TESTING THE POLYMORPHIC RELATIONSHIPS OF

OBJECT-ORIENTED PROGRAMS:

by
Roger T. Alexander
A Dissertation

Submitted to the

Graduate Faculty
of

George Mason University
in Partial Fulfillment of
the Requirements for the Degree
of
Doctor of Philosophy
Information Technology and Engineering

Committee:

A. Jefferson Offutt, Thesis Director

Paul Ammann

James M. Bieman
Colorado State University

Hassan Gomaa

Elizabeth White

Stephen G. Nash, Associate Dean for
Graduate Studies and Research

Lloyd J. Griffiths, Dean, School of
Information Technology and Engi-

neering

Spring 2001
George Mason University
Date: Fairfax, Virginia




Testing the Polymor phic Relationships of Object-oriented Programs

A dissertation submitted in partial satisfaction of the requirements for the degree of
Doctor of Philosophy in Information Technology and Engineering at George Mason

University

By

Roger T. Alexander
Master of Science
George Mason University, 1994

Director: A. Jefferson Offutt
Department of Information and Software Engineering

Spring Semester 2001
George Mason University
Fairfax, Virginia



Copyright © 2001 Roger Thompson Alexander
All Rights Reserved



Dedication

I’d like to dedicate this thesis to my family and friends who have supported me through the
yearswhile | toiled away.

First, to my wife and soul mate, Suzanne. Sweetheart, you' ve been there from the
beginning, and you, above all others, have had constant faith in me. You were
always there.

To my sons, Michael and Scott.
To my Mother and my brother Walter.

To my life-long and very best friend, Mr. Jack L. Baldwin, who over the years
had faith and conviction in my intelligence and abilities long before | did myself.

To my friend and mentor, Dr. Gene R. Lowrimore.



Acknowledgments

| would like to acknowledgment and thank the following individual s who have contributed

to the success of this dissertation:

Dr. Jeff Offutt, my advisor and friend. Jeff, just one more question...

Dr. Paul Ammann, Dr. James Bieman, Dr. Hassan Gomaa, and Dr. Elizabeth
White for serving on my committee

Dr. Gene Lowrimorefor assisting with the statistical analysis, being my sounding
board, and for being a dear friend.

Mr. Chuck Hutchinson, also for being my sounding board and friend, and for
contributing his knowledge and experiences with OO faults.

Dr. Ye Wu for hisinsightful comments on OO fault modeling

Quansheng Xiao for providing one of the subject programs used to validate the
research reported in thisthesis.

My wife, Suzanne, and my children, Michael and Scott, for putting up with me
during this difficult period, and for providing encouragement, understanding, and
their love.



Table of Contents

A aCt . .o Xi
CHAPTER 1 Introduction and OVErview . . ...ttt e 1
L1 MOtIVatioN ..o 1
1.2 Problem Statement .. ... 3
1.2.1 Systemlevel testingtechniques. .. ............ .. ... 4

1.2.2 Unitlevel testingtechniques. .. ........ ... . i, 4

1.2.3 Integration Testing Techniques. .. ........ .. ... .. 6

1.3 ThessStatement .. ... e 6
1.4 Object-oriented Programming. .. ..ot 6
LA L ClaSSES. ittt e 6

1.4.2 Compositional Relationships. . . .....ovii e 7

1.4.3 Polymorphismand DynamicBinding............................. 8

1.5 Problemswith method overriding and polymorphism .................. 10
1.6 Organization of Dissertation ...............iiiiiiiiiiinnnnn. 18
CHAPTER 2 Background and Related Work ......... ... ... ... iiii... 20
2.1 Issuesin Testing Object-oriented Software ........................... 20
22 TSt ACEOQUACY ..ot ittt et e e e 22
2.3 ClasSTeStiNg ..o ittt e 29
231 Statebased Testing ........ ..o e 29

2.3.2 Method Sequence-Based Testing . ... 31

2.4 Integration Testing of Object-Oriented Programs. . .................... 36
2.5 Other Approaches of Testing Object-Oriented Software ................ 42
26 Coupling-Based TeStiNg .. ...cv it e 43
2.6.1 Coupling-Based Testing Definitions. .. ............ ... ... ... .... 43

2.6.2 Coupling-Based TestingPaths. ............. ... ... ... 46

2.6.3 Coupling-Based Testing Criteria. .. ..., 47

2.6.4 Relationship to the Object-oriented Coupling-based Testing Criteria . . . 48
CHAPTER 3 Inheritance and Polymorphism Faults. . ....................... 50
3.1 A fault/failure model for polymorphic for object-oriented programs. .. ... 53
311 Reachability........ ... 54

312 Infection. . ... 55

313 Propagation . ... ... 55

3.2 InheitanceFaultsand Anomalies. ............. ... .. 55



3.21 Inconsistent TypeUse (ITU) . ..ot e 56

3.2.2 State Definition Anomaly (SDA) ... 58
3.2.3 State Definition Inconsistency due to State Variable Hiding (SDIH). . .. 61
3.24 State Defined Incorrectly (SDI). . ... oo 61
3.25 Indirect Inconsistent State Definition (I1ISD). .. .................... 62
3.2.6 Anomalous Construction Behavior(1) (ACB1). .. .................. 63
3.2.7 Anomalous construction behavior(2) (ACB2) ..................... 64
3.2.8 Incomplete (failed) Construction (IC). .. ........ ..o, 65
3.29 StateVisbility Anomaly (SVA) . ... 66

3.3 Syntactic Patternsof Inheritance. . ........... ... . . i 67
3.3.1 Descendant hasNoMethods(DNM) ........ ... ..., 69
3.3.2 Descendant introduces extensionmethods .. ...................... 70
3.3.3 Descendant introducesrefiningmethods. . ........................ 77
3.34 Descendant Introduces Constructors. . .. ....oovvi i 82
3.3.5 Specid cases— Complete Behavioral Redefinition. ................. 85

34 DISCUSSION . o v vttt ettt et e e e e 89
CHAPTER 4 Coupling-based Analysisof Object-Oriented Programs .......... 91
4.1 Extended Coupling Definitions . ... i 91
4.2 Coupling SEqQUENCES. . . . ..ot ittt 93
421 Typel Coupling SEQUENCES. . ... oottt et et e 94
422 Typell Coupling Sequences. . ... e 95
423 Typelll Coupling SEQUENCES . . . ..ottt e 96
424 TypelV Coupling SEqQUENCES . . . .ottt 98
4.25 Other Typeof Coupling Sequences. .. ......cooviii i 99

4.3 CouplingVariablesand CouplingSets. .......... ..., 100
44 CouplingPaths. . ... . 101
441 [-Def Paths. ... ... 103
442 1-UsePalhs. ... ... e 104
443 TransmissionPaths . ... i 105

45 Theeffectsof inheritance and polymorphism on coupling.............. 106
4.6 Polymorphic coupling sequencesand couplingsets. . .................. 116
4.6.1 Polymorphic Coupling Sequences. . .............ccciviiinnen... 116
4.6.2 PolymorphicCoupling Sets. . ... 119

4.7 Coupling pathsin object-oriented programs . ............ ... ... ..... 120
4.7.1 Non-Polymorphic CouplingPaths. . ............................ 120
4.7.2 Polymorphic CouplingPaths. . .......... ... ... ... ... .. ..... 123
4.7.3 Feasibleandinfeasiblecouplingsequences ...................... 125

48 SUMMAIY .ttt e e e e e e e e 126
CHAPTER 5 A Set of Criteriafor Testing Object-Oriented Programs. . ....... 128
5.1 Coupling Criteria . ..ovo e 129
511 Definitions. .. ..o 129

Vi



51.2 All-Coupling-Sequences . . . ... 132

513 All-Poly-Classes . . ..o 133
5.1.4 All-Coupling-Defs'Some-Coupling-Uses. .. ..............covn... 134
5.1.5 All-Coupling-Uses/Some-Coupling-Defs. .. ..................... 135
51.6 All-Coupling-DefsUses ...t 136
5.1.7 All-Poly-Coupling-Defs-Uses. . ... 137

5.2 Generationof Test Requirements . ...........coviiiiiinnnenannn.. 137
CHAPTER 6 Analyzing Coupling Properties of Object-oriented Programs. . . .. 140
6.1 DeEfiNitioNS .. ... o 140
6.2 ldentifying Coupling Sequences. . . ...t 142
6.3 ldentifyingCoupling Sets. . ... e 143
6.4 Instrumenting OO Programsfor Coupling Analysis................... 144
6.4.1 Coverage MappingsS. . . ..o v it 144
6.4.2 Instrumentation Requirements. ...............coviiiinnnnnn... 146

6.5 InstrumentingJavaPrograms. ............c.coiiiiiii i, 147
6.5.1 Instrumentation INStructions .. ............ i, 148

6.5.2 Anexample .. ... ... ... e 150

6.6 SUMMIAIY ..ot e e 144
CHAPTER 7 CBAT - Coupling-based AnalysisTool ....................... 156
7.1 Objectivesof CBAT . ... 156
7.2 Representationsprovided by CBAT ... 157
721 ClassGraph . ..o 157

7.22 Abstract Syntax Tree. .. ..o e 158

7.3 Architectureof CBAT . ... 169
7.3 L CBAT GO . ittt e e e e e 169

732 AnalySISENGINe. ... ... 171
7.3.3 InstrumentationENgiNe. . ............ i 171

7.4 Implementation . ... e 172
CHAPTER 8 Validation . ....... ... e 174
8.1 Experimental design . ... 174
8.1.1 SUbJECt PrOgrams. . ..ot e 174

8.1.2 Testadequacy Criteria...........ccuuiriiiii e, 175
813 Testdata ..o 176
814 InjectedFaults. . .......... i e 177

8.2 Conduct of EXperiments. ...t 178
8.21 Testoraclederivation .......... ..ot 179
8.22 Faultinection ....... ... e e 180
8.23 TESLEXECULION . . o\ttt 181
824 Resultevaluation. ........... ..o 181

8.3 RESUIS. ..o 182

Vil



84 Analysisand DiSCUSSION ... ..ttt et et et 183

8.4.1 Anaysisof thecoupling-based criteria. .. ....................... 190

8.4.2 Explanationof effects.......... ... i 191

8.4.3 Effectiveness of the Coupling-based Criteria .. ................... 192

844 DISCUSSION . . ottt ettt e e e e e 196

8.5 CONCIUSION ... 197
CHAPTER 9 Contributionsand FutureWork. ............ .. ...t 199
9.1 ContribUtionS. . ... 199
0.2 FULUreWOrK ... 201
9.2.1 Testing inter-method coupling SeqUENCES. .. .. .o oo i e 201

9.2.2 Specification and coupling-based testing of object-oriented programs. . 202

9.2.3 Integration testing within classhierarchies. . ..................... 202

9.2.4 Coupling-based testing of concurrent object-oriented programs ... ... 203

9.25 Tedting of reflective object-oriented programs. .. ................. 203

9.2.6 Generation of test casesfor coupling-based testing ................ 204

9.2.7 Metricsfor coupling-basedtesting ............ ... . .t 204

9.2.8 Mutation testing of object-oriented programs. . .. ................. 204

929 CBATENhaNCEMENTS . ...t 206
9.2.10 XML-based program representations for testing and analysis . . . . . .. 207
9.2.11 Reverseengineering of softwarecontracts . ..................... 208

RE B ENCES . . . 177

viii



Table

3-1
3-2
3-3
4-1
4-2
4-3

6-1
6-2
6-3
8-1
8-2
8-3
8-4
8-5

List of Tables

Page
Faults and Anomalies due to Inheritance and Polymorphism...........ccccceuee.e. 56
Syntactic Patterns of INNeritance..........ccccveceveevevieeve e 68
Fault/anomaly types manifested by syntactic patterns...........ccccevveererinneenne 88
Summary of sample coupling paths.........ccccoceveieeicce e 113
Binding triplESOr ....ooeoiiee e 118
Sample Coupling Paths ..o 122
Polymorphic coupling paths for typefamily A ... 124
(O0)V 7= =0 T= 1Y/ =0 o o 145
INStrumentation INSIUCLIONS.........ocuviiriierieeie e 147
Javainstrumentation Methods...........cceveiiiiiinen e 148
Subject program CharaCteristiCs.........oovereriiniereee e 175
Number of test cases per subject program and criterion...........cccceveveveenenne 176
Number of faultsinjected into method under test .........ccooovvieeiinieiieienenne 178
Experimental RESUILS...........ccovieeiiee e 183
Results Of hypOtheSISTESES.......cceiiiiiceeee e 195



Figure

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12

2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
39
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
4-1
4-2
4-3

List of Figures

Page
Sample aggregation eXamPle ........cooeiieecccece e 7
Sample Inheritance HIerarchy ... 8
Sample ClassS HIErarChy .......ccoovciiiesece et 10
Example class hierarchy with table of definitionsand USes ..........ccccccccevvceieennnne 11
Def-use pairsresulting from A::h preceding Azl and Azl oooeeceeceneeneeieneee, 12
Different def setsbetween A:hand B:ih ..o 13
Dataflow anomaly dueto A::h preceeding A:il ...ocoveeeveeieeeceee e 14
d called through iNnStaNCe Of A ... e 15
d called through iNStaNCe Of B ........ccveiieeieiieseee e 16
Data flow anomaly for A::y with respect to A::u and A::j with respect to A::w ..16
d called through iNnStaNCe Of C ........ooueeiiiiceeee e 17
Dataflow anomaly for A::i with respect to A::u and C::I with respect to A::v ....18
Chen and Kao' s shape example [20] .....cccveceveeieeieeseerie et 39
Procedural COUPIING CrTEITA ......coovviieiieesie e 438
Class hierarchy with refining and extension methods ..........cccccocvevveceiecce e, 51
EXample Ni€rarChy ......oooooeeececece e 54
Descendant with no overriding methods ... 58
Code example showing iNCONSIStENt tyPE USAJE ......ccvveeeerreeeeeierieeeeseeneeeeesseeneas 58
State Definition ANOMEAIIES ........ooiiiiiiiieieee e 60
Example of Indirect Inconsistent State Definition (I11SD) .......cccoveevveeivninienenne 63
Example of Anomalous Construction BENAVIOr ..........cccccvecereeieeceseere e 64
Incomplete construction of state variable fd ..........cccovveveicenicie e 66
State Visibility ANOMEAIY ....oveiiiieieee e 67
Descendant whose definitions include no methods or state variables .................. 70
Example showing interaction of extension methods ..........cccccceevveceveccevicieeenne 71
Definitions and uses for extensions Methods ... 72
Code fragment for method Submarine::evade .........cccoocveeveecevceeveeceseece e 74
Code fragment for method Submarine::blowBallast ...........cccccevvevviccieccecnee, 77
Code fragment for method Submarine::SUDMErge .........coceveeievenienceneece e 78
Code for Submarine::accelerate illustrating RUIV, RCOM, and RDIV .............. 80
Complete Behavioral Redefiniditon (2) .......cccoeceveeieeieeneee e 87
Y o-yo effect resulting from extension method calling inherited method ............. 90
Type | Coupling SEQUENCE .......ccvveierieeieeieeie e eeesee e see e steeee e esae e sseesesnee e 94
Type [l Coupling SEQUENCE .....ocueecieeieeeee ettt ee et 96
Type [l Coupling SEQUENCE .......cooveiiiieieee et 98



4-4

4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
6-1
6-2
6-3
6-4

7-2
7-3

7-5
7-6
8-1
8-2
8-3
8-4
8-6
8-5
8-8
8-7
8-10
8-9
8-12
8-11
8-13
8-14

Type [V Coupling SEQUENCE .......ccceeieeeeieeieseesie e seeee e steeee e sae e e esesnee s 99

Inter-method Coupling SEQUENCES ........ccccceveerieeeseere e 100
Detailed Type | Coupling SEQUENCE ........coverierieriieiienieeee e 104
Sample class hierarchy and def-usetable .........cccooeveeveccesicce e 107
Coupling sequence when oisbound to aninstance of A .......cccoeceveevvveenennne 108
Coupling sequence when o isboundto aninstance of B .........cccocceevieiivcieenen. 110
Coupling sequences when o isbound to aninstance of C ........c.ccceeevvvcieneennnne 111
Sample hierarchy with class D added ..........cccevvrieiicie e 112
Sample hierarchy showing modified class C .........cccoceiiiiininiine e 114
Coupling sequence where oisbound to C and ........cceevveeveecieneeseece e 115
Hierarchy of coupling-based testing Criteria .........cccocvevevieeneeceseese e 130
Java mechanism for collecting coupling-based coverage data ...........c.ccecvneee. 149
SAMPIE NIEIAICHY ... ee s 150
Method Client.f (without instrumentation) and corresponding CFG ................. 151
Method Client.f instrumented for coupling COVErage .........ccevvreenerinneesienene 154
UML Class Diagram for package ClassGraph ..........cccceveveeveeienesseseesieeeens 158
UML class diagram for CONtrolTree ......ccccveeeveeiecie e 160
UML Class Diagram for AST eXPreSSiONtree .......coceveeeereenenieeseeniesee e 161
Class Diagram for package MethodGraph. ..........ccccecevievievcevicee e, 164
CBAT @IChItECIUIE ....o.veviieiieieerieeee ettt 170
CBAT INSITUMENEEL ...ttt n e sre e e neesneas 172
Class hierarchy with seeded shadow hierarchy for All-Poly-Classes ................. 180
Class hierarchy with seeded shadow types for All-Coupling-Defs-Uses ........... 181
Average detection effectiveness by fault type .......ccccoeceeverieninenie e 184
Average effectiveness for program P1 across all subject criteria ..o, 185
Average effectiveness for program P3 across all subject criteria ..........ccoeeee.. 186
Average effectiveness for program P2 across all subject criteria ..........cccceeeeee 186
Average Effectiveness for Program P5 across all Subject Criteria .................... 187
Average effectiveness for program P4 across all subject criteria .........cccoeeeee. 187
Average effectiveness for program P7 across all subject criteria .........cccccveueee 188
Average effectiveness for program P6 across all subject criteria ..........ccoe.eee.. 188
Average effectiveness for program P9 across all subject criteria ..o, 189
Average effectiveness for program P8 across all subject criteria .........ccccceenee 189
Average effectiveness for program P10 across all subject criteria ..........c.c........ 190
Observed versus fitted Cell freqUENCIES ........cccvvvvieiecie e 194

Xi



ABSTRACT

TESTING THE POLYMORPHIC RELATIONSHIPS
OF OBJECT-ORIENTED PROGRAMS

Roger T. Alexander, MS
George Mason University, 2001

Dissertation Director: A. Jefferson Offutt

The emphasis in object-oriented programs is on defining abstractions that have both state
and behavior. This emphasis causes a shift in focus from software units to the way soft-
ware components are connected. Thus, we are finding that we need less emphasis on unit
testing and more on integration testing. The compositional relationships of inheritance and
aggregation, especially when combined with polymorphism, introduce new kinds of inte-
gration faults. The research presented in this thesis is based on the key insight that the pri-
mary mechanism for integration is coupling between components. Previous research
demonstrated that coupling-based testing techniques can be used for integrating compo-
nents in procedural programs. This thesis extends previous work to account for the com-
positional relationships found in object-oriented programs. The key contributions include
a formalism for representing the state interactions and behavior that result from method
calls where inheritance and polymorphism are a factor, a set of test-adequacy criteria that
are effective at detecting faults that are peculiar to object-oriented programs, a technique
for identifying data flow anomalies within inheritance hierarchies, a model of the faults
that can occur in object-oriented programs, and a graphical model for analyzing and
understanding the effects of polymorphism within aclass hierarchy. This research has also
produced a proof of concept tool that demonstrates the practicality and effectiveness of the
coupling-based analysis and testing techniques.



1. Introduction and Overview

The emphasis in object-oriented languages is on defining abstractions (e.g. abstract data
types) that model concepts relative to some problem and solution domain [52]. These
abstractions appear in the language as user-defined typesthat have both state and behavior.
Unfortunately, while the use of abstract data types often resultsin a design of higher qual-
ity, thelevel of testing effort required to achieve adesired level of quality canincrease. This
is due to the inherent complexity in the nature of the relationships found in object-oriented
languages [15]. The compositional relationships of inheritance and aggregation, combined
with the power of polymorphism, increase the difficulty in detecting faults that result from
the integration of componentsto form new types. Thisisdueto the differencesin how com-

ponent integration occurs in object-oriented languages [11].

The research presented in this thesis is the result of an investigation in the area of testing
these abstractions when inheritnace and polymorphaism are used. Emphasis is placed on
testing the state space interactions between methods for a given class when invoked from
another method in a different class. The following sections describe the problem and
present the motivation, present the thesis statement, and provide background concepts on

object-oriented programming.

1.1 Motivation
In procedure-oriented languages such as C and Pascal, and object-based languages such as

Modula-2 and Ada 83, the unit of integration is the procedure and module, respectively.®

The integration mechanism is simple aggregation through either procedure/function call-

1. The primary distinction between the types of languages discussed in this thesis are the mechanisms used
for abstraction. Procedure-oriented languages employ the procedure and function. In contrast, both object-
based and object-oriented languages use data abstraction as the primary abstraction mechanism.



return, or through containment when one module includes another. This is aso true for
object-oriented languages, but the key difference is the presence of another integration
mechanism: inheritance. Inheritance permits new types to be defined in terms of the state
and behavior of existing types. Such new types are said to be descendants of the existing
type [50]. Inheritance differs from aggregation in that the encapsulation of the inherited
type may not be preserved. It is possible for the newly defined type to have free access to
the internal representation of the typesthat it based on. Together, inheritance and polymor-
phism are the key characteristics that distinguish an object-oriented language from an
object-based language [50, 52].

Another difference is the effect that polymorphism (dynamic binding) has on the integra-
tion of components when inheritanceisafactor. Any object type T defines a new type fam-
ily. Members of that family include T and any of its descendants. Polymorphism allowsthe
type of an object to determine which version of amethod executes[52]. Asaresult of poly-
morphism, any instance of a descendant type can be freely substituted for an instance of Tl
An instance has a memory location and a value associated with it. For example, the decla-
rationint x = 7 in the C programming language resultsin anew instance of the type int with
a memory location initialized to the integer value 7. Similarly, in a object-oriented lan-
guage, creating an object of a particular class resultsin a new instance of that class having
an associated memory location and value. Thus, inheritance combined with polymorphism
provides two forms of integration that must be dealt with when testing objects, integration
of representation and integration of abstraction. Neither of these has a procedure-oriented

counterpart.

Integration of representation addresses the issues associated with combining the state space
representation of existing classes to form the representation for a new classes. This is
accomplished through inheritance whereby the state space of a parent class becomes part

of the state space of the child. Properties and behaviors that are inherited, along with state-

1. Thetermsinstance and object are synonymous, and used interchangeably throughout this thesis.



space definitions, must be carefully combined with new and overriding methods to ensure

consistency in behavior and state among the related classes.

Integration of abstraction deals with the effects of aggregation in the presence of inherit-
ance and polymorphism. Theintegration issue consists of ensuring that the aggregated type
and its owner work correctly together across all forms of representation that can exist for
the aggregated type. Thisis not just a static language issue; there also is a dynamic aspect
due to dynamic binding resulting from inheritance and polymorphism. It is possible for the
representation of an aggregated type to change dynamically at runtime. Because of this, all
possible substitutions must be tested to ensure consistent behavior with respect to the

aggregated abstraction.

Asan example, an implementation of a Stack could use aclassthat is sequential data struc-
ture, such as an Array or LinkedList, to hold its contents. While these two data structures
can have the same sequential behavior, they are likely to be vastly different state represen-
tation. The Array could be a contiguous area of memory index by a pointer, whereas the
LinkedList would consist of a series of nodes that mutually reference one another. If both
of the classes for Array and LinkedList share a common parent, say Sequence, then Sack
can use Seguence as its state space representation. Since Array and LinkedList are children
of Sequence, either can be used to provide the behavior required by Stack. To ensure that
Sack behaves correctly, it must be tested across the extension of the type family repre-
sented by Sequence, Array and LinkedList in this case.

1.2 Problem Satement
The problemthat this thesis addressesisthat of finding errorsin the polymor phic relation-

ships among integrated type components in object-oriented software.

Traditional testing techniques do not work effectively for object-oriented software, at |east
in the sense that they are not capable of detecting the faults that programmers make in



object-oriented programs [17, 27]. Simply put, there are many more different types of

places where faults can hide than in traditional procedure-oriented programs.

The following sections discuss traditional approachesto software testing and their applica-

bility to the testing of software written in object-oriented languages.

