path p in the trace of f that begins at d and that reaches a

node in the consequent method of sj,k that has a first-use of v.

The All-Coupling-Defs-Uses criterion is stated formally in Equation 5-5.

Equation 5-5. Criterion All-Coupling-Defs-Uses

sj k, sequences j() v Θsj k,

n FU sj k, context sj k,() v, ,() v i-uses n()∈
t Tsj k,

p CouplingPaths sj k,()
p.first trace f t sj k, context sj k,(), , ,() last p.first() n=∧m•

∈∃(
)

•∈∃(
)

••∈∀(

)

•∈∀(

)

•∈∀

sj k, sequences f() v Θsj k,
∈∀ m

LD sj k, context sj k,() v, ,() n FU sj k, context ss j,() v, ,()∈
v i-defs m()∈ v i-uses n()∈∧ t Tsj k,

p CouplingPaths sj k,() p.first trace f t sj k, context sj k,(), , ,()m�∈∃
first p.first() m last p.first()∧ n= =()∧

(
)

•
∈∃(

)

•�
,∈

∀(

)

•••∀

137
5.1.7 All-Poly-Coupling-Defs-Uses
The criterion All-Poly-Coupling-Defs-Uses takes into account the effects of inheritance and

polymorphism and serves to unify the two branches of the criteria shown in Figure

Figure 5-1. All-Poly-Coupling-Defs-Uses requires that all coupling paths be executed for

every member of the type family defined by the context of a coupling sequence.

DEFINITION All-Poly-Coupling-Defs-Uses: For every coupling sequence sj,k in coupling

method f, every class in the family of types defined by the context of sj,k, every coupling

variable v of sj,k, every node m having a last definition of v and every node n having a first-

use of v there is at least one test case t such that when f is executed using t. Further, there is

a path p in the coupling paths of sj,k that is a sub-path of the trace of f.

The All-Poly-Coupling-Defs-Uses criterion is stated formally in Equation 5-6

Equation 5-6. .Criterion All-Poly-Coupling-Defs-Uses

5.2 Generation of Test Requirements
A question that must be considered for the criteria presented in section Section 5.1, with

respect to inheritance and polymorphism, is which classes should be selected for consider-

ation when generating test requirements according to a particular criterion. Both All-Poly-

Classes and All-Poly-Classes-Defs-Uses require coverage of all members of the type

family for a particular coupling sequence. However, in the general case, this will only be

feasible in those cases where the context variables are passed as formal arguments to the

method under test, and the binding occurs at the site where the method is called. In this sit-

uation, the coupling variables passed as formal arguments can potentially be bound to an

sj k, sequences f() c family context sj k,()()•∀• v Θsj k,
∈∀

m LD sj k, c v, ,() n FU sj k, c v, ,()
v i-defs m()∈ v i-uses n()∈∧ t Tsj k,

∈∃
p CouplingPaths sj k,()∈∃

p.first trace f t sj k, c, , ,()m first p.first() m last p.first()∧ n= =∧�
(

)

•
(

)

•�
∈,∈∀(

)

•
(

)

•∈∀

138
instance of any type that is a member of the type family defined by the variable's declared

type. Unfortunately, there are other cases where a coupling variable is bound to an instance,

but where the type of the instance cannot so easily be generalized. The first occurs when

the type of an instance bound to a context variable is explicitly named. This occurs in state-

ments where an instance creation operator appears (e.g. new in Java and C++). In this cir-

cumstance, the type of the instance bound to the coupling variable must be from a member

of the coupling variable's type family. However, since the type is explicitly named, there

can be no variation in the type bound at a particular statement (referred to as a binding site).

The next case occurs when the actual type of the instance bound to a coupling variable

cannot be controlled. This happens when the context variable is part of the state of an object

and the binding results from some state dependent behavior caused by some prior sequence

of method calls. In this case, varying the type of the instance bound to the context variable

means varying the sequence of method calls, which may not be feasible. Further, even if

the sequence can be varied, it is not guaranteed that it can be varied in such a way as to

result in the desired variation of the types of the instance bound to the context variable.

The final difficulty in varying the type of the instance bound to a coupling variable occurs

when the binding is to the result of a method call. Since the called method has the freedom

to determine which instance is created, it may not be possible to achieve the desired varia-

tion of types. Thus, without the benefit of knowing what the called method does, it is not

possible to assume anything stronger other than that some instance of the context variable's

type family will be returned.1 When the binding is a function of some state dependent

behavior, the sequence of methods called prior to the method under test determines which

binding is in effect, and cannot be determined as part of the input parameters to the method

under test. From a testing perspective, this means that it is not possible to control all of the

1. Note that under this scenario, it is possible for the called method to return no instance at all. However,
this would be considered a data flow anomally where a use of the context variable occurred after the context
variable had been killed.

139
inputs to the method under test in every case desired [31]. Thus, there is an element of non-

determinism in the testing process where inheritance and polymorphism are a factor.

From the perspective of generating test requirements according to a particular criterion, it

is not reasonable, or practical, to require that the context variable of every coupling

sequence be tested using an instance of every possible type. Instead, these criteria must be

relaxed.

In the case where the type of the instance bound to a context variable cannot be controlled,

the All-Poly-Classes criterion is relaxed to require only that only at least one test case that

results in the binding of the context variable to some member of the corresponding type

family be used. Similarly, All-Poly-Classes-Defs-Uses is relaxed to require that only the

definitions and uses be tested that result from a binding of the context variable to some

member of the corresponding type family.

For the case where the type of instance bound to a context variable is explicit, the require-

ment for All-Poly-Classes is that there be at least one test case that causes the explicit bind-

ing to occur. For All-Poly-Classes-Defs-Uses, the requirement is relaxed to require that all

definitions and uses of coupling variables be tested through an instance of the explicit type

bound to the context variable.

6. Analyzing Coupling Properties of Object-
oriented Programs

This chapter discusses the static analysis of object-oriented programs to determine their

coupling properties that are relevant to coupling-based testing. It presents algorithms for

identifying coupling sequences for a method under test, and the corresponding coupling

sets that result from the various types of instances that can be bound to a context variable.

This chapter also presents a discussion of the instrumentation mechanism for object-ori-

ented programs that is used to collect coupling information and to support the coupling-

based testing criteria presented in Chapter 5. The details of the instrumentation are out of

necessity specific to the Java programming language. However, the techniques themselves

are generally applicable to many strongly typed object-oriented language, including C++,

Eiffel, C#, and Ada.

6.1 Definitions
The following definitions are used in this chapter:

• aliases(v1,v2) : boolean : Returns true if v1 aliases v2, and vice versa.

• antecedent(sj,k) : Node : Returns the antecedent node associated with coupling

sequence sj,k.

• antecedent_method(sj,k) : Method : Returns the antecedent method associated

with coupling sequence sj,k.

• callee(c) : method : Returns the method that is called at callsite c.
140

141
• calls(n) : �Call : Returns the set of calls that appear in the statement that corre-

sponds to node n. Each Call is the pair (o,m), where o is the context variable for

the call, and m is the called method.

• consequent(sj,k) : Node : Returns the consequent node associated with coupling

sequence sj,k.

• consequent_method(sj,k) : Method : Returns the consequent method associated

with coupling sequence sj,k.

• context(sj,k) : Variable : Returns the context variable associated with the cou-

pling sequence sj,k.

• context-var(c) : Variable : Returns the context variable used in a method call.

For example, in the call o.m(), o is the context variable.

• control-successor(n2, n1) : boolean : Returns true if n2 is a control successor of

n1.

• family(o) : �Type : Returns the set of types in the type family defined by o’s

declared type.

• i-defs(m) �Variable : Returns the set of state variables indirectly defined by m

in the class that contains m in its specification.

• i-uses(m) �Variable : Returns the set of state variables indirectly used by m in

the class that contains m in its specification.

142
• is-instance-method(m) : boolean : Returns true if m is specified as an instance

method by some class. If m is not an instance method, then it is a class method.

• transmitted(o, v, n1, n2) : boolean : Returns true if there is a definition-clear

path from n1 to n2 with respect to state variable v in the instance referenced by o.

• type(v) : Type : Returns the type of variable v.

6.2 Identifying Coupling Sequences
The algorithm for identifying coupling sequences within a method f under test is presented

in Algorithm 6-1. It begins by initializing the set of coupling sequences Sf to the empty set.

It then iterates over pairs of distinct nodes n1, n2 (represented by the two outer loops) that

have call sites containing calls to methods made through an instance context. For each such

pair, where there is at least one control flow path from n1 to n2, the algorithm iterates over

the pairs of calls c1 and c2 to instance methods made at each site such that the context vari-

able of each call is the same (or aliases one another). For each pair, a coupling sequence

(f, n1, n2, callee(c1), callee(c2)) is added to the set of coupling sequences for f. The running

time of this algorithm is O(n2), where n is the number of nodes having call sites that involve

instance contexts and n ≤ Nf, where Nf is the number of nodes in f. Note that c1 and c2 rep-

resent the number of individual calls on individual statements. Their product contributes

only a small constant to the running time of the algorithm, and thus n2 is the dominating

term. This is justified by observing that most statements, the number of calls will be one

(e.g. a = f() + g), thus the term of the complexity contributed by the number of calls will

also be one. However, suppose that the number of calls at both call sites were greater than

one, say four. In this case, the term contributes a factor of 16 to the overall expression. Still,

in the majority of cases this is insignificant when compared to the number of nodes (i.e.

statements) in a method.

143
6.3 Identifying Coupling Sets
The algorithm for identifying the coupling set associated with each coupling sequence for

a method under test f is presented in Algorithm 6-2. The algorithm iterates over each cou-

pling sequence sj,k in f, and each t in the type family defined by the declared type of sj,k’s

context variable. For each such t, the coupling set is formed by taking the intersection of

the state variables indirectly defined by the antecedent method with those that are indirectly

used by the consequent method. The coupling set is further restricted to only those state

variables that are transmitted between antecedent and consequent nodes of f. As defined in

Section 4.4 on page 101, transmitted means for each state variable v in the coupling set: (1)

there is no other method called between the antecedent and consequent nodes that use the

same instance bound to the context variable o that results in the definition of v; and (2) there

is no direct assignment of v through the same instance bound to o.

Algorithm 6-1: Identifying coupling sequences
Sf = ∅
for n1 ∈ call-sites(f):

for n2 ∈ call-sites(f)|n2 ≠ n1 ∧ control-successor(n2, n1):
for c1 ∈ calls(n1)|is-instance-method(callee(c1)):

for c2 ∈ calls(n2)|c1 ≠ c2 ∧ is-instance-method(callee(c2)):
if (context-var(c1) = context-var(c2) ∨

aliases(context-var(c1),context-var(c2))) ⇒
Sf ∪= { (f, context-var(c1),type(context(c1)),n1,

n2, callee(c1), callee(c2)) }

end if
end for

end for
end for

end for

144
6.4 Instrumenting OO Programs for Coupling Analysis
To test object-oriented programs, we need to know which elements of interest are covered

during the execution of a method under test for a particular input. From a coupling-based

testing perspective, this means that for a given input (i.e. test case), we need to determine

which coupling sequences are executed, which definitions and uses occur, and which calls

are made. To this end, a number of coverage mappings are defined that formally specify

the information that must be collected. Each mapping is a requirement for instrumentation

necessary to collect coverage data.

6.4.1 Coverage Mappings
Each coverage mapping relates a particular event of interest to corresponding coverage

information. For example, the execution of a statement that contains a call to a method

made through an instance context is important if we are concerned with the coupling-based

testing criteria. For the same reason, binding sites are also of interest since they are where

the identify of the instances bound to object references are determined.

There are twelve coverage mappings relevant to collecting coverage information for cou-

pling-based testing, as summarized in Table 6-1. The first column of the table gives the

name of the mapping, while the second gives the corresponding form. The third column

gives the interpretation of the mapping. Except for the last mapping (TracedPath), the form

Algorithm 6-2: Identifying coupling sets
for sj,k ∈ Sf :

for t ∈ family(context(sj,k)):

 = ∅

for v ∈ (i-defs(antecedent_method(sj,k)) ∩ i-uss(consequent_method(sj,k)):
if transmitted(v, antecedent(sj,k), consequent(sj,k)) ⇒

 ∪= {v}

end if
end for

end for
end for

Θsj k,

t

Θsj k,

t

145
of each mapping is that of a function that relates a mapping tuple to an integer. The tuple

contains the parameters that characterize the mapping, and the integer gives the count of

the times that the corresponding event of interest occurs in the method under test a runtime

(e.g. the number of times that a particular variable has been defined).

As an example of a mapping tuple, the first coverage mapping, CouplingSequences consists

of the parameters context variable, context type, object id, antecedent node, consequence

node, and the name of the method under test (given as f in the table). These mapping param-

Table 6-1. Coverage Mappings
Map Form Interpretation

Coupling Sequences

(context variable, context type,
object id, antecedent node, con-

sequent node, f) → (integer,

integer)

Execution counts for antecedent and con-
sequent nodes, respectively.

Definitions (identifier, node, line, f) → inte-

ger

Number of definitions of identifier at loca-
tion node in line of mut.

Indirect Definitions (identifier, node, line, f) → inte-

ger

Number of definitions of state variable
identifier at location node in line of mut.

Last Definitions (identifier, node, line, f) → inte-

ger

Number of last definitions of identifier at
location node in line of mut.

Last Indirect Defini-
tions

(identifier, node, line, f) → inte-

ger

Number of last definitions of state vari-
able identifier at location node in line of
mut.

Uses (identifier, node, line, f) → inte-

ger

Number of uses of identifier at location
node in line of mut.

Indirect Uses (identifier, node, line, f) → inte-

ger

Number of uses of state variable identifier
at location node in line of mut.

First Uses (identifier, node, line, f) → inte-

ger

Number of first uses of identifier at loca-
tion node in line of mut.

First Indirect Uses (identifier, node, line, f) → inte-

ger

Number of first uses of state variable iden-
tifier at location node in line of mut.

Calls

(identifier, method, node, line,

bound type, object id, f) → inte-

ger

method is called through identifier (identi-
fier.method()), where identifier is bound to
an instance of bound type.

(method, node, line, f) → inte-

ger

method is called independent of any
instance context (method()).

Traced Nodes Node → integer Number of times Node has been executed.

Traced Path
Sequence of Node Sequence of traced nodes as encountered

during an execution of the method under
test.

146
eters are based on the definition of a coupling sequence given in Section 4.2 on page 93.

Both the antecedent node and consequent node (and all other references to node in the

table) are the names of nodes in the control flow graph that corresponds to the method under

test f. The parameter object id is a value that corresponds to the identify of the instance

bound to the context variable. This ensures uniqueness across coupling sequences that

would otherwise not be if identity is ignored. The ability to discriminate coupling

sequences by instance identity is important for purposes of determining coverage ade-

quacy.

The Taced Path mapping is a sequence of nodes. For a given execution of the f, it records

the nodes that were executed and captured by the Traced Nodes mapping.

6.4.2 Instrumentation Requirements
The coverage mappings described in Section 6.4.1 are used to determine the set of instru-

mentation requirements necessary to collect coupling-based coverage data for a given pro-

gramming language L. For a given L, each instrumentation requirement yields an

instruction set IL that contains one or more instrumentation instructions expressed as state-

ments of L. Each IL is injected into the method under test (MUT) m at locations where the

corresponding coverage data can be collected as m executes. Table 6-2 presents the instru-

mentation instructions that correspond to the coverage mappings given in Table 6-1. The

first column gives the instrumentation category, the second the name of the instruction,

which maps one-to-one to the column labeled Map in Table 6-1. The third column gives

the placement for the instrumentation instruction in relation to the statement of the MUT

147
that yields the event of interest. The fourth column provides commentary that further clar-

ifies the placement of the corresponding instrumentation instruction.

6.5 Instrumenting Java Programs
The research in this thesis is validated using programs written in Java. Accordingly, a set

of instrumentation instructions and data collection mechanism is required that will collect

the necessary information within the constraints imposed by the syntax and semantics of

Java.

Table 6-2. Instrumentation instructions
Category Instruction Placement Comments

Coupling Sequences

registerCouplingSequence
Immediately after each
binding site.

One per reachable coupling
sequence.

AntecedentCall
Immediately before each
call site where the ante-
cedent method is called.

One per coupling sequence
that has the called method
as its antecedent.

ConsequentCall
Immediately before each
call site where the conse-
quent method is called.

One per coupling sequence
that has the called method
as its consequent.

Definitions

def Immediately before each
node where definition
occurs.

iDef

lastDef

lastIDef

Uses

Use Immediately before each
node where use occurs.iUse

firstUse

firstIUse

Miscellaneous
call

Immediately before each
node where call is made.

trace
Immediately before exe-
cution of traced node.

148
6.5.1 Instrumentation Instructions
Table 6-3 summarizes the methods that implement the coverage mappings and instruction

requirements given in Table 6-1 and Table 6-2. Note that the signatures of each method are

isomorphic to the tuples of the corresponding coverage mapping.

Table 6-3. Java instrumentation methods

Category Java Method Signature

Coupling
Sequences

registerCouplingSeq(String contextVar,
 String couplingType,
 int objectId,
 String antecedentNode,
 String consequentNode,
 String mut)

antecedentCall(String contextVar,
 String couplingType,
 int objectId,
 String antecedentNode,
 String consequentNode,
 int line,
 String mut)

ConsequentCall(String contextVar,
 String couplingType,
 int objectId,
 String antecedentNode,
 String consequentNode,
 int line,
 String mut)

Defini-
tions

def(String identifier, String nodeId, int line, String mut)

iDef(String identifier, String nodeId, int line, String mut)

lastDef(String identifier, String nodeId, int line, String mut)

lastIDef(String identifier, String nodeId, int line, String mut)

Uses

use(String identifier, String nodeId, int line, boolean puse, String mut)

iUse(String identifier, String nodeId, int line, boolean puse, String mut)

firstUse(String identifier, String nodeId, int line, boolean puse, String mut
)

firstIUse(String identifier, String nodeId, int line, boolean puse, String mut
)

Miscella-
neous

call(String method, String nodeId, int line, String mut)

call(String identifier, String method, String nodeId, int line, String bound-
Type, int objectId, String mut)

trace(String nodeId)

149
The instructions for Java are defined as methods in a special class called DataCollector

whose purpose is to provide the implementation of a suitable mechanism for collecting cou-

pling-based coverage data. This class is depicted in the UML Class Diagram shown in

Figure 6-1 along with supporting classes CouplingSequence, Definition, Use, and Call. The

supporting classes are used to hold information specific to the events of interest (e.g. vari-

able definitions, method calls, etc.) that occur at runtime. The MUT is instrumented by

adding calls to these methods at the appropriate points in its execution. An instance of the

DataCollector itself is instantiated upon entry to the MUT before any of its statements are

executed. A detailed example is presented in the next section.

Figure 6-1. Java mechanism for collecting coupling-based coverage data

+registerCouplingSequence()
+antecedentNode()
+consequentNode()
+def()
+iDef()
+lastDef()
+lastIDef()
+use()
+iUse()
+firstUse()
+firstIUse()
+trace()
+call()
+call()

DataCollector

CouplingSequence

sequences

Definitiondefs

iDefs

lastDefs

lastIDefs

Use uses

iUses

firstUses

firstIUses

Call

calls

150
6.5.2 An example
The class diagram shown in Figure 6-2 depicts a class Client that has a method f that takes

an instance of A as an argument, or an instance a descendant of A. Figure 6-3 shows the

specification of Client with the body of f. The control flow graph is depicted in the right

portion of the figure. Observe that f’s control flow graph shows two coupling sequences,

labeled s4,6 and s5,8. These correspond to the calls in f at lines 16 and 21, and 19 and 25,

respectively.

Figure 6-2. Sample hierarchy

+m()
+n()

A

+n()

B

+m()

C

+f(in o : A)

Client

151
Figure 6-4 on page 154 shows the instrumented version of f using the instrumentation

instructions for Java. Each statement in the method is numbered down the left-hand side.

The numbers in parentheses immediately to the right of the line numbers correspond to the

original uninstrumented version of f. For example, adjacent to the line number 20 is “(11)”,

indicating that line 20 corresponds to line 11 in Figure 6-3. The control flow nodes of the

uninstrumented version of f are also shown, depicted as large circles containing the corre-

sponding node of the control flow graph. The circles are shaded to identify each antecedent

node and its corresponding consequent node. Directed arcs are drawn between call sites.

Immediately upon entry to the MUT and before any of the original instrumentation state-

ments are executed, an instance of DataCollector must be created. This is shown at line 11

Figure 6-3. Method Client.f (without instrumentation) and corresponding CFG

 1 class Client

 2 {

 3 protected int z = 42;

 4

 5 protected String s = "test";

 6

 7 protected java.io.PrintStream out = System.out;

 8

 9 public void f(A o, int x)

10 {

11 if (x % 2 == 0)

12 o = new B();

13

14 if (x > z)

15 {

16 o.m();

17 }

18

19 out.println(s);

20

21 o.n();

22

23 z = x + 1;

24

25 out.close();

26 }

27

28 } // class Client

Entry

Exit

5

6

7

8

out.println(s)

out.close()

o.n()

z = x + 1

3

true

false

x > z

o.m()

1

2

true

false

x % 2 == 0

o = new B()

4

s4,6

s5,8

152
of Figure 6-4 where the instance is created with the name of the MUT passed as the argu-

ment to the constructor of DataCollector. Line 13 then records the event of entry to the

method.

6.5.2.1 Registration of Coupling Sequences

There are two locations in f where a binding to the context variable o occurs. The first is an

implicit binding at the entry node to f where o is a formal argument, and the other is at line

23 in the instrumented version (12 in the original) of Figure 6-4. It is at these points that the

instance for any coupling sequence involving o is determined. That is, for a given coupling

sequence sj,k having o as the context variable, the binding of o occurring at one of the bind-

ing sites must reach sj,k. Otherwise, there would be no coupling sequence. Since we cannot

know at analysis time which input will cause which binding to reach a particular coupling

sequence, we assume without loss of generality that every binding of the same context vari-

able will reach every coupling sequence that uses that same context variable. Thus, we

instrument all locations where a binding site occurs to register all possible coupling

sequences that use the same context variable.1 This occurs at lines 15 and 16 for the binding

that occurs at entry to f, and at lines 24 and 25, immediately following the binding of o at

line 23.

Observe that the hash code associated with the instance bound to the context variable o is

passed as the third argument to the instrumentation method registerCouplingSeq().2 This

corresponds to the object id parameter given in Figure 6-1, and allows for the discrimina-

tion between potentially different instances bound to the same context variable.

1. This applies only to those coupling sequences that a particular binding site reaches.

2. In Java, every object (instance) has an associated hash code that is guaranteed to be unique at runtime.
The method hashCode() is defined by class Object in the java.lang package.

153
6.5.2.2 Collection of use and definition information

The first use of the formal argument x occurs at line 20 of Figure 6-4. This event is recorded

by the instrumentation instruction at line 19 in the call to firstUse, which also automatically

records the event as a use of x. The fact that x is used in a conditional expression is captured

by the fourth actual argument to firstUse, which is the expression true. A first indirect use

of the state variable z occurs at line 31. This is captured by the instrumentation instruction

firstIUse at line 29. This event is also recorded as a use at line 30. An indirect use of state

variable s occurs at line 44, which is recorded by the instrumentation instruction iUse at line

41. Note that the control flow node corresponding to the original statement in the uninstru-

mented version of f is used as the node id passed as the second actual argument to these

methods.1

Definition information is captured in a similar fashion to use information. A last indirect

definition of state variable z occurs at line 55. This event is recorded by the instrumentation

instruction lastIDef at line 53.

6.5.2.3 Identifying execution of coupling sequences

Each call to an antecedent method or consequent method is recorded by the instrumentation

instructions antecedentCall and consequentCall, respectively. Examples of this are shown

at lines 36 and 43 for a call to an antecedent method, and at lines 50 and 61 for a call to a

consequent method.

1. This is true of all the instrumentation instructions that capture definition, use, call, and trace information.

154
6.6 Summary
This chapter has presented the algorithms and data structures used to perform static and

dynamic coupling-based analysis of object-oriented programs. Included with this are cov-

Figure 6-4. Method Client.f instrumented for coupling coverage

1 54 872 63

9

p
u
b
l
i
c

v
o
i
d

f
(

A

o
,

i
n
t

x

)

t
h
r
o
w
s

U
n
d
e
f
i
n
e
d
C
o
u
p
l
i
n
g
S
e
q
u
e
n
c
e
E
x
c
e
p
t
i
o
n
,

j
a
v
a
.
i
o
.
I
O
E
x
c
e
p
t
i
o
n

1
0

{

1
1

D
a
t
a
C
o
l
l
e
c
t
o
r

d
c

=

n
e
w

D
a
t
a
C
o
l
l
e
c
t
o
r
(

"
C
l
i
e
n
t
.
f
"

)
;

1
2

1
3

d
c
.
t
r
a
c
e
(

"
e
n
t
r
y
"

)
;

1
4

1
5

d
c
.
r
e
g
i
s
t
e
r
C
o
u
p
l
i
n
g
S
e
q
(

"
o
"
,

o
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
.
h
a
s
h
C
o
d
e
(
)
,

"
4
"
,

"
6
"
,

"
C
l
i
e
n
t
:
:
f
"

)
;

1
6

d
c
.
r
e
g
i
s
t
e
r
C
o
u
p
l
i
n
g
S
e
q
(

"
o
u
t
"
,

o
u
t
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
u
t
.
h
a
s
h
C
o
d
e
(
)
,

"
5
"
,

"
8
"
,

"
C
l
i
e
n
t
:
:
f
"

)
;

1
7

1
8

d
c
.
t
r
a
c
e
(

"
1
"

)
;

1
9

d
c
.
f
i
r
s
t
U
s
e
(

"
x
"
,

"
1
"
,

1
1
,

t
r
u
e
,

"
C
l
i
e
n
t
:
:
f
"

)
;

2
0

(
1
1
)

i
f

(

x

%

2

=
=

0

)

2
1

{

2
2

c
.
l
a
s
t
D
e
f
(

"
o
"
,

"
2
"
,

1
2
,

"
C
l
i
e
n
t
:
:
f
"

)
;

2
3

(
1
2
)

o

=

n
e
w

B
(
)
;

2
4

d
c
.
r
e
g
i
s
t
e
r
C
o
u
p
l
i
n
g
S
e
q
(

"
o
"
,

o
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
.
h
a
s
h
C
o
d
e
(
)
,

"
4
"
,

"
6
"
,

"
C
l
i
e
n
t
:
:
f
"

)
;

2
5

d
c
.
r
e
g
i
s
t
e
r
C
o
u
p
l
i
n
g
S
e
q
(

"
o
u
t
"
,

o
u
t
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
u
t
.
h
a
s
h
C
o
d
e
(
)
,

"
5
"
,

"
8
"
,

"
C
l
i
e
n
t
:
:
f
"

)
;

2
6

}

2
7

2
8

d
c
.
t
r
a
c
e
(

"
3
"

)
;

2
9

d
c
.
f
i
r
s
t
I
U
s
e
(

"
z
"
,

"
3
"
,

1
4
,

t
r
u
e
,

"
C
l
i
e
n
t
:
:
f
"

)
;

3
0

d
c
.
u
s
e
(

"
x
"
,

"
3
"
,

1
4
,

t
r
u
e
,

"
C
l
i
e
n
t
:
:
f
"

)
;

3
1

(
1
4
)

i
f

(

x

>

z

)

3
2

{

3
3

d
c
.
t
r
a
c
e
(

"
4
"

)
;

3
4

d
c
.
u
s
e
(

"
o
"
,

"
4
"
,

1
6
,

f
a
l
s
e
,

"
C
l
i
e
n
t
:
:
f
"

)
;

3
5

d
c
.
c
a
l
l
(

"
o
"
,

"
m
"
,

"
4
"
,

1
6
,

o
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
.
h
a
s
h
C
o
d
e
(
)
,

"
C
l
i
e
n
t
:
:
f
"

)
;

3
6

d
c
.
a
n
t
e
c
e
d
e
n
t
C
a
l
l
(

"
o
"
,

o
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
.
h
a
s
h
C
o
d
e
(
)
,

"
4
"
,

"
6
"
,

1
6
,

"
C
l
i
e
n
t
:
:
f
"

)
;

3
7

(
1
6
)

o
.
m
(
)
;

3
8

}

3
9

4
0

d
c
.
t
r
a
c
e
(

"
5
"

)
;

4
1

d
c
.
i
U
s
e
(

"
o
u
t
"
,

"
5
"
,

1
9
,

f
a
l
s
e
,

"
C
l
i
e
n
t
:
:
f
"

)
;

4
2

d
c
.
c
a
l
l
(

"
o
u
t
"
,

"
p
r
i
n
t
l
n
"
,

"
5
"
,

1
9
,

o
u
t
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
u
t
.
h
a
s
h
C
o
d
e
(
)
,

"
C
l
i
e
n
t
:
:
f
"

)
;

4
3

d
c
.
a
n
t
e
c
e
d
e
n
t
C
a
l
l
(

"
o
u
t
"
,

o
u
t
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
u
t
.
h
a
s
h
C
o
d
e
(
)
,

"
5
"
,

"
8
"
,

1
9
,

"
C
l
i
e
n
t
:
:
f
"

)
;

4
4

(
1
9
)

o
u
t
.
p
r
i
n
t
l
n
(

s

)
;

4
5

4
6

d
c
.
t
r
a
c
e
(

"
6
"

)
;

4
7

d
c
.
f
i
r
s
t
U
s
e
(

"
o
"
,

"
6
"
,

2
1
,

f
a
l
s
e
,

"
C
l
i
e
n
t
:
:
f
"

)
;

4
8

d
c
.
c
a
l
l
(

"
o
"
,

"
n
"
,

"
6
"
,

2
1
,

o
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
.
h
a
s
h
C
o
d
e
(
)
,

"
C
l
i
e
n
t
:
:
f
"

)
;

4
9

d
c
.
c
o
n
s
e
q
u
e
n
t
C
a
l
l
(

"
o
"
,

o
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
.
h
a
s
h
C
o
d
e
(
)
,

"
4
"
,

"
6
"
,

2
1
,

"
C
l
i
e
n
t
:
:
f
"

)
;

5
0

(
2
1
)

o
.
n
(
)
;

5
1

5
2

d
c
.
t
r
a
c
e
(

"
7
"

)
;

5
3

d
c
.
l
a
s
t
I
D
e
f
(

"
Z
"
,

"
7
"
,

2
3
,

"
C
l
i
e
n
t
:
:
f
"

)
;

5
4

d
c
.
u
s
e
(

"
x
"
,

"
7
"
,

2
3
,

f
a
l
s
e
,

"
C
l
i
e
n
t
:
:
f
"

)
;

5
5

(
2
3
)

z

=

x

+

1
;

5
6

5
7

d
c
.
t
r
a
c
e
(

"
8
"

)
;

5
8

d
c
.
i
U
s
e
(

"
o
u
t
"
,

"
8
"
,

2
5
,

f
a
l
s
e
,

"
C
l
i
e
n
t
:
:
f
"

)
;

5
9

d
c
.
c
a
l
l
(

"
o
u
t
"
,

"
p
r
i
n
t
l
n
"
,

"
8
"
,

2
5
,

o
u
t
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
u
t
.
h
a
s
h
C
o
d
e
(
)
,

"
C
l
i
e
n
t
:
:
f
"

)
;

6
0

d
c
.
c
o
n
s
e
q
u
e
n
t
C
a
l
l
(

"
o
u
t
"
,

o
u
t
.
g
e
t
C
l
a
s
s
(
)
.
g
e
t
N
a
m
e
(
)
,

o
u
t
.
h
a
s
h
C
o
d
e
(
)
,

"
5
"
,

"
8
"
,

2
5
,

"
C
l
i
e
n
t
:
:
f
"

)
;

6
1

(
2
5
)

o
u
t
.
c
l
o
s
e
(
)
;

6
2

6
3

d
c
.
t
r
a
c
e
(

"
e
x
i
t
"

)
;

6
4

6
5

d
c
.
f
i
n
i
s
h
(
)
;

6
6

}

s 4,
6

s 5,
8

155
erage mappings that define a set of elements used to represent coupling analysis informa-

tion. Each element contains a form and interpretation that describes the structural

representation and meaning of the information the elements contain.