1.2.1 System level testing techniques
System level testing techniques, such as the Category-Partition technique [59], usually

focus on the functional behavior of asystem without regard for its structural characteristics.
These techniquestreat asystem asablack-box and try to determineif agiven system exhib-
itsthe required functional behavior according to some specification. Test inputs are chosen
without regard for the structure of the system. Consequently, it may not be possible to know
what components of the system actually execute and which do not. There may be compo-
nents that are not executed by the chosen test suite even though the test suite itself is ade-
guate with respect to the system's specification. Thus, there may befaultsresiding at certain
locations within the system, but because those |ocations are not executed, there is no oppor-

tunity for afailure to be observed if one occurred.

For the types of faults outlined in Section 1.1, execution is anecessity if any confidenceis
to be obtained in the correctness of an object-oriented program. Thisis consistent with the
first tenant of the fault/failure model, which essentially states that if afault isto resultin a
failure, then the program location containing the fault must first be executed [22, 54, 55].
Thus, black-box techniques are not sufficient to adequately test the compositional relation-

ships found in object-oriented programs.

1.2.2 Unit level testing techniques
Traditional unit-level path testing techniques used to test procedure-oriented programs,

such as statement and branch coverage [9], are effective at testing certain aspects of object-
oriented programs [25]. They are just as applicable to methods as they are to procedures

and functions, though their overall impact on quality is lessened.



Unit-level techniques are used to analyze various characteristics of procedures with respect
to some test adequacy criterion. For example, branch coverage measures the quality of a
particular test suite, and hence the quality of any testing effort, as the percentage of
branches covered when the procedure is executed using inputs drawn from the test suite[9].
This approach to testing is well-suited for methods as well. However, its overall effective-
ness for testing an object-oriented program may be far less than that of an equivalent pro-
cedure-oriented program [15]. Thisisdueto the tendency for behavior in an object-oriented
program to be distributed across a set of collaborating objectsinstead of being relegated to
a handful of procedures and functions. The practical consequence of this is that methods
tend to be much less complex and considerably shorter, many times to atrivia extreme.
Consequently, the procedural complexity is shared among many different methods belong-
ing to different classes. Unfortunately, this reduces the effectiveness of path-based unit-
level techniques, and increases the necessity to test the compositional relationships among

classes.

Another form of testing that is prevalent in procedure-oriented software is dataflow testing
[30]. These techniques explore the interrel ationships among the data elementsin aprogram
and attempt to identify faultsthat are associated with well-defined patterns of definition and
usage. The fault assumptions made by these techniques are that faults will be revealed if
every definition is used in some way [9, 30]. While there is evidence to suggest that these
techniques are useful for procedure-oriented programs [29], they still are not adequate for
testing the complex relationships that occur among components within object-oriented pro-
grams. In particular, these techniques do not directly support the testing of state space inter-
actions among overridden and inherited methods. Also, they are not sufficient for testing
the behavior of polymorphic substitutions [12]. However, the work of Harrold and Soffa
[34] and also of Jin and Offutt [38] has shown data flow analysis to be an effective tech-
nigue for testing the integration of procedure-oriented components. It seems likely that an
augmented form of this analysis technique would be useful for analyzing and testing the

compositional relationships found in object-oriented programs.



1.2.3 Integration Testing Techniques
Integration testing is concerned with testing the interactions among components. Does a

component that calls another do so correctly? Are the parameters of the right types and
ranges, and do they observe the proper relationships? Does the called method actually
return the proper type and is the value in the correct range? These questions are the focus
of integration testing. Unfortunately, very little research has been conducted in this area.
Work that has been done generaly emphasizes inter-procedural data flow [34]. That is,
determining whether or not that the data passed between componentsisused in aconsistent

manner.

1.3 Thesis Statement
Coupling based testing techniques can be extended to detect the faults that result from the

polymor phic relationships among components in an object-oriented program.

1.4 Object-oriented Programming

Thefollowing sections describe the concepts and principl es associ ated with object-oriented
programming that are relevant from a testing perspective. The reader is referred to texts

such as Meyer’s [52] for athorough treatment of object-oriented concepts.

1.4.1 Classes
Object-Oriented Programming is an approach to the development of software that is based

on the concepts of information hiding and encapsulation [52]. The fundamental building
block isthe class, which is the mechanism by which new types are defined. A class encap-
sulates state information in a collection of variables, referred to as state variables, and aso
has a set of behaviors that are represented by a collection of methods that operate on those
state variables. The primary role of the classin an object-oriented program isto provide a
template for the creation of objects [52]. Thus, a class defines a type that all of its objects

share.

Object-Oriented Programming is an approach to the development of software that is based
on the concepts of information hiding and encapsulation [52, 62]. The fundamental build-



ing block is the class, which is the mechanism by which new types are defined. A class
encapsulates state information in acollection of variables, referred to as state variables, and
also has a set of behaviors that are represented by a collection of methods that operate on
those state variables. The primary role of the class in an object-oriented program isto pro-
vide a template for the creation of objects [52]. Thus, a class defines atype that al of its

objects share.

1.4.2 Compositional Relationships
There are two types of relationshipsthat can be used to compose types (i.e. classes) to form

new types. Thefirst of these, aggregation, issimply the traditional notion of one type con-
taining instances of another type as part of the itsinternal state representation. In a proce-
dural language such as the C programming language, a struct type aggregates instances of
other types as part of itsdefinition. For example, astruct that describes an employee record
might be composed by aggregating string instances that maintain the first, middle, and last
names of an employee, and perhaps a date instance that records the date of hire. In an
object-oriented language, the aggregation of instances is similar. Figure 1-1 provides a
simpleillustration of type aggregation represented in the notation of the Unified Modeling
Language (UML)[2]. The diamond indicates the aggregating class, A in this case. The
figureillustrates a class diagram that consists of two class types, A and B, with an instance
of B being aggregated into A's state space. Thus, every instance of type A will also contain

an instance of type B.

<>

Figure 1-1. Sample aggregation example

The second form of compositional relationship isinheritance. Inheritance allows the repre-
sentation of one type to be defined in terms of the representation of a set of other types.

When this occurs, the type being defined is said to inherit the properties of itsancestors (i.e.



behavior and state). The definition of the ancestors becomes part of the definition of the
new descendant type. An example of thisisillustrated in Figure 1-2 where the arrow points

to the ancestor class.

+f()

-Z

+r()

Figure 1-2. Sample Inheritance Hierarchy

1.4.3 Polymor phism and Dynamic Binding
Related to both inheritance and aggregation is polymor phism and dynamic binding. Poly-

morphism permits instances of different types to be bound to a reference of another type
according to the structure of the inheritance hierarchy. Dynamic binding permits different
method implementations to execute depending upon the actual type of an instance that is
bound to a particular reference independent of its declared type [52]. As an example, con-
sider the UML class diagram shown in Figure 1-3 and the following code fragment that

provides an implementation of method p specified by class Q:

void Q::p( W w )

{

w.m() ;

(o) WO I S GUINS \O I ol



Line 4 contains a call site in which the method misinvoked against the instance bound to
the object reference w. The implementation of mthat actually executes depends on the type
of the instance that is bound to w. Even though the declared type of wis W, the actua type
of the bound instance can be of any of the classes shown in hierarchy depicted in Figure 1-
3. In an object-oriented language such as C++ and Java, variables that reference objects
have a static type, which is the type they are declared as, and a dynamic type that is deter-
mined at runtime. The dynamic type, or actual type, isthe type of the instance that is actu-
ally boundto the variable. Thiscan be an instance of any member of the type family defined
by the declared type of the variable. For example, if the type of the instance passed to the
method shown above is of type X, then the version of mthat executes will be X:: m.! Simi-
larly, if the typeis Z, then the version that will execute is Z::m. However, if the typeisV,
then the version of mthat will execute is W::m, because V does not provide a definition of

m.

1. The notation used here is borrowed from C++ where the scope resolution operator :: is
used to identify the namespace that a particular identifier is a member of.



10

0 B

+m() +m()

Zr +n()

Figure 1-3. Sample Class Hierarchy

+m()

+0

1.5 Problemswith method overriding and

polymor phism

To illustrate the problems that method overriding and polymorphism, consider the simple
inheritance hierarchy that is three classes deep, shows on the left of Figure 1-4. The root
class A contains four state variables and six methods. Its direct descendant B specifies one
state variable and three methods. Finally, class C specifies only three methods. You can
easily see which classes have methods that override inherited methods, such as B::h over-
rides A::h. The table to the right of Figure 1-4 shows the state variable definitions and uses
of some of the methods for each classin the hierarchy. The problem begins with the seem-
ingly innocuous call to A::d through the instance provided by some context variable. This
seemingly trivial example has some very complex interactions that potentially yield nasty

problems.



T 1
< c -

+d()
+9()

+h()

+i()
@il

+10)

@

—T+h()
()
+K ()

M ethod Defs Uses
A::h {A::uA::w}
A {A::u}
A:j {A::v} {A::w}
Al {A::v}
B::h {B::x}
B::i {B::x}
C:i {C::y}
C:j {C::y}
C::l {A::v}

:

—+i()
+i()
+1()

Figure 1-4. Example class hierarchy with table of definitions and uses

11

Suppose that an instance of A isbound to o and that a call to method A::h precedes callsto

A::i and A::j. The def-use pairs that can occur for this sequence is highlighted in Figure 1-
5. Note that the definitions of A::uand A::w by A::h are used by A::i and A::j. From a data

flow perspective, this not an anomaly since A::u and A::w were defined before they were

used.



12

A
t Suppose that A::h can
-u . .
v preceede A::i and A::j
-w
+d()
+9() M ethod i — Uses
*h0 A::h AuAwWI L
T A | —— INC[AD
+J|8 A {A::v} CTA: WD)
% Al {Azv}
B::h {B::x}
B B:i {B::x}
_;Xh C:i {C::y}
_F+i(§) C:ij {C:1y}
k() c:l {A::v}
C
+i()
+i()
+1()

Figure 1-5. Def-use pairs resulting from A::h preceding A::i and A:;j

Now supposethat an instance of B isused in place of theinstance for A. Examining the def-
inition-use table in Figure 1-6 immediately reveals that overriding method B::h has a dif-
ferent def set than A::h does. In particular, there are state variablesthat A::h definesthat B::h
doesnot (i.e. A::uand A::w).



13

A
i
" Different def sets
-w
+d()
+9() Method /  Uses
+h() Azh |({A:u AW [/
:!0 Al S~ | {Au}
+:8 Aj {A::v} {A::w}
% Al {A::v}
B:h | {Bux} )
= B B::i S~—~— {B::x}
| C:i {C::y}
+ih(§) C:j {C::y}
+k () C::l {A::v}
C
)
+]()
()

Figure 1-6. Different def sets between A::h and B::h

Thesituation depicted in Figure 1-6 isnot necessarily aproblem. It depends on whether any
method called that uses one of the variables defined by A::h not defined by B::h (e.g. A::j).
Note that the sequence B::h followed by B::i is safe from a data flow perspective since the
former defines B::x and the latter usesit. Thus, if this sequence of method calls were made
in the context expecting an A but through an instance of B, no data flow anomally would
exist. However, if the call to A::h were followed by a call to A::j, an anomaly would exist
since A::w is used by A::j but was not defined because B::h was executed instead of A::h.
Thisisindicated in Figure 1-7.



14

A
i If A::h can precede A::i, then
-u
v a data flow anomaly exists
-w
+d ()
+9() M ethod Defs /
+h0 A::h {A:uAw) /o
| :f() A /1 C{Azu )
+:8 Al {A::ﬂ/ XA
% Al | — {A::v}
B::h ¢ (Bu:x} )
B B::i e — {B::x}
_;Xh C:i {C::y}
T+i(§) C:ij {C:1y}
,rk()Zﬁ C::l {A::v}
[
—+i()
+j()
+1()

Figure 1-7. Data flow anomaly due to A::h preceeding A::i

To see the effects that polymorphism can have on method overriding, consider the follow-

ing code fragment that makes use of the same hierarchy:

f( A o)
{

o.d();
}

Here, method f has aformal argument o whose declared type is A. Because the type family
associted with A includes classes B and C, o can be bound to an instance of any of these.
Figure 1-8 depicts aa stylized graph, called ayo-yo graph, that depicts the flow of control

that results from acall to A::d when o is bound to an instance of A. Aswe see here, d calls



15

g, whichinturn calsh, hcallsi, andi callsj. Presumably, thisisthe intent of the program-

mer of A and is correct with respect to the specification of A.

A I B oo oYY oY e Yo e Y e Yo e Y e Y Y e e e Y Yo Y e Y Y Y
Instantiate g licit | | |
w0 nstannaied) A | { oo ety g Mtk MEICE oty 0
+g ()
o (()’ B h() i0) kO
+ 0 c i0) i0 10)
41 ()

Figure 1-8. d called through instance of A

Now suppose that o is bound to an instance of B. The call o0.d results in the execution
sequence beginning with of A::d shown in Figure 1-9. As before. A::d then calls A::g, and
A::g then apparently calls A::h. But, because d was called in the context of an instance of
B, B::h executesinstead. Aswe see, B::h calls B::i, which in turn makes an explicit call to
A:i., and thisthe flow of control returnsto purview of A’simplementation. On the surface,

this execution path looks innocuous enough. Unfortunately, thisis not the case.

As Figure 1-10 indicates, there is a data flow anomaly in method A::i with respect to state
variable A::u, and method A::j with respect to state variable A::w. A::i expects that state
variable A::u to have been defined prior to itsinvocation, and A::j hasasimilar expectation
for state variable A::w, and indeed this is what the programmer of A has done. However,
through means beyond the control of A’s programmer, the flow of control and the pattern
of state definitions has been altered, with result being a violation of one of the assumptions

made in the implementation of A.



16

A o o
90 A d0 implicit 90 implicit h() |mpI|C|i i0) |mpI|C|i i0 10
+9 ()
+h () .
40 h() i0) k()
0 C i0) i0 10
+1()
........... D
T AR ‘Hlﬁ!.g.o """" R0 fig —ri0) 0
B .y “ f 1
0 Instantiateq B \ )ImplICIt i , KO
40 type | T | N Mlmmaaa )
=0 c i0 i0 10

Figure 1-9. d caled through instance of B

implicit implicjt i
| 4 ‘ d0 90 i Data Flow
Anomaly!

: A::i With reSpeCt tOA::u .................................
e A:ij withrespect to A::w 10

----------~

10

Instantiateq implicit | ]
0o type e NhO Ty kO
el c i0 i0 10

Figure 1-10. Data flow anomaly for A::y with respect to A::u and A::j with respect to A::w

Now consider what happens when d is called through an instance of C, as depicted in
Figure 1-11. Asisobvious. amuch more complex pattern of method calls results (and pre-
sumably state interactions as well). The first three method invocations are consisted with
the implementation of B (though not with A). But the fourth method invocation, which is

apparently to B::i, actually resultsin the execution of C::i. Now C::i callsB::i, whichinturn



17

callsA::i asbefore (theimplementation of B has not changed). Now, A::i makesits apparent
call to A:;j. Thistime, control returnsto C with the execution of C::j, and so on. Clearly this
is a complicated situation and not without its problems. Figure 1-12 shows that two data
flow anomalies result in method A::i with respect to A::u and method C::I with respect to
Anv.

A
ey A d0 implicit g()lmpllc; h()lmgllmi i0) |mpI|C|i i0 10
+9 ()
h
:—i (()) B h() i0 k()
+ 0 C i0 io 10
+1 ()
ZIX A a)——» 9()Y""> h() i) —»i0 10
B A
\ o explicit
#h 0 B h P i) kO
+i ()
k
=t c i0 i0 10
A j 10)
T )..vw.‘? .................
c ° \-*',/J< ()\;\
) Instantiate ~
4 0) nstantiateq) N Y
+0 type ¢ R
+1 ()

Figure 1-11. d called through instance of C



18

A
+d ()
b » A:ii with respect to A::u
oy o C::l with respect to A::v
+ ()
o s N v o
B Anomaly!
+h ()
+i ()
+k ()T
o e RUIRNANG)
+] - ~ o
+10

Figure 1-12. Dataflow anomaly for A::i with respect to A::u and C::l with respect to A::v

This example has illustrated some the complexities that can result in object-oriented pro-
grams due to method overriding and polymorphism. Along with the thisinduced complex-

ity comes more difficulty and required effort in testing.

1.6 Organization of Dissertation
The remainder of this dissertation is organized as follows. Chapter 2 reviews background

material and related work. Thisincludesissuesin testing object-oriented software, concepts
of test adequacy, and other testing approaches related to object-oriented software. Chapter
3 presents adiscussion of faults that are peculiar to object-oriented programs as a result of
inheritance and polymorphism. Chapter 4 presents the concepts and theory of coupling-
based testing applied to object-oriented programs. Chapter 5 continues with a presentation
of the coupling-based test adequacy criteria for object-oriented programs. Chapter 6 dis-
cussalgorithmsfor analyzing object-oriented program to identify coupling sequences. Also

included is a discussion on program instrumentation techniques required to collect cou-



19

pling-based coverage information. Chapter 7 presents CBAT, the proof of concept tool
developed to validate the research presented in this thesis. Chapter 8 describes the efforts
taken to validate this research. This includes a discussion of the experimental design, the
raw results, and their significance. Finally, Chapter 9 summarizes the contributions of this

research and presents a discussion of future work.



2. Background and Related Work

A number of areasarerelated to the research described in this dissertation. The sectionsthat
follow discuss these areas in detail. The first section describes and discusses a number of
issuesthat are peculiar to testing object-oriented software. Next, the notion of test adequacy
is discussed with respect to testing object-oriented software. Following thisis adiscussion
of class level testing that describes both state-based and method sequence-based testing
approaches. Next, existing techniques for integration testing of object-oriented softwareis
described. Finally, other testing techniques are discussed that are related to this research.

2.1 Issuesin Testing Object-oriented Software

A number of issues associated with object-oriented software that are not relevant in systems
written using procedure-oriented languages. Many researchers have made the assertion that
not all forms of traditional testing techniques are applicable or effective in testing object-
oriented software [35] [10] [28]. The semantics of classes are embodied in their methods
and in the representations chosen for their state. In isolation, each method appears to be a
function or procedure, equivalent to those found in the procedure-oriented languages. They
take formal arguments and interact with state variables that act as global data. Thus, it
seems reasonable to expect traditional unit testing technigues to be applicable to methods.
However, these techniques are not as effective with methods as they are with procedures.
Thisis because methods tend to be significantly smaller and less complex. It isnot uncom-
mon to find methods with one or two statements, and many (perhaps the majority) can be
found to have lessthan ten [15]. A method of only afew statementsisnot aslikely to have
statement-level faults or as many as those of procedures having tens, hundreds, or even
thousands of statements. Consequently, the prevailing wisdom is that the effectiveness of

traditional path-oriented unit testing techniquesis not very high. The nature of the types of

20



21

faults that occur in object-oriented programs are such that path-oriented techniques are not
sufficient [15].

Strong encapsul ation reduces or often eliminates our ability to observe the state of an object
[63] [12] [1] [8]. If the state cannot be observed, then it is often not possible to determine
if afailure has occurred. Strong encapsulation also reduces the ability to control the input
toatest [31]. Thisoften makesit difficult to establish the necessary conditions for conduct-
ing tests (e.g. establishing initial state and determining final state), thus limiting our ability

to achieve adequate testing of a class.

A number of researchers have observed that, contrary to many widely held beliefs, object-
oriented language features actually increase the effort required to achieve adequate test-
ing.1 Binder observes that inheritance and polymorphism present opportunities for the
commission of errors that simply do not exist in procedure-oriented programs. Further-
more, he points out that testing effort is not reduced for a descendant class simply because
its parent has been thoroughly tested. Thisis because each new classis a different context,
and perhaps even different tests are required to achieve test adequacy [12]. Binder also
observes that testing objects is problematic because they "...[often] exhibit sequentially
dependent behavior” (i.e. the behavior and state of an object is afunction of the history of
its method invocation) [13]. Objects can generally be viewed as state machines that transi-
tion from one state to the next as their methods are executed. Objects that exhibit modal
behavior impose limits on the order in which their methods can be executed. From atesting
perspective, thisresultsin an increase in the effort required to establish initial states and to

test all combinations of valid method sequences.

Smith and Robson report the observation that in an object-oriented language, a class cannot
be tested directly [68]. Instead, classes must be tested indirectly by testing their instances

1. Inapersonal communication with the author, Gail Kasier lamented the difficulty that she and DeWayne
Perry had in publishing their paper on adequate testing of object-oriented programs because their claims and
argument went against the commonly held beliefs of the time { Kaiser:1998:PC} { Perry:1990:ATO}.



22

(objects). Testing becomes a process of sampling from the class population of instances.
Unfortunately, this comes with the limitations associated with statistical sampling. The
quality of the testing effort will be limited as a function of the degree to which the sample

isrepresentative of al the class instances.

Fiedler reports on his experiences using an approach for testing classes that was used at
Hewlett-Packard's Waltham Division [26]. The approach was based on the use of acombi-
nation of black and white box testing techniques applied to a number of programs written
in Extended C++ . He reports that the approach was applied to severa generic classes that
had been tested prior using traditional black-box testing techniques and that the classes
where considered to be correct. However, upon application of the approach, a number of
faultswere detected that the prior testing effort had missed, but there are many possible rea-
sonsfor this. His main conclusions are that the unit of testing in an object-oriented program
must be the class, and that the testing activity must occur much earlier inthelife-cycle. Fur-

ther, he concludes that both black and white-box testing techniques must be used.

2.2 Test Adequacy

One of the early widely-held beliefs about object-oriented technology was that inheritance
would reduce the amount of testing effort required. It was believed that once a parent class
had been adequately tested, testing a derived class would be far ssimpler. All that would
need to be done is to test the new methods added by the descendant, since those inherited
from the parent had already been adequately tested. The conventional wisdom was that
inheritance would reduce testing effort by either eliminating or reducing re-testing, or
allowing thereuse of tests. Thisbelief was dispelled by Perry and Kaiser [64] who, drawing
upon the earlier work of Weyuker [69], analyzed the adequacy of tests for object-oriented
programs with respect to single inheritance, method overriding, and multiple inheritance.
Their conclusions are that these features do not reduce the amount of testing effort, and in
many cases, increase the required effort to achieve test adequacy. They make the important
observation that inheritance, in particular, makes the effects of changes "implicit and

dependent on the various underlying, and complicated, inheritance models' [64]. The basis



23

for their conclusions rests upon Weyuker's axiomatic basis for determining test data ade-
quacy [69]. They make use of four of the following of Weyuker's eleven axioms of test ade-
guacy to show that inheritance and method overriding do not lead to a reduction of testing
effort:
1. Antiextensionality: "If two programs compute the same function ... atest set
adequate for one is not necessarily adequate for the other” [64]. Thisisaresult
of the fact that program-based test adequacy is a function of the syntactic struc-

ture of source code, not its functionality. Because of this, programs that imple-

ment the same specification are quite likely to require different test sets.

2. General Multiple Change: "When two programs are syntactically similar (that
is, they have the same shape), they usually require different test sets' [64].
Essentially, two programs have the same shape if their control structures are
identical, but differ in the relational operators, constants or arithmetic operators.
Two such programs would require different test sets ssmply because the test
data for one would most likely not result in the desired coverage objectives for

the other.

3. Antidecomposition: "Testing a program component in the context of an enclos-
ing program may be adequate with respect to that enclosing program but not
necessarily adequate for other uses of the component” [64]. It may be the case

that the component has code that was not reached during the test for the enclos-



24

ing program. Thus, when the enclosing program’s test passed, there still remains
untested code in the enclosed component, leading to the conclusion that the

enclosed component itself has not been adequately tested.

4. Anticomposition: "Adequately testing each individual program component in
isolation does not necessarily suffice to adequately test the entire program.
Composing two program components results in interactions that cannot arise in

isolation” [64].

Intuitively, testing should be limited to just the modified class. However, as Perry and
Kaiser point out, the anticomposition axiom states, in effect, that just because a class has
been tested in isolation does not mean that it is adequately tested when it has been com-
posed with other classes. Thus, the authors conclude that integration testing is always nec-

essary regardless of which programming language is being used.

One side effect of object-oriented languages is that the connections between components
“"tend to be explicit and obvious" [64]. Changing acomponent should only requirere-testing
of the changed component and the other components that are dependent. Likewise, adding
anew component should only require testing of the new component and re-testing of com-
ponents that are dependent. Unfortunately, the antidecomposition axiom comes into play
when anew subclass is added to a hierarchy. The requirement isthat the methods inherited
from each ancestor class must be re-tested since the new subclass provides a new context
for these methods. However, thisrequirement does not apply to the case where the new sub-
class has no interaction with the ancestor class methods (or state). Thisimpliesthat the sub-

classis apure extension to its ancestors, adding its own state variables and methods [64].