This chapter has also described the instrumentation requirements used to instrument object-

oriented programs for the collection of coupling information. The requirements are based

on the coverage mappings and yield an instruction set for each object-oriented program-

ming language. Elements of this instruction set are used to inject instrumentation into meth-

ods under test, antecedent methods, and consequent methods. The instrumentation

requirements along with the coverage mappings are used as the basis for generation and

instrumentation activities, and are incorporated into the research proof of concept tool

developed over the course of this research.

7. CBAT - Coupling-based Analysis Tool

CBAT is a research proof of concept tool developed for the purpose of demonstrating the

practicality of the coupling-based testing approach for typed object-oriented languages. In

its present form, CBAT is capable of analyzing programs written in Java. However, its rep-

resentations are sufficiently rich to support other object-oriented and object-based lan-

guages such as C++, C#, Eiffel, Modula-2 and Ada. The following sections describe the

representations supported by CBAT, its architecture, and how it is implemented.

7.1 Objectives of CBAT
CBAT satisfies a number of objectives. First, it supports the coupling-based testing of

object-oriented programs. CBAT includes representations, algorithms, and utilities for pro-

ducing programs that are instrumented for collecting coverage information for the cou-

pling-based testing criteria presented in Chapter 5.

Second, CBAT is intended to be a general purpose research tool. While its initial objectives

lie squarely at supporting the research described by this dissertation, it also is intended o

support future research activities that both involve and do not involve coupling-based test-

ing. For example, it is envisaged that CBAT will be used to extend the coupling-based test-

ing techniques to include inter-method coupling sequences and also for the reverse

engineering of software contracts (i.e. preconditions, postconditions, etc.) from existing

object-oriented and procedural programs.

Finally, CBAT is intended to provide a general purpose analysis platform for conducting

many different types of static and dynamic program analysis, such as slicing, code cover-

age, change impact analysis, dependency analysis, slicing, and the collection of OO met-

rics.
156

157
7.2 Representations provided by CBAT
CBAT includes a number of high-level abstractions that represent all of the syntactic and

semantic entities specific to the Java programming language. However, the abstractions are

generalized to support similar entities found in other object-oriented languages.

The primary representations of CBAT are the class and method graphs. The class graph

contains abstractions that model the high-level entities of an object-oriented program, such

as packages, classes, and interfaces. The method graph provides a representation for indi-

vidual functions and procedures that implement control flow. Each of these graphs is

described below.

7.2.1 Class Graph
The class graph models the high-level structural elements of an object-oriented program.

It includes abstractions that model packages, classes, and interfaces, as well as abstractions

that model program variables, functions. and procedures. Figure 7-1 depicts a UML class

diagram that contains the classes that correspond to the key abstractions of the class graph

and their structural relationships. The primary classes include Package, ClassElement,

Interface, Variable, and Method. Instances of Package define individual name spaces that

may contain instances of Package, ClassElement, or Interface.1 Instances of ClassElement

and Interface represent user-defined types, with ClassElement being an instantiable type

that defines both state and behavior.2 Interface corresponds to non-instantiable types that

only define method signatures and variable constants. Instances of Variable are used to

model variables that defined the state space of a class, and also variables that appear as

arguments to methods or that are local to a block of code. Finally, instances of Method are

used to model the procedures and functions (i.e. methods) that occur in the definition of a

class.

1. Packages can also contain other packages, though this is only a notional concept in Java since there is no
semantic or syntactic relationship between a package and sub-package in Java.

2. Built-in types, such as int, float, and char found in Java are represented by instances of class BuiltinType
shown in Figure 7-1.

158
7.2.1.1 Method Graph

The method graph is the structure used by CBAT to represent the program text of individ-

ual methods. In reality, the method graph is a multi-graph that consists of several different

sub-graphs. These sub-graphs represent various aspects of a method's structure, such as

control and data flow. A method graph consists of three key components: an abstract syntax

tree, a set of intra-method representations, and a set of inter-method representations. A

method graph also contains a robust set of analysis data. Each of these elements are

described in detail in the following subsections.

7.2.2 Abstract Syntax Tree
The fundamental structure underlying the method graph is an abstract syntax tree that rep-

resents the structure of a program at the statement and expression level. This structure is

derived directly from the source code of the program being analyzed, and consists of two

parts: the control tree and the expression tree. The control tree is a high-level model of the

Figure 7-1. UML Class Diagram for package ClassGraph

159
individual statements in a method, including those that alter control flow (selection and iter-

ation statements) as well as individual statements that perform computation. Key abstrac-

tions of the control tree, shown in Figure 7-2, include ControlNode, SequenceNode,

BreakTransferNode, and ExceptionBlockNode.

ControlNode defines a type family of nodes that represent method instructions that alter the

flow of control in a program through the use of a conditional expression (loops and if state-

ments). Instances of SequenceNode correspond to the individual instructions of a method,

such as assignments and output statements, that whose control flows to the next instruction.

Instances of BreakTransferNode are used to represent those statements in a method that

correspond to unconditional transfers of control. This includes break, continue, goto, and

return statements. Instructions that yield the raising of an exception are also instances of

BreakTransferNode. ExceptionBlockNode represents a single exception condition handler,

such as a catch block in Java or C++.

Additional abstractions include nodes for representing case statements (CaseNode, Case-

DisjunctNode, and DefaultCaseDisjunctNode), a node for represent statement labels

(LabelNode), and a node that corresponds to a block of sequential statements (BlockNode).

Certain elements of the control tree have an expression tree associated with them. These

elements include members of the type family defined by ControlNode, and instances of

SequenceNode, ExceptionBlockNode and CaseNode. An expression tree models the syntax

of the computation that takes place at a given statement of a method. Examples include

assignment statements, output statements, and conditional expressions. Together, the con-

trol tree and the expression tree model the complete syntax of a method's program text and

are used by CBAT to generate higher-level graph representations for analysis purposes.

The class diagram for the expression tree is shown in Figure 7-3.

160
Figure 7-2. UML class diagram for ControlTree

161
The key abstractions of the expression tree include OperatorNode (a family of types, each

corresponding to a particular type of operator), OperandNode (a family of types that repre-

sent individual expression operands) and FunctionCallNode. OperatorNode is subdivided

further into operators that define state (DefiningOperatorNode), those that use state (Usin-

gOperatorNode), and other miscellaneous operators that support operations such as

instance creation (InstanceCreationOperator), type coercion (CoercionOperator), condi-

tional operators as found in Java and C++ (ConditionalOperatorNode), and so on. The

operator family also includes the abstractions DefUseOperator and UseDefOperator for

Figure 7-3. UML Class Diagram for AST expression tree

162
representing prefix and postfix operators, respectively. Support for expression operands

includes abstractions for representing types (TypeOperand), constants (ConstantOperand),

and identifiers (IdentifierOperand).

7.2.2.1 Intra-method Graph Representations

CBAT includes a number of higher-level representations that are used for various types of

static analyses, including coupling-based testing. The most important of these is the control

flow graph (CFG). The CFG is generated directly from the control tree and includes

abstractions that model the various types of control flow statements at a high-degree of

granularity. For example, each of the loop constructs for, while, and until are represented

as distinct node types. This allows for ease in identifying distinct syntactic constructs for

the purpose of analysis and code generation. These abstractions are language independent

and the complete set is sufficiently rich to support the control flow constructs found in most

object-oriented and procedural languages. New constructs can be easily added to account

for new language features.

Figure 7-4 depicts the components of a method graph used to represent a control flow

graph. The graph includes the following type families: CallNode, CallReturnNode, Condi-

tionNode, TransferNode, and PlaceholderNode. The type family defined by CallNode

includes lower level abstractions that are used to represent intra-method transfers of control

that resemble procedure calls. These occur when an exception is thrown or when a code

block protected by an exception handler successfully reaches the end of its body (the Java

finally block is an example of the latter). At present, CBAT models the exception handling

behavior found in Java, which is a generalization of that found in C++. When an exception

is thrown in a block of code that is part of a try block, control first transfers to the catch

handler associated with the try block. If no catch handler is present, control then transfers

to either the nearest enclosing catch handler, or the method's exit node if none is present. If

the exception is caught by the handler, then control is passed to the finally block, if present,

and then to the first statement that follows the try block. Logically, this behavior can be

163
modeled as series of procedure calls that are internal to the method containing the try block,

which is the approach adopted by Sinha and Harrold [67]. This is achieved in CBAT by

modeling the throw of an exception first as a call to the catch handler, followed by a call to

the finally block. Each call is represented as a pair of nodes, one that connects to the catch

handler (a type of CallNode shown in Figure 7-4) and another (a type of CallReturnNode)

that is connected to the last node of the catch handler and models the return of control. The

CallReturnNode is then connected to another pair of nodes that model the call-return of a

finally block.

Other high-level graph types maintained by CBAT include data dependency graphs, con-

trol dependency graphs, and coupling graphs. The representation for all of these graphs is

straight forward and augments the control flow graph by adding a set of annotated edges

between nodes that exhibit some relationship such as data or control dependency.

CBAT does not have an explicit abstraction for representing edges. Instead, edges are rep-

resented as a mapping between nodes. The set of mappings for a particular type of edge is

implemented as a hash map. This affords the flexibility to treat all edges uniformly and to

expand the type of edges supported by CBAT at any time. The sacrifice for this flexibility

is added complexity for maintaining edge annotations, such as recording the fact that a par-

ticular edge has been traversed while conducting a depth first traversal (for example).

CBAT's solution for handling this to maintain a hash map for each pair of nodes that is con-

nected by some type of edge. This hash map preserves a mapping between a pair of nodes

and another hash map that maintains the annotations. This later hash map is indexed by the

kind of annotation that labels the node pair, and maps directly to the value of the label. The

complexity of this solution is hidden behind a set of methods that allow edge annotations

to be easily assigned and manipulated for a given pair of nodes.

164
Figure 7-4. Class Diagram for package MethodGraph.

165
7.2.2.2 Inter-method Graph Representations

In addition to the method level graph representations described above, CBAT also main-

tains a call graph that links each call site within a method to the called method. Each call

site is actually represented as two distinct nodes in the calling method's control flow graph:

a call node and call-return node. The call node is connected by a call-return edge that is

incident upon the entry node of the called method, and the call-return node is connected by

a call-return edge that emanates from the called method's exit node. Together, these call-

return edges are used to represent the inter-method flow of control. CBAT also has the abil-

ity to support inter-method control and data dependencies, though the implementation of

these are left as future work.

7.2.2.3 Analysis Data

During the analysis of a method, CBAT collects an enormous quantity of data related to the

method's control flow and data flow characteristics. Some of this information is collected

specifically to support the coupling-based testing techniques described in this thesis. The

following subsections describe the types of analysis data collected at the method level in

terms of control flow, data flow, and coupling-related information.

7.2.2.4 Control-flow information

The following control-flow information is collected for each method in a class:

Anonymous Calls. The set of anonymous calls made at a particular node. A call is anon-

ymous if the instance context through which the call is made is not specified by a vari-

able, but rather is supplied by the return value of a called method. For example, in the

expression o.m().n(), the call to n is made through the anonymous context provided by

the value returned from o.m().

166
Binding Sets. The set of types that a context variable can be bound to for a particular

call site. For example, if o is declared to be of type A, and A is the base of an inheritance

hierarchy containing B and C, then o can potentially be bound to instances of A, B, or C.

The actual types comprising the binding set are determined by the binding mechanisms

that reach a call site that uses o as the context variable. However, the actual binding set

will be a subset of the type family defined by the declared type of the context variable.

Call Sites. The set of nodes in the control flow graph that contain calls to other methods.

Called Class Methods. The set of class methods called at a particular node.

Called Instance Methods. The set of instance methods called at a particular node.

Control Flow Paths. List of logical paths through the control flow graph. Each path is

represented as a sequence of nodes that result from a depth-first traversal from the entry

node to the exit node, traversing the body of any loops at most once.

Explicit Calls. Records the set of superclass methods called explicitly at a given node

through the keyword ''super'', as in super.m().

Indirect Calls. Records the list of calls made at a given node through an instance con-

text, as in o.m().

Node Predecessors. Records the list of nodes that are control predecessors of a partic-

ular node.

167
Node Successors. Records the list of nodes that are control successors of a particular

node.

7.2.2.5 Data flow information

The following data-flow information is collected for each method in a class:

Anonymous Definitions. Records the set of anonymous variable definitions that are

made at a particular node. Anonymous definitions occur when the instance that specifies

the variable is not specified by a variable. This occur when the instance is returned by a

method call. For example, in the expression o.m().v = 0, the definition of v is anonymous

since the instance context is determined by the value returned by m.

Anonymous Uses. Records the set of anonymous variable uses that are made at a par-

ticular node. Anonymous uses occur when the instance that specifies the variable is not

specified by a variable. This occurs when the instance is returned by a method call. For

example, in the expression b = o.m().v + 0, the use of v is anonymous since the instance

context is determined by the value returned by m.

Defined Class Variables. Records the list of class variables defined at a particular node.

Defined Instance Variables. Records the list of instance variables defined at a particu-

lar node.

Explicit Definitions. Records the list of superclass methods called through the keyword

super at a particular node.

168
Explicit Uses. Records superclass variables used through the keyword super for a par-

ticular method.

Indirect Uses. Records the list of state variables used at a given node that are referenced

through an instance context, as in o.v.

Live Aliases. Records the list of variable aliases that reach a given node.

Reaching Definitions. Records the list of variable definitions that reach a particular

node.

Used Class Variables. Records the list of class variables used by a particular node.

Used Instance Variables. Records the list of instance variables used by a particular

node.

7.2.2.6 Coupling-related information

The following data-flow information is collected for each method in a class:

Coupling Sequences. Records the set of coupling sequences for the coupling method.

Each coupling sequence is represented by an instance of the type CouplingSequence.

Instances of this type record the set of coupling variables in the sequence, the definition

in the coupling method that provides the instance context, the antecedent and consequent

call sites, and the set of transmission paths between the call sites.

First-use Paths. Records the set of paths that lead to each first-use of a state variable or

formal method argument.

169
First Uses. Records the set of nodes that have first uses of variables (state or formal

arguments). Each node is mapped to a set of pairs, with each pair containing the coupling

path p and the set of first-use variables that p is definition-clear with respect to.

Last Definition Paths. Records the set of last-def paths that lead from the last definition

of a state variable or formal method argument to the exit node of the method.

Last Definitions. Records the set of nodes that have last definitions of variables (state

or formal arguments). Each node is mapped to a set of pairs, with each pair containing

the coupling path p and the set of last-use variables that p is definition-clear with respect

to.

7.3 Architecture of CBAT
Figure 7-5 presents the high-level architecture of CBAT. The principle components include

the CBAT Core, the Analysis Engine, and the Instrumentation Engine. Each of these is dis-

cussed in the following sections.

7.3.1 CBAT Core
The CBAT Core consists of the Parse Tree Generator, and the Class and Method Graph

Generator. Each of these components is described in the following subsections.

7.3.1.1 Parse Tree Generator

The Parse Tree Generator transforms Java compilation units expressed in source form into

a parse tree that is based on the language grammar (Java in this case). The transformation

process maps nodes corresponding to non-terminals in the language grammar into nodes of

the parse tree that represent the individual syntactic units of the language. Each non-leaf

node of the parse tree corresponds to a single non-terminal in the language grammar, and

170
each leaf node corresponds to a terminal whose value is a lexeme generated by the parsing

activity.

The parse tree is generated from a source file using a parser generated by the compiler gen-

erator JavaCC.1 The grammar used by JavaCC was annotated by the Java Tree Builder

(JTB) with semantic actions that yield a parse tree at runtime.2 The resulting parse tree is

expressed as a class hierarchy that represents the elements of the language. Each class in

the hierarchy corresponds to a non-terminal or terminal in the language. The architecture

of the parse tree is based on the Visitor design pattern [GOF 95].

Figure 7-5. CBAT architecture

1. JavaCC is available from http://www.metamata.com.

2. The Java Tree Builder is available from http://www.cs.purdue.edu/jtb.

Java
Parser

syntax
tree

tree
visitor

Parse Tree
Generator

Java
Source

Class and
Method Graph

Generator

Analysis
Engine

Class Graph

Method
Graph

Generated Externally

CBAT Core

Inst.
Source

Instrumenter

Parse
Tree

AST

171
7.3.1.2 Class and Method Graph Generator

The Class and Method Generator is implemented as a pair of visitor-based utilities that pro-

cess the parse tree and generate a corresponding Class Graph and Method Graph. The

Class Graph Generator (CGG) walks the parse tree produced by the parser and creates

instances of Package, ClassElement, Interface, Variable, and Method as the corresponding

syntactic elements are encountered. When a method body is found, the Method Graph Gen-

erator (MGG) creates the corresponding control tree that represents the individual state-

ments of the method. Individual expressions are transformed by the MGG into expression

trees and associated with the corresponding control tree nodes.

7.3.2 Analysis Engine
The Analysis Engine is a collection of static analysis tools that utilize the information rep-

resented in the class and method graphs (and parse tree in some circumstances) to produce

additional or refine existing representations and to generate various analysis information.

For example, the ControlFlow Analyzer uses the information contained in the Method

Graph for a particular method to generate the corresponding control flow and data flow

graphs. The corresponding Method Graph is then updated to reflect this newly derived

information. The other analyzers that currently exist in CBAT include ControlDependency

Analyzer, Coupling Sequence Analyzer, and Call Graph Analyzer. Additional analyzers can

easily be added as new types of information are required.

7.3.3 Instrumentation Engine
The final component of CBAT is the Instrumentation Engine. Similar to the Analysis

Engine, Instrumentation Engine is a collection of utilities that are used to generate instru-

mented source code.

The strategy used for generated instrumented programs does not produce a new program

directly from the Class and Method Graphs. Rather, a set of instrumentation instructions

expressed in XML are generated that are subsequently used to produced the instrumented

code. This is illustrated in Figure 7-6. As shown, a instruction generator is utilized that gen-

172
erates instructions for instrumenting a Java program to collect coverage information for the

All-Coupling-Sequences test adequacy criterion. The instructions are then used to generate

an instrumented source file by the Java Instrumenter, along with the original source code

corresponding to the class and method graphs of the unit under test.

7.4 Implementation
The CBAT core and Analysis Engine are implemented in Java and consist of approximately

90,000 lines of code. Approximately 20,000 lines were generated by the JavaCC and JTB

tools. The Instrumentation Engine is written in Perl and consists of approximately 2,000

lines of code.

The following tools were used in the development of CBAT:

• Java Development Kit 1.1.2
• javacc (parser generator)
• Java Tree Builder (JTB) version 1.2.2

Figure 7-6. CBAT Instrumenter

All-Coupling-
Sequences
Instruction
Generator

Source
Code

Instrumentation
Instructions

Class Graph

Method
Graph

AST

Java
Instrumenter

Instrumented
Program

Corresponds to

Corresponds to

173
• Java Generic Library (JGL) version 3.1
• OROMatcher (regular expression package) version 1.1.0a
• CodeWright (program editor) version 6.5
• BugSeeker2 (source debugger) version 1.0.2
• TogetherJ (UML modeling tool) version 4.1
• Perl version 5.6

8. Validation
This chapter describes the experiments used to empirically validate the efficacy of the

object-oriented coupling-based testing criteria described in Chapter 4. It begins with dis-

cussion of the experimental design, which includes a description of the experimental sub-

jects, the test adequacy criteria used for comparative purposes, the test data, and the fault

types that are used for evaluating the effectiveness of the criteria. The procedures for the

actual conduct of the experiment are then described, followed by the results of the experi-

ments. Finally, the chapter concludes with a discussion of the significance of the results.

8.1 Experimental design
The following sections describe the experimental design used to validate the research con-

tained in this thesis.

8.1.1 Subject programs
Each subject program used in these experiments consists of a collection of classes that are

integrated with a client method, the method under test. Each of these classes includes at

least one method having one or more coupling sequences with respect to a particular class

hierarchy, referred to as the subject hierarchy.

Table 8-1 summarizes the subject programs used in these experiments. The column labeled

f identifies the method under test and is the number of coupling sequences contained

within f. Each coupling sequence has a context variable, which defines induces a type fam-

ily. The column labeled gives the number of classes in this type family (inheritance

hierarchy) for the corresponding program.1 The column labeled Description indicates the

source from which each program was obtained. Five programs (P1, P2, P3, P5, and P6)

1. The term program includes f (the method under test), the class that specifies f, and all classes in the type
family specified by the context variable of each coupling sequence.

sf

FSf
174

175
were examples created specifically to ensure that all of the subject faults were tested by at

least one experiment. Of the remaining five subject programs, one was developed by a

graduate student (P4), two were developed by a professional programmer having 15 years

of experience (P7 and P8). The remaining two are open source products: ANTLR (a parser

generator) and JMK (a build system, similar to make).1

8.1.2 Test adequacy criteria
This experiment evaluated the following four test adequacy criteria:

1. All-Coupling-Sequences

2. All-Poly-Classes

3. All-Poly-Defs-Uses

4. Branch Coverage

1. ANTLR is available from http://www.antlr.org/ and JMK from http://sourceforge.net/projects/jmk.

Table 8-1. Subject program characteristics

f Description

P1 4 4 Polymorphic Example

P2 5 5 Polymorphic Example

P3 1 5 Polymorphic Example

P4 1 4 Student Developer

P5 3 4 Polymorphic Example

P6 3 5 Polymorphic Example

P7 6 4 Professional Developer

P8 20 5 Professional Developer

P9 11 16 Open Source (ANTLR)

P10 7 9 Open Source (JMK)

sf FSf

176
The first three of these are the primary coupling-based testing criteria presented in

Chapter 5 and are the subjects of the investigation for the experiments described in this

chapter. The fourth, Branch Coverage, is used as the control to determine if the other crite-

ria are effective at detecting faults. Branch testing is a unit-level white box testing tech-

nique, and seeks to “execute enough tests to assure that every branch alternative has been

executed at least once” [9]. Attaining this goal yields a branch coverage measure of 100

percent. The justification for selecting Branch Coverage as the control is that Branch Cov-

erage is a commonly used white box testing technique and is commonly used to test indi-

vidual procedures and functions, and the coupling-based testing criteria are also white box

testing approaches.

8.1.3 Test data
The test data used in the experiments were drawn randomly according to a uniform distri-

bution. The data itself was produced from custom test data generators developed in Perl for

each of the test adequacy criteria. In all cases, sufficient data was generated to achieve

100% coverage for a given criterion.

The strategy used to select test cases is similar to how test cases are selected for the Branch

Coverage test adequacy criterion. For each coupling sequence, the path expression [9] nec-

essary to execute the sequence was identified. These expressions were then used to create

Perl programs that would generate the test data necessary to execute the set of sequences

for the method under test. A similar procedure was followed for testing the state space inter-

actions between antecedent and consequent methods. These path expressions ensured that

the required coupling paths were covered. Table 8-2 summarizes the number of test cases

for each combination of subject program and test adequacy criterion. For ACS, the number

Table 8-2. Number of test cases per subject program and criterion

f ACS APC APDU BC

P1 2 4 6 1

P2 2 5 320 2

P3 2 5 80 2

177
of test cases is determined by the number of coupling sequences and control flow paths

present in the method under test. For APC, the number of test cases is also determined by

the size of the type family for the coupling variable. Finally, for APDU, the number of test

cases is determined by adding the number of control flow paths in the antecedent and con-

sequent methods to the test cases for APC and ACS.

8.1.4 Injected Faults
Each subject program P was seeded by injecting faults into the bodies of the antecedent and

consequent methods for each member of each type family induced by the declared type of

the coupling sequences in P. The types of faults injected into each unit under test are a

subset of those described in Chapter 3.1 Not all of those fault types will manifest failures

as a result of integration of a type hierarchy with a method under test. For example, the fault

types that involve anomalous construction behavior (e.g. ACB1 and ACB2) require testing

approaches that focus on integrating a new class into an existing hierarchy, which is differ-

ent from the testing approach required for integration of a hierarchy with a calling client

method. Consequently, different testing approaches (possibly using a derivation of the cou-

pling-based techniques) will be required, and these are left as future work. Table 8-3 sum-

marizes both the number and type of faults that were injected.

P4 1 3 3 1

P5 2 5 75 1

P6 2 5 105 1

P7 1 2 64 1

P8 4 2 42 4

P9 6 15 95 6

P10 4 9 27 4

1. Unit under test refers the method under test f and all artifacts associated with the integration of a particu-
lar type family through the coupling sequences defined by f. This includes all types, and the corresponding
state variables and methods specified by those types.

Table 8-2. Number of test cases per subject program and criterion

f ACS APC APDU BC

178
8.2 Conduct of Experiments
The testing and evaluation procedure used to validate the research in this thesis consists of

four essential steps: (1) test oracle derivation, (2) fault injection, (3) test execution, and (4)

result evaluation. The objective of the first step is to create a test oracle that can be used to

evaluate the results of subsequent tests. That is, given a test result associated with a partic-

ular test case, the oracle determines if the test passes or fails. For the second step, fault

injection, each subject program is injected with faults that yield a seeded version. This

seeded version is used as the primary experimental subject. The third step executes each

subject program using the test cases and records the outcome. The final step uses the test

oracle to determine if the outcome of each execution for the corresponding test case detects

a fault. The actual procedures in some of these steps vary according to the test adequacy

criterion being evaluated.

The testing and evaluation procedure is discussed in detail in the following subsections.

The steps of the procedure that are specific to particular criteria are labeled with the names

of the applicable criteria in parentheses at the beginning of each step. Those steps not

having this list are applicable to all of the subject criteria.

Table 8-3. Number of faults injected into method under test

f SDA IC SDI IISD SDIH

P1 9 0 6 3 3

P2 39 6 39 0 39

P3 36 3 33 0 36

P4 24 0 24 0 18

P5 36 3 36 0 36

P6 18 0 18 0 18

P7 0 0 55 0 30

P8 0 0 76 0 30

P9 42 0 42 12 42

P10 27 0 27 6 27

179
8.2.1 Test oracle derivation
For each where Sf is the set of coupling sequences for the method under test f:

1. Execute f using at least one test case such that the context variable o of sj,k is

bound to an instance of the declared type of o, where is the set of test cases for f

associated with coupling sequence sj,k.
1

2. Record this result as where Sf is the set of coupling sequences in the

method under test, and T is the declared type of the context variable of sj,k. Add the

result to the test oracle for f,

3. (All-Poly-Def-Uses): For each , each for each last-definition dv of uv in

the antecedent method and each corresponding first-use of v in the consequent

method where is the coupling set that results when the context variable of

sj,k is bound to an instance of t:2

• Execute f using at least one test case such that the context variable is

bound to an instance of its declared type, and there is a coupling path from dv to uv

with respect to v.

4. (All-Poly-Def-Uses): Record the state of the instance bound to the context variable after

the antecedent has executed, and immediately after each first-use in the

consequent method, Add the result tuple to the test

oracle where the pair (t,v) records the type of the instance bound to the context

variable and also the coupling variable v that corresponds to the coupling path being

tested; is the result pair for the test.

1. Traditionally, in the scientific testing literature, the letter “t” is used to represent a test case, In this thesis,
we reserve t for representing the type of the instance bound to a coupling variable. Therefore, “c” is used to
represent a test case.

2. For the All-Poly-Classes criterion, this same procedure is used except that the state variables
are not captured and recorded as part of the test oracle .

sj k, Sf,∈

c Cf sj k,,∈

Cf sj k,,

Rsj k,

T
fsj k,

c(),=

Ωf.

t T� v Θsj k,

t
,∈

αsj k,

ωsj k,
, Θsj k,

t

v Θsj k,

t
,∈

Ωf,

c Cf sj k,,∈

αss k,

dv f c(),=

ωsj k,

uv f c().= t v,() αss k,

dv ωsj k,

uv,(),[]

Ωf,

αss k,

dv ωsj k,

uv,()

180
8.2.2 Fault injection

1. For each and inject faults into each method of t that

overrides either the antecedent or consequent methods of sj,k. This yields the fault-

seeded type This results in a shadow inheritance hierarchy rooted at T, where T

is the declared type of the context variable of sj,k, as illustrated in Figure 8-1. The

shadow hierarchy mirrors the original hierarchy in structure below the root, but is

seeded with faults.

2. (All-Poly-Def-Uses): For each and where

 is the coupling set that results when the context variable of sj,k is bound to an

instance of t, inject corresponding faults into the antecedent and consequent methods,

yielding the fault seeded type (i.e. t′′ is a subtype of T) contains methods

and , respectively. This results in a shadow inheritance hierarchy rooted at T,

where T is the declared type of the context variable of sj,k, as illustrated in Figure 8-2.