Replacing an inherited method with alocally defined method (i.e. an overriding method)
requires that the subclass be retested, but with a different test set. Thisis governed by the



25

antiextensionality axiom; even though the overriding method and the overridden method
may be close semantically, their test sets are not likely to be mutually adequate due to their
syntactic differences. Another subtle, but significant, consequence isthat it may be neces-

sary to re-test every ancestor of the subclass containing the overriding method [64].

Multiple inheritance presents compounding effects that result in the applicability of both
the antiextensionality axiom and general multiple change axiom. The problem occurswhen
a subclass inherits from multiple ancestors that define methods of the same name, which
the subclass does not override. Depending upon the semantics of the particular program-
ming language, acall to one of the multiply defined methods through an instance of the sub-
class will result in a specific method being executed, the choice being determined by the
order of inheritance specified by the subclass. A test set that is adequate for an initia inher-

itance ordering may not be adequate if a change resultsin a new ordering [64].

Others have observed that inheritance does not necessarily reduce testing effort. Smith and
Robson observed that inheritance causes problems for testing as classes undergo evolution
[68]. Modifications to a class will affect all additional classes that are its descendants, and
will thus require some potentially significant amount of re-testing. Such class modifica-
tions will typically require modifications to the associated test suite, and thus will have an

impact on any descendant class whose test suite makes use of its parent's test suite.

Cheatham and Mellinger identify four properties that amethod min a descendant class can
have [18]. First, a method can be inherited from the parent class without any alterations.
They state that little re-testing is needed in this case. However, their conclusion is short-
sighted since m, even though it has not been modified, may fail to behave correctly due to
indirect interactions with other methods defined in the descendant through the inherited
state space. The second property for misthat it can override an identically named method
in the parent. The third property isthat m can be executed in conjunction with the parent's
m by providing awrapper that callsit. The fourth property is that m can be a new method
in the descendant that is not directly related to any member of the parent. Cheatham and



26

Mellinger state that cases two, three, and four must be treated as new methods and tested
accordingly, though they do not describe what they consider to be adequate testing. They
do state that in the third case, the parent's version of m can be treated as a black box for

purposes of testing the new m.

Harrold, McGregor, and Fitzpatrick present an approach for identifying the set of tests that
are necessary to test a class adequately, particularly when inheritance isafactor [32]. Ade-
guacy in this case means that every method is tested individually as well as its interaction
with other methods in the class. Their test suites include tests that are both specification-
based and program-based. They note that specification-based test cases can be constructed
using existing approaches. Their approach makes use of stubs for other methods and pro-
cedures called by the method under test (MUT). Driver routines are also provided for exe-
cuting the MUT. Each test suiteis atriple consisting of the method, a set of specification-
based tests, and a set of program-based tests. Also, each test set includes aflag to indicate
if those tests should be run in their entirety, a subset, or none at all. Thisflag is used when

determining which of the parent class' attributes must be retested in a descendant.

Harrold, McGregor and Fitzpatrick base their criteria of what must be retested on the work
of Perry and Kaiser's extension (for OOPs) of Weyuker'swork on the axiomatization of test
adequacy [64] [69]. Their decision of what to include dependends upon the effects of inher-
itance and the interactions that occur as the result of new and overridden attributes, and
attribute redefinition and hiding. They use a graph-based representation, called a class
graph, to determine the interactions that occur and the necessary level of re-testing
required. In their approach, they classify an attribute A (methods and state variables) asfol-

lows:

New Attribute. A is defined (i.e. given avalue) in the descendant, but not by the

parent.



27

Recursive Attribute. Aisdefined in the parent and inherited by the child. The child
does not redefine A.

Redefined Attribute. A is defined by the parent and re-defined by the child, which

hides the parent's definition.

Virtual-new Attribute. A is specified by the parent and may have not implemen-
tation. A may also be specified in the child but its signature differsfrom the parent's
definition. References to A in the child refer to the local definition, but references

by other attributes in the parent refer to the parent's definition.

Virtual-recursive Attribute. A is specified in the parent, and its implementation
may be deferred. The child does not define A.

Virtual-redefined Attribute. A is specified in the parent and its definition may be
deferred. Further, Aisdefined in the child and has the same signature as the version
of A specifiedin the parent. Harrold, McGregor and Fitzpatrick's approach requires
the following types of testing to occur in a subclass [32].
* A New or Virtual-New attribute A requires individual testing since it
was not included in the parent's test suite. Due to the antiextensional

axiom, A must also be integration tested with other attributes that it

interacts with.

* Recursive or Virtual-Recursive attributes require "very limited" re-test-
ing since they were individually tested in the parent. The authors claim
that the specification-based and program-based test suites need not be
re-run. However, A'sinteraction with new or redefined attributes will

need to be re-tested.



28

 Virtua or Virtual-Redefined attributes require extensive re-testing, but
the specification-based tests defined for the parent may be reused since

the implementation of A changes.

The preceding three items form the basis for which Harrold, McGregor and Fitz-

patrick use to determine which tests can be reused and what re-testing is necessary.

Kung, Gao, Hsia, Toyoshima, and Chen observe that one of the key difficulties in testing
object-oriented software is understanding the relationships that exist among the compo-
nents [41]. This complexity results from the use of inheritance, aggregation and association
relationships among classes. Deep inheritance hierarchies and highly nested class aggrega-
tions make it difficult to determine the optimal order in which classes should be tested. The
consequences of testing in an order not optimal arethat testing is not adequate because class
relationships are missed, or substantial re-testing is often required. In an effort to eliminate
this problem, the authors present an algorithm that generates the optimum order for unit and
integration testing of classes. The objective isto minimize the amount of effort required to
adequately test the classes by minimizing the number of test stubs that must be built, and
to also reuse as many previously generated test cases as possible. The authors note that their

work supplements that of Harrold, McGregor and Fitzpatrick [32].

The test order for a given class structure is based upon the dependencies that exist among
its classes and is determined by analysis of a graph-based formalism known as an Object
Relation Diagram (ORD). An ORD contains an explicit representation for the rel ationships
that can occur in an object-oriented program, including inheritance, aggregation, associa-
tion, using, and instantiation. The ORD isamultigraph that consists of vertices correspond-
ing to classes, and edges that model the relationships among the classes. The idea behind
Kung et a.'salgorithm isto traverse the ORD, modifying it as necessary to remove cycles.
Once this is accomplished, the test order is produced by applying a topological sort of the

nodes in the graph (that is, the classes) [41]. As an example of the effectiveness of their



29

algorithm, they report its use with the InterViews library in an experiment against a ran-
domly generated test order. There they found that the total number of stubsrequired for that
test order was 400, where if the optimal test order is used, only 8 test stubs are required.

2.3 Class Testing

Just as the procedure and function are the basic units of abstraction in procedure-oriented
languages, the classisthe basic unit of abstraction in object-oriented languages (and object-
based). Naturally, it makes sense that testing applied to these types of languages should
focus on their primary abstraction mechanisms. This view isreflected by the proportion of

literature on testing object-oriented software that is devoted to the testing of classes[15].

2.3.1 Sate-based Testing
The testing of classes is largely an integration testing issue. Since a class consists of a

number of methods and a collection of variablesthat define its state, the testing effort must
focus on theinteraction of these methods with respect to each other and with respect to their
indirect interactions through the state space. Asreported in the scientific and industrial lit-
erature, the mgjority of class testing approaches adopt one of two perspectives. Thefirstis
that of aclassviewed as astate machine[15]. In this perspective, each classto be tested has
its behavior modeled as afinite state machine. Thetypical approachisto derive acollection
of modes that are based on the logical behavior of the class rather than its representation,
and a set of trangitions that correspond to each of the public methods. Each mode corre-
sponds to adigoint set of statesin the underlying state space representation [66]. This has
the advantage of avoiding the explosion of states that would result if the behavior were
modeled directly on the representation. For example, a class that abstracts the notion of
stack logically has three states: full, empty, and not full and not empty. If the internal rep-
resentation chosen for the class consisted of an array and two integer index variables, the
resulting physical state space would be the cross product of all the possible values that
could occur for the array and index variables. The resulting size is too large to be of prac-
tical use from atesting perspective. However, folding the physical states into modes does

increase the tractability of the testing problem tremendously, but at the expense of intro-



30

ducing non-determininsm. From a state-based class testing perspective, thisresultsin asig-
nificant reduction in the amount of effort testing effort since fewer tests are required to
cover al of the logical states than would be if the states based on the representation were
tested.

Kung, Suchak, Gao, Hsia, Toyoshima, and Chen (KSGHTC) describe an approach for
modeling an object using a formalism known as a Composite Object State Diagram
(COSD), and a procedure for reverse engineering a COSD from the implementation of a
class[42]. Theresulting state machine model isused to test the state dependent behavior of
an object rather than using the control or data structure of the implementation. The COSD
iscomprised of other COSDs (recursively) or Atomic Object State Diagrams (AOSDs). An
AOSD is comprised solely of states, transitions, and actions. Each AOSD corresponds to
an attribute of a class' state space. Each such attribute that corresponds to an AOSD must
have an effect on the behavior of the class when the attribute changes values. That is, to be
considered a state defining attribute, there must be at least two distinct sets of valuesfor an
attribute that will result in different observed behaviors for an object. For this to be true,

there must be conditions involving the attribute in one or more of the class methods.

The KSGHTC approach makes use of Chow's method for generating test cases from finite
state machines[21]. The basic ideaisto create atest tree for a COSD where the nodes rep-
resent the composite states in the COSD. Edges between nodes represent transitions
between states. The composite states are represented as k-tuples, where k is the number of
AOSDs in the COSD. The ith element of the k-tuple corresponds to the state of the ith
AQOSD. There may be several COSD test trees due to the fact that each AOSD can have
more than one initial state. Test sequences are generated from the tree by walking its root

to itsleaves. Each path corresponds to a single test sequence.

Hong, Kwon, and Cha present atechnique for testing classes based on representing behav-
ior asafinite state machine (which they refer to asa Class State Machine - CSM) and using
data flow testing techniques to generate test cases [37] [36]. The CSM is used asthe basis



31

for forming a Class Flow Graph (CFG) that integrates the state machine with the methods
of the class. Each node in the graph corresponds to either a state, a guard, or a transition.
State nodes in the CFG correspond to state nodes in the CSM. Guards represent predicates
that determine when a particular transition is valid. Transition nodes correspond to method
callsand have associated actions (i.e. state transitions). The CSM istransformed into aCFG
using an algorithm designed by Hong, Kwon, and Cha [37] [36]. Test cases are generated
based on the definition and usage patterns of class state variables within the class methods
and within the guards on transitions. These are used to produce a set of definition-use asso-
ciations that form the basis of the test requirements for a class. Hong, Kwon, and Chas
technique does not account for inheritance or aggregation relationships. Thus, their

approach is object-based and cannot be applied in general to object-oriented programs.

2.3.2 Method Sequence-Based Testing
The second perspective on class testing focuses on the externally observable behavior of

the class when it is subjected to a sequence of method invocations. This, of course, is
related to state-based testing since the state of an object is afunction of the method invoca-
tionsthat have occurred. However, with thistesting perspective, the emphasisisnot on test-
ing individual states and transitions directly. Rather, it is based on idea of subjecting
different instances of a particular classto different method sequences that leave the objects
in correct states.

Binder presents the Flattened Regular Expression (FREE) approach to testing object-ori-
ented software [15] [14]. In this approach, classes and clusters of classes are modeled as
state machines. Inheritance is accounted for by flattening the class hierarchy so that each
class to be tested is self contained. Tests are regular expressions that describe method
sequencesthat cover all of the states and transitions. The implementation of aclassistested
by constructing agraph that connects all of the methodswithin aclassalong all of theintra-
method and inter-method dataflow paths. The regular expression that describes the state
behavior of the class is also incorporated into this graph. Each transition edge in the state
machine is replaced by the corresponding method flow graph. The transition edge is con-



32

nected to the method’s entry node, and the method's exit node is connected to the state
resulting from the transition. This resulting graph represents all of the possible paths that
can occur among the methods within the class. Binder states that this graph can be used to
support path-based test suites, though he does not give an example or describe a procedure
[15] [14].

Another approach to testing using method sequencesisto subject two instances of the same
class to equivalent message sequences and observe if they both end in the same logical
state. For example, for a class implementing an abstraction of a stack, the resulting states

of the following two method sequences should be equivalent:

push(1); push(4)lpush(2); push(3); pop(); pop()
push(1); push(4)

Two different instances of the stack class subjected to each of these method sequences,
respectively, should, if stack is implemented correctly, end with final states where 1 is at

the bottom of the stack, 4 is at the top, and there are no other elements on the stack.

The equivalent message sequence approach is taken by Doong and Frankl in their
ASTOOT approach to testing object-oriented software [24]. ASTOOT is based upon alge-
braic specifications and the notion of observational equivalence between sequences of
methods. They use algebraic specifications, expressed in language called LOBAS, to
define such sequences that, when applied to objects of the same class, result in the same
final state. The basis of their approach is that given two objects 0, and o, of the same class
C, and two equivalent sequences of methods, s; and s,, defined in C, the effect of executing
s, 0n 0; and s, on 0, should leave 0, and o, in the same states. If so, C is deemed to be
correct with respect to s; and s,. The sequences s; and s, are equivalent since the resulting
state of their executions are the same. Thus, s; and s, are observationaly equivalent

sequences of methods.



33

M ethod sequences are derived from LOBA S specifications of abstract datatypes. To derive
these sequences, Doong and Frankl's approach places the following restrictions on the
methods of aclass[24]:

1. Methods must have no side-effects on their parameters.
2. Methods whose purpose is to return state information must be side-effect free.
3. Observers can only appear as the last method in a sequence.

4. Sequences passed as parameters to methods must not contain any observer

methods.

The above restrictions are required to make the test case generation process tractable.
Unfortunately, these restrictions also limit the applicability of the approach. Doong and
Frankl's criterion for correctness is that an implementation class C of an abstract data type
T iscorrect if it has the same set of signaturesas T, and all states of T that can be reached
by any pair of methods sequences have a corresponding state in C that can be reached by

the same pair. A classis deemed to be correct if al test cases pass.

Another approach based on method sequences is that of Chen, Tse, Chan, and Chen [19].
In their approach, a class specification consists of a set of equational algebraic axioms.
Each axiom, consisting of one or moreterms, statesarulethat specifiesapermissible order-
ing of message sequences. A term is simply a series of operations consisting of variables
and constants. Terms that have no variables are referred to as ground terms. A termis said
to bein normal formif it cannot be transformed any further by application of axioms con-
tained in the specification. Two terms are equivalent if they can be transformed into the

same normal form.

A test case consists of two ground terms u; and u, and their corresponding implementation

of method sequences s; and s, [19]. An error issaid to occur if u; and u, are equivalent but



the application of s; and s, to different instances of the class under test result in observa-
tionally different objects. The test case uq,u,, and otherslike it, are produced by first parti-
tioning the input domain of each method into subdomains, where each subdomain
corresponds to a particular path in the method. Test points are then sel ected from each sub-
domain. Term rewriting is applied to the equational axioms using the test pointsto produce

corresponding method sequences.

A magjor limitation of Chen, Tse, Chan, and Chen's approach is alack of support for inher-
itance and polymorphism. The authors state that this is not covered by their approach.
Unfortunately, they do not offer insight regarding how the lack of support for these object-

oriented features can be overcome.

McGregor presents another approach to testing classes according to their functional behav-
ior, and combines the two perspectives of state-based and method sequence-based testing
[47]. Like the approaches of Doong and Frankl, his approach tests a class by subjecting it
to a sequence of method invocations. However, unlike these other two approaches, McGre-
gor's approach does account for a strict form of inheritance where instances of subclass
must be substitutable for instance of their superclasses [45] [43]. This view restricts the
types of changes/extensions that a derived class can make with respect to its parents. In
turn, this has the effect of placing constraints on the test cases for the functional behavior
of new (derived) classes. Specificaly, al of the test cases defined for the parent should con-
tinue to function correctly for the child. Further, additional test cases must be added to

account for any new substates introduced by the derived class.

McGregor's requirement that the inheritance relation be strict permits three implicationsto
beinferred [46] [49]. First, all states present in the parent must also be present in the child.
The child class cannot remove a state. This is fundamental to preserving the observable
behavior of the parent. Second, any new state that isintroduced by the child is contained as
a substate of one of the states inherited from the parent. This includes the case where addi-

tional attributes are added. In thissituation, the resulting substates are considered to be con-



35

current with the other substates of the inherited state. The third implication is that the child
class may not delete inherited transitions. Thistoo isfundamental to the preservation of the

parent's observable behavior.

In another work, McGregor provides guidelines for the generation of functional test cases
based on aclass' state machine[46]. In hisapproach, every method that can change the state
is considered to be atransition from all states. Those situations where such atransition is
illegal result in the generation of an exception. The following outline summarizes the pro-

cess of test case construction:
1. Construct atest case for every method that resultsin a state change.
2. Construct atest case for every initial state.
3. Construct atest case for every transition in the state representation.
4. Construct atest case for every "convenience" method in the cl ass.!

5. Construct test cases for every destructor.

McGregor claims that tests generated using the above outline subsumes the "all methods’
and "all states" test adequacy criteria, though he offers no proof of this nor a definition of

these criteria[46].

McGregor also presents an algorithm for constructing functional test casesthat consist of a
sequence of messages that cover a given class specification [47] [49]. The algorithm pro-
duces a set of test cases that satisfy the following requirements:

1. Test cases are constructed for all accessor methods.

1. McGregor does not provide adefinition for a convenience method.



36

2. Test cases are constructed that produce all of the post-conditions for each
method. Thisincludes all possible outcomes: normal conditions, exceptions,

etc.
3. Each test case includes a check to ensure that the class invariant holds.
4. Each test case begins with avalid initia state for the class.

5. Test cases are generated that test every transition in the state model for aclass.

Each state-based test caseis atriple consisting of theinitia state of the class under test, the
sequence of messages that are to be sent to the class (including whatever messages are nec-
essary to place the class in the require state for the test), and the expected outcome of the
test. The algorithm that McGregor describes satisfies the all transitions adequacy criterion
[48]. McGregor points out that the algorithm can be easily modified to provide an n-way

switch (i.e. all possible combinations of states and transitions) [47] [49].

2.4 Integration Testing of Object-Oriented Programs

While unit level testing and class testing are important approaches for testing object-ori-
ented programs, a perhaps more important form isthat of integration testing. As discussed
in Section 1.1 Section 1.4 of Chapter 1, object-oriented programs consist of a number of
separate units (classes) that are built in isolation and then composed using inheritance and
aggregation relationshipsto form higher level units. Unfortunately, the techniquesfor class
testing described in the previous section are not sufficient to test these relationships. Sur-

prisingly, very little research has been conducted that focuses on this area.

In his dissertation, Overbeck presents an approach that is based on testing contracts among
client and server classes [60]. A contract is a constraint contained in the specification of a
class and specifies the preconditions and postconditions of each public method that the

class defines. Further, a contract imposes certain relationships among classes that are



37

related by inheritance. In particular, preconditions can only be weakened and postcondi-
tions strengthened in overriding methods [51]. The basic idea is to test the interactions
among classes to ensure that the client is using the server correctly, and that the results
returned from the server are understood by the client. This is done by imposing a specia
test filter that sits between the client and the server and that catches method invocations on
the server. Thefilter checksto determineif the methods are of the right type and value, the
method iscalled in the proper sequence, and if the precondition of the called method istrue.
If these checks pass, the call is passed on to the server for processing. Otherwise, an error

isreported and an exception thrown.

The client's ability to understand the results returned from the server is tested by varying
the conditions of each test to achieve as much diversity in the results returned from the
server as possible. Conventional unit testing techniques are used to assess the correctness
of the results. Overbeck also applies his approach to inheritance in a similar manner, but
includes tests that ensure that the correct precondition and postcondition relationships

among classes in an inheritance hierarchy are preserved [60].

Chen and Kao present an approach for the integration testing of object-oriented programs
[20]. Their approach, called Object Flow Analysis, utilizes data flow testing techniques to
generate test requirements that require identification of al possible bindings and every def-
inition-use of pair of every object. To do so, they collect and analyze information on both
intra-procedural and inter-procedural def-use (DU) pairs. To identify inter-procedural DU
pairs, they use the inter-procedural testing approach of Harrold and Soffa [34]. For identi-
fying intra-procedural DU pairs, they introduce the object control flow graph (OCFG),
which provides an abstraction for relating method calls and DU pairs both within and

between methods.

The OCFG isadirected graph that consists of super nodes and edges. Super nodes represent
methods in a class and are ordered pairs that consist of a set of nodes N and control edges

CE from aparticular method M. Nodesin N correspond to statementsin M that either define



38

or use objects. A control edge (n;, ny) in CE indicates that node n is reachable from node n;
along some execution path. Edges between super nodes represent either message passing
between methods, or definitions and uses between methods (a method def-use edge). Mes-
sage passing edges indicates that method sn; is called from node n; (i.e. called from linei).
A method def-use edge (sn;, sn;) represents a definition-use relationship between method

sn; and sn; where sn; uses a data member that was defined by sn;.

Chen and Kao use a graphic shape example, part of which is depicted by the code fragment
in Figure 2-1 to demonstrate the application of their approach [20]. In the example, they
report that definitions of the state variable shape_obj occur at lines 11, 18, and 20, and that
uses occur at lines 9, 10, 11, and 12. These are indicated by labeled arrows in the figure.
Note however, that Chen and Kao treat the binding of avariable to an instance and the def-
inition of the state of the instance through use of the variable asthe same. In their example,
the former occurs at lines 18 and 20, whereas the former occurs at line 11. Thisclearly isa
mistake since the binding of an instance applies only to a variable and not to the instance
that the variable is bound to. Thus, the definitions of variable shape obj at lines 18 and 20
do not affect the state of any instance that is bound or that may be bound to this variable.



39

1 Class Frame ({

2 Shape shape_obj;

3 public:

4 int draw_frame (Shape s);

5 Shape set_obj();

6 }

7 Frame: :draw_frame()

8 {

9 shape_obj.draw() ; - 3:
10 if (shape_obj_.get_para.m() > 10) - SefmorTuse
11 shape_obj .double() ; <«

12 shape_obj.draw() ; - Use
13 )

14 shape Frame::set_obj(int shape,

15 int perimeter, int x, int y)

16 (

17 if (shape == 1) o
18 shape_obj = Square (perimeter, X, y): = Definition
19 else

20 shape_obj = Circle(perimeter, x, Y); Definition
21 return shape_obj;

22 1}

Figure 2-1. Chen and Kao's shape example [20]

As part of their work, Chen and Kao have defined two criteria for determining test ade-
quacy for object-oriented programs. The first, All-Bindings, requires that “every possible
binding of each object must be exercised at |east once when the object is defined or used”.
The second, All-du-Pairs, requiresthat “ every definition of every object to every use of that
definition must be exercised under sometest.” Further, there must be a definition-clear path
between the statements containing the definition and use of the object. They define a defi-
nition of an object as being a state initialization, the definition of a data member, or the
invocation of a method that defines a state variable. They define an object use as the use of
one of its data members in some computation, use of a method that uses a data member, or
passing the object as an actual parameter in method call. While the first two of these make

sense with respect to the traditional definition of ause, the third does not. In fact, it ismore



40

the case that passing an object as an actual parameter to amethod call resultsin the defini-
tion of the corresponding formal parameter. That is, the formal parameter becomes bound
to the object. However, the state of the object does not change as a result of this binding,

nor isits state used. It appears that Chen and Kao have overlooked this subtle distinction.

Of therelated work surveyed in this chapter, the work of Chen and Kao isthe closest to the
research described in this thesis and their work was published at approximately the same
time [4, 20]. Though their work is similar, there are significant differences. First, their cri-
teriais coarse-grained. The criteria presented by Alexander and Offultt [4, 5], and described
in detail by this thesis, are a superset of those of Chen and Kao. As Chen and Kao have
defined them, their criteriarequire only that either all bindingsor al DU pairs be covered.
In particular, they do not integrate the two, though their complete example suggests that
they are at least aware that thisis important [20]. Secondly, not all bindings are feasible.
Chen and Kao do not discriminate between feasible and infeasible bindings. Third, there
likely will be DU pairs where every definition-clear path connecting them is infeasible.

Thus, their criterion All-du-Pairsisimpractical from an applied testing perspective.