Figure 8-1. Class hierarchy with seeded shadow hierarchy for All-Poly-Classes

sj k, Sf∈ t family T() T{ }–(),∈

t′ T.�

A

B

C

B'

C'

Declared type of
context variable

Type
family

defined
by
A

Seeded types

Shadow
Hierarchy

sj k, Sf,∈ t family T() T{ }–(),∈ v Θsj k,

t
,∈

Θsj k,

t

t′′ T� α'sj k,

ω'sj k,

181
8.2.3 Test execution

1. For each and execute f using a test case c that binds

the context variable to the corresponding fault-seeded type Add the result

 to the test result set for f,

2. For each test case execute f using c, and record the state of the instance

bound to the context variable for the corresponding pairs of last-definitions and first-

uses: and respectively. Add to the test result

set for f,

8.2.4 Result evaluation

1. Compare each test result with the corresponding pair in the test oracle:

 This ascertains whether or not an instance of the descendant

type t can be substituted freely for an instance of the declared type T of the context vari-

able.

Figure 8-2. Class hierarchy with seeded shadow types for All-Coupling-Defs-Uses

A

B

C

1::B vB
2::B vB :: nB vB

1::C vC 2::C vC :: nC vC

Seeded
shadow

types

,
One per coupling variable

j k

B
sv ∈ Θ

,
One per coupling variable

j k

C
sv ∈ Θ

Type
family

defined
by
A

One test case

sj k, Sf∈ t family T() T{ }–(),∈

t′.

Rsj k,

t′
fsj k,

c()= Ψf.

c Cf sj k,, ,∈

α'ss k,

dv f c()= ω'sj k,

uv f c(),= αss k,

dv ωsj k,

uv,()

Ψf.

Rsj k,

t′ Ψf∈

Rsj k,

t′
Rsj k,

T
passt.⇒=

182
2. (All-Poly-Def-Uses): Compare each test result with the correspond-

ing pair in the test oracle: This ascertains if

the method under test preserves the fidelity of the interactions between the antecedent

and consequent methods when the context variable o is bound to an instance of a partic-

ular type in the family determined by the declared type of o.

3.

8.3 Results
Table 8-4 summarizes the results of each experiment. The table shows for each fault type

the number of faults seeded, the number of faults detected, and the detection effectiveness

(see Table 3-1 on page 56 for a summary description of the fault types) . The last column

presents the average detection effectiveness per combination of criterion and fault type for

each program. Effectiveness is defined as a ratio of the number of faults detected to the

number of faults seeded. The shaded blocks correspond to combinations of program and

fault type that were not tested. In these cases, the subject programs did not exhibit the struc-

tural characteristics necessary to support the syntactic pattern for the fault type. The last

group of rows in the table summarizes by criterion the number of faults that were seeded,

the number of faults detected, and the average detection effectiveness.

α'ss k,

dv ω'sj k,

uv,() Ψf∈

α'ss k,

dv αss k,

dv=() ω'sj k,

uv ωsj k,

uv=() passv.⇒∧

passt passv∧ passtest⇒

183
Table 8-4. Experimental Results

8.4 Analysis and Discussion
Figure 8-3 shows a plot of the detection effectiveness per criterion for each fault type aver-

aged (i.e. the mean) over all programs. The individual data points were weighted to reflect

the differences in the number of faults seeded for each combination of program and test

adequacy criterion.Thus, the data points are comparable.

Program Criterion SDA IC SDI IISD SDIH SDA IC SDI IISD SDIH SDA IC SDI IISD SDIH Average
APDU 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
ACS 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
APC 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
BC 9 6 3 3 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 39 6 39 39 10 3 10 10 0.26 0.50 0.26 0.26 0.32
ACS 39 6 39 39 0 0 0 0 0.00 0.00 0.00 0.00 0.00
APC 39 6 39 39 5 3 1 3 0.13 0.50 0.03 0.08 0.18
BC 39 6 39 39 8 0 9 9 0.21 0.00 0.23 0.23 0.17

APDU 36 3 33 36 36 3 30 36 1.00 1.00 0.91 1.00 0.98
ACS 36 3 33 36 7 3 3 7 0.19 1.00 0.09 0.19 0.37
APC 36 3 33 36 9 3 5 12 0.25 1.00 0.15 0.33 0.43
BC 36 3 33 36 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 24 24 18 11 12 8 0.46 0.50 0.44 0.47
ACS 24 24 18 0 4 0 0.00 0.17 0.00 0.06
APC 24 24 18 11 12 8 0.46 0.50 0.44 0.47
BC 24 24 18 5 5 2 0.21 0.21 0.11 0.18

APDU 36 3 36 36 36 3 31 33 1.00 1.00 0.86 0.92 0.94
ACS 36 3 36 36 7 0 8 6 0.19 0.00 0.22 0.17 0.15
APC 36 3 36 36 8 3 10 7 0.22 1.00 0.28 0.19 0.42
BC 36 3 36 36 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 18 18 18 18 13 18 1.00 0.72 1.00 0.91
ACS 18 18 18 0 0 0 0.00 0.00 0.00 0.00
APC 18 18 18 13 13 16 0.72 0.72 0.89 0.78
BC 18 18 18 0 0 0 0.00 0.00 0.00 0.00

APDU 55 30 37 26 0.67 0.867 0.77
ACS 55 30 32 26 0.58 0.867 0.72
APC 55 30 34 26 0.62 0.867 0.74
BC 55 30 14 8 0.25 0.267 0.26

APDU 76 30 34 23 0.45 0.767 0.61
ACS 76 30 5 2 0.07 0.067 0.07
APC 76 30 12 2 0.16 0.067 0.11
BC 76 30 30 21 0.39 0.7 0.55

APDU 42 42 12 42 38 37 12 39 0.90 0.88 1.00 0.93 0.93
ACS 42 42 12 42 4 10 7 15 0.10 0.24 0.58 0.36 0.32
APC 42 42 12 42 15 26 12 31 0.36 0.62 1.00 0.74 0.68
BC 42 42 12 42 3 9 2 5 0.07 0.21 0.17 0.12 0.14

APDU 27 27 6 27 27 26 6 23 1.00 0.96 1.00 0.85 0.95
ACS 27 27 6 27 6 12 5 7 0.22 0.44 0.83 0.26 0.44
APC 27 27 6 27 12 17 6 8 0.44 0.63 1.00 0.30 0.59
BC 27 27 6 27 4 7 3 5 0.15 0.26 0.50 0.19 0.27

APDU 231 12 356 21 279 183 9 233 21 219 0.80 0.83 0.67 1.00 0.80 0.82
ACS 231 12 356 21 279 31 3 77 15 66 0.19 0.33 0.23 0.81 0.29 0.37
APC 231 12 356 21 279 80 9 133 21 116 0.42 0.83 0.42 1.00 0.49 0.63
BC 231 12 356 21 279 20 0 74 5 50 0.08 0.00 0.16 0.22 0.16 0.12

P4

P5

P6

P7

Summary

Faults Detected Detection EffectivenessFaults Seeded

P1

P2

P3

P8

P9

P10

184
A cursory examination of the plot reveals that apparently the most effective of the coupling-

based test adequacy criteria within the experimental is All-Poly-Def-Uses (APDU), having

an average detection effectiveness across fault types of . The other cou-

pling-based criteria have average detection effectiveness of 0.45 (APC) and 0.25 (ACS),

with Branch Coverage having the lowest detection effectiveness of 0.11. Plots for the aver-

age effectiveness of each program across all subject criteria are given in the figures 8-4

through 8-11.

All three of the coupling-based testing criteria exhibit basically the same fault detection

pattern. That is, each is more or less effective for the same fault types. For example, all three

do reasonably well at detecting faults of type SDA, SDI, and SDIH, with the corresponding

detection effectiveness across this sequence being monotonically increasing. In contrast, all

three are much less effective at detecting faults of type IC and IISD. Note that in all cases,

Figure 8-3. Average detection effectiveness by fault type

XAPDU 0.66=

Detection Effectiveness per Test Adequacy Criterion
for each Fault Type averaged over all Subject Programs

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA IC SDI IISD SDIH
Fa ult Type

APDU
ACS
APC
BC

185
across all fault types all four criteria appear to exhibit an ordering with respect to the aver-

age detection effectiveness across fault types (i.e. BC < ACS < APC < ADIH).

Figure 8-4. Average effectiveness for program P1 across all subject criteria

Average Effectiveness for Program P1 across all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA SDI IISD SDIH

Fault Type

E
ff

ec
ti

ve
n

es
s

APDU
ACS

APC
BC

APDU, ACS, APC

BC

186
Figure 8-5. Average effectiveness for program P2 across all subject criteria

Figure 8-6. Average effectiveness for program P3 across all subject criteria

Average Effectiveness for Program P2 accross all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

SDA IC SDI SDIH

Effectiveness

F
au

lt
 T

yp
e

APDU
ACS

APC
BC

Average Effectiveness accross all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA IC SDI SDIH

Effectiveness

F
au

lt
 T

yp
e

APDU

ACS

APC
BC

187
Figure 8-7. Average effectiveness for program P4 across all subject criteria

Figure 8-8. Average Effectiveness for Program P5 across all Subject Criteria

Average Effectiveness for Program P4 accross all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

SDA SDI SDIH

Fault Type

E
ff

ec
ti

ve
n

es
s

APDU

ACS

APC

BC

APDU, APC

Average Effectiveness for Program P5 across all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA IC SDI SDIH

Fault Type

E
ff

ec
ti

ve
n

es
s

APDU

ACS

APC

BC

188
Figure 8-9. Average effectiveness for program P6 across all subject criteria

Figure 8-10. Average effectiveness for program P7 across all subject criteria

Average Effectiveness for Program P6 accross all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA SDI SDIH

Fault Type

E
ff

ec
ti

ve
n

es
s

APDU
ACS
APC
BC

ACS, BC

Average Effectiveness for Program P7 across all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDI SDIH

Fault Type

E
ff

ec
ti

ve
n

es
s

APDU
ACS

APC
BC

189
Figure 8-11. Average effectiveness for program P8 across all subject criteria

Figure 8-12. Average effectiveness for program P9 across all subject criteria

Average Effectiveness for Program P8 across all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDI SDIH

Fault Type

E
ff

ec
ti

ve
n

es
s

APDU

ACS

APC

BC

Average Effectiveness for Program P9 across all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA SDI IISD SDIH

Fault Type

E
ff

ec
ti

ve
n

es
s

APDU
ACS

APC
BC

190
8.4.1 Analysis of the coupling-based criteria
APDU has an average detection effectiveness of 0.80 for SDIH, suggesting that it is most

effective of the three coupling-based criteria at detecting faults of this type. In comparison,

criterion APC has a detection effectiveness of 0.49 for the SDIH faults while ACS has a

detection effectiveness of only 0.29. The average detection effectiveness of Branch Cover-

age is approximately 0.16.

For the SDI fault type, the average detection effectiveness of APDU is 0.66 which is

approximately an 18 percent reduction, making it not quite as effective as for SDIH faults.

Similarly, the remaining coupling criteria also reflect a reduced average detection effec-

tiveness. APC is reduced by approximately 14 percent, yielding 0.42, and for ACS, the

reduction is sightly more at 21 percent, yielding a detection effectiveness of 0.23. The

detection effectiveness for Branch Coverage remains the same at 0.16.

For the SDA fault type, APDU remains the most effective, having the same average detec-

tion effectiveness as SDIH fault types (0.80). Both APC and ACS suffer reductions, having

Figure 8-13. Average effectiveness for program P10 across all subject criteria

Average Effectiveness for Program P10 across all Subject Criteria

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA SDI IISD SDIH

Fault Type

E
ff

ec
ti

ve
n

es
s

APDU

ACS

APC

BC

191
a detection effectiveness of approximately 0.42 and 0.19. This represents a decrease of

approximately 14 percent for APC as compared to its average detection effectiveness for

SDIH faults. APC did no worse for SDA faults than it did for SDI Faults. For ACS, the

reduction is approximately 34 percent from its detection effectiveness for SDIH faults, and

a decrease of approximately 17 percent as compared to its effectiveness for SDI faults.

Branch coverage drops to a detection effectiveness of 0.08, a decrease of 50 percent.

For the IISD fault type, both APDU and APC have an average effectiveness of 1.0. ACS

has an effectiveness of 0.81, and Branch Coverage having the lowest average effectiveness,

0.22. For fault type IC, both APDU and APC have an average effectiveness of 0.83, while

ACS drops to 0.33 as compared to IISD. Branch Coverage again has the lowest detection

effectiveness at 0.00.

Compared to the other coupling-based criteria, APDU did the best job of detecting the type

of faults that were seeded, having an average detection effectiveness of 0.82. In contrast,

APC has an average detection effectiveness across all fault types of 0.63, a reduction of

approximately 23 percent, and for ACS, effectiveness reduces further to 0.37, which is a

reduction of approximately 55 percent as compared to APDU and 41 percent as compared

to the detection effectiveness of APC. Finally, Branch Coverage has the worst average

detection effectiveness across the types of seeded faults, 0.12. Compared to APDU, this is

a reduction of approximately 85 percent, and for APC and ACS, the reduction is approxi-

mately 81 percent and 66, respectively.

8.4.2 Explanation of effects
The variation in the detection effectiveness among the coupling criteria is of no surprise.

The weakest of the coupling criteria, ACS, does not consider the effects on state space

interactions caused by inheritance and polymorphism, and this could account for its rela-

tively poor performance as compared to the remaining two. As described in Section 3.1 on

page 53, the first condition of the fault/failure model is that a location that contains a fault

must be reached before the fault can manifest a failure. The shortcoming of ACS is that its

192
requirements are weak in that not all locations that can contain faults due to inheritance and

polymorphism must be executed. By their very nature, these faults will be located within

the hierarchy associated with the objects being integrated, not in the method under test.

Thus, faults at these locations will not necessarily be executed as a result of testing accord-

ing to the ACS criterion.

As expected, the APC criterion performs better than ACS. This is due to the stronger testing

requirements imposed by APC. As described in Section 5.1.3 on page 136, APC requires

that all possible type substitutions be tested for each coupling sequence appearing in the

method under test. Thus, the possibility of executing a fault located in the hierarchy being

integrated is increased simply because control flow enters each type at least once. However,

this is not sufficient to ensure all feasible locations containing faults will be executed.1

The most effective of the three coupling-based test adequacy criteria is APDU. This too is

of no surprise since its requirements are stronger than ACS and APC. In particular, it

requires that all state interactions be tested with respect to the coupling variable for each

coupling sequence, and for all types of instances that can be bound to the coupling variable

(see Section 5.1.7 on page 139). In terms of the fault/failure model, the requirements

imposed by APDU have the greatest chance of causing a fault to be executed, and this

accounts for the better performance observed over all the experimental trials.

8.4.3 Effectiveness of the Coupling-based Criteria
Log-linear analysis permits one to analyze categorical data in much the same manner as in

analysis of variance. The sampling distribution underlying Table 8-4 is a product of inde-

pendent multinomials. According to Bishop, Fienberg and Holland, the kernel of the appro-

priate likelihood function is the same as that for a simple multinomial or a simple Poisson

[16]. Therefore the estimation procedures for the simpler sampling distributions may be

1. A feasible location corresponds to a statement in a method or procedure for which there exists at least one
input that will cause the statement to be executed.