In his dissertation, Orso presents a technique to the integration testing of object-oriented
programs that is based on exercising polymorphic interactions among the different classes
that comprise a system [58]. His technique has two steps. Thefirst is concerned with iden-
tifying the integration order of the classes. A system of classes has many complex relation-
ships that result from inheritance and aggregation. Thus, the order in which classes are
integrated is important from an efficiency perspective. Orso's technique defines a total
order on the set of classes and uses this to derive an integration order such that parent
classes are alwaystested before their children, and every classisawaysintegrated with the
classesthat it depends on. He derivesthisinformation by forming a graph representation of
the system under test. Notes of the graph are classes, and the edges correspond to the rela-
tions among classes. Analyzing the graph results in an integration order for individual

classes or clusters of classes.



41

After the integration order is chosen, anew data flow techniqueis used to select test cases
that are adequate for testing combinations of polymorphic calls during the integration pro-
cess. Orso extends the traditional definition and use sets with two new sets, def-p and use-
p. These sets consist of information describing possible dynamic bindings resulting from
polymorphism that are responsible for the definition or use of a given variable. He uses
these sets to define new test adequacy criteria that are similar to the traditional data flow
testing criteria of Rapps and Weyuker [65], but extended to account for these dynamic
bindings.

Orso’ stechniqueisfocused on the effects that polymorphism and dynamic binding have on
the method under test. In particular, it focuses on testing critical combinations of bindings
to variables that can affect the behavior of the method under test. While this approach does
perform an integration test of a method with the possible bindings that can occur, it isonly
aone-way approach. In particular, it does not conduct an integration test of the effects that
the method under test has on the instances that bound to the variables used by the method.

Thisisasignificant difference from the approach described in thisthesis.

Jorgensen and Erickson describe an approach to integration testing that is similar in many
respects to black-box testing techniques [39]. In their approach, they define paths through
acollection of classesthat form a system. Each of these pathsis associated with a particul ar
input event and traverses those classes that participate in the system response. The path
includes all classes that are traversed through method calls, and ends when the system
output has been observed. Failures are detected whenever the system output does not agree
with what is expected. Faults are identified by tracing back along the path to each of the

participants.

Binder's FREE approach (described in Section 2.3.2) includes provisions for testing large
clusters of classes by synthesizing asystem level state machine (mode machine in Binder's
terminology) [14]. The boundary of the system under test is established, with clientscalling

into the system, and the system making calls into the environment (operating system).



42

States are used to identify stimulus-response pairs. These interactions are used to define the
scope of the testing effort. Similar to Jorgensen and Erickson's approach, Binder's FREE
approach identifies the inputs to the system, identifies the classes that are the recipients of

these inputs, and then traces the execution through the system.

2.5 Other Approachesof Testing Object-Oriented
Software

Offutt and Irvine report on an experiment conducted to determineif the Category-Partition
[59] [7] testing technique is effective when applied to object-oriented software[57]. Intheir
experiment, they seeded 23 types of faultsinto two C++ programs. These faults were based
on common programming mistakes reported by Meyer [53] and professional experience of
one of the authors. Their results showed that the Category-Partition technique is effective
at detecting faults that involve implicit functions, inheritance, initialization and encapsula-

tion, but not at detecting memory related faults.

Harrold and Rothermel describe an approach that applies data-flow analysisto classes[33].
In that approach, they emphasize three levels of testing: (1) intra-method testing; (2) inter-
method testing; (3) intra-class testing. Intra-method testing applies traditional data flow
techniquesto data flow definitions and usesthat occur within single methods. I nter-method
testing tests method within a class that interact through procedure calls. Finally, intra-class
testing tests sequences of public method class against a given class instance. To perform
these analyses, Harrold and Rothermel represent a class as a Class Control Flow Graph
(CCFG) graph consisting of asingle entry and exit. The CCFG isthe composite of the con-
trol flow graphs of the class methods connected together through their call sites. They
apply the data flow analysis algorithms of Pande, Landi and Ryder [61] to the CCFG to
compute definition-use pairsfor each of the threetypes of analyses. Harrold and Rothermel
do not describe how they apply this information in the testing procedure. Also, they only
briefly discuss the application of their approach to inheritance relationships, but unfortu-
nately, they do not provide any details.



2.6 Coupling-Based Testing

Jin and Offutt present an approach to integration testing that is based upon coupling rela-
tionships that exist among variables across call sitesin procedures [38].1 In their work they
definethreetypes of coupling relationships that must be tested: parameter coupling, shared
data coupling, and external device coupling. Parameter couplings occur whenever one pro-
cedure passes parameters to another. Similarly, shared data couplings occur when one pro-
cedure references global variables that are referenced by another. Finally, external device
couplings occur when a procedure accesses the same external storage medium that another
does. These concepts are cruical to, and form the basis of, the research carred out in this

dissertation, thus the are described in some detail.

Jin and Offutt's approach requires that programs under test execute from each definition of
avariable in a caller to a call site, and then to the uses of the corresponding formal argu-
ments in the called procedure. The underlying ideais that to have a high degree of confi-
dence in the resulting software, all of the definitions of variablesin one procedure must be

correctly used in the called procedures.

2.6.1 Coupling-Based Testing Definitions
A number of definitions are necessary to discuss the concepts of Coupling-Based Testing.

Thedefinitions below arefrom Jin and Offutt's original coupling definitions[38]. Inthefol-
lowing, for program P, Vp is the set of variablesthat are referenced by P, and Np is the set

of nodesin P. P; and P, are specific program units, and x and y are program variables.

o def clear_path(Px,i,j):Boolean: Evauates to true if there is a definition-clear

path from i to j with respect to x, where x € VP andi,je NP'

* call_site: Anodei € N, suchthat thereisacall at i from Py to P,.
1

1. A cdll siteisalocation in a procedure where another procedure isinvoked.



» Call(my,m,,call_site,x —y) : Boolean: Evaluatesto trueif P, callsat call_site

and actual parameter x is mapped to formal parameter .
* Return(v) : The nodes that return values of v to the calling unit.
o Sart(P) : Thefirst nodein P, start(P) e NP'
» Def(Px) : The set of nodesin unit P that contain a definition of x.
* Use(PX) : The set of nodesin unit P that contain a use of x.

* Coupling-def : A nodei e NF,1 that contains a definition that can reach a use
in P, on some execution path. The following list formally defines the three
types of coupling definitions that occur:

1. last-def-before-call:

|dbc-def(P, call_site, X) = {i € Np ex & defs(i) A
def _clear_path(x, i, call_site)}.

2. last-def-before-return :1

ldbc-def(P,, y) = {j € Np, ey e defs(j)
def clear_path(y, j, Return(y))}.

3. Shared-data-def :

shared-def(P,, g) = {i e NPZ ei e defs(Pg, g) 2
nonlocal (P, 0) }.

1. Jin and Offultt restrict this definition to parameters that are passed by reference, wherey is aformal argu-
ment to P».



45

* Coupling-use: Anodei N that contains a use that can be reached by a def-
inition in another unit on at least one execution path.
1. First-use-after-call : For call-by-reference parameters, the set of nodes after
call_sitethat have a use of aformal parameter x such that there is a def-clear
path from call_site to that node with respect to x. Formally:

fac-use(P,, call_site, X) = {i e NF,l eX € uses(i) A
(def-path(P,, call_site, X) = &) }.

2. First-use-in-callee : The set of nodesin the callee that contain ause of afor-
mal parameter such that there is a def-clear path from the start node of the

unit to the node containing the use. Formally:

fic-use(P,, y) = {j € NP2 o (c-use(Pg Y. ) v
i-U%(PS) y} i) J) v
p-U%(PZ; y’ i; J)) A

(usepath(Ps, start(PS), LYy = @’)}

3. Shared-data-use : The set of nodesin aunit that have a use of a global vari-
able. Formally:

shared-use(P,, 9) = {i e NP4 e use(P,, g) Anonlocal(P,, 9)}.



46

2.6.2 Coupling-Based Testing Paths
Jin and Offutt define a coupling path between two program units to be a path that begins

with a definition of avariable in the calling unit that extends to a corresponding use in the
called unit {Jin:1999:CBC} . They define the following three types of coupling paths:

» Parameter Coupling Path : The ordered pair (i,j) consisting of the node i that
contains the last definition of a variable x prior to acal site |, and to every first
usein the called unit. Formally:

paremeter-coupling(Pl, P2, call_site, x,y) = {(i,j),i € NP .j € NP ‘
1 2

(i € Idbe-def(P,. call_site, X)

j e fic-use(Pz, y))}.

If xispassed by reference, then a parameter coupling path also existsfrom each last
definition of the corresponding formal parameter prior to areturn. This is defined

as;

parameter-coupling(P,, P,, call_site, x,y) = {(i,]),i e Npl,j € NP2|
i € ldbr-def(P,, y) A
J € fac-use(P,, call_site, X) }.

Note that in both of these definitions, there must be definition-clear paths from the

definition to the corresponding use across unit boundaries.

» Shared Data Coupling Path : A shared data coupling path exists for each glo-
bal variable g that is defined in P, and used in P,. The path extending from the
definition to the use must be definition-clear with respect to g. Formally:

shared-data-coupling(P, P,, 9) = {(i.]).i € Npl,j € NP2|
i € def(P4, g) 2
j € use(PZ) g)}



47

» External Device Coupling Path : Each pair of references (i,j) to a common

device along an execution path is an external device coupling.

2.6.3 Coupling-Based Testing Criteria
Jin and Offutt use their coupling-based testing formalisms to extend traditional data flow

testing criteria by defining four coupling test criteria[38]. These criteria, they claim, pro-
vide increasing amounts of coverage, but at an additional cost in terms of effort. In the fol-
lowing definitions, P, and P, are program unitsin a system:

e Call coupling: The set of paths executed by atest set must cover al call sitesin

the system.

 All-coupling-defs : For each coupling-def of a variable in P4, the set of paths
executed by atest set must cover at least one coupling path to at |east one reach-

able coupling-use.

 All-coupling-uses : For each coupling-def of a variable in P4, the set of paths
executed by a test set must cover at least one coupling path to each reachable

coupling-use.

* All-coupling-paths : For each coupling-def of avariable in P4, the set of tests
executed must cover al coupling paths sets from the coupling-def to all reach-
able coupling-uses. A coupling path set is a set of nodes that can appear on sub-
paths through a program unit between a coupling-def and a coupling-use. This

accounts for the case where the program unit has loops. Requiring that all cou-



pling paths be covered isimpractical in general. However, covering al coupling
path sets does ensure that each loop body is executed at least once, but does not

require all possible executions.

A subsumption relationship exists between two test adequacy criteria A and B if and only
if for every possible program, any test set that satisfies A also satisfies B [65]. These criteria
can be arranged in a hierarchy according to the subsumption relationships. Figure 2-2
shows the subsumption hierarchy defined by Jin and Offutt for the procedural coupling cri-
teria[38]. As shown, Call-coupling is subsumed by All-coupling-defs, All-coupling-defsis

subsumed by All-coupling-uses, and so on.

All-coupling-paths

\

All-coupling-uses

y

All-coupling-defs

Call-coupling

Figure 2-2. Procedural coupling criteria

2.6.4 Relationship to the Object-oriented Coupling-based Testing
Criteria

Jin and Offutt’s approach of coupling-based testing has proven effective to procedure-ori-
ented programs [38]. The fundamental building block of object-oriented programs is the

class. The building blocks for the class are state and behavior. State is manifested as a set



49

of (usually) encapsulated variables, and behavior as a collection of methods. Methods are
the analogical equivalent to the procedures and functions found in traditional languages,
such as C and Pascal. Within in methods, we find the same type of dataflow relationships
(e.g. last definitions and first uses) that exist in their procedural counterparts. Thus, to the
degree that these syntactic constructs are present, Jin and Offutt’s approach still applies.
However, there are additional types of data flow relationships resulting from inheritance
and polymorphism that Jin and Offutt’ s approach is not applicable. The research described
by this thesis extends the work of Jin and Offutt to account for those additional data flow

relationships that result from inheritance and polymorphism.



3. Inheritance and Polymor phism Faults

Liketheir procedural counterparts, programswritten in object-oriented languages have data
flow anomalies and faults. Occasionally one of these faults manifests afailure, and correc-
tive measures are then usually taken to eliminate the fault. Fortunately, many of the testing
techniques and strategies for fault elimination are applicable to object-oriented programs,
particularly in-so-far as the syntactic and semantic constructs found in procedure-oriented
languages are also present in object-oriented languages. The power that inheritance and
polymorphism brings to the expressiveness of programming languages also brings a
number of new anomalies and fault types. Unfortunately, the techniques that we would use
for eliminating faults in procedure-oriented programs as not applicable to those found in

object-oriented programs.

In the discussion that follows, the term refining method is a synonym for overriding
method. It is used here in place of the latter asit is more indicative of the view adopted by
this thesis with respect to inheritance. In particular, the general view is that overriding
methods refine the behavior of the method it overrides, as opposed to replacing its behavior
with another. The phrase overriding method will be used generically when thereis no need
to distinguish between methods that provide a refinement in behavior as opposed to those

that provide an extension to behavior.

To understand the difference between refining and extension methods, consider the class
diagram shown in Figure 3-1. Class Vehicle defines methods startEngine, stopEngine, and
accelerate. Derived from Vehicle is Submersible, which has methods submerge() and sur-
face(). Both of these methods serve to extend the behavior of Submersible with respect to
Vehicle, and are referred to as extension methods. They add behavior not present in the

parent class. The figure also shows class Submarine as a descendant of Submersible, and

50



51

having methods evade(), accelerate(), and submerge(). Method evade() isalso an extension
method. In contrast, methods accel erate() and submerge() are refining methods in that they
refine the behavior of Submarine by overriding methods Vehicle::accelerate() and Sub-
mersible::submersible(). The do not provide additional behavior as does evade(), but rather
the provide a different implementation of the behavior defined and inherited from Subma-

rine's parents.

Vehicle

+startEngine()
+stopEngine()
-—- +accelerate()

|

Submersible

- =Pp»[+submerge()
+surface()

Refining
Methods |

Extension
Methods

Submarine

+evade () -}

- +accelerate()

L P |+submerge()

Figure 3-1. Class hierarchy with refining and extension methods

It is possible for arefining method to also add additional behavior (that is, to extend the
behavior of the overridden method) not found in the overridden method. For example, the
method Submarine::accelerate() may, in addition to increasing the speed of a submarine,
retract the bow planes, perhapsto reduce drag. Thisextendsthe original behavior of Vehicle
by adding an additional capability that is not possessed by all vehicles that accelerate.

The definition adopted in this thesis is that a refining method, regardless of what else it
might do, is behaviorally compatible with the overridden method. Thus, Submarine aso



52

acceleratesin amanner consistent with Vehiclein addition to retracting its bow planes. This

is consistent with the definition of inheritance that yields descendants that are sub-types of

their ancestors, and thusinstances of a descendant can safely be used wherever an instance

of the ancestor is expected [45].

The following assumptions are made with respect to the discussion contained in this chap-

ter:

Unless otherwise noted, inherited state has sufficient visibility to allow direct refer-
ence by methods defined in descendant classes. Thus, in languages such as Javaand

C++, the access specifier associated with each state variable is not private.

Inheritance resultsin classes that are subtypes of their parents, not sub-classing. The
use of inheritance to create sub-classes easily resultsin classes that cannot safely be
used where instances of parents are expected. Unfortunately, not all object-oriented
languages have mechanisms to prevent a programmer from inadvertently using a
subclass as subtype of its parent, which can easily lead to faults that are difficult to
detect and diagnose. Further, a number of researchers consider thisto be a bad pro-
gramming practice and contrary to the engineering of high quality software [3, 44,

45, 52].

The faults that we are concerned with in this thesis are dependent upon the syntactic
constructs used to represent the semantics of classes (e.g. overriding methods
directly defining inherited state variables, extension methods calling inherited meth-

ods, etc.).



53

* Methods may be overridden in a descendant class. That is, all the methodsin the
ancestor are polymorphic. Lessening this restriction simply means that some of the

faults cannot occur.

* When considering the state effects of a particular method, the transitive closure of
state definitions is assumed over called methods that are locally defined in a descen-
dant class. Without loss of generality, we can ignore those non-public methodsin a
descendant that affect state and that are only called by other methods also defined in
the descendant. Thisis safe to do since the state definitions made by those methods
cannot be called by any method defined outside of the descendant, and considering
them would add nothing to the result of the analysis presented in thisthesis. Further,

the effects of these methods is captured in the transitive closure mentioned above.

This chapter explores the anomalies and faults peculiar to inheritance and polymorphism
and analyzes how they are manifested asaresult of polymorphic behavior. Thefirst section
introduces an interpretation of the fault-failure model for object-oriented programs. The
second then discusses the nature of the anomalies and faults found in object-oriented pro-
grams that result specifically from inheritance and polymorphism. The third section then
proceeds to present and analyze the syntactic patterns used in defining descendant classes
in terms of their ancestors. Finally, the fourth section discusses the added complexity that
polymorphism brings to the process of software devel opment and provides examples of the

complex behavior patterns that can result.

3.1 A fault/failure model for polymor phic for object-

oriented programs
The fault/failure model states that there are three conditions necessary for afailure to be

observed [23, 54]. First, the location in the program containing the fault manifesting the



failure must be reached (Reachability). Second, after executing the location, aninfectionin
the state of the program must occur (Infection). Third, the infected state must be propagated
to the output of the program (Propagation).® Faults that result from polymorphic behavior
must conform to this model, and a general failure model can be formulated in terms of this
model. Figure 3-2 depicts a UML class diagram showing the inheritance hierarchy and
client relationships that are described in the following subsections to describe the fault

model for failures that result from the use of polymorphism.

Client T
-0: T p©—v

v/r+f() v/’Hﬂ()
Method Client::f calls T::m jl
through the context variable o D

Figure 3-2. Example hierarchy

3.1.1 Reachability

1. There exists an inheritance hierarchy rooted at class T with a descendant D.

2. Thereisavariableoin aclient C with adeclared type T, and methodsn’ € D and me
T such that ' overrides m.

3. The actual type of the instance boundto oisD.
4. Cinvokes mthrough the instance context provided by o (e.g. 0.m()).

1. Morell used Execution, Infection, and Propagation [54]. Offutt used Reachability, Sufficency, and Neces-
sity [23]. We choose to combine the two disparate sets of terms by using what we consider to be the most
descriptive.



55

3.1.2 Infection
For apolymorphic fault to exist, mand m" must modify different portions of the state space

of T. Note that m’ may define avariable with an incorrect value, but we do not consider this
to be a polymorphic fault, but a “traditional” fault.! To model this situation, we want to
compare the portion of the state that is declared by T. Any state added by D is not relevant.
Thus: defs(m) U state(T) # defs(m). That is, there is some state variable v such that m’

defines v but m does not, or m defines v but m’ does not.

3.1.3 Propagation
One of the variables defined by nY or by m(and not both) must beused. That is: 3 ne meth-

ods(T) | C callso.n() A I w e state(T) | uses(n,w) A ((w e defs(m) Aw ¢ defs(m)) v (w ¢
defs(m’) A w e defs(m)). C need not be the same client that called 0.m() earlier. The only
requirement is that at some future point in time, n is called in the context of the same
instance that mwas called in.

3.2 Inheritance Faults and Anomalies
Inheritance affords creativity, efficiency, and reuse. Unfortunately, it also allows for a

number of anomalies and potential faults that anecdotal evidence has shown to be some of
the most difficult problems to detect, diagnose, and correct. This section examines several
fault types manifested by polymorphism. Table 3-1 summarizes the set of fault types that
result from inheritance and polymorphism. The goal isacomplete list of faults, though we
do not make this claim. Most of the cases are language-independent. In all cases, we are
concerned with how each anomaly or fault is manifested through polymorphism in a con-
text that uses an instance of the ancestor. Thus, we assume that instances of descendant

classes can be substituted for instances of the ancestor.

1. A definition may be a direct through an assignment, asin x =y, or indirect through a method call whose
effect isto change the state of the instance bound to the variable. Without loss of generality, the (conserva
tive) view adopted in this chapter is that any such method call always results in a state change of the
instance. However, by using static analysistechniquesit is generally possible to identify those calls that
actually have a definitional effect on state.



56

The following subsections explore a number of the anomalies that can lead to problems,

and in some cases, to faults.

Table 3-1. Faults and Anomalies due to Inheritance and Polymorphism

Acronynm | Fault/Anomaly Section
ITU Inconsistent Type Use (context swapping) 321
SDA State Definition Anomaly (possible post-condition viola- 322
tion)
SDIH State Definition Inconsistency (dueto state variable hiding) | 3.2.3
SDI State Defined Incorrectly (possible post-condition viola 324
tion)
11SD Indirect Inconsistent State Definition 325
ACB1 Anomalous Construction Behavior (1) 3.2.6
ACB2 Anomalous Construction Behavior (2) 327
IC Incomplete Construction 328
SVA State Visibility Anomaly 329

3.2.1 Inconsistent Type Use (ITU)
A descendant class does not override any inherited method. Thus, there can be no polymor-

phic behavior. Every instance of a descendant class C used where an instance of T is
expected can only behave exactly like an instance of T. That is, only methods of T can be
used. Any additional methods specified in C are hidden sincetheinstance of Cisbeing used
asif itisaninstance of T. However, anomalous behavior is still apossibility. If an instance
of Cisused in multiple contexts (i.e. through coercion, say first asaT, then asaC, then a
T again), anomalous behavior can occur if C has extension methods. In this case, one or
more of the extension methods can call a method of T or directly define a state variable
inherited from T. Anomalous behavior will occur if either of these actions results in an

inconsistent inherited state.

As an example, consider the class hierarchy shown in Figure 3-3.1 Class Vector encapsu-

lates a sequential data structure supporting direct access of its elements. Class Stack also



57

encapsulates a sequential data structure that has a “last-in/first-out” access policy. As
shown, Stack uses methods inherited from Vector to implement its behavior. The top table
summarizes the calls made by each method, and the bottom table summarizes the defini-

tions and uses (represented as “d” and “u”, respectively) of the state space of Vector.

The extension method Sack::pop() calls Vector::removeElementAt(), and extension
method Stack:: push() calls Vector::insertElementAt(). Clearly these two classes have dif-
ferent semantics. Aslong asan instance of Stack isused solely asan instance of Stack, there
will be no behaviora problems. Alternatively, the Stack instance could be used solely asa
instance of Vector, again without experiencing behavioral problems. However, if the usage

of the instance is mixed between Sack and Vector, behavioral problems can occur.

The code fragment in Figure 3-4 illustrates how behavioral anomalies can occur when the
type system is used to manipulate the manner in which instances of classes are used. For
the method f, the instance bound to the formal argument sisused solely asa Sack in lines
3 through 10. However, at line 12, sis passed as an actual argument to method g, which
expects an instance of Vector. Thereisno problem herein so far asthe type systemis con-
cerned since an instance of Sack is also an instance of Vector. There is a potential behav-
ioral problem that begins at line 23 where the last element of s is removed. The fault is
manifested when control returns and reaches the first call to Stack::pop() at line 14. Here,
the element removed from the stack is not the last element added.

1. Thisexampleis based on the library provided with the Java Development Kit version 1.2.



58

Method Called Methods

Vector::insertElementAt

Vector Vector::removeElementAt
-array Stack::pop Vector::removeElementAt
= [+insertElementAt()
/’/’ +removeElementAt( Stack::push Vector::insertElementAt
// //
s
i
,' ,' State Variable Uses and Definitions
[N
: '. Variable Vector
! \
\ \
\ \\ Stack Method array
O\ call ]
NERN Vector::insertElementAt d,u
\\ ~~~|+pop() : Object
\‘~-+push() : Object Vector::removeElementAt d.u
Stack::pop d*u’
Stack::push d*u’

*Indirectdefinition

Figure 3-3. Descendant with no overriding methods

1 public void £( Stack s
2 {

3 String s1 = "s1";
4 String s1 = "s2";
5 String s1 = "s3";
6

7

8 s.push( sl );

9 s.push( s2 );

10 s.push( s3 );

11

12 gl s );

13

14 s.pop () ;

15 s.pop () ;

16 s.pop () ; // Oops! The stack is empty!
17

18

19 }

20 public void g( Vector v )

21 {

22 // Remove the last element

23 v.removeElementAt ( v.size() - 1 );
24 }

Figur e 3-4. Code example showing inconsi stent type usage

3.2.2 Sate Definition Anomaly (SDA)
In general, for a descendant and ancestor class to be behavioraly compatible, the state

interactions of the descendant must be consistent with those of its ancestor. That is, the



59

refining methods implemented in the descendant must |eave the ancestor in the same (or
equivalent) state asthe ancestor’ s methodsthat are overridden. For thisto betrue, therefin-
ing methods provided by the descendant must yield the same net state interactions as each
public method that is overridden. From a data flow perspective, this means that the net
effect of the definitions made by a refining method against the set of inherited state vari-
ablesfrom an ancestor classmust at least provide the same definitions of the corresponding
overridden method.1? If this is not the case. then a potential data flow anomaly exists.
Whether or not an anomaly actually occurs depends upon the sequences of methodsthat are
valid with respect to the ancestor.

As an example, consider the class hierarchy and tables of definitions and uses shown in
Figure 3-5. The parent of the hierarchy is class W, having descendants X, and Y. W defines
methods m, and n, each having the definitions and uses shown in the table. Assume that a
valid method sequence is W::m() followed by W::n(). Asthe table of definitions and uses
shows, W::m() defines state variable W::v and W::n() usesit. Now consider class X and its
refining method X::n(). Asthe table shows, it too uses state variable W::v, which isconsis-
tent with the overridden method and with the method sequence given above. Thusfar, there
isno inconsistency in how X interacts with the state of W. In fact, because a use can never
affect future state-dependent behavior, X::n() could just aseasily have used adifferent vari-
able3

1. Thisassumesthat only a subset of the ancestor's methods are overridden by a descendant. If al of the
methods are overridden, then the descendant has more flexibility in what is or is not defined, subject to the
restriction that the externally observed behavior remains consistent with the ancestor's behavior.

2. Net effect refersto all of the state interactions that occur as aresult of execution of an overriding method
m, including other methods called by m.

3. There are cases where thisis not true, such as when the definition received by a different variableisa
function of the variable that was used.



60

n() W::v W::u XX Y:iw
W::l def
W:im def
W::in use use
X X:n use def
no Yl def
Zr Y::m def

m(Q

Figure 3-5. State Definition Anomalies

Now consider class Y and the method Y::m(), which overrides W::n() through refinement.
Observe that Y::m() does not define W::v, as W:m() does; but defines Y::w instead,. Now, a
data flow anomaly exists with respect to the method sequence m;n for the state variable
W::v. When an instance of Y is subjected to this sequence, Y::w is defined first (because
Y::m() executes), but then W::visused by method X::n. The assumption madein theimple-
mentation of X::nthat W::visdefined by acall to mprior to acall to n no longer holds, and
a data flow anomaly has occurred. In this particular example, a fault has occurred since
there isno prior definition of W::v when Y is the type of an instance being used. Note that
this will not be true in the general case since the controlling factor in whether a fault has
occurred will beafunction of prior method invocations, any default initializationsthat were

applied, and how individual state variables are handled during instance construction.

Any extension method that is called by arefining method must also interact with the inher-

ited variables of the ancestor in a manner consistent with the ancestor's current state. Since



61

the extension method provides a portion of the refining method’ s effects, to avoid a data
flow anomaly the extension method must avoid defining inherited state variables in a
manner that would be inconsistent with the method being refined by the calling method.
The net effect of the extension method cannot leave the ancestor in a state that islogically
different from when it was invoked. For example, if the logical state of an instance of a
stack is currently not-empty/not-full, then execution of an extension method cannot result
inthelogical state spontaneously being changed to either empty or full. Doing so would pre-

clude the execution of pop or push as the next methods in the sequence, respectively.

3.2.3 Sate Definition Inconsistency due to State Variable Hiding (SDIH)
Theintroduction of an indiscriminately named local state variable can easily result in adata

flow anomaly where none would otherwise exist. If alocal variableisintroduced to aclass
definition where the name of the variable is the same as an inherited variable v, the effect
isthe inherited variable is hidden from the scope of the descendant (unless explicitly qual-
ified, asin super.v). A referenceto v by an extension or overriding method will refer to the
local (i.e. the descendant’s) v. Thisisnot aproblem if all inherited methods are overridden
since no other method would be able to implicitly reference the inherited v. However, this
pattern of inheritance is the exception rather than the rule. There will typically be one or
more inherited methodsthat are not overridden. Thereisapossibly for adataflow anomaly
to exist if amethod that normally definesthe inherited v isoverridden in adescendant when
ainherited state variable is hidden by alocal definition.

As an example, again consider the class hierarchy shown in Figure 3-5. Suppose the spec-
ification of class Y hasthelocal state variable v that hides the inherited variable W::v. Fur-
ther suppose method Y::mdefinesv, just asW::mdefines W: :v. Given the method sequence
m;n, a data flow anomaly exists between W and Y with respect to W-::v.

3.2.4 Sate Defined Incorrectly (SDI)
Suppose an overriding method defines the same state variable (or variables) v as the over-

ridden method. If the computation performed by the overriding method is not semantically



62

equivalent to the computation of the overridden method with respect to v, then subsequent
state dependent behavior in the ancestor will likely be affected, and the externally observed
behavior of the descendant will be different from the ancestor. While this problem is not a

dataflow anomaly, it is a potential behavior anomaly.

3.2.5Indirect Inconsistent State Definition (11SD)
Aninconsistent state definition can occur when adescendant adds an extension method that

defines an inherited state variable. For example, consider the class hierarchy shown in
Figure 3-6a, where Y specifies a state variable x and method m(), and the descendant D
specifies method e. Since e is an extension method, it cannot be directly called from an
inherited method, in this case T::m(), because eis not visible to the inherited method. How-
ever, if an inherited method is overridden. the overriding method (such as D::m() as
depicted in Figure 3-6b) can call eand in so doing, introduce adataflow anomaly by having
an effect on the state of the ancestor that is not semantically equivaent to the overridden

method (e.g. with respect to T::y in the example). Whether an anomaly resultsisafunction

1. Strictly speaking, in some object-oriented languages (e.g. Java, C++), this can be circumvented through
the use of type coercion. The implementation of the inherited method casts the instance whose context it is
executing in to the type of the descendant, and then makes the call to the descendant’s extension method. For
the example in Figure 3-6, thiswould could be accomplished with the Java statement ((D)this).e(). However,
does not appear to happen often in practice, and should be frowned upon from the perspective of software
engineering and object-oriented design principles.



63

of which state variable e defines, where e executesin the sequence of calls made by aclient,
and what state dependent behavior the ancestor has on the variable defined by e.

Defines,"'x Defines,” "~
\ Y - _ \

~ N

< N
~=Am() ~
P

/ 1
Cannot \J ides.
calll >< IDefines Overridest

Defines

\\ /, ’_:—_m() P
‘5e()—" Ca||5\_>eo_/

(@ (b)

Figure 3-6. Example of Indirect Inconsistent State Definition (11SD)

3.2.6 Anomalous Construction Behavior (1) (ACB1)
The constructor of an ancestor class C calls a locally defined polymorphic function f.

Because f is polymorphic, adescendant class D can provide an overriding definition of f. If
so, then the D's version of f will execute when the constructor of C callsf, not the version
defined by C. To seethis, consider the class hierarchy shown in the left half of Figure 3-7.
Class C'sconstructor calls C::f(). Class D containsthe overriding method D::f() that defines
the local state variable D::x. There is no apparent interaction between D and C since D::f()
does not interact with the state of C. However, C interacts with D’s state by virtue of the
apparent call that C's constructor makes to C::f(). In some object-oriented languages (e.g.
Java and C#), constructor calls to polymorphic methods execute the method that is closest
to the instance that is being created. The class C in the hierarchy in Figure 3-7, the closest
version of f() to C is specified by C itself, and thus executes when an instance of C is con-
structed. For D, the closest version is D::f(), which means that when an instance of D is

being constructed, the call made to f() in C s constructor actually executes D::f() instead of



its own locally specified f(). This is illustrated by the yo-yo graph in the right haf of
Figure 3-7.

C
Calls_--1c( Class C
N0 co 0
e —— 1 g
\‘ ,0\ »O
Overrides‘: new}ﬁ” caN.
1 D Client DO classD fO
 \ I
Uses x |
\“—f()/l

Figure 3-7. Example of Anomal ous Construction Behavior

The result of the behavior shown in Figure 3-7 can easily result in a data flow anomaly if
D::f() uses variables defined in the state space of D. Because of the order of construction,
D's state space will not have been constructed. Whether or not an anomaly exists depends
on if default initializations have been specified for the variables used by f(). Furthermore,
afault will likely occur if the assumptions or preconditions of D::f() have are not satisfied

prior to construction [3].

3.2.7 Anomalous construction behavior (2) (ACB2)
Similar to ACB1 (Section 3.2.6), the constructor of an ancestor class C calls a locally

defined polymorphic function f. A data flow anomaly can occur if f is overridden in a
descendant class D and if that overriding method uses state variablesinherited from C. The
anomaly occurs if the state variables used by D::f have not been properly constructed by
C::f. Thisis dependent upon the set of variables used by D::f and the order the variablesin
the state of C are constructed, and the order in which f is called by C's constructor. Note
that it is not generally possible for the programmer of class C to know in advance which

version of f will actualy execute, and which state variables that the executing version



65

depends on. Thus, the invocation of polymorphic method calls from constructorsis unsafe
and introduces non-determinism into the construction process. This is true of both ACB2
and ABC1.

3.2.8 Incomplete (failed) Construction (1C)
In some programming languages, the value of the variablesin the state space of aclass prior

to construction is undefined. Thisistrue, for example, in C++ but not in Java. The role of
the constructor is to establish the initial state conditions and the state invariant for new
instances of the class. To do so, the constructor will generally have statements that define
every state variable. In some circumstances, again depending upon the programming lan-
guage, default or other explicit initializations may be sufficient. In either case, by thetime
the constructor has finished, the state of the instance should be well defined. There are two
possibility for faults here. First, the construction process may have assigned an initial value
to a particular state variable, but it is the wrong value. That is, the computation used to
determinetheinitial valueisin error. Second, theinitialization of a particular state variable
may have been overlooked. In this case, thereisadataflow anomaly between the construc-
tor and each of the methods that will first use the variable after construction (and any other

uses until a definition occurs).

An example of incompl ete construction is shown by the code fragment in Figure 3-8. Class
AbstractFile contains the state variable fd that is not initialized by a constructor. The intent
of the designer of AbstractFileisthat a descendant class provide the definition of fd prior
to its use, which is done by method open in the descendant class SocketFile. If any descen-
dant that can be instantiated defines fd, and no method is called that uses fd prior to the def-
inition, there is no problem. However, afault will occur if either of these conditionsis not
satisfied.!

Observe that while the designer'sintent is for a descendant to provide the necessary defini-

tion, adataflow anomaly existswithin AbstractFilewith respect to fd for methods read and

1. Thisexample was contributed by Charles D. Hutchinson.



66

write. Both of these methods use fd, and if either are called immediately after construction,
then afault will occur. Note that this design introduces an element of non-determinism into
AbstractFile sinceit is not known at design time what type of instance fd will be bound to,
or if it will be bound (i.e. defined) at all. Suppose that the designer of AbstractFile also
designed and implemented SocketFile, as also shown in Figure 3-8. By doing so, the
designer has ensured that the data flow anomaly that existsin AbstractFile is abated by the
design of SocketFile. However, this still does not eliminate the problem of non-determin-
ism and the introduction of faults since, at some point in time in the future, a new descen-

dant can be added that failsto provide the necessary definition.

1l Class abstract AbstractFile

2 {

3 FileHandle £d;

4

5 abstract public open();

6

7 public read() { fd.read( ... ); }
8

9 public write() { fd.write( ... ); }
10
11 abstract public close();
12 }

14 Class SocketFile extends AbstractFile

15 {

16 public open|()
17 {

18 fd = new Socket( ... );
19 3}

20

21 public close()
22 {

23 fd.flush();
24 fd.close () ;
25 }

26 }

Figure 3-8. Incomplete construction of state variable fd

3.2.9 Sate Visibility Anomaly (SVA)
The state variables in an ancestor class A are declared private, and a polymorphic method

A::mdefines A::v. Suppose that B is adescendant of A, and C of B, asdepicted in Figure 3-
9a. Further, C provides an overriding definition of A::m but B does not. Since A::v has pri-

vate visibility, it isnot possible for C::mto properly interact with the state of A by directly



67

defining A::v. Instead, C::m must call A::m to affect the proper interaction. Now suppose
that B also overrides m(Figure 3-9b) Then for C::mto properly define A::v, C::mmust call
B::m which in turn must call A::m. Thus, C::m has no direct control on whether the data
flow anomaly is resolved due to B's overriding m. In general, when private state variables
are present, the only way that a data flow anomaly can be avoided is for every overriding
method in a descendant to call the overridden method in its ancestor class. Failure to do so

will likely result in the manifestation of afault in the state and behavior of A.

A A
Vg--—--- L - ~Private Vo ----- - - -Private
f g P
/ /
/ 1
’ ]
! [}
'l Overridesn|
1
! B \ B
] \
[} \
. [} \
Overrides \_mo
'. v
||
\
\
\

D)
D)

Overrides

1

|

|

[}
}
\
\

\_m() \\mo

@ (b)
Figure 3-9. State Visibility Anomaly

3.3 Syntactic Patternsof Inheritance
There anumber of basic syntactic patterns that can be used to extend a class through inher-

itance. The use of individual or combinations of these patterns in part determines the
semantics of a descendant class and its behavioral compatibility with its ancestor. It isthis
behavioral compatibility that determines whether or not instances of the descendant can be

safely substituted for instances of the ancestor. A preliminary list of syntactic patternsis



68

summarized in Table 3-2. Each entry gives an acronynm, a short description, and a refer-

ence to the subsection where the pattern is described.

Table 3-2. Syntactic Patterns of Inheritance

Acronym | Syntactic Inheritance Pattern Section
DNM Descendant has no methods 331
DNEM Descendant introduces non-interacting extension methods
ECE Extension method calls another extension method 3322
ECI Extension method calls inherited methods 3323
ECR Extension method calls refining method 3324
EDIV Extension method defines inherited state variable 3325
- | EDLV Extension method defines local state variable 3326
'é EUIV Extension method uses inherited state variable 3325
a | EULV Extension method uses local state variable 3.3.2.6
RCE Refining method calls extension method 3331
RCI Refining method calls other inherited method 1-10
RCR Refining method calls another refining method 3334
RCOM Refining method calls overridden method 3335
RDIV Refining method defines inherited state variable 3335
‘g RDLV Refining method defineslocal state variable 3336
§ RUIV Refining method uses inherited state variable 3335
E RULV Refining method uses local state variable 3.3.3.6
CCIM Constructor callsinherited method 3341
CCRM Constructor calls refining method 3.34.2
CCEM Constructor calls extension method 3343
CDIV Constructor definesinherited state variable 3344
.g CDLV Constructor defines local state variable 3345
g Culv Constructor uses inherited state variable 3344
§ CuLv Constructor uses local state variable 3.345
g CBR1 Complete behaviora redefinition(1) 3351
O | CBR2 Complete behavioral redefinition(2) 3.35.2
3
@




69

Whether or not a descendant is compatible with its ancestor is afunction of the effects that
the descendant has on the state of its ancestor. These effects are manifested through meth-
ods contained in the definition of the descendant. Each of these methods may either refine
(through overriding) a method specified by the ancestor, or reflect behavioral extensions
provided by the descendant. In either case, it is the definitional interactions of these meth-
ods with the ancestor's state that determines the substitutability of the descendant. A direct
definition interaction occurs when a state variable is used in an expression, such as an
assignment. An indirect interaction occurs when an expression calls a method that contains
an expression that has a direct interaction. A state interaction may either be a definition or
use of a state variable. In some cases, compatibility is guaranteed by virtue of the fact that
no definitional interactions are possible. This occurs when the descendant either does not
define new methods and does not override inherited methods, or when the descendant
defines new methods that do not interact directly or indirectly with the inherited state. That
is, for the latter case, the new methods at most use inherited state either by direct reference
or by calling inherited methods that return avalue but do not change the state of the ances-

tor.

The following subsections discuss each of these cases and additional syntactic inheritance

patterns that affect the behavioral compatibility of a descendant class with its ancestor.

3.3.1 Descendant has No Methods (DNM)
This is the most trivial case of inheritance: the definition of the descendant contains no

methods. Its behavior is defined by the methods that it inherits. The descendant could have
its own set of state variables, but there would be little point since these variables could not
be changed.! An example is shown in the UML class diagram depicted in Figure 3-10,
along with tablesthat summarize the state variable definitions and uses of each method, and
the methodsthat are called. Class Vehicle defines state and behavior in terms of its methods
startEngine, stopEngine, accelerate, and its state variables started and velocity. Methods

1. It could be the case that the specification of a descendant includes state variables whose default initializa-
tion results in some global state interaction, such as opening a database or network connection.



70

startEngine and stopEngine both define variable started; method accelerate uses started

and both uses and defines velocity.

Method Called Methods

Vehicle . .
Vehicle::startEngine

#started : Boolean
#velocity : float Vehicle::stopEngine
+startEngine()
+stopEngine()
+accelerate(in rate : float)

Vehicle::accelerate

State Variable Uses and Definitions

Variable Vehicle
Method started velocity
WaterCraft
Vehicle::startEngine d
Vehicle::stopEngine d
Vehicle::accelerate u d, u

Figure 3-10. Descendant whose definitions include no methods or state variables

AsFigure 3-10 shows, the specification of class Water Craft does not introduce methods or
state variables. Its behavior is determined entirely by Vehicle, thusit is not possible for a
client that uses an instance of Water Craft where an instance of Vehicle is expected to dis-
cern any difference in behavior. Water Craft, however, does serve to partition the set of all
instances of Vehicleinto those that are instances of Water Craft and those that are not. This
isuseful in cases where knowing that a particular Vehicle instance is really an instance of
Water Craft.

Faultsanomalies manifested by DNM. Since the descendant class has no methods, there
can be no faults or anomalies due to polymorphism. The only methods that could possibly

execute through an instance of the descendant are those belonging to an ancestor.

3.3.2 Descendant introduces extension methods
A descendant class can extend the behavior it inherits by defining extension methods.

Extension methods are methods contained in the specification of a descendant class. They



71

do not override inherited methods, rather, they add additional behavior not already present
in ancestor classes. In so doing, extension methods may or may not have an affect on inher-
ited state.

Figure 3-11 shows the class diagram and table of called methods for the example used in
the remainder of Section 3.3. The corresponding definitions and uses are shown in
Figure 3-12. This example extends the Vehicle class hierarchy by adding Submarine as a
direct descendant of Submersible. This classis an abstraction of a hypothetical submarine
that has the additional capability of taking evasive action. Supporting this are behaviorsfor
filling and emptying ballast tanks and setting the angle of diving planes. It also refines the

inherited behaviors for submerging and accelerating.

Vehicle

#started : Boolean
#velocity : float

+startEngine() Method Called Methods
+stopEngine() Vehicle::startEngine
+accelerate(in rate : float)
Vehicle::stopEngine
% Vehicle::accelerate
WaterCraft Submersible::submerge
Submersible::surface
Submarine::accelerate Vehicle::accelerate
% Submarine::blowBallast

Submersible Submarine::closeVents Submar?ne::closeVents
#depth : float Submar[ne::openVents
Submarine::evade Submarine::accelerate
Submarine::blowBallast
Submarine::fillBallast

Submarine::setDivePlanes
Submarine::submerge

+submerge(in rate : float, in toDepth : float)
+surface(in rate : float)

Submersible::surface
Vehicle::startEngine

Submarine

#divePlaneAngle : float Submarine::fillBallast
#ventsOpen : boolean
#ballastTankLevel : float

Submarine::openVents

f#ballastPumpOn : boolean Submarine::setDivePlanes

+accelerate(in rate : float, in toVelocity : float)

+evade()

+submerge(in rate : float, in toDepth : float) Submarine::submerge Submarine:fillBallast
#blowBallast(in toLevel : float) Submarine::setDivingPlanes
#closeVents() Submarine::accelerate
#fillBallast(in toLevel : float) Vehicle::startEngine

#openVents(in pumplsOn : boolean)
#setDivePlanes(in toAngle : float)

Figure 3-11. Example showing interaction of extension methods



72

State Variable Uses and Definitions

Variable Vehicle Submersible Submarine
Method started | velocity depth divePlaneAngle |ventsOpen | tankLevel | ballastPumpOn |ballastTanklL evel
Vehicle::startEngine d
Vehicle::stopEngine d
Vehicle::accelerate u d,u
Submersible::submerge d, u
Submersible::surface d,u
Submarine::accelerate d, u
Submarine::blowBallast d ud ud
Submarine::closeVents d
Submarine::evade u u,d
Submarine:fillBallast u,d u,d
Submarine::openVents d
Submarine::setDivePlanes d
Submarine::submerge u u,d

Figure 3-12. Definitions and uses for extensions methods

3.3.2.1 Descendant introduces Non-inter acting Extension M ethods (DNEM)
The descendant may introduce extension methods that do not interact with inherited state.

This form of extension method does not define inherited state variables, nor does it call
inherited methodsthat do. As part of the extending behavior, the descendant may introduce
local state variables to support the behavior provided by the extension methods, or it may
use variables inherited from an ancestor. The latter may be achieved through either direct
reference of a state variable, or by calling some other method that uses the inherited vari-
able.

Figure 3-11 extends the example shown in Figure 3-10 to include class Submersible, a
direct descendant of WaterCraft. Submersible adds the two extension methods submerge
and surface and supporting state variable depth. As the definition/use table in the Figure 3-
12 shows, these methods do not interact with the state of Vehicle or Water Craft (which has
no state), nor do these methods call inherited methods that alter state.

As part of a behavioral extension, a descendant class will often have its own local set of
state variables (asin the variable float that isamember of class Submersible). Collectively,

these variables serve to record the state of the descendant with respect to its set of extension



73

methods. To affect alocal state change, one or more of the extension methods must define
each variable in the local state space. In so doing, the behavioral extension of the descen-
dant must either introduce additional states not present in the ancestor (such as when the
descendant is capable of doing things that the ancestor is not), or it must ensure that any
additional statesare logically substates of the ancestor. That is, for the latter case, the state-

ful behavior of the descendant must be consistent with that of the ancestor.

Any state represented by the descendant's state space must partition each of the ancestor's
states for those cases where an extension method can change the state of the descendant.
Put another way, the stateful behavior of the descendant must fit within the state machine
of the ancestor. No transitions may be removed by the descendant, nor new transitions

added that would cause the ancestor to transition to a different state.

Faults/anomalies manifested by DNEM . Since a descendant D only has extension meth-
ods that do not interact with inherited state, there can be no faults due to polymorphism
when D is used solely in the context of its ancestor. The only methods that can execute in
this situation are those available through the ancestor’ s context. Thereis, however, still the
possibility of inconsistent behavior due to inconsistent type usage (Section 3.2.1). This
would occur when an instance of D is used in the context of the ancestor as well as that of
the descendant. Thus, DNEM can manifest the fault type I TU.

3.3.2.2 Extension method Calls another Extension method (ECE)
Quite often, as part of a descendant’s implementation, one extension method e will call

another to achieve some desired effect. It may be that e implements a high-level algorithm
(e.g. sorting) and del egates subproblems to other methods (e.g. comparison). Regardless of
the number of methods called and the level of nested calls involved, from aclient’s per-
spective, the net effect of calling e isthe result of the computation performed by e directly
or through that of any methods called (directly or indirectly) by e. In terms of state space
interactions, the net effect is the set of state variables used or defined by e, or by a method



74

called by e, and so forth. Method e is said to absorb the effects of the methods it calls or

causes to be called.

ECE isillustrated in Figure 3-13, which presents an annotated code fragment of ahypothet-
ical implementation of method Submarine::evade in Java. As shown, an example of ECE
occurs at line 12 where the method blowBallast is called. Thisis ECE because both evade
and blowBallast are extension methods of Submarine. Though not annotated, other exam-
ples of ECE occur at lines 18 (setDivePlanes), 20 (fillBallast), and 26 (setDivePlanes).

1 public void evade ()
2 {
3 // Prepare for emergency dive/surface
4 if ( l!started )
5 |[startEngine|) ;
6 ECI
7 |pccelerate { MAX_ACCEL, MAX_VELOCITY );
8 ECR
9 if ( |depth]< 0 ) // Are we already submerged?
10 { EUIV
11 setDivePlanes ( -MAX_PLANE_ANGLE ); // Max rate of ascent
12 lblowBallast( 0 ); // Emergency blow!
13 } ECE
14
15 else
16 {
17 // No, so dive, dive, dive!
18 setDivePlanes ( +MAX_PLANE_ANGLE ) ;
19
20 fillBallast( 100.0 ); // Take her down ASAP!
21
22 while (|depth k MAX_DEPTH )
23 |depth )= .. EUIV
24 EDIV
25 // Now level off.
26 setDivePlanes( 0.0 );
27 }
28 }

Figure 3-13. Code fragment for method Submarine: : evade

Faults/anomalies manifested by ECE. Descendant classes that use ECE have the possi-
bility to manifest SDA anomalies if the called extension method c defines inherited state
variables or calls inherited methods that do. Thiswill possibly result in afault if a method
that is subsequently called depends in some way on the state defined by c.