193
used, at least for large samples. The resulting estimates are close to the correct maximum

likelihood estimates and the usual goodness of fit statistics are asymptotically chi-square.

8.4.3.1 Details of the Hypothesis Tests
We first fitted the experimental results to a model corresponding to a 4-way contingency

table with i, k marginals fixed. The model consists of the dimensions Fault × Response,

Fault × Program, Program × Criterion × Response, and all lower level nested factors. The

factor Response consists of two levels, each corresponding to success or failure of a partic-

ular test case. Denote these four factors by u1 (Program), u2 (Fault Type), u3 (Criterion),

and u4 (Response). Denote cell counts by mi,j,k,l, where i, j, k, and l correspond to the four

factors. The best fitting model was found to be:

The terms with one subscript represent main effects; the terms with two subscripts repre-

sent two-factor interactions; and the terms with three subscripts represent three-factor inter-

actions. In Figure 8-14, we can see that the fitted cell counts closely match the observed

cell counts.

The procedure for testing the significance of a factor is to fit the best model with that factor

included and then fit the same model with that factor removed and observe the change in

the chi-square goodness-of-fit statistic.

For the initial hypothesis test, we tested for an interaction between criterion and fault type

by fitting the model described above with and without the fault-type/criterion term. If there

is no interaction, we can simply pick the best criterion and only use it for our testing. If there

is an interaction, then we will have to use two or more of the criteria to adequately test for

all of the fault types. For this test, the difference in the total c2 that the term of criterion ×

fault type accounted for is negligible. Thus, we do not reject the null hypothesis (H0), and

hence conclude that there is no interaction between these two factors.

Log mi j k l, , ,() u0 u1 u2 u1 3, u1 4, u2 4, u1 2, u3 4, u1 3 4, , …+ + + + + + + + +=

194
For the remaining hypothesis tests, we selected out only the data for a particular pair of cri-

teria (indicated by the column labeled Hypothesis in Table 8-5) and then tested for an inter-

action between these two by fitting the model described with and without the corresponding

fault-type/criterion term. Table 8-5 on page 195 summarizes the results of these tests. The

column labeled Hypothesis states the null (H0) and alternative hypothesis (H1) for each test.

The columns labeled c2 and Dc2 give the change in value of the chi-square goodness-of-

fit statistic, and the columns labeled df and Ddf give the corresponding change in degrees

of freedom. Finally, the last column gives the result of each test, indicating whether the null

hypothesis is rejected or not.

As the table shows, for hypotheses one through six, there was a net change in the degrees

of freedom and c2 goodness of fit value. In all cases, there is statistical significance at a p-

Figure 8-14. Observed versus fitted cell frequencies

Observed versus Fitted Cell Frequencies

Fitted Cell Frequencies

O
bs

er
ve

d
C

el
l F

re
qu

en
ci

es

-5

5

15

25

35

45

-5 5 15 25 35 45

Fault x Response, Fault x Program, Program x Criterion x Response
(and all lower-level nested factors)

195
value less than 0.001. Therefore, we reject the null hypothesis (H0) in favor of the alterna-

tive (H1) for all six of these hypotheses. The first three hypotheses allow us to conclude that

each of the three coupling-based criteria are more effective than Branch Coverage at detect-

ing the types of faults seeded into the subject programs. The remaining three hypotheses

allow us to compare the effectiveness among the coupling-based criterion. Since the null

hypothesis (H0) was rejected for each, we can conclude that there is statistical evidence to

suggest that APDU is more effective than APC and ACS at detecting the subject fault types,

and also that APC is more effective than ACS.

Table 8-5. Results of hypothesis tests

N Hypothesis c2 df Dc2 Ddf Conclusion

1
H0: APDU is no more effective than BC

91.74 164 816.74 36 Reject H0
H1: APDU is more effective than BC

2
H0: APC is no more effective than BC

35.93 68 175.00 12 Reject H0
H1: APC is more effective than BC

3
H0: ACS is no more effective than BC

19.00 63 97.94 12 Reject H0
H1: ACS is more effective than BC

4
H0: APDU is no more effective than APC

51.87 68 441.47 12 Reject H0
H1: APDU is more effective than APC

5
H0: APDU is no more effective than ACS

47.89 68 103.88 12 Reject H0
H1: APDU is more effective than ACS

6
H0: APC is no more effective than ACS

69.28 68 256.97 12 Reject H0
H1: APC is more effective than ACS

196
8.4.4 Discussion
The three hypotheses in Table 8-5 that tested the effectiveness of each coupling-based cri-

teria against Branch Coverage indicate that the coupling criteria are better at detecting the

object-oriented faults used in the experiment. A remaining question is which of the three

coupling criteria is the most effective. Hypotheses one, two, and three have established that

each of the coupling criteria are better than Branch Coverage. Observation of the plot in

Figure 8-3 suggests that APDU is, on average, more effective that APC and ACS. Simi-

larly, APC is, also on average, more effective that ACS. This observation is, in fact, sup-

ported by the last three hypothesis tests.

Given the above conclusion, a key question that remains is which criterion or combination

of criteria should be used? The plot in Figure 8-3 also suggests that there is no coupling-

based criterion that is particularly better for detecting one fault type versus another (i.e. the

criterion do not specialize in the faults that they detect). If any criterion is good for a par-

ticular fault type, they all are. Therefore we could pick best of the coupling criteria and use

that for all fault types.

Realistically, there are other factors that must be considered when choosing to use a partic-

ular test adequacy criteria C. Cost can be defined in many ways, including the number of

test cases required to satisfy C and the amount of time required to analyze a program to

determine if a desired level test coverage has been attained. An observation made during

the course of this research is the difference between the number of tests required to achieve

APDU as compared to APC and ACS was an order of magnitude. The total number of

APDU test cases created for all the subject programs is 817, while for APC it is 55, and 26

for ACS. If we define cost in terms of the number of required test cases, clearly APDU is

significantly more expensive than APC and ACS. From a practical perspective, is the addi-

tional cost worth the benefit received? The answer to this important question is left as future

work.

197
8.5 Conclusion
The experiments described in this chapter show that coupling-based testing techniques can

be (and have been) extended to detect the faults that result from the polymorphic relation-

ships among components in an object-oriented program. Further, the results show that these

techniques are an effective testing strategy for object-oriented programs that use inherit-

ance and polymorphism. This is an important result for developers, testers, and consumers

of software developed using object-oriented languages. Developers now have an approach,

techniques, and guidelines for addressing certain aspects of integrating object-oriented

components. Professional testers also have a repeatable and verifiable means of testing the

work products produced by developers and a means of targeting specific types of faults

peculiar to object-oriented software. Consumers of software-based and software-embedded

products will also benefit by receiving products that are of higher quality.

198

9. Contributions and Future Work
In this dissertation, a new approach to integration testing of object-oriented programs has

been presented. This approach takes into account those state interactions that result from

the use of inheritance and polymorphism and their effect on a method under test. The

approach is based heavily on the static and dynamic analysis of object-oriented programs,

and solves a key problem in the area of testing object-oriented programs: how to effectively

test programs that make use of inheritance and polymorphism.

The research presented in this thesis has several aspects that have not been explored in this

dissertation. Some of these are related directly to coupling-based testing approach while

others are specific to related areas of object-oriented software development. The following

section discusses the contributions of this research in detail, and the final section of this

chapter discusses future research related to the other aspects.

9.1 Contributions
A key contribution is a technique for analyzing and testing polymorphic relationships. The

foundation of this technique is the coupling sequence, which is a new abstraction for rep-

resenting state space interactions between pairs of method invocations. The coupling

sequence provides the analytical focal point for methods under test, and is the foundation

for the algorithms for identifying and representing polymorphic relationships for both static

and dynamic analysis. With this abstraction and the algorithms, both testers and developers

of object-oriented programs now have a means to analyze and better understand the inter-

actions within their software. Though the coupling sequence has been cast for testing prob-

lems involving inheritance and polymorphism, is generally applicable to any program that

makes uses of encapsulated data types (e.g. Modula-2, Ada83, etc.).
199

200
This thesis also contributes a set of test-adequacy criteria that are based on coupling

sequences and that take inheritance and polymorphism into account. These criteria provide

the tester and developer with a way of judging when a testing goal has been achieved. The

criteria naturally vary in their effectiveness, but this variation also correlates with the

required level of testing effort and is reflected by the subsumptive relationship among the

criteria. In ideal circumstances, the level of required to achieved perfect or near-perfect

software would be expended. In this case, only a single criterion would be necessary. How-

ever, the nature of the world dictates that limited amounts of effort can be expended. The

variation of the criteria allow the tester and developer to develop test requirements that

reflect this world view. Critical areas are less tolerant to failures, and thus more effective

testing is required than in less critical areas. The coupling-based testing criteria for object-

oriented programs presented in this thesis, combined with the original criteria of Jin and

Offutt [38], allow this objective to be achieved.

Another contribution is a technique for identifying data flow anomalies within class hier-

archies. As this thesis has shown, inheritance relationships within object-oriented programs

yield greater complexity due to the implicit coupling throughout class hierarchies. This

thesis has identified and defined specific patterns with respect to state space interactions

that indicate anomalous and potentially faulty behaviors.

This thesis has also produced a model of faults associated with the use of inheritance and

polymorphism. This model is based on the distinction between overriding methods that

extend the behavior of a new class with respect to its parents, and overriding methods that

make refinements to inherited behavior. The model takes into consideration both the

semantics of inheritance and polymorphism, and also the syntactic patterns of inheritance

that lead to anomalies and faults. This model benefits testers and developers by providing

a specific set of fault types based on syntactic patterns that can be used for code inspections,

and to guide the production of test cases. The model also benefits researchers by providing

a foundation for understanding and reasoning how failures are manifested in object-ori-

ented programs.

201
This thesis has also resulted in a proof of concept tool that demonstrates the practicality

and effectiveness of the coupling-based analysis techniques.

Finally, this thesis has contributed a graphical model for analyzing and understanding the

effects of polymorphism within a class hierarchy. The enhanced yo-yo graph clearly shows

the control flow across class boundaries between descendants and ancestors that results

from a method invocation. It is often difficult to see and understand the path taken by the

flow of control because the apparent path is not always the path that is actually executed.

Unfortunately, this is the rule rather than the exception, and is due to the non-determinism

induced by polymorphism. The yo-yo graph provides a way to gain insight into such com-

plexities.

9.2 Future Work
There are a number of additional problems that related to the research reported in this thesis

that warrant further investigation. The following sub-sections discuss 11 of these in detail.

9.2.1 Testing inter-method coupling sequences
This thesis has focused on testing polymorphic relationships that manifest themselves

through state space interactions resulting from pairs of method invocations within the same

method. However, as described in Section 4.2.5 and illustrated by Figure 4-5 on page 100,

there are other interactions that can occur between methods that are not invoked from the

same methods. These interactions form inter-method coupling sequences and represent

interactions that occur indirectly as the result of two or more separate method invocations.

To accommodate this, the definition of the types of coupling sequences (Section 4.2) will

have to be expanded along with the definitions for the coupling method, antecedent node

and method, and consequent node and method. The algorithms for identifying coupling

sequences and coupling sets must also be redefined (Algorithm 6-1 on page 143 and

Algorithm 6-2 on page 144, respectively). The expected benefit of this research will be the

detection of more faults, but at the cost of a more expensive analysis.

202
9.2.2 Specification and coupling-based testing of object-oriented
programs
One of the assumptions underlying this research is that no formal or systematic specifica-

tion is available for the classes and methods under test. The validity of this assumption rests

upon common practice in industrial (and academic) settings. The result of this assumption

is that a number of anomalies are identified that can only be characterized as potential faults

(e.g. data flow anomalies due to inconsistent state space definitions and uses across meth-

ods). It is likely that if some type of formal or systematic specification were available (e.g.

state transition diagram and method sequence diagram), static analysis using coupling-

based techniques could precisely identify certain anomalies as faults or eliminate them

from further consideration.

9.2.3 Integration testing within class hierarchies
Another key area not emphasized by this thesis is the integration testing of classes within a

class hierarchy. Each class C has the potential to define state and behavior. This serves the

constrain the behavior of its set of descendants D, particularly if elements of D can possibly

be used in contexts where an instance of C is expected. In this case, the behavior of each

descendant must be consistent with the externally observable behavior defined by

C. Each d may provide additional behaviors (i.e. extensions), but it must behave like C. It’s

not clear what testing strategies should be employed to determine if this in fact the case, but

two criteria come to mind that can possibly bound the set of testing requirements: All-Sub-

types and All-Immediate-Subtypes. The All-Subtypes criterion would require that for a

given class C that can be used in its own context (i.e. used as the declared type of a variable

or the type of a type coercion), every descendant of C be tested as if it were an instance of

C. That is, every descendant would be subjected to the same set of tests required for C, with

the expected outcome being state and behavior identical to C (thus C can be used as a test

oracle for its descendants). From the perspective of practically, All-Subtypes has the unfor-

tunate effect of requiring that for every C in a hierarchy, each of its descendants is tested

with C’s tests.

d D∈

203
All-Immediate-Subtypes relaxes All-Subtypes by requiring that only the direct descendants

of C be tested with C’s tests. This has the effect of reducing the testing effort while attempt-

ing to ensure that the each descendant is substitutable for all its ancestors, both direct and

indirect (i.e. grandparents, great-grandparents, and so on). There is some basis for this since

inheritance is a transitive relation. If B is a descendant of A, and C is a descendant of B, then

by transitivity, C is also a descendant of A. Thus, if B is first tested using A’s test cases (and

passes), and C is then tested using B’s (which includes A’s) and also passes, then C should

be behaviorally compatible with A and an instance of C can safely be used where an

instance of A is expected (conjecture). If this conjecture holds, then All-Immediate-Sub-

types has the advantage of achieving the same testing objective as All-Subtypes, but with

reduced effort because the number of test requirements is reduced. Unfortunately, this is

not likely to hold in all cases given Weyuker’s antidecomposition axiom [69] as described

by Perry and Kaiser [64].

9.2.4 Coupling-based testing of concurrent object-oriented programs
Many object-oriented languages, such as Java, Eiffel, and Ada 95, incorporate some type

of threading mechanism. This results in greater complexity of software, and likely exacer-

bates the number (and perhaps types) of faults that can occur in an object-oriented program.

An interesting area of investigation that remains open is whether or not coupling-based test-

ing techniques would be effective in the presence of multiple threads.

9.2.5 Testing of reflective object-oriented programs
Some object-oriented languages, such as Java and C#, provide runtime features that permit

the utilization and manipulation of the underlying metadata within their runtime environ-

ments (i.e. class, variable, and method names, field type information, and method return

types). For example, in Java it is possible to obtain a reference to an object whose type is

unknown at some location within the program. The program can then query the underlying

metadata to determine the object’s type, including information such as the methods it pro-

vides, the interfaces implemented, and the variables contained in its state space. The latter,

with few restrictions, can be manipulated even if its variables are not declared to be publicly

204
available. This type of dynamic semantic manipulation offers a number of testing issues

and challenges. For example, at compile time, we do not know what the actual type of an

object will be that is loaded through reflection, and thus we do not know what the test

requirements should be. At least the problem is bounded with inheritance and polymor-

phism to the finite set of types that appear in a class hierarchy. With reflection, there are no

restrictions on the type.