The possibility of alocal anomaly existsif ¢ has public visibility. In this case, ¢ provides

part of theinterface of the descendant and acomponent of its behavior. The anomaly occurs



75

if c uses state variables that have not yet been defined. Alternatively, ¢ can cause an anom-
aly by defining a set of state variables that are different from those that would be defined

by the next method invocation that should occur given the current state of ancestor.

3.3.2.3 Extension method Calls Inherited methods (ECI)
Part of the behavior of a descendant class C is defined by an extension method e that calls

one or moreinherited methodsthat directly define the state inherited from the ancestor class
A. The caled methods may be specified in the same ancestor class that provides the state
variable that is defined, or they may be in another class that is also descendant of A but is
an ancestor of C. In either case, execution of the e has an effect on the inherited state space
received by C. An example of thisis shown by the call to Vehicle::startEngine at line5in
the code fragment depicted in Figure 3-13.

Faults/anomalies manifested by ECI. If the inherited method i called by an extension
method defines state variables (in the ancestor’ s context), an SDA anomaly can occur if a
subsequently called method depends upon the ancestor’s state in some way that has been
affected by i, and possibly will lead to afault. Alternatively, an SDA anomaly will exist if
i uses state variables and is called out of sequence with respect to the current state, partic-

ularly if those state variables have not be defined by a prior method invocation.

3.3.2.4 Extension method Calls Refining method (ECR)
An extension method e in the specification of a descendant D may call arefining method r

that is also contained in D’s specification. In doing so, e interacts with the inherited state
through the computation carried out by r. Whatever state variablesr defines, e effectively
defines as well (though not directly) and likewise for used variables. The nature of this
interaction is completely out of the control and influence of g; it is determined solely by the
implementation of r. However, e does have the choice of when (or if) r is called during its
execution. To preserve behavioral compatibility between the descendant and the ancestor,
the designer of e can take measures to ensure that r is called in a manner that is consistent
with the current state of the ancestor. However, there is no obligation or guarentee on €'s

designer to do so. An example of ECR is shown at line 7 of Figure 3-13.



76

Faults/anomalies manifested by ECR. The problems for ECR are smilar to ECI
(Section 3.3.2.4). But in this case, arefining method r is called. If r defines inherited state
variables, an SDA anomally can occur if a subsequently called method depends upon the
ancestor’s state in some way that has been affected by r, and possibly will lead to a fault.
A fault will also occur if the state variables are defined incorrectly even though adefinition
is appropriate for the current state of the ancestor. Similar to ECI, an SDA anomaly will
also exist if r uses state variables and is called out of sequence with respect to the current

state of the ancestor.

3.3.2.5 Extension method Uses/Defines I nherited state Variable (EUIV/EDIV)
The specification of a descendant class includes an extension method that directly uses

(EUIV) or defines (EDIV) one or more inherited state variables. By defining the inherited
variable, the extension method directly affects the behavior of the ancestor class. An exam-
pleis shown in Figure 3-13 at line 23 where Vehicle::depth is defined (EDIV), and at line
22 whereitisused (EUIV).

Faults/anomalies manifested by EUIV and EDIV. From the perspective of polymorphic
behavior, EUIV does not yield any of the faults or anomalies described in Section 3.2. This
is not to say that there is no possibility of any type of fault or anomaly, merely that those
that can occur do not manifest themselves as the result of polymorphism. With EDIV, how-
ever, the situation is different. Since the extension method is defining inherited state vari-
ables, there isthe possibility of SDA anomaliesthat have the potential to yielding afailure

in the context of the ancestor.

Assuming that an extension method defines an inherited state variable v at a time that is
consistent with the current state of the ancestor, an SDI fault can result if the definition

given to v is not consistent with how the variable is defined by ancestor methods.

3.3.2.6 Extension method Uses/Defines L ocal state Variable (EULV/EDLV)
An extension method within a descendant class C either uses (EULV) or defines (UDLV)

one or more state variables that are contained in the specification of C. As an example of



77

EDLV, again consider class Submarine (Figure 3-13). The specification of Submarine
includes the state variable ballastTankLevel. This variable is defined (EDLV) in the code
fragment shown in Figure 3-14 by the extension method Submarine::blowBallast at line 9,
and used at line 8 (EULV).

1 protected void blowBallast( float toLevel )

2

3 if ( ballastTankLevel > toLevel )

4 {

5 openVents( true ); // Force water out of tanks.

6

7 // Wait for tank to empty.

8 while (|ballastTankLevel] > toLevel )

9 |ballastTankLevel|: t..; EULV
10 EDLV
11 closeVents () ;

12 }
13 }

Figure 3-14. Code fragment for method Submarine: ;: blowBallast

Faults/anomalies manifested by EULV and EDLV. There are no anomalies or faults
manifested directly as aresult of polymorphism for EULV and EDLV. Extension methods
can only be invoked by a client outside of the descendant’ s inheritance hierarchy through
an instance in the context of the descendant. That is, there must be an object reference
whose declared typeisin the type family defined by the descendant. However, it ispossible
for adefinition of alocal state variable made by an extension method to indirectly manifest
afault through polymorphism. Thiscan occur if the extension method iscalled by arefining
method (see Section 3.3.3.1). Thus, EDLV canresultin an SDA anomaly. It can also result
in an SDI anomally if the state variable is defined incorrectly.

3.3.3 Descendant introduces refining methods
Method refinement allows a descendant class to modify an ancestors's behavior by provid-

ing overriding definitions of inherited methods. When an overridden method is called, the
overriding definition isinvoked instead of the original inherited definition. Thisalowsthe
descendant to directly refine the behavior exhibited by the ancestor. This refinement is

manifested using any of three syntactic mechanisms: directly calling the refined (overrid-



78

den) method, replacing the refined method, or directly defining inherited state variables.
Note that the last mechanism, out of necessity, must be used in combination with only the

first two.

3.3.3.1 Refining method Calls Extension method (RCE)
Aspart of itsbehavior, arefining method can call extension methods defined by the descen-

dant. The latter can effect local state change, or simply participate in the refinement of the
overridden method. In either case, the behavior of the extension method becomes part of
the net effect of the refining method's behavior. Thus, the gross behavior of the combina-

tion of methods must be consistent with the behavior of the overridden method.

Syntactically, RCE looks just like any other free-standing method call (i.e. not through an
instance context). If an instance context is used to qualify the call, out of necessity it must
be through the context provided by the self-referencing variable used to denote the current

instance (e.g. thisin Javaand C++, and current in Eiffel).

An example of RCE isillustrated in Figure 3-15. At line 9, the extension method Subma-
rine::setDivePlanesis called by the refining method Submarine: : submerge.

1 public void submerge( float rate, float toDepth )

2 {

3 // Prepare to dive.

4 if ( !started )

5 |startEngine“);

6 RCI
7 |accelerate|( NORMAL_ACCEL, DIVING_VELOCITY ) ;

8 RCR
9 |setDivePlanes“ rate ) ;

10 RCE
11 fillBallast( 50.0 ); // Take her down slowly.

12

13 while ( depth < toDepth )

14 depth = ...;

15

16 // Now level off.

17 setDivePlanes( 0.0 ) ;

18 }

Figure 3-15. Code fragment for method Submarine: : submerge



79

Faults/anomalies manifested by RCE. Anomalies and faults manifested by RCE include
SDA, SDI, and 11SD. A refining method manifests SDA by failing to define the same set
of the ancestor’ s state variables as the overridden method does. Similarly, if it does define
theright state variables, it could define them incorrectly (an SDI fault). Finaly, therefining
method can exhibit an 11SD anomally (a composite of SDA and SDI) if it calls one of the

descendant’ s extension methods (see Section 3.3.2.6).

3.3.3.2 Refining method Calls other Inherited method (RCI)
A refining method r calls another method minherited from the ancestor, and mis not over-

ridden by the descendant. This hasthe effect of replacing the method o overridden by r with
min terms of the state effects on the ancestor, or possibly combining with those of o should
r cal it (see RCOM, Section 3.3.3.4). An example of RCI isshown in Figure 3-15 at line 5.

Faults/anomalies manifested by RCI. A refining method that calls an inherited method
(other than the overridden method o) can manifest both an SDA anomaly and an SDI fault.
Thisis dependent upon the state effects of the inherited method i that is called. It could be
that i defines the same set of state variables as o does, or a different set. The latter results
inthe SDA anomaly. If i doesdefine the same set of state variablesaso (or aproper subset),

but the semantics of the resulting definition are different, then an SDI fault occurs.

3.3.3.3 Refining method Calls other another Refining method (RCR)
Aspart of itsimplementation, arefining method can call other refining methods. Since both

the caller and the called method are members of the descendant, the call will generally be
unqualified. However, if itisqualified, it must be through areferenceto the current instance

(e.g. thisin Java and C++).

Faults/anomaliesmanifested by RCR. From an anomaly and fault perspective, the effects
of arefining method calling another refining method are similar to a refining method call-

ing an extension (Section 3.3.3.2). Both SDA anomalies and SDI faults are possibilities.



80

3.3.3.4 Refining method Calls Overridden Method (RCOM)
Perhaps the simplest form of behavioral modification is where the refining method directly

calls the refined (overridden) method in addition to providing additional behavior. This
form of modification takes advantage of existing behavior rather than replicating or replac-
ing it completely. The result of calling the inherited method is that the refining method
interacts with the ancestor's state indirectly by virtue of having called the overridden meth-
ods. Method Submarine:: accelerate shown in Figure 3-16 provides an example of RCOM.
The overridden method Vehicle::accelerateis called at line 6 through the instance context

provided by the explicit ancestor reference super.

1 public void accelerate( float rate, float toVelocity )
2 {

3 if (|velocity]< toVelocity )

4 { RUIV
5 // Accelerate to desired velocity.

6 |super.accelerate( rate >V

7 T RCOM
8 // Continue to accelerate.

9 while ( velocity < toVelocity )
10 |velocity|= e
11 RDIV
12 // Stop accelerating.
13 super.accelerate( 0.0 );
14 }
15 }

Figure 3-16. Code for Submarine::accelerate illustrating RUIV, RCOM, and RDIV

Faults/anomalies manifested by RCOM. When arefining method r calls the overridden
method o, the net effect of oisincluded inr. If r does nothing but call o, then there can be
no anomalies or faults that will be manifested as a result of polymorphism. However, if r
doesmore, in particular, if it definesadditional state variablesnot defined by o or if it rede-
fines those defined by o, then SDA anomalies and SDI faults are a possibility (see
Section 3.3.3.5).

3.3.3.5 Refining method Defines/Uses I nherited state Variable (RDIV/RUIYV)
The refining method can interact with the state of an ancestor ssimply by defining or using

state variables. Definition is accomplished through direct reference, such as in an assign-



81

ment statement, or indirectly by calling state defining methods (if the variable isareference
to an object).1 Similarly, a state variable can be used on the right-hand side of an assign-
ment and as part of a conditional expression. If the variable isareference to an object, then
calling a method through the instance context provided by the variable is also an example

of ause.

Both RUIV and RDIV areillustrated in Figure 3-16. At line 16, variable Vehicle: :velocity
isdefined (RDIV) by method Submarine::accelerate. The method also uses (RUIV) Vehi-
cle::velocity at line 3 (and aso at line 8 though this is not annotated).

Faultsanomalies manifested by RDIV and RUIV. Both SDA anomalies and STI faults
are possibilities for RDIV. An SDA anomaly will occur if the refining method does not
define the same state variables as the overridden method. An SDI fault will occur if the
refining method defines an inherited variable in a manner inconsistent with how the over-

ridden method defines the same variable.

An SDIH anomaly occurs in conjunction with RDIV if the specification of the descendant
includes alocal state variable v whose name isidentical to one that isinherited and that is
defined by the refining method. An SDIH anomaly also occurs with RUIV if visused to
define an inherited state variable.

3.3.3.6 Refining method Defines/Uses Local state Variable (RDLV/RULV)
Instead of interacting with the state inherited from the ancestor, the refining method can

have an effect on the local state of the descendant. As with RDIV, definition is accom-
plished through direct reference, such asin an assignment statement, or indirectly by call-

ing state defining methods (if the variable is a reference to an object). Likewise, as with

1. In some object-oriented languages, such as C++, it is possible to specify that a given method does not
change the state of an object (through the use of const methods). In other languages, this is not possible.
Thus, without the availability of knowledge to contrary, we take the conservative view that all method calls
result in a state change of the object referred to by the variable that provides the instance context of the call.



82

RUIV, a state variable can be used on the right-hand side of an assignment, or as part of a

conditional expression.

Syntactically, RDIV and RUIV are similar to the syntax for RDLV and RULV, respec-
tively. The difference is that the variables referenced are specified locally in the descen-

dant, and any qualification present must reference the current instance.

Faults/anomalies manifested by RDLV and RULV. There are no faults for RDLV or
RULV that manifest themselves as a result of polymorphism.

3.3.4 Descendant Introduces Constructors
Classes usually have special methods, called constructors, whosejob istoinitialize the state

of anewly created instance. At the end of the construction process, the state of the instance
should be well-defined and ready to suffer the effects of the classes' s methods.

There are a number of syntactic patterns that can be used to define the behavior required
for construction. A number of the patternsinvolve callsto other methods. Depending upon
the language (e.g. Java), there is inherent danger in calling polymorphic methods from a
constructor. The problem is that the designer of the constructor ¢ can never know for sure
that the called method e will be the one executed. This is due to method overriding and
polymorphism. If eis polymorphic and is overridden by some descendant class, then when
an instance of that child class is being constructed, the overriding method will be the one
executed from the constructor call instead of e. Thisyieldstwo further complications. First,
there is no guarentee that the overriding method will have the same effect on the instance
being constructed by c. Second, when the overriding method executes, it will be in the con-
text of the child class, which will not have been constructed yet. Thus, thereisastrong like-
lihood that a data flow anomaly or fault will occur. Even though thisis an unwise practice,

it is possible and people do it

A constructor can introduce an |C anomaly if it failsto properly initialize all state variables

defined locally to the class. This may result from the failure to assign avalue to avariable,



83

assigning it the wrong value, calling the wrong method if the variable refers to an object.
Either way, the likely result will be anomalous behavior when the newly constructed
instance is used. Note that this appliesto all of the syntactic patterns that involve construc-

tion.

The following sections describe in detail each of the syntactic patterns that involve con-

struction.

3.3.4.1 Constructor CallsInherited Method (CCIM)
During the construction process, a descendant’ s constructor can call a method minherited

from an ancestor. Unless overridden by the descendant, mwill execute in the context of the
ancestor, having an effect on the ancestor’ s state inherited determined by its implementa-
tion. By the time that m executes, the ancestor’ s construction process will have completed.
Any effectsmhaswill place the ancestor in a state different from that provided by the con-

structor.

Faultsanomaliesmanifested by CCIM. A constructor can introduce an SDA anomaly by
defining a state variable v inherited from the descendant’ s ancestor. This can be accom-
plished either by direct definition of v (Section 3.3.4.4), or by calling an inherited method
that definesv. Either way, an anomaly will occur if the resulting definition is not consistent
with the current state of the ancestor. Observe that by calling an inherited method, the
descendant’ s constructor is effectively changing the construction process that the ancestor
has carried out. Note that if the inherited method called by the constructor is polymorphic,

then the anomal ous behavior described in the introduction to Section 3.3.4 is possible.

3.3.4.2 Constructor Calls Refining Method (CCRM)
Similar to CCIM, during the construction process, arefining method r may be called. The

act of calling r might have an effect on the local state of the descendant. Presumably, this
effect will be part of the intended construction process and will contribute to the initializa-

tion of alocally well-defined state for the descendant. Note that the refining method may



call the overridden method (or another non-overridden inherited method). The result of
such acall will be equivalent to CCIM (Section 3.3.4.1).

Faults/anomalies manifested by CCRM. As with CCIM (Section 3.3.4.1), a data flow
anomaly will occur if the result of the called refining method r isthat the state of the ances-
tor is defined in some manner that is inconsistent with its state, or if r uses portions of the
ancestor’ s state that are not consistent with the assumptions made in the implementation of
r. Notethat if the refining method called by the constructor is polymorphic, then the anom-
alous behavior described in the introduction to Section 3.3.4 is possible.

3.3.4.3 Constructor Calls Extension Method (CCEM)
A constructor can call an extension method e as part of the construction process. Similar to

CCRM (Section 3.3.4.2), calling e might result in an affect on the local state of the descen-
dant. Likewise, e could also call other methods (extension, refining, or inherited) that affect
either the local or inherited state.

Faultsanomalies manifested by CCEM. The fault model for CCEM is the same as for
CCRM: adataflow anomaly will occur if the result of the called extension method eis that
the state of the ancestor is defined in some manner that is inconsistent with its stete, or if e
uses portions of the ancestor’s state that are not consistent with the assumptions made in
theimplementation of e. Notethat if the extension method called by the constructor is poly-
morphic, then the anomal ous behavior described in the introduction to Section 3.3.4 ispos-

sible.

3.3.4.4 Constructor Defines/Uses Inherited state Variable (CDIV/CULV)
During the construction process, out of necessity a constructor will define one or more state

variables. Usually these are local to the class being constructed. However, it is possible for
a constructor to define an inherited state variable, either directly through assignment or

indirectly through method call (if the variable refers to an object).



85

Faults/anomalies manifested by CCRM. Both SDA anomalies and STI faults are possi-
bilities for CDIV. An SDA anomaly will occur if the refining method does not define the
same state variables as the overridden method. An SDI fault will occur if the refining
method defines an inherited variable in a manner inconsistent with how the overridden

method defines the same variable.

3.3.4.5 Constructor Defines/Uses L ocal state Variable (CDLV/CULV)
A constructor can as part of itsimplementation use both local and inherited state variables.

The key distinction between the two is that the ancestor’s construction process has com-
pleted, and the inherited state variables should be properly initialized. For local state vari-
ables, proper initializations will only have occurred prior to use if the constructor has

defined their values, or if there are suitable default initializations provided (asin Java).

Faults/anomalies manifested by CCRM. An SDIH anomaly occurs in conjunction with
CDLYV if the specification of the descendant includes a local state variable v whose name
isidentical to one that is inherited and that is defined by the refining method. An SDIH
anomaly also occurs with CULV if vis used to define an inherited state variable.

3.3.5 Special cases— Complete Behavioral Redefinition
There are two sSituations that warrant consideration in this discussion. Instead of describing

distinct patterns, both are combinations of those patterns previously described. It isentirely
possiblefor the behavior provided by an ancestor classto be completely replaced by refined
behavior.! This can occur in two different ways. First, a descendant overrides all methods
inherited from the ancestor, thereby directly nullifying the behavior of the ancestor all
together. Second, a sequence of descendants incrementally overrides proper subsets the
ancestor's methods until ultimately the behavior of the ancestor is nullified. These two sce-

narios are discussed in the following subsections.

1. Thisisonly possibleif al of the ancestor's methods that are visible to the descendants are polymorphic
(i.e. they can be overridden).



86

3.3.5.1 Complete Behavioral Redefinition(1) (CBR1)
A descendant may override all methods inherited from the ancestor. In so doing, the

descendant has assumed full behavioral responsibility from the ancestor, and the state
inherited from the ancestor either becomes irrelevant or the constraints on the inherited
state change. The inherited state will become irrelevant if none of the overriding methods
references any of the state variables, either through direct or indirect use. This effectively
relegates the ancestor class to the role of providing only an interface definition to the
descendant. Clientswill at |east see the descendant as being an instance of the ancestor from
asyntactic perspective. However, the descendant's behavior may turn out to be inconsistent

with the ancestor's.

It may be that the descendant makes use of the inherited state. Depending upon how thisis
done, the constraints on how overriding and extension methods use the inherited state may
change. If none of the overridden methods are called, then the overriding methods are free
to use the inherited state at will.1 If any of the overridden methods are called, then a data

flow anomaly may result.

3.3.5.2 Complete Behavioral Redefinition(2) (CBR2)
A seguence of descendant classes (rooted at a particular ancestor) in combination may

override the complete behavior inherited from the ancestor. Similar to CBR1
(Section 3.3.5.1), the combination has assumed full behavioral responsibility from the
ancestor. For example, consider the hierarchy shown in Figure 3-17. Class A defines a set
of methods that operate on its state. Classes B, C, D and E are descendants of A, with B, C
and D overriding digoint subsets of A's methods, such B, C and D partition A's methods.

The further down the hierarchy we traverse, the fewer the number of A's methods that reach

1. Thisis subject to the constraint that the descendant must still exhibit external behavior that is logicaly
equivalent to the ancestor.



87

aparticular descendant. Ultimately, none of A's methods are inherited by E. By thetime D

isreached, a complete behavioral redefinition of A has occurred.

A
- [f()
-~ 1g()
» (h()
> i()
EJ'()
> kO Inherited Methods
Zﬁ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, {A::f, Aiig, Azh, Aci, Az, Ak}
B
rrrrrrrrrrrrr f()
g0 28 /
Overriding Zﬁ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, {B::f, B::g, A::h, Az, Ai:j, Ak}
Methods
C
h()
i
Zﬁ Yy Yy
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, {B::f, B::g, C::h, C::i, A::j, A::k}
D
i0
kO
Zﬁ Yy ¥
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, {B::f, B::g, C::h, C::i, D::j, D::k}
E
10

Figure 3-17. Complete Behavioral Redefiniditon (2)

Unlike CBR1, there generaly is not the same flexibility in how the state inherited from the
ancestor istreated. The descendants higher in the hierarchy than E (B, C and D) only over-
ride aportion of the behavior that isinherited from A. To preserve behavioral compatibility
with A, classes B, C and D must interact with the state of A in amanner consistent with the
state interactions of the methods that each inherits. For B, this means that the implementa-
tion of its overriding methods must ensure consistent state interactions with respect to the

methods they override. The same applies for C, though it must also consider the methods



88

that it inheritsfrom B aswell asthose that reach it from A. D only hasto be concerned with

the state interactions of the methodsthat it inheritsfrom B and C. Thisisbecause D isover-

riding the remaining methods inherited from A that have not been overridden by B and C.

Table 3-3. Fault/anomaly types manifested by syntactic patterns

ITU

SDA

SDIH

SD

[1SD

ACB1

ACB2

IC

SVA

DNM

DNEM

v

ECE

ECI

ECR

EDIV

ANERNERNERN

EDLV

EUIV

EULV

RCE

RCI

RCR

RCOM

RDIV

ANERNEANE VIR

ANERNEANER NN

RDLV

RUIV

RULV

CCIM

CCRM

<

CCRM

CDIVv

ANERNERNERN

CDLV




89

Table 3-3. Fault/anomaly types manifested by syntactic patterns
ITU | SDA | SDIH | SDI | 11SD | ACB1 | ACB2 | IC | SVA

Culv v

CULV

3.4 Discussion
For expository purposes, the discussion of the anomalies and fault types summarized in

Table 3-3 and described in Section 3.3 has primarily focused on single instances of syntac-
tic patterns of inheritance. In reality and out of necessity, the patterns are often combined
to form complex aggregates of control and data flow. Naturaly, this combination of pat-

terns can result in combinations of faults.

As the examples have shown, the control flow that results from inheritance and polymor-
phism can be quire complex, and can yield very complicated faults and anomalies. In fact,
the use of polymorphism induces non-determinism to the actual flow of control [15]. Sadly,
the situation in reality can be far more complicated than the examples have indicated. If
inheritance hierarchies are deep, vishbility is unrestricted, and polymorphic methods are
abundant, the flow of control resulting from a single method invocation can be inordinately

complex, depicted by the simple yo-yo graph shown in Figure 3-18. Likewise, it can be



90

expected that the effort required to detect, diagnose, and correct the resulting faults to

increase significantly in complexity.

Ancestor

call call
call
o—— P

f € Descendant 2

-

Figure 3-18. Yo-yo effect resulting from extension method calling inherited method



4. Coupling-based Analysis of Object-Oriented
Programs

This Chapter provides the foundation for coupling-based testing of object-oriented pro-
grams. This work extends the original coupling-based testing approach of Jin and Offutt
[38] to account for the effects of inheritance and polymorphism. The key contributionisthe
coupling sequence, which is an abstraction for representing the interaction between called

methods that result from inheritance and polymorphism.