9.2.6 Generation of test cases for coupling-based testing
A key area of research related to this thesis is the generation of test cases that satisfy a par-

ticular coupling-based criterion. During the research reported in this thesis, test case gen-

eration was accomplished primarily through manual analysis of the subject programs used

in the validation. While this is acceptable for a scientific investigation, it is of limited appli-

cability in practical settings. Thus, there is a need to enhance the test case generation pro-

cess through automation, to the extent possible.

9.2.7 Metrics for coupling-based testing
A number of questions naturally result from the application of the coupling-based testing

approach, such as how effective is the testing effort expended thus far, how much effort is

required to test a given program using criterion C, etc. The coupling-based testing

approach naturally yields a number of artifacts (e.g. coupling sequences and coupling sets),

and object-oriented programs also have a distinct set of artifacts (e.g. classes, methods, and

inheritance hierarchies). There is the potential to combine these and use them the basis of

a measurement theory for the approach. For example, there likely is a strong positive cor-

relation between the depth of an inheritance hierarchy and number of overridden methods

with the number of test requirements generated from the coupling-based test adequacy cri-

teria. Having this theory along with a practical process for its use would add significantly

to the practical application of the coupling-based testing approach.

9.2.8 Mutation testing of object-oriented programs
One of the key questions that arises in testing is: how effective are the test cases at detecting

faults? This question applies equally to the testing approach described in this thesis and to

205
all other approaches to testing software. A testing technique that has been used to answer

this question for procedural programs is mutation testing [23]. Mutation testing is a fault-

based approach, and represents the actual faults that occur in programs using a fault model.

Testing techniques usually make assumptions about the types of faults that occur in pro-

grams, and are used to (hopefully) select test cases that detect faults of those types. In muta-

tion testing, static changes called mutations are made to programs. Mutations are

accomplished by the application of set of mutation operators. Examples of these operators

include substituting one operator for another (e.g. subtraction for addition) and using a dif-

ferent constant or variable in an expression.

The changed programs, referred to as mutants, correspond to the original unchanged pro-

gram but with the addition of a single fault. This process is repeated to produce a population

of mutants that corresponds to a particular set of fault types. The mutants are then used to

assess the adequacy of a set of test cases at detecting the faults. If the behavior of a mutant

is different from the behavior of the original program when executed with test t, then t is

said to kill the mutant and thus is capable of detecting the type of fault associated with the

mutant. In this manner, mutation testing is used to assess the effectiveness of a particular

test set.

It seems plausible that mutation testing techniques can also be applied to object-oriented

programs. However, there are some challenges that must be overcome. An underlying

assumption in the process of mutating a program to model a particular fault is that the

semantics of the mutation operators and the underlying types of the operands are well

defined and understood. For example, to change the expression x = y + z to x = y - z, where

x, y, and z are integers, it is necessary to understand that both addition and subtraction are

binary operators, and also that addition and subtraction are valid for instances of integer. If

the type of x, y, and z is string, and where addition means concatenation, then subtraction

is meaningless with respect to the type string, and thus the resulting mutated expression x

= y - z is semantically invalid. It follows from this argument that to extend mutation testing

206
to object-oriented programs also requires knowledge of the semantics of the mutation oper-

ators and of the types. Herein lies the challenge.

In object-oriented programs, types and operators are not static, but are an intentional side-

effect of the design process, and hence are not fixed across problem and solution domains.

Thus the key insight to applying mutation testing techniques requires that the variation of

types and operators be taken into account. The consequence of this insight is that the muta-

tion process cannot be treated solely as an instance of syntactic manipulation, as it can

where the set of types is fixed and well-defined. A key challenge is coming up with a muta-

tion process that can be generalized across object-oriented languages and problem/solution

domains. A likely solution is the use of a mutation engine that can be customized to account

for the variation of semantics among types and operators. For example, a special inherit-

ance hierarchy H could be used to mirror a subset of the problem/solution domain hierarchy

D. For each type T in D that is subject to mutation, H would have a corresponding type that

“knows” how to mutate instances of T in a manner consistent with T’s semantics. Out of

necessity, this would require the implementer of D to also implement H (or someone with

knowledge of D). Clearly this has the potential to be an onerous task. However, it may be

the case that certain subsets of D can be treated uniformly, thus allowing the use of inher-

itance and polymorphism to reduce the effort required to implement H.

9.2.9 CBAT Enhancements
There are a number of enhancements and modifications that need to be made to CBAT. In

no particular order, these include:

• Graphical user interface. At present, CBAT is driven by a command line inter-

face along with a set of properties maintained in a separate file. Using CBAT for

a particular analysis problem requires that a number of steps be carried out manu-

ally. This is both time consuming and tedious. A graphical user interface (or an

HTML forms-based interlace) would vastly improve the usability of CBAT.

207
• Adding a database backend. CBAT collects an enormous amount of informa-

tion during an analysis, all of which is held in memory and discarded when the

analysis is complete. Subsequent analyses requires that this information be re-

computed, and much of it is common to prior analyses performed. Further, the

fact that all of this information is held in memory necessarily places an upper

bound on the size of the problem that CBAT can handle. Storing and staging this

information in a database would increase the net performance of CBAT and

increase the size of the problem that can be handled.

• Support for additional languages. CBAT was developed for analyzing pro-

grams written in the Java programming language. However, its design was inten-

tionally generalized so that programs expressed in other object-oriented

languages (e.g. C++, C#, Eiffel, Ada 95) could also be analyzed. To support a

new language requires that a new language-specific front-end (i.e. parser) be pro-

vided. Also, a new language-specific code instrumentation engine on the back-

end would also need to be provided.

9.2.10 XML-based program representations for testing and analysis
One of the problems that must be faced by a developer of any program analysis tool is what

representation to use for analysis and storage of information. This includes information that

results from the analysis itself (e.g. the set of coupling sequences for a method), and also

the information that describes the program itself (e.g. abstract syntax tree and inheritance

hierarchy). Historically, the representations used to store this information are custom and

specific to the tool at hand (as in the case of CBAT). While this is good in that it helps to

ensure that the representation is optimized for the specific requirements of the analysis, it

208
usually limits the ability for additional tools and analyses to the specific representation. A

better solution would be a generalized canonical form for describing program information.

This would eliminate the necessity of having to start from scratch when developing an anal-

ysis tool, and also allow for easy exchange of analysis information among tools. Further,

standardized tools could be developed for performing various analyzing tasks, such as the

construction of program dependence graphs and slicing. Such a form called JavaML has

been developed for Java programs using XML as the basis [6]. The question is how effec-

tive this representation is for analyzing programs and what are its limitations. A useful

exercise to answer this question would be to extend CBAT to produce an instance of

JavaML for program under analysis, and to use this for storage and analysis.

9.2.11 Reverse engineering of software contracts
If anything, object-oriented (and object-based) programing is about specifying and imple-

menting types, and then acting on instances of those types to affect computation and

achieve behavior. A useful technique for specifying types (classes) is Design by Contract

wherein preconditions, postconditions, and invariants are specified for the type and each of

its operations (method) [51]. These serve not only as specifications to constrain the imple-

mentation, but may also be used as passive testing mechanisms [52]. With suitable lan-

guage support, preconditions and invariants can automatically be checked on entry to a

method, and postconditions and invariants checked just prior to exiting [40, 52]. A precon-

dition violation indicates a fault in the client of a type, and postcondition or invariant vio-

lation indicates a fault in the implementation of the type. Unfortunately, even with language

support, such specifications are often not produced or become lost over time.

There is a need for a mechanism or tool that will reverse engineer and recover contracts

from existing type implementations. Clearly the resulting contracts would be based solely

on the implementation (at least initially), and an underlying implicit assumption would be

that the implementation is correct. This, of course, is a dubious assumption, However, it is

not without merit since the implementation does exists and the corresponding original spec-

ification does not. Furthermore, any maintenance changes to the code have to be made

209
locally in the context of that code without the benefit of a specification. Thus, without other

reasons to the contrary, assuming the correctness of the code as a starting point is reason-

able.

Once the contracts have been recovered and the type’s implementation instrumented appro-

priately, testing can begin to determine if clients that use the type do so correctly. At this

stage, violations of preconditions may indicate a fault in the client, but could equally indi-

cate a fault in the implementation. This at least gives the basis for more focused probing to

determine where the fault lies. Postconditions are more difficult since they are based

directly on the code analyzed, and thus never should be violated. Determining their correct-

ness, and hence the correctness of the implementation, would have to be determined by how

instances of the type are used after the operation is complete. Anomalous behavior in a

client after the method has returned might indicate a problem with the implementation of

the method.

On the surface, contract recovery seems to be of limited value given the uncertainty that

initially arises with respect to the postcondition and the correctness of the implementation.

However, over time this concern should diminish, particularly as further maintenance

activities are applied to the implementation. While a postcondition violation shortly after

contract recovery raises suspicions about the contract (and the implementation) the likeli-

hood that violations occurring during the course of maintenance result from a malformed

postcondition decrease, while the likelihood of a problem in the maintenance increases.

Overtime, one would expect that the recovered contracts would become the actual con-

tracts, even if they are different from the original contracts.

References

1. Testability of Object-Oriented Systems. 1994: Reliable Software Technologies.

2. Unified Modeling Language, version 1.1. 1997, Object Management Group.

3. Alexander, R. T., J. M. Bieman, and J. Viega, Coping with Java Programming

Stress. Computer, 2000. 33(4), April: p. 30-38.

4. Alexander, R. T. and A. J. Offutt. Analysis Techniques for Testing Polymorphic

Relationships. In Proceedings of Thirtieth International Conference on Technology

of Object-Oriented Languages and Systems (TOOLS30 '99). 1999, August. Santa

Barbara CA: IEEE Computer Society.

5. Alexander, R. T. and A. J. Offutt. Criteria for Testing Polymorphic Relationships.

In Proceedings of International Symposium on Software Reliability and Engineer-

ing (ISSRE00). 2000, October. San Jose CA: IEEE Computer Society.

6. Badros, G. J., JavaML: A Markup Language for Java Source Code. 2000, Dept. of

Computer Science and Engineering. University of Washington. Seattle, WA USA.

7. Balcer, M. J., W. M. Hasling, and T. J. Ostrand. Automatic generation of test scripts

from formal test specifications. In Proceedings of ACM SIGSOFT '89 Third Sympo-

sium on Software Testing, Analysis and Verification (TAV3). 1989. Key West, FL,

USA.

8. Barbey, S. and A. Strohmeier. The Problematics of Testing Object-Oriented Soft-

ware. In Proceedings of SQM'94 Second Conference on Software Quality Manage-

ment. 1994. Edinburgh, Scotland, UK.
210

211
9. Beizer, B., Software Testing Techniques. 1990, New York, New York: Van Nos-

trand Reinhold.

10. Berard, E. Issues in the Testing of Object-oriented Software. in Proceedings of

Electro'94 International. 1994: IEEE Computer Society Press.

11. Berard, E. V., Essays on Object-Oriented Software Engineering. Vol. 1. 1993:

Prentice Hall.

12. Binder, R. V., Testing Objects: Myth and Reality. Object Magazine, 1995. 5(2): p.

73-75.

13. Binder, R. V., Trends in Testing Object-oriented Software. Computer, 1995.

28(10): p. 68-69.

14. Binder, R. V., The FREE Approach for System Testing: Use-cases, Threads, and

Relations. Object Magazine, February, 1996. 6(2).

15. Binder, R. V., Testing Object-Oriented Software: A Survey. Journal of Software

Testing, Verification & Reliability, 1996. 6(3/4), September / December: p. 125-

252.

16. Bishop, Y. M. M., S. E. Fienberg, and P. W. Holland, Discrete Multivariate Anal-

ysis: Theory and Practice. 1975, Cambridge, Massachusetts: MIT Press.

17. Capper, N. P., R. J. Colgate, J. C. Hunter, and M. F. James, The Impact of Object-

oriented Technology on Software Quality: Three Case Histories. IBM Systems

Journal, 1994. 33(1): p. 131-157.

18. Cheatham, T. J. and L. Mellinger. Testing Object-oriented Software Systems. In

Proceedings of ACM 18th Annual Computer Science Conference. 1990, February:

ACM Press.

19. Chen, H. Y., T. H. Tse, F. T. Chan, and T. Y. Chen, In Black and White: An Inte-

grated Approacht to Class-Level Testing of Object-Oriented Programming. ACM

Transactions on Software Engineering and Methodology, 1998. 7(3): p. 250-295.

212
20. Chen, M.-H. and M.-H. H. Kao. Testing Object-Oriented Programs - An Integrated

Approach. In Proceedings of Tenth International Symposium on Software Reliabil-

ity Engineering. 1999, 1 - 4 November. Boca Raton, Florida.

21. Chow, T. S., Testing software design modeled by finite-state machines. IEEE

Transactions on Software Engineering, 1978. SE-4(3): p. 178-87.

22. DeMillo, R. A., D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt. An

Extended Overview of the Mothra Software Testing Environment. in Proceedings of

Second Workshop on Software Testing, Analysis, and Verification. 1988, July.

Banff Alberta: IEEE Computer Society Press.

23. DeMillo, R. A. and A. J. Offutt, Constraint-Based Automatic Test Data Generation.

IEEE Transactions on Software Engineering, 1991. 17(9), September: p. 900-910.

24. Doong, R.-K. and P. G. Frankl, The ASTOOT Approach to Testing Object-Oriented

Programs. ACM Transactions on Software Engineering and Methodology, 1994.

3(4): p. 101-130.

25. Dorman, M. Unit Testing of C++ Objects. in Proceedings of EuroSTAR 93. 1993,

October. Jacksonville, Flordia: SQE, Inc.

26. Fiedler, S. P., Object-Oriented Unit Testing. Hewlett-Packard Journal, 1989. 40(2):

p. 69-75.

27. Firesmith, D. G., Testing Object-Oriented Software. 1992, Advanced Technology

Specialists.

28. Firesmith, D. G. Testing Object-Oriented Software. In Proceedings of Eleventh

International Conference on Technology of Object-Oriented Languages and Sys-

tems (TOOLS USA, '93). 1993: Prentice-Hall, Englewood Cliffs, New Jersey.

29. Frankl, P. G. and S. N. Weiss, An experimental comparison of the effectiveness of

branch testing and data flow testing. IEEE Transactions on Software Engineering,

1993. 19(8): p. 774-87.

213
30. Frankl, P. G. and E. J. Weyuker, An applicable family of data flow testing criteria.

IEEE Transactions on Software Engineering, 1988. 14(10): p. 1483-98.

31. Freedman, R. S., Testability of software components. IEEE Transactions on Soft-

ware Engineering, 1991. 17(6): p. 553-64.

32. Harrold, M. J., J. McGregor, and K. Fitzpatrick. Incremental Testing of Object-Ori-

ented Class Structures. In Proceedings of 14th International Conference on Soft-

ware Engineering. 1992: IEEE Computer Society.

33. Harrold, M. J. and G. Rothermel. Performing Data Flow Testing on Classes. In

Proceedings of Second ACM SIGSOFT Symposium on Foundations of Software

Engineering. 1994: ACM Press, New York, New York.

34. Harrold, M. J. and M. L. Soffa, Selecting and using data for integration testing.

IEEE Software, 1991. 8(2): p. 58-65.

35. Hayes, J. H. Testing of Object-Oriented Programming Systems (OOPS): A Fault-

Based Approach. In Proceedings of Object-Oriented Methodologies and Systems.