4.1 Extended Coupling Definitions

The original coupling-based testing definitions of Jin and Offutt require a number of mod-
ificationsto account for the various calling contexts that occur in object-oriented programs
[38]. Inthefollowing definitions, mrefersto aprogram unit, including methods that appear
in class specifications. V,,, isthe set of variables that are referenced by m, and N, the set of
nodes in m. A node of amethod is either the method’ s entry node, it’s exit node, or corre-
spondsto one of the method’ s statements. Each definition is expressed as a function whose
domain is given by apossibly empty set of formal arguments and arange given asareturn
type. Note that use of the notation PT represents a set of elements each of which is an

instance of T, where T is the name of some type (e.g. integer, class, variable, etc.).

o def-clear-path (i, |, v) : Boolean : True if there is a definition-clear path from

nodei toj with respect to v, except possibly at nodei.

* def-clear-path (p, v) : Boolean : Trueif path p is definition-clear with respect to

v, except possibly at first(p).

o defg(i) : PVariable: The set of variablesthat are defined at nodei.

91



92

uses(j) : PVariable : The set of variables that are used at j.
entry(m) : Node : The entry node of method m.
exit(m) : Node : The exit node of method m.

family(c) : PClass: The set of classes that belong to the type family specified by

classc. Note that c itself isamember of family(c).
first(p) : Node: Thefirst node in path p.

state(c) : PVariable: The set of variablesthat directly or indirectly comprise the

state space of classc.
type(m) : Class: The class whose specification contains member m.

type(o) : Class: Theclass C that is the declared type of the variable o, where o is
areference to an instance of some class that is a member of the type family

induced by C.

i-defs(m) : PVariable : The set of variables in the state space of the class contain-
ing mthat are indirectly defined by a call to m made through some instance con-
text. Formally:

i-defs(m) = {v e state-vars(type(m)) ] dj e N,eve defs(j)}

i-uses (m) : PVariable : The set of variablesin the state space of the class con-
taining mthat are indirectly used by a call to m made through some instance con-

text. Formally:



93

i-uses(m) = {v e state(type(m)) ] Jdj e N,eve uses(j)}
* instance(t) : object : Returns an instance (object) of typet.
* method(s; x) : Method : Returns the method that contains coupling sequence s .

» signature(m, n) : Boolean : Evaluatesto trueif the signature of methods mand n

match.

e overrides(m, p) : Boolean : Evaluatesto true if method mis an overriding

method of p. That is,

overrides(m, p) < type(m) € family(type(p)) A signature(m, p).

e pathg(i, j, m) : PPath : The set of paths that emanate from nodei and that are

incident upon node j, where i, j € N

4.2 Coupling Sequences

Coupling sequences are pairs of nodes within the body of a specific method f that corre-
spond to an indirect coupling of state variables through a common instance context that is
accessed through an object reference. There are four structural types of coupling sequence
that are of interest in coupling-based testing of object-oriented programs. Eachisillustrated
by acontrol flow schematic, such asthe one depicted in Figure 4-1. The schematic abstracts
away the details of control flow graph and shows only those nodes that are of interest from
a coupling analysis perspective. Individual methods are represented as shaded rectangles
that enclose their respective control flow. Method entry and exit nodes are depicted as non-
solid and solid €ellipses, and individual statements as solid circles. Method call sites are
depicted as a smaller solid circle within a larger non-solid circle, and their corresponding
return sites are non-solid circles. Control flow is represented as undirected thin line seg-
ments connecting two nodes. Thicker undirected line segments indicate control flow that is

part of aparticular coupling path. Each line segment is considered to represent one or more



94

sub-paths that connect two nodes. A path may be annotated with a transmission set, which
consists of variables that the path is definition-clear with respect to. These variables are
listed inside a set of brackets, such as[0,0.v], which indicates that the particular path bear-
ing this annotation is definition-clear with respect to the variables o and o.v.

The following subsections discuss each of the four types of coupling sequence in detail.

Coupling method f

\J
f(T o)
Antecedent Node
Antecedept Method
fffffff v
m()
Coupling ! Coupling Variable )
Sequence | ; j def(o.v)
S i ; ---- i-def paths
with ' ! [o.v]
respect !
too.v
rfif;,i'ﬂftransmission paths Consequent
‘ T < Method
s t--» @k 0.n i
x4 0 \
e 0
Consequent” ---- j-use paths
Node [
| use(o.v)
@ Call site
O call return
O Method entry | —
@ Method exit
@® Statement
Control Flow
Coupling Path

[..] Transmission set

Figure 4-1. Type | Coupling Sequence

4.2.1 Typel Coupling Sequences
The first coupling type isillustrated by the control flow schematic depicted in Figure 4-1.

Structurally, thistype of coupling sequence isrepresented by callsto two different methods
through the same instance context. As the schematic shows, method f, referred to as the

coupling method, contains a coupling sequence s that starts at node j with the call to o.m



95

(the antecedent method) and extends through paths that end at node k where the sequence
ends with the call to o.n (the consequent method). The nodes containing the antecedent
method and consequent method are referred to as the antecedent node and consequent node.
Note that thereis at least one path between the call sitesthat is definition-clear with respect
to 0. There is aso one sub-path in which o is definition-clear with respect to the indirect
definitions made in the antecedent method that have corresponding indirect usesin the con-
sequent method. The identifier o is referred to as the context variable and such paths as

these are referred to as transmission paths (t-paths).

Formally, a Type | coupling sequence s  is given by the 9-tuple in Equation 4-1, where f
isthe coupling method that contains the coupling sequence; o isthe context variable of the
sequence and T isthe coupling type (i.e. the type of instance bound to o —the declared type
of ointhiscase). j, ke N; arethe antecedent and consequent nodes, respectively; mand n
are the antecedent and consequent methods used at the call sites at j and k, (951‘k isthe set
of variables defined by mand used by n, and H%k isthe set of transmission paths between

j and k with respect to 851 g

Equation 4-1. Type | coupling sequence
Sj’ k = (f’ o, T7 J: k7 m, n, Gsﬁ,k’ quk)

4.2.2 Typell Coupling Sequences
A Type |l coupling sequence has the structure depicted in Figure 4-2. As shown, the ante-

cedent node i contains an indirect definition through the object reference o and the corre-
sponding indirect use occurs at the consequent node j through the call to the consequent

method m. The coupling set for this sequence is G)Sq = {t::v} andisgiven formally by

ik

(951 = i-defs(i) ni-uses(m), where i is the antecedent node and m is the consequent

method called at the consequent node j.



96

Coupling paths are formed by combining elements of the t-path set from the coupling
method f with elements of the i-use set from the consequent method. Thus, the coupling
sequence s  extends from the antecedent nodei through the call site at the consequent node
J, and through the entry node of mto node | that contains the first-use of vin m. Note that a
Type Il coupling sequence does not have an antecedent method, and hence has no i-def
paths.

Coupling method f

v

f0

Antecedent Node | A
h def(0) \
[o] S~
. ¥ N
i def(o.v), /
Sequence | - /~transmission paths
Si,j i (CXCRY [
with respect ~=-- o.m() \ i
to o.v

12

Coupling
Consequent
Method

\J

\\V

—T~m0

Consequent”

Node Couplir{g'VariabIe [roesssss i-use paths

[o.v]
| use(o.v)

@ Call site
O call return |
O Method entry
& Method exit
@® Statement
Control Flow
Coupling Path

[...] Transmission Set

Figure 4-2. Type Il Coupling Sequence

4.2.3 Typelll Coupling Sequences
Typelll coupling sequences are similar to Type |1 sequencesin that the reference to a cou-

pling variable occurs through a single method call and object reference. However, the dif-
ferenceisthat theroles are reversed. That is, the indirect definition is made by the method

and the indirect use through the object reference. Thisisdepicted in Figure 4-3whichillus-



97

trates the structure of the Type I11 coupling sequence s; . As shown, the antecedent node j
in the coupling method f contains a call to the antecedent method m. In m, node k contains
adefinition of the coupling variable v. The corresponding indirect use occurs at the conse-
guent node | back in f. Thus, the set of coupling paths extend from node k in mto node |.
Each coupling path is formed by combining elements of the i-def set of mwith the t-path
set of f. Note that a Type |11 coupling sequence does not have a consequent method, and

hence has no i-use paths.

The coupling set for a type Il coupling sequence is given formaly by

(951 = i-defs(m) N i-uses(l) where m is the antecedent method called at the antecedent

nodej and | isthe consequent node I.



98

Coupling,Method f
\

Antecedent Node

Antecedqnt Method

A
S m0
Coupling 1 Coupling: Variable k def(o.v)
Sequence s -----j-def pathg
S“ ; ,’I [o.v]
with respecti
too.v
«-----——-transmission paths )
ooy 4 @ Call site
--; | use(o.v) O call return

O Method entry
Consequent’/ @ Method exit

Node @® Statement
Control Flow
Coupling Path

[...] Transmission Set

Figure 4-3. Type Il Coupling Sequence

4.2.4 TypelV Coupling Sequences
The fourth type of coupling sequence is shown in Figure 4-4. Here, the coupling sequence

occurs between two nodesin the coupling method in which both the indirect definition and
use occursthrough the instance context provided by o. Every coupling path in the sequence
isidentical to the set of transmission paths between the antecedent and consequent nodes.
Thus, there are no i-def or i-use paths in a Type IV coupling sequence. Also, there are no

call sites at either node in the sequence.

The coupling set for a type IV coupling sequence is given formally by

G)51 T i-defs(j) N i-uses(k), where | and k are the antecedent and consequent nodes,

respectively. TypelV coupling sequences are not discussed further in thisthesisasthey are



99

covered by traditional dataflow testing criteria[30, 65]. They are included here merely for

the sake of completeness.

Coupling method f

lef - - -

f0
-
Antecedent Node .
RS @i def(o)
\\\\ ‘
_ e S
Coupling --1-»@j deflov) = ~Tto--e. .
Sequence | <----&--transmission paths,
S\ i oVl Sl ] _
with rcléspect --t-»@k usecv) - F @ Call site
to o.v i R O call return
- \\\\‘ ! :
-~ | <«  Coupling'Variable O Method entry
Consequent & Method exit
Node

@ Statement
Control Flow
Coupling Path

[...] Transmission Set
Figure4-4. Type IV Coupling Sequence

4.2.5 Other Type of Coupling Sequences
The research presented in this thesis focuses on coupling sequences where the calls to the

antecedent and consequent methods are both in the coupling method. There are other more
complicated situations where coupling sequences occur in object-oriented programs. In
essense, al of these situations can be characterized as the calls to the antecedent and con-
sequent methods do not both occur in the coupling method. An example of thisisillustrated
in Figure 4-5 where the coupling method f does not contain either call. Instead, the call sites
J and k invoke methods that contain the calls to the antecedent and consequent methods.
Though the coupling between the antecedent and consequent methods does not occur
directly from f, the coupling sequence s;  existsin f between nodesj and k, but is referred

to asan indirect coupling sequence (aternatively an inter-method coupling sequence) of f.



100

Indirect coupling sequences are not discussed further in thisthesis, but are instead are left

for future research.
Indirect
coupling
sequence
Sik
@ Call site

O Call return
O Method entry
@ Method exit
@® Statement
Control Flow
Coupling Path

Coupling Method f

f(T o)
i def(o)
| @] A€)
T A
I’\q‘p.mo
\
\
]
s \
———'-’—‘ ‘\
e Ik B(o)
\\\
~=-1--- B(T p)

Sccaaaa

~

Antecedent
e Node
Antecedent
" Method
»
“~—m(
def(p.v)
’/
Consequent
“ Node
Antecedent
.- Method
»
TS~ no
use(p.v)

Figure 4-5. Inter-method Coupling Sequences

4.3 Coupling Variables and Coupling Sets

Every coupling sequence 5 has an associated set of state variables that are defined by the

antecedent method and subsequently used by the consequent method with respect to the



101

t
S, k
5,k and is defined as the intersection of those variables defined by m (an indirect-def, or i-

coupling typet. This set of variables is referred to generically as the coupling set ®_  of
def) and used by n (anindirect use, or i-use) through the instance context provided by acon-
text variable o that is bound to an instance of t. Note that the particular mand n that execute
are determined by the actual typet of the instance bound to 0. Each member of this set is
called a coupling variable. Coupling sets are formally defined by Equation 4-2.

Equation 4-2. Coupling Sets

8; T i-defs(0.m) M i-uses(0.n)
For a Type | coupling sequence, the indirect definition occurs in the antecedent method
called at node j and the indirect use occurs in the consequent method called at node k. For
S = {t::v} and

the definition of the coupling variable v occurs in the antecedent method m, and the corre-

example, the coupling set for the sequence s;  shown in Figure 4-1is: ©

sponding indirect use occurs in the consequent method n.

4.4 Coupling Paths

Each coupling sequence has an associated set of paths, called coupling paths, in which an
indirect definition of avariable v is transmitted to the corresponding indirect use. That is,
the path between the nodes having the indirect definition and indirect use is definition-clear

with respect to v, thus the definition of v is transmitted by the path.

Each path consists of up to three sub-paths, or segments:. indirect-def sub-paths, indirect-
use sub-paths, and transmission sub-paths. The indirect-def sub-path is the portion of the
coupling path that occursin the antecedent method a, extending from thelast (indirect) def-
inition of a coupling variable to the exit node of a. Similarly, the indirect-use sub-path is
the portion of the consequent method c that extends from the entry node of c to the first
(indirect) use of acoupling variable. Finally, the transmission sub-path isthe portion of the

coupling path that extends from the antecedent node to the consequent node, such that the



102

value of the path’ s coupling variable and the coupling sequence’s context variableistrans-
mitted without redefinition.

The type of sub-paths that each coupling path has is determined by the mechanism used to
affect the indirect definitions and uses of the coupling sequence. A Type | coupling
sequence has coupling paths that contain all three types of sub-path since the indirect def-
inition occurs in the antecedent method and the indirect use occurs in the consequent
method. In contrast, coupling paths of Type IV coupling sequences only have a transmis-
sion sub-path since the indirect definition and use occurring in the coupling method itself.
The coupling paths of Type Il sequences have a transmission sub-path and an indirect-use
sub-path. There is no indirect-def sub-path since the indirect definition occurs in the cou-
pling method. A Type Il coupling sequenceisjust the opposite of a Type Il sequence. The
coupling paths of a Type I11 sequence includes an indirect-def sub-path and a transmission

sub-paths, but not a indirect-use sub-path.

For a given coupling sequence, thereisasingle set of coupling paths for each type of cou-
pling sub-path. These sets are used to form coupling paths by matching together elements
of each set. For example, the set of coupling pathsfor aType | coupling sequenceisformed
by combining elements of the indirect-def sub-path set with an element from the transmis-
sion sub-path set, and then adding an element of the indirect-use sub-path set. The complete
set of coupling pathsis formed by taking the cross product of these three sets.

The sets of coupling sub-path segments form the foundation of the source code analysis
used to identify coupling sequences in object-oriented programs. Each of these sets is

described in detail in the sub-sections below.

The following definitions are used to provide access to the individual components of the

coupling sequence s i:

* a-node(s ) : Node: The antecedent nodej of 5.



103

* c-node(s ) : Node: The consequent node k of s .
* a-method(s; k) : Method: The antecedent method mof s .
* c-method(s; ) : Method : The consequenct method n of s .

* context(sj ) : Variable: The variable that contains an object reference that refers

to an instance providing context at the call sites of 5 (e.g. 0.m()).

4.4.11-Def Paths
For agiven coupling sequence s y, there are a set of pathsin the antecedent method m that

begin at nodes that have last-definitions-befor e-return (see Section 2.6.1 on page 43) of the

variables contained in the coupling set ©. . For each such node |, the path to exit(m) is

definition-clear with respect to the corre:bkondi ng coupling variable defined at |. These
paths constitute the indirect-def path set (or i-def-path-set) of the coupling sequence. Each
of these pathsisreferred to asan indirect definition path (or i-def-path). Equation 4-3 gives
the formal definition for the set i-def-paths, where mis the consequent method of s  and

Visasubset of the coupling variablesfor g .

Equation 4-3. Indirect def path set
i-def-paths(m, V) = {(p, v) | first(p), last(p) € N, A
p € paths(first(p), last(p), m) A
last(p) = exit(m) A
ve V c state(class(m)) A
v e defs(first(p)) A
def-clear-path(first(p), last(p), v) }

Figure 4-6 shows an example of thei-def-paths for the coupling sequence s . Asthefigure
shows, there are three i-def-paths (Iabeled a, b, and ¢) that emanate from nodesin o.m such
that each i-def-path has alast-definition-before-return of the coupling variable o.v. Asindi-
cated, each of these pathsis definition-clear with respect to the coupling variable o.v. Col-
lectively, these paths constitute the indirect-def path set for the coupling sequence s .



104

()
Antecendent @ | def(o)
Method Antecenden
Node ~_ H
g [o] Coupling
_---t--------Sequence----____
m()cé R s
—— @Kk 0.m kil
® 0 Consequent
Definition-clear Method

with respect to g
]

Last definition of o.v| t-paths
before return RN

i-use-paths !

"
v

i-def-paths ;
1
' N o
Definition-clear S b 7
with respect

Definition-clear
with respect

N
First use of o.v

\
\
\
\
\
\ ol ot
\
\
\
\
\
\
\
\
\

to o.v
to o.v
@ Call site Consequent ’
O call return Node

O Method entry
@ Method exit
@ Statement
Control Flow
Coupling Path

[...] Transmission Set

Figure 4-6. Detailed Type | Coupling Sequence

4.4.2 1-Use Paths
Referring again to Figure 4-6, the set of paths in the consequent method n that begin at

entry(n) andend at anode | € N, suchthat | has afirst-use-in-callee of acoupling variable
contained in the state of the class that specifies nisreferred to as the indirect-use path set
(or i-use-path-set) of the antecedent method n for coupling sequence s; . Each path in this
set isdefinition-clear with respect to the particular coupling variable used in the consequent
method. Equation 4-4 formally defines i-use-paths for a given pair of node and state vari-
able. Inthe equation, nisthe consequent method of s , and V is some subset of the coupling

variablesfor s .



105

Equation 4-4. i-use-paths
i-use-paths(n, V) = {(p, V)| (first(p), last(p) e N,
A p e paths(first(p), last(p), n) A
first(p) = entry(n) A
ve Vc state(class(n)) o
v e uses(last(p)) A
def-clear-path(first(p), last((p), v))) }

In Figure 4-6, the elements of the i-use-set for 5 are g, h, and i. Each of these nodes ends

at anode having afirst use of 0.v, and each is definition-clear with respect to o.v.

4.4.3 Transmission Paths
For every coupling sequence s, there is a set of paths I that connect the antecedent

node j and the consequent node k, such that for each t e I o t is definition-clear with

S S 851.k S
where it is indirectly defined by the execution of the antecedent node, to where it is indi-

respect to some subset 6 . These paths transmit the value of each ve 85 from
rectly used by execution of the consequent node. Equation 4-5 presents the formal defini-
tion for t-paths.
Equation 4-5. T-Paths(s; \)
t-paths(s, ) = {(p, V)| pe paths(a-node(s, ,),

c-node(s; ), method(s; ) A

Ve 6%,k .

def-clear-path(first(p), last(p), context(s; \)) A

def-clear-path(first(p), last(p), v) }

The penultimate clause of the set expression in Equation 4-5 requires that the transmission
path p be definition-clear with respect to the object reference that defines the context of the
coupling sequence, and the last clause requires p to be definition-clear with respect to the

coupling variable v.

If there is no transmission path between the antecedent node j and the consequent node k,

then t-paths(sj, W = &. In this case, the coupling sequence s is a vacuous coupling



106

sequence, and hence the coupling path set of s\ is empty. Note that this can only occur if

there is not at least one definition-clear path fromj to k for some v € @S_ g
15

In Figure 4-6, the set of paths labeled T-Paths consisting of the elementsd, e, and f, consti-
tute the transmission path set for the sequence s . Note that each path in the transmission
set must be definition-clear with respect to the coupling variable that it transmits and with
respect to the object reference that defines the context of the coupling sequence (o in the

example).

4.5 The effects of inheritance and polymor phism on
coupling

To seethe effects of inheritance and polymorphism on path sets, consider the class diagram
shown in Figure 4-7a. The type family that corresponds to this hierarchy includes the three
classes A, B, and C, with each having one ore more methods or state-variables. Class A
defines methods mand n and state variablesu and v. Class B definesmethodsn and |, where
nisan overriding method of A'sn (A::n). Likewise, class C defines method m, which over-
rides A::m. The corresponding definitions and uses for each of these methods is shown in
Figure 4-7b.



107

-u X
-v Y
+m()
+n()

M ethod Defs Uses
A:m {A:uAv}
5 A:n {A:v}
B::n {A:u}
w:z B::l {A:v}
:%) C:m {A:u}

(b)

+m()

Figure 4-7. Sample class hierarchy and def-use table

Figure 4-8 shows the coupling paths that result from the hierarchy in Figure 4-7a. Observe
that the declared type of the coupling variable provided by o is A. The coupling sequence
5,k extends from the node j where the antecedent method mis called, to the call site of the

consequent method at node k. As shown, the corresponding coupling set for 5 when o is
A

S,k
for 5 that extend from node ein A::mto the exit node of in A::m, back to the consequent

bound to an instance of Ais ©, = {A::v}. Thus, the set consists of the coupling paths
node k in the coupling method, and through the entry node of A::nto node g. Thereis no
coupling path with respect to A: :u because A:: u does not appear in the coupling set for A::m
and A::n.



Antecedent

Conseque
Node

Coupling method

108

Declared
type of 0 is
G')A::m,A::n = {A"V}
A:m() Antecedent Method
:
| L7
A4
def(A::v) def(A::u)
e f
[A::V]/ [A::u]
A:im A::m

Consequent
Method
A~

sn, [[A5vV]

@ use(A::v)
g

@ cCall site

O call return

O Method entry

@ Method exit

@ Statement
Control Flow

Coupling Path

[..] Transmission Set
Subpath

Figur e 4-8. Coupling sequence when o is bound to an instance of A



109

Now, consider the affect on the elements that comprise the set of coupling pathswhenois
bound to aninstance of B, as shown in Figure 4-9. The coupling set for this caseisdifferent
from when o was bound to an instance of A. This is because B provides an overriding
method B::n that has a different use set than the overridden method A::n has. Thus, the cou-
pling set isdifferent with respect to the antecedent method A: : mand the consequent method
B::nyielding GSBj,k = {A::u}. Inturn, thisresults in a different set of coupling paths as
depicted by the Figure 4-9. The set of coupling paths now extend from nodef in A::m back
through call site at node k in the coupling method and through the entry node of B::n to

node g of B::n.

Figure 4-10 depicts the coupling sequence that results when o is bound to an instance of C.
First, observe that execution of the node j in the coupling method results in the invocation
of the antecedent method, which isnow C::m. Likewise, execution of node k resultsin the
invocation of the consequent method n. Since C does not provide an override for m. and
because C is a descendant of B, the version of n that isinvoked is actualy B::n. Thus, the
coupling set for 5 istaken with respect to the antecedent method C::mand the consequent
method B::n, which yields G);k = {A::u}. The corresponding coupling path set includes
those pathsthat begin at node ein C::mand extend to the exit node of C::m, then back node

J of the coupling method, and through the entry node of B::n to node g, also in B::n.



Antecedent

Consequ
Node

Coupling method

i@ bind

Declared
type of o is
A

.B)

e

o

\

<

Coupling Variable

’

110

®A::m,B::n = {A..U}
A::m() Antecedent Method
1 e
def(A::v) def(A::u)
® f
[A:V/[A::u]
Aim) Aim,

- transmission paths

Consequent
B::n() Method
|
1 //
h
B::n, |[A::u] @® cCall site
O call return
use(A::u
g. ( ) O Method entry
@ Method exit
@ Statement

Control Flow

Coupling Path

[...] Transmission Set

A::m, Subpath

Figure 4-9. Coupling sequence when o is bound to an instance of B



Antecedent

Consequ
Node

Coupling method

Declared
type of 0 is

G)C::m,B::n = {A..U}
C::m() Antecedent Method
i /////
v »
@ def(A::u)
e
C:m_|[A::u]

F-transmission paths

Consequent
B::n() Method
:
1 //
\
B::n, |[A::u] ® cCall site
O call return
use(A::iu
g. ( ) O Method entry
@ Method exit
@ Statement

Control Flow

Coupling Path

[...] Transmission Set

A::m, Subpath

Figure 4-10. Coupling sequences when o is bound to an instance of C

111



112

Not every classcin aparticular type family will have methodsthat participatein acoupling
sequence as a result of inheritance and polymorphism for a particular coupling method.
This will be true whenever ¢ does not provide overriding definitions for methods that are
invoked by the antecedent or consequent nodes. For example, suppose a new class D that
has no overriding methods used in the coupling sequence shown in Figure 4-8 is added to
the sample class hierarchy given above, as illustrated in Figure4-11. In this situation,
whenever oisbound to aninstance of D, the coupling sequence that resultswill bethe same
aswhen oisbound to aninstance of A. Thisis because the antecedent and consequent meth-
ods that execute (m and n, respectively) are those defined by A. Because of this, we can

safely ignore consideration of D from the coupling analysis.