1994: Springer-Verlag.

36. Hong, H. S., Y. R. Kwon, and S. D. Cha. Testing of Object-oriented Programs

Based on Finite State Machines. In Proceedings of 1995 Asia Pacific Software

Engineering Conference. 1995: IEEE Computer Society Press, Los Alamitos, Cal-

ifornia.

37. Hong, H. S., Y. R. Kwon, and S. D. Cha, A State-Based Testing Method for Classes.

Journal of Korea Information Science Society(B, 1996. 23(11): p. 1145-1154.

38. Jin, Z. and A. J. Offutt, Coupling-based Criteria for Integration Testing. The Jour-

nal of Software Testing, Verification, and Reliability, 1998. 8(3), September: p.

133-154.

39. Jorgenson, P. C. and C. Erickson, Object-Oriented Integration Testing. Communi-

cations of the ACM, 1994. 37(9): p. 30-38.

214
40. Kramer, R. iContract - The Java(tm) Design by Contract(tm) Tool. In Proceedings

of Technology of Object-Oriented Languages and Systems. 1998, August 3-7. Santa

Barbara, California: IEEE Computer Society.

41. Kung, D., J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. A Test Strategy for Object-

Oriented Systems. In Proceedings of Nineteenth Annual International Computer

Software and Applications Conference. 1995: IEEE Computer Society Press, Los

Alamitos, Calif.

42. Kung, D., N. Suchak, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. On Object State

Testing. In Proceedings of Eighteenth Annual International Computer Software \&

Applications Conference. 1993: IEEE Computer Society Press, Los Alamitos,

Calif.

43. Leavens, G. T., Modular Specification and Verification of Object-oriented Pro-

grams. IEEE Software, 1991. 8(4): p. 72-80.

44. Leavens, G. T. and W. E. Weihl, Specification and Verification of Object-oriented

Programs Using Supertype Abstraction. Acta Informatica, 1995. 32(8): p. 705-778.

45. Liskov, B. and J. M. Wing. Specifications and their use in defining sub-types. in

Proceedings of OOPSLA'93. 1993. New York: ACM Press.

46. McGregor, J. D. Constructing Functional Test Cases Using Incrementally Derived

State Machines. In Proceedings of 11th International Conference on Testing Com-

puter Software. 1994: USPDI, Washington, DC.

47. McGregor, J. D. Functional Testing of Classes. in Proceedings of 7th International

Software Quality Week. 1994: Software Research Institute, San Francisco.

48. McGregor, J. D. and D. M. Dyer, A Note on Inheritance and State Machines. Soft-

ware Engineering Notes, 1993. 18(4): p. 61-69.

49. McGregor, J. D. and D. M. Dyer. Selecting Functional Test Cases for a Class. In

Proceedings of 11th Annual Pacific Northwest Software Quality Conference. 1993:

PNSQC, Portland, Oregon.

215
50. Meyer, B., Introduction to the Theory of Programming Languages. 1990: Prentice

Hall.

51. Meyer, B., Design By Contract, in Advances in Object-Oriented Software Engi-

neering, D. Mandrioli and B. Meyer, Editor. 1991, Prentice Hall: Englewood Cliffs,

N.J. p. 1-50.

52. Meyer, B., Object-Oriented Software Construction. 1997, Englewood Cliffs, New

Jersey: Prentice Hall.

53. Meyer, S., Effective C++. 1992, Reading, Massachusetts: Addison-Wesley.

54. Morell, L. J. Theoretical Insights into Fault-Based Testing. In Proceedings of ACM

SIGSOFT '89 2nd Symposium on Software Testing Analysis and Verification

(TAV2). 1988. Banff Alberta.

55. Morell, L. J., A Theory of Fault-Based Testing. IEEE Transactions on Software

Engineering and Methodology, 1990. 16(8), August: p. 844-857.

56. Offutt, A. J. Software testing: State-of-the-art Vs. State-of-the-practice. Position

Paper: Software Testing: From Theory to Practice. In Proceedings of 1997 Annual

Conference on Computer Assurance (COMPASS 97). 1997, June. Gaithersburg

MD: IEEE Computer Society Press.

57. Offutt, A. J. and A. Irvine. Testing Object-Oriented Software Using the Category-

Partition Method. in Proceedings of TOOLS USA'95. 1995. Santa Barbara, Califor-

nia: Prentice Hall.

58. Orso, A., Integration Testing of Object-Oriented Software, in Dipartimento di

Elettronica e Informazione. 1999, Politecnico Di Milano: Milan, Italy.

59. Ostrand, T. J. and M. J. Balcer, The category-partition method for specifying and

generating functional tests. Communications of the ACM, 1988. 31(6): p. 676-86.

60. Overbeck, J., Integration Testing for Object-Oriented Software. 1994, Vienna Uni-

versity of Technology.

216
61. Pande, H. D., W. A. Landi, and B. G. Ryder, Interprocedural def-use associations

for C systems with single level pointers. IEEE Transactions on Software Engineer-

ing, 1994. 20(5): p. 385-403.

62. Parnas, D. L., J. E. Shore, and D. Weiss. Abstract types defined as classes of vari-

ables. In Proceedings of Conference on Data: Abstraction, Definition and Struc-

ture. 1976. Salt Lake City, UT, USA.

63. Payne, J. E., R. T. Alexander, and C. D. Hutchinson, Design-for-Testability for

Object-Oriented Software. Object Magazine, 1997. 7(5), July: p. 34-43.

64. Perry, D. E. and G. E. Kaiser, Adequate Testing and Object-Oriented Program-

ming. Journal of Object-Oriented Programming, 1990. 2(5): p. 13-19.

65. Rapps, S. and E. J. Weyuker, Selecting software test data using data flow informa-

tion. IEEE Transactions on Software Engineering, 1985. SE-11(4): p. 367-75.

66. Sanden, B., Software Systems Construction with Applications in Ada. 1993, Engle-

wood Cliffs, New Jersey: Prentice Hall.

67. Sinha, S. and M. J. Harrold, Analysis and Testing of Programs with Exception-Han-

dling Constructs. IEEE Transactions on Software Engineering, 2000. 26(9), Sep-

tember: p. 849-871.

68. Smith, M. D. and D. J. Robson. Object-oriented Programming: The Problems of

Validation. In Proceedings of 6th International Conference on Software Mainte-

nance. 1990: IEEE Computer Society Press, Los Alamitos, Calif.

69. Weyuker, E. J., Axiomatizing software test data adequacy. IEEE Transactions on

Software Engineering, 1986. SE-12(12): p. 1128-38.

217

CURRICULUM VITAE

Roger T. Alexander was born on December 9, 1958, in Louisville, Kentucky, and is an
American Citizen. He graduated from Louisville Male High School, Louisville, Kentucky,
in 1977. He received his Bachelor of Science from the University of the State of New
York in 1991. He received his Master of Science from George Mason University in 1994.

Mr. Alexander has worked in the software industry for 23 years, primarily as a developer
of software development tools. He is currently employed as a Senior Research Scientist in
the Center for Secure Information Systems at George Mason University. Mr. Alexander is
a Senior Member of the Institute of Electrical and Electronic Engineers, a Member of the
IEEE Computer Society, and a Professional Member of the Association for Computing
Machinery.

	1. Introduction and Overview
	1.1 Motivation
	1.2 Problem Statement
	1.2.1 System level testing techniques
	1.2.2 Unit level testing techniques
	1.2.3 Integration Testing Techniques

	1.3 Thesis Statement
	1.4 Object-oriented Programming
	1.4.1 Classes
	1.4.2 Compositional Relationships
	1.4.3 Polymorphism and Dynamic Binding

	1.5 Problems with method overriding and polymorphism
	1.6 Organization of Dissertation

	2. Background and Related Work
	2.1 Issues in Testing Object-oriented Software
	2.2 Test Adequacy
	2.3 Class Testing
	2.3.1 State-based Testing
	2.3.2 Method Sequence-Based Testing

	2.4 Integration Testing of Object-Oriented Programs
	2.5 Other Approaches of Testing Object-Oriented Software
	2.6 Coupling-Based Testing
	2.6.1 Coupling-Based Testing Definitions
	2.6.2 Coupling-Based Testing Paths
	2.6.3 Coupling-Based Testing Criteria
	2.6.4 Relationship to the Object-oriented Coupling-based Testing Criteria

	3. Inheritance and Polymorphism Faults
	3.1 A fault/failure model for polymorphic for object- oriented programs
	3.1.1 Reachability
	3.1.2 Infection
	3.1.3 Propagation

	3.2 Inheritance Faults and Anomalies
	3.2.1 Inconsistent Type Use (ITU)
	3.2.2 State Definition Anomaly (SDA)
	3.2.3 State Definition Inconsistency due to State Variable Hiding (SDIH)
	3.2.4 State Defined Incorrectly (SDI)
	3.2.5 Indirect Inconsistent State Definition (IISD)
	3.2.6 Anomalous Construction Behavior(1) (ACB1)
	3.2.7 Anomalous construction behavior(2) (ACB2)
	3.2.8 Incomplete (failed) Construction (IC)
	3.2.9 State Visibility Anomaly (SVA)

	3.3 Syntactic Patterns of Inheritance
	3.3.1 Descendant has No Methods (DNM)
	3.3.2 Descendant introduces extension methods
	3.3.2.1 Descendant introduces Non-interacting Extension Methods (DNEM)
	3.3.2.2 Extension method Calls another Extension method (ECE)
	3.3.2.3 Extension method Calls Inherited methods (ECI)
	3.3.2.4 Extension method Calls Refining method (ECR)
	3.3.2.5 Extension method Uses/Defines Inherited state Variable (EUIV/EDIV)
	3.3.2.6 Extension method Uses/Defines Local state Variable (EULV/EDLV)
	3.3.3 Descendant introduces refining methods
	3.3.3.1 Refining method Calls Extension method (RCE)
	3.3.3.2 Refining method Calls other Inherited method (RCI)
	3.3.3.3 Refining method Calls other another Refining method (RCR)
	3.3.3.4 Refining method Calls Overridden Method (RCOM)
	3.3.3.5 Refining method Defines/Uses Inherited state Variable (RDIV/RUIV)
	3.3.3.6 Refining method Defines/Uses Local state Variable (RDLV/RULV)
	3.3.4 Descendant Introduces Constructors
	3.3.4.1 Constructor Calls Inherited Method (CCIM)
	3.3.4.2 Constructor Calls Refining Method (CCRM)
	3.3.4.3 Constructor Calls Extension Method (CCEM)
	3.3.4.4 Constructor Defines/Uses Inherited state Variable (CDIV/CULV)
	3.3.4.5 Constructor Defines/Uses Local state Variable (CDLV/CULV)
	3.3.5 Special cases – Complete Behavioral Redefinition
	3.3.5.1 Complete Behavioral Redefinition(1) (CBR1)
	3.3.5.2 Complete Behavioral Redefinition(2) (CBR2)

	3.4 Discussion

	4. Coupling-based Analysis of Object-Oriented Programs
	4.1 Extended Coupling Definitions
	4.2 Coupling Sequences
	4.2.1 Type I Coupling Sequences
	4.2.2 Type II Coupling Sequences
	4.2.3 Type III Coupling Sequences
	4.2.4 Type IV Coupling Sequences
	4.2.5 Other Type of Coupling Sequences

	4.3 Coupling Variables and Coupling Sets
	4.4 Coupling Paths
	4.4.1 I-Def Paths
	4.4.2 I-Use Paths
	4.4.3 Transmission Paths

	4.5 The effects of inheritance and polymorphism on coupling
	4.6 Polymorphic coupling sequences and coupling sets
	4.6.1 Polymorphic Coupling Sequences
	4.6.2 Polymorphic Coupling Sets

	4.7 Coupling paths in object-oriented programs
	4.7.1 Non-Polymorphic Coupling Paths
	4.7.2 Polymorphic Coupling Paths
	4.7.2.1 Type 1 Polymorphic Coupling Paths
	4.7.2.2 Type II Polymorphic Coupling Paths
	4.7.2.3 Type III Polymorphic Coupling Paths
	4.7.3 Feasible and infeasible coupling sequences

	4.8 Summary

	5. A Set of Criteria for Testing Object-Oriented Programs
	5.1 Coupling Criteria
	5.1.1 Definitions
	5.1.2 All-Coupling-Sequences
	5.1.3 All-Poly-Classes
	5.1.4 All-Coupling-Defs/Some-Coupling-Uses
	5.1.5 All-Coupling-Uses/Some-Coupling-Defs
	5.1.6 All-Coupling-Defs-Uses
	5.1.7 All-Poly-Coupling-Defs-Uses

	5.2 Generation of Test Requirements

	6. Analyzing Coupling Properties of Object- oriented Programs
	6.1 Definitions
	6.2 Identifying Coupling Sequences
	6.3 Identifying Coupling Sets
	6.4 Instrumenting OO Programs for Coupling Analysis
	6.4.1 Coverage Mappings
	6.4.2 Instrumentation Requirements

	6.5 Instrumenting Java Programs
	6.5.1 Instrumentation Instructions
	6.5.2 An example
	6.5.2.1 Registration of Coupling Sequences
	6.5.2.2 Collection of use and definition information
	6.5.2.3 Identifying execution of coupling sequences

	6.6 Summary

	7. CBAT - Coupling-based Analysis Tool
	7.1 Objectives of CBAT
	7.2 Representations provided by CBAT
	7.2.1 Class Graph
	7.2.1.1 Method Graph
	7.2.2 Abstract Syntax Tree
	7.2.2.1 Intra-method Graph Representations
	7.2.2.2 Inter-method Graph Representations
	7.2.2.3 Analysis Data
	7.2.2.4 Control-flow information
	7.2.2.5 Data flow information
	7.2.2.6 Coupling-related information

	7.3 Architecture of CBAT
	7.3.1 CBAT Core
	7.3.1.1 Parse Tree Generator
	7.3.1.2 Class and Method Graph Generator
	7.3.2 Analysis Engine
	7.3.3 Instrumentation Engine

	7.4 Implementation

	8. Validation
	8.1 Experimental design
	8.1.1 Subject programs
	8.1.2 Test adequacy criteria
	8.1.3 Test data
	8.1.4 Injected Faults

	8.2 Conduct of Experiments
	8.2.1 Test oracle derivation
	8.2.2 Fault injection
	8.2.3 Test execution
	8.2.4 Result evaluation

	8.3 Results
	8.4 Analysis and Discussion
	8.4.1 Analysis of the coupling-based criteria
	8.4.2 Explanation of effects
	8.4.3 Effectiveness of the Coupling-based Criteria
	8.4.3.1 Details of the Hypothesis Tests
	8.4.4 Discussion

	8.5 Conclusion

	9. Contributions and Future Work
	9.1 Contributions
	9.2 Future Work
	9.2.1 Testing inter-method coupling sequences
	9.2.2 Specification and coupling-based testing of object-oriented programs
	9.2.3 Integration testing within class hierarchies
	9.2.4 Coupling-based testing of concurrent object-oriented programs
	9.2.5 Testing of reflective object-oriented programs
	9.2.6 Generation of test cases for coupling-based testing
	9.2.7 Metrics for coupling-based testing
	9.2.8 Mutation testing of object-oriented programs
	9.2.9 CBAT Enhancements
	9.2.10 XML-based program representations for testing and analysis
	9.2.11 Reverse engineering of software contracts