-u X

+m()

+n()

-w: Z
+n()
+1()

+m()

Figure4-11. Sample hierarchy with class D added

Table 4-1 summarizes the coupling paths for the example shown in Figure 4-6 on page 104
and the corresponding control flow schemata depicted in Figure4-7, Figure4-8, and
Figure 4-9. Paths are represented as a sequence of comma delimited nodes. Each nodeis of
the form method(node), where method is the name of the method that contains the node,



113

and node is the node identifier within the method. Note that the prefixes*“call” or “return”

are appended to the names of nodes that correspond to call or return sites.

Table 4-1. Summary of sample coupling paths
Type Coupling Path

A | (A:zm(e), A:m(exit), f(j.return), f(k.call), A:n(entry), A:n(g))

B | (Azm(e), A:zm(exit), f(j.return), f(k.call), B::n(entry), B::n(t))
C | {(C:m(s), C::m(exit), f(j.return), f(k.call), B::n(entry), B::n(t))

Another situation can exist in which aclass cinaparticular type family will not have meth-
ods participating in acoupling sequence. Thiswill occur when ¢ provides a definition of an
overriding method that does not define the same set of coupling variables asthe overridden.
For example, suppose that class C has been changed such that its overriding definition for
mno longer definesthe same set of coupling variables as doesthe overridden method A::m,
as shown in Figure 4-12a and Figure 4-12b. The on the coupling sequence s;  is shown in
Figure 4-13. As the figure shows, there are no coupling paths for s;  with respect to C::m
and B::n, and thus, §  is avacuous coupling sequence whenever o is bound to an instance
of C. This is because the coupling set is empty with respect to C.:m and B::n is empty,



114

(9; T @. That is, there are no coupling variables defined by C::mthat are subsequently

used by B::n.

-u ;X
-v Y
+m()
+n()
M ethod Defs Uses
A:m {A:u,A:v}
B A:n {A:v}
_ B::n {A:u}
;Vz(')z Bl {A7v}
+10) C:m {A:v}
(b)
[}
-v iV
+m()
(@)

Figure 4-12. Sample hierarchy showing modified class C



115

Coupling method

Declared
type of 0 is
A i
v
'® e C:m,B:n
Antecedent[Node o]
\‘\ C::m() Antecedent Method
SN | s
~ ! P
_--m \/ ‘/

>

r
1
|
1
|
|
1
|
|
|
|
|

No coupling sequence
when o is bound to

U g
instance of C @ def(C:v)

Aim, | [C::v]
-

F-transmission paths

Consequent
B::n() Method

-
/
-
-

gt - - —

Consequent

Node B:iing([o.u] @ cCall site

O call return
O Method entry
@ Method exit
[ J

@® use(A::u)

Statement
— Control Flow
_,j e— Coupling Path
[...] Transmission Set
A::m,_ Subpath

Figure 4-13. Coupling sequence where o is bound to C and defs(C::m) # defs(A::m)



116

Pragmatically, the effects of inheritance and polymorphism have the potential to resultina
combinatorial explosion of path sets. The number of path setsisafunction of the depth and
breadth of the inheritance hierarchy. However, as an optimization to reduce the number, as
noted earlier, those types that do not have overriding methods will have an empty type set.
Thisis possible since any coupling path that could be executed through the type will nec-
essarily appear in the path sets of other ancestor types that are members of the same type

family.

4.6 Polymor phic coupling sequences and coupling sets

Inheritance increases the number of possible bindings that can occur for a given coupling
sequence. As aresult of this, the actual methods that execute and the variables indirectly
defined and used can vary at runtime. Since the depth and breadth of inheritance is aways
finite, there is an upper limit on the amount of variation that can occur at runtime. In the
worst case, every member of the type family that corresponds to the coupling type can pro-

vide an instance context for the coupling sequence.

The following subsections present modified definitions of coupling sequences and cou-

pling sets that take polymorphism into account.

4.6.1 Polymor phic Coupling Sequences
To account for the possibility of polymorphic behavior at acall site, the definition of acou-

pling sequence given by Equation 4-1 must be amended to handle all methods that can pos-
sibly execute. To accomplish this, we introduce the notion of a binding triple. A binding
triple for a coupling sequence consists of the antecedent node m, the consequent node n,
and the set of coupling variables that result from the binding of the context variable to an
instance of a particular type. The triple matches together a pair of methods p and g that can
potentially execute as the result of an invocation at the call sites of the antecedent and con-
sequent nodes j and k. Neither of these methods is required to be from the class c that pro-
vides the instance context for the coupling sequence. Each may be from different classes

that are members of the type family defined by ¢, and provided that p is an overriding



117

method for mor gisan overriding method for n. Note that there will be exactly one binding
triple for each class d e family(c) that defines an overriding method for either m or n.

Classes that do not define such overriding methods are excluded.

To modify the coupling sequence definition, we add a set of binding triples D; | into the
definition of a Type | coupling sequence. This set is the extension of al possible binding
triples for a given coupling sequence. Thus, the new definition for a coupling sequence

becomes:

Equation 4-6. Polymorphic coupling sequence
_ t t
S,k = (f, mn,o, (Dj, ko Hj, ko Gj, K)

where f, m, n, o, and II;  areas defined for Equation 4-1, t is the type of instance bound
to o, @i « isthe set of coupling variables for the sequence, and d)}’ « Isthe set of binding
triplesfor s .

The definition of the set of binding triples for a Type | coupling sequence is given in
Equation 4-7.
Equation 4-7. Type | binding triple sets
®(0,mn) = {(p.q O, ,)|type(p) e family(type(o))
A type(q) € family(type(o)) o
(p = mv overrides(p, m)) A

((g=nvoverrides(qg, n)) A @L’q = i-defs(p) N i-uses(q)) }

wheret isthe actual type of the instance bound to o and t € family(type(0)).

Equation 4-7 accounts for the possibility of polymorphic behavior in a coupling sequence,

and isinterpreted as follows:

1. The classes that define methods p and g are members of the type family defined

by the declared type of o.



2. Method p is either the antecedent method m, or is a method that overrides m.

118

Likewise, method q is either the consequent method n, or is a method that over-

ridesn.

3. The coupling set @L’ q istheintersection of the set of state variables that are indi-

rectly defined by p and subsequently indirectly used by q.

Note that for aType | coupling sequence the set induced by @ will never be empty. There

will alwaysbe at least one binding triple that correspondsto the antecedent and consequent

methods. This occurs when the type family defined by the context of the coupling sequence

does not contain any membersthat provide overriding methods for both the antecedent and

consequent methods. Thus, the only member of the binding triple set will correspond to the

declared type of the context variable, assuming that the type is not abstract. If the typeis

abstract, then an instance of the nearest concrete descendant to the declared type is used.

As an example, the set of binding triples (o, A::m, A::n) for the coupling sequence s;

shown in Figure 4-8 on page 108, Figure 4-9 on page 110, and Figure 4-10 on page 111 are

given in Table4-2. The type hierarchy corresponding to the coupling type is shown in

Figure 4-7 on page 107.

Table 4-2. Binding triples for @(0, A::m, A::n)

t

p

q

t

®p, q

A |A:m

A:n

{A:v}

A:m

B::n

{A:u}

C|C:m

B::n

{A:u}

Type Il and I11 coupling sequences have definitions that are slightly different, as given by

equations Equation 4-8 and Equation 4-9, respectively. In Equation 4-8, j is the antecedent



119

node and n the consequent method, and in Equation 4-9 mis the antecedent method and k
the consequent node. As with Type | coupling sequences, there will also be at least one
binding triple that corresponds to the antecedent node and consequent method, and vice-

versafor Types|l and I11, respectively.

Equation 4-8. Type Il binding triple sets
®(0.j. 1) = {(j. 0. O] o)|type(q) e family(type(0)) ¢
((g=nvoverrides(q, n)) A 8},q = i-defs(j) Ni +i-uses(q)) }

Equation 4-9. Type |11 binding triple sets
®(0,m k) = {(p.k O, )|type(p) e family(type(0)) »
((p=mv overrides(p, m)) A @L’ i = i-defs(p) Ni-uses(k)) }

4.6.2 Polymor phic Coupling Sets
The original definition of a coupling set for a coupling sequence only considers the ante-

cedent and consequent methods (for a Type | sequence) in the context of the declared type
of the coupling variable. Thisis no longer sufficient since inheritance and polymorphism
can result in different methods being executed. I nstead, the coupling sets of all permissible
method combinations must be combined to form an aggregate coupling set for the

sequence. Thus, the coupling set © ) is defined as the union of all the coupling sets for

S,

each bindingtriplein @ - Formally, G)51 ) isgiven by Equation 4-10, where O, isthe cou-

S,
pling set @L’ q for binding triple t. The coupling set for a sequence is the union of al the
coupling setsfor the individual pairs of methods that could potentially execute through the

call sites at the antecedent and consequent nodes.

Equation 4-10. Polymorphic coupling set

@%,k = U @t
te q)j,k



120

4.7 Coupling pathsin object-oriented programs

In their original work, Jin and Offutt were concerned with couplings that occur between
procedures in terms of parameters explicitly passed as arguments or through shared global
data [38]. In an object-oriented program, other cases exist that are also of interest. In par-
ticular, we care about those paths that have couplings originating at last definitions in an

antecedent method and that terminate at first uses in a consequent method.

There are two genera cases in which coupling paths can occur. The most basic is where
there is no possibility of polymorphic behavior at the call sites of a coupling sequence. In
this case, the methods that execute are specified by the declared type of the context vari-
able. The most complex case iswhere there is a possibility of polymorphic behavior at the
call sites. As a consequence, it is not possible to determine statically which methods will
execute. At best, an approximation can be obtained by considering all possible types of
instances that can be bound to the context variable. The following subsections discuss the

coupling paths that result from each of these cases.

4.7.1 Non-Polymor phic Coupling Paths
Consider again the Type | coupling sequence shown in Figure 4-1 on page 94 where in the

body of method f there is an object reference o of declared type T. Assume that o is bound
to aninstancewhose actua typeisT. Inthisscenario, thereisno possibility of polymorphic
behavior. Within f, there are two instance couplings at call sites where methods m and r
(specified by T), respectively, are called successively through the instance context provided
by 0.1 These two call sites are members of the coupling sequence Sk as described in
Section 4.2.

Ignoring polymorphism for the moment, we are interested in al of the indirect definitions
that can reach indirect uses with respect to a particular instance context. Thus, we desire to

identify all non-polymor phic coupling paths that extend from a node containing a last-def-

1. Aninstance coupling occurs wherever an object reference is used to access methods or state variables of
an instance.



121

before-return in an antecedent method to a node in a consequent method that contains a
first-use-in-callee with respect to the coupling variable of interest. Collectively, this set of
pathsis the coupling path set for the coupling sequences; . We form these paths by taking
the cross product of the i-def path set, t-path set, and i-use path set for a particular Type |

coupling sequence.

Formally, using the 9-tuple definition for a Type | coupling sequence given in
Section 4.2.1, the set of instance coupling paths for the coupling sequence s; . is a set of
pairs consisting of a single non-polymorphic coupling path and coupling variable as
expressed by Equation 4-11, where 9}’ « Is asubset of Gfm and t is the actual type of the
instance bound to the context variable of s . The coupling path is represented as the
sequence of coupling path segments (d, t, uy , where d, t, and u are the coupling sub-path
segments described in Section 4.4. For every v e e}, i thereis at least one transmission
path that is definition-clear with respect to v, expressed formally as.
Yve e}’ cedte t-paths(sj, 1 © def-clear-path(first(t), last(t), v).

Equation 4-11. Instance coupling paths for Type | coupling sequences

InstanceCoupIingPaths(sj’ W = {((d, t, U, v) \ Ve ej‘, kS @; A
def-clear-path(d, v) A def-clear-path(t, v) A
def-clear-path(u, v) e d € i-def-path(a-method(sj’ > ej" A

te t-paths(sj 1) A U € i-use-paths(c-method(s, k), ejt k)}
, . ,

Each non-polymorphic coupling path isformed by concatenating a single path p from each
of the coupling path segments (i-def-paths, t-paths, and i-use-paths), subject to the con-

straint that p be definition-clear with respect to a particular coupling variable v.

The diagram in Figure 4-6 on page 104 presents an abstract example of non-polymorphic
Type | coupling paths. Within method m, there are three nodes that contain last definitions



122

of 0.v, and associated with each are the definition-clear pathsa, b and ¢, respectively, giving
the indirect-defs path set. On return to method m, there are three paths (d, e, and f) that are
definition-clear with respect to o and 0.v that reach the node that containsthe call tor. These
paths yield the set transmission path set. Within method r, there are three definition-clear
paths, (g, h, and i), to nodes that contain first uses of 0.v. These last three paths give the
indirect uses path set. Taking the cross product of these three setsyieldsaset of 27 coupling
paths, which are shown in Table 4-3.

Table 4-3. Sample Coupling Paths

Number | Path | Number | Path | Number | Path
1 adg 10 b;d;g 19 c,dg
2 ad:h 1 b;d;h 20 c,d:h
3 ad;i 12 b;d;i 21 c,d;i
4 aeqg 13 b;e;g 22 ceg
5 aeh 14 b;eh 23 ceh
6 aei 15 bei 24 cei
7 af;g 16 b;f;g 25 cfig
8 af;h 17 b;f;h 26 cf:h
9 af;i 18 b;f;i 27 G

Type Il coupling sequences are formed by taking the cross product of the t-path set with
the i-use path set for a particular type coupling sequence s; . This is because the indirect
definition that occurs when the antecedent node | is executed does not involve a method
call. Thus, the coupling path begins with the antecedent node. Formally, the coupling paths
for aType Il coupling sequence s;  are defined in Equation 4-12, where G);‘
(a;,k = i-defs(j) N i-uses(c-method(s; ).

) Isgiven by:



123

Equation 4-12. Instance coupling paths for Type Il coupling sequence

InstanceCouplingPaths(s; |) = {((t, w,v)|ve ejt kg@é A
’ ’ 15
def-clear-path(t, v) A def-clear-path(u, v) e

te t-paths(sj, WAUE i-usepaths(c-method(sj’ 10> ejt, k)}

Similar to Type Il coupling sequences, Type Il coupling sequences are formed by taking
the cross product of the i-def-path set with the t-path set for a particular type coupling
sequence § .. However, the antecedent node contains an indirect definition and the conse-
guent node contains a call to consequent method where the indirect uses occur. Formally,
the coupling paths for a Type 111 coupling sequence s;  are defined by the expression in
Equation 4-13.

Equation 4-13. Instance coupling paths for Type 11 coupling sequence

InstanceCoupIingPaths(sj,k) = {((d, t),v)\ve e},kge A

t
S,k

def-clear-path(d, v) A def-clear-path(t, v) o

de i-def-paths(a—rmthod(sj’ 10> ejt’ WAte t-paths(sj, k)}

t

where G)Sj’k

= i-defs(a—method(sj’ 1) N i-uses(k).

4.7.2 Polymor phic Coupling Paths
The instance coupling paths described in the previous section do not take into account the

possibility of polymorphic behavior that results from dynamic variation of types that can
be bound to an object reference. With this possibility, a given instance coupling resultsin
one path set for each member of the associated type family. The size of these setsis deter-
mined by the number of overriding methods within a given type, either defined directly or
inherited from another type. The following subsections discuss the effects of inheritance

and polymorphism on coupling and the set of coupling paths that result.



124

4.7.2.1 Type 1 Polymor phic Coupling Paths
For aType! coupling sequences; ., coupling paths are formed by taking each binding triple

de QDJ-t’ « asexpressed by Equation 4-14. As an example, Table 4-3 presentsthe set of poly-
morphic coupling paths for the class hierarchy shown in Figure 4-7 on page 107, and for
the corresponding control flow schematics shown in Figure 4-8 on page 108, Figure 4-9 on
page 110, and Figure 4-10 on page 111.

Equation 4-14. Type | polymor phic coupling
paths

CouplingPaths(s, ) = {({d. t,u),v)|ve O  ateII,
A def-clear-path(t, v) e
(o e d)}’ « ® d € i-def-paths(antecedent(), {Vv})
A U € i-use-paths(consequent(d), {v}))}

Table 4-4. Polymorphic coupling paths for type family A
A B C

(Acm,, f, Aing | (Aim,, f,Biing | (Ciim,, f, Biiny

(Am, o Ang | (Amy, £, Biing)

4.7.2.2 Type Il Polymorphic Coupling Paths
For a Type |1 coupling sequence s; i, coupling paths are formed by taking each binding

triple ¢ € cpi « asexpressed by Equation 4-15. Thefirst element of each tripein thisset, €,
isan empty set of i-def paths, recording the fact that the indirect definition of the coupling
variable takes place in the coupling method instead of an antecedent method.

Equation 4-15. Type Il polymorphic coupling paths
CouplingPaths(s, ) = {({e,t, u),v)|[ve O  Ate IT
A def-clear-path(t, v)
e (dde d)}’ K ® U € i-use-paths(consequent(d), {Vv}))}



125

4.7.2.3 Typel1l Polymorphic Coupling Paths
For a Type 11 coupling sequence s i, coupling paths are formed by taking each binding

triple ¢ € d)}’ « & expressed by Equation 4-16. In this situation, the third element of the
binding triple is the empty sub-path set €, corresponding to the fact that there are no i-use
paths for a Type Il coupling sequence.

Equation 4-16. Type |11 polymorphic coupling paths
CouplingPaths(s; ) = {((d,t,&),V)|ve @}’ kAte I

A def-clear-path(t, v)

e (dpe d)i « ® d € i-def-paths(antecedent(), {v}))}
4.7.3 Feasible and infeasible coupling sequences
For a coupling sequence to exist, the context variable must be bound to some instance on a
path that reaches the antecedent node. The location in a method where a context variable o
is defined (i.e. made to refer to a particular object) is called a binding site. For a coupling
sequence to exist, there must be at least one definition-clear path with respect to o from the

binding site to the antecedent node.

For abinding site s, not all bindings to o are possible. A binding to o must be an instance
of some member of the type family induced by o’s declared type. The set of types that can
be bound to o is determined by the binding mechanism. The binding mechanism is how an

instance is bound to a variable, which can be by one of the following:
1. Parameter passing. o is passed as an actual parameter to a method.
2. Explicit instance creation. For example, 0 = new T().

3. Assignment of another variable to the context variable. For example, o = p,

where p’'s declared type is a member of the type family induced by o’s declared

type.



126

4. Assignment of the return value of a method call to 0. For example, o = f(), where
the return type of f isamember of the type family induced by o’s declared type.

For binding mechanisms 2, 3, and 4, the type of the instance bound to o is restricted by the
declared type used in the mechanism. For type 2, the type of the binding is that of the type
specified in the instance creation operator (e.g. new in Java and C++). Thus, any feasible

coupling sequences involving this binding must use the same type.

For type 3, the resulting type of the binding is limited to the set Sof possible bindingsto p,
which is determined in turn by the binding mechanisms used at each binding site of p. Sis
the union of all possible types that can be bound to p at binding sites that reach the assign-

ment o0 = .

For type 4, the resulting typeis limited to the set Sof possible typesthat can be returned by
f(). If f'sdeclared return type is not the same as 0’ s declared type T, then the set of typesR
that can bereturned by f will be aproper subset of thetypefamily definedby T, thus T ¢ R.

Therefore, there is no feasible coupling sequence whose context is T. In the general case,
there will be no feasible coupling sequence whose context variable has a declared typein

family(T) —family(R).

4.8 Summary

Thischapter has presented the extensionsfor handling inheritance and polymorphism to the
coupling-based testing approach of Jin and Offutt [38]. The key insight to the extensionsis
in recognizing that the majority of coupling occurring in object-oriented programs resides
in the state space interactions among the methods of a class. These couplings are dependent
upon the context in which instances of the class are used, and are determined by the mech-
anisms (i.e. direct or indirect definition and use) used to alter the state of an instance. To
model this context, the coupling sequence has been defined, which captures information
about methods that are called in the context of a particular instance, the state variables for

which the interaction occurs, and the paths between the locations where the interactions



127

take place. Thisinformation as the basis for a code-based static and dynamic analysis, and
also asthe basisfor the set of test-adequacy criteriathat form the coupling-based testing of
object-oriented programs. Subsequent chapters discuss these criteria in detail and how

source code is analyzed to identify coupling sequences.



5. A Set of Criteriafor Testing Object-Oriented
Programs

Thischapter presentsanew set of integration-level testing criteriathat are based on the cou-
pling theory presented in Chapter 4. These criteriaare based on the dataflow characteristics
of coupling sequences, and are similar in nature to the original definitions of Jin and Offutt
[38]. However, they differ in that the effects of both inheritance and polymorphism are
explicitly accounted for. The handeling of inheritance and polymorphism is the most novel

aspect of thisthesis.

The definitions for coupling sequences, binding triples, and coupling paths presented in
Chapter 4 lay afoundation with which to derive a set of new test adequacy criteria. These
criteria can be used to guide the testing process and provide both requirements for testing

and decision criteriafor when to stop testing.

A fundamental issue with testing is how much is enough? In a perfect world no testing
would be required, but in reality, a considerable amount is usually necessary. Typically,
experience showsthat the criterion most often applied isthat of date coverage: testing stops
when the amount of time allocated to the testing effort has been exhausted or elimi nated.
Unfortunately, the basisfor this criterion has virtually nothing to do with the intrinsic qual-
ity of the software. The greater complexity among the connections of software components
found in object-oriented programs introduce new types of faults, thus new testing criteria
are needed.

1. Date coverage was first theorized and described by Alexander, and later presented by Offutt [56].

128



129

5.1 Coupling Criteria

The new criteria are shown in Figure 5-1 and are similar to the original data flow testing
criteria of Rapps and Weyuker [65]. The subsumptive relations of the criteriaare shown in
Figure 5-1. Examining the hierarchy from the bottom up reveals a basic structuring of the
criteriaalong two distinct paths. At the bottom of the hierarchy is All-Coupling-Sequences,
which is the most basic criterion and does not handle inheritance, polymorphism. or state
space interactions. Moving up the left branch we find the criterion All-Poly-Classes, which
takesinto account the effects of inheritance and polymorphism. Moving up theright branch
reveals a grouping of criteria that place emphasis on coupling paths based on the interac-
tions of definitions and uses of coupling variables. Just below the top of the hierarchy isthe
criterion All-Poly-Coupling-Defs-Uses, which serves to unify those criteria based on defi-
nitions and uses of coupling variables, with the criterion that considers the effects of inher-
itance and polymorphism. Finally, at the top of the hierarchy is All-Coupling-Paths, which
is the most comprehensive of al the criteria, and also serves as the point of unification
between the new OO-based criteriaand the original criteria of Jin and Offutt [38]. Each of
these criteria are described and discussed in detail in the sub-sections that follow.

5.1.1 Definitions
The following definitions are used in the subsections below:

* context(s; k) : Type: Returnsthe type of the instance bound to the context vari-

able of the coupling sequence s .
 first(p) : Node: Thefirst nodein path p.
* last(p) : Node: Thelast nodein path p.

» family(c) : PClass: The set of classes that belong to the type family specified by

classc. Note that c itself isamember of family(c).



130

All-Coupling-Paths

All-Poly-Coupling-Defs-Uses
(Section 5.1.7)

N

All-Poly-Classes All-Coupling-Defs-Uses
(Section 5.1.3) K
All-Coupling-Uses/ All-Coupling-Defs/
Some-Coupling-Defs Some-Coupling-Uses
(Section 5.1.5) (Section 5.1.4)

All-Coupling-Sequences
(Section 5.1.2)

Figure 5-1. Hierarchy of coupling-based testing criteria

* FU(s k.cv) : The set of nodesin the consequent method of s;  with instance con-

text c that have first-uses of v.

» i-defs(m) : PVariable: The set of variablesin the state space of the class contain-
ing mthat are indirectly defined by a call to m made through some instance con-
text. Formally:

i-defs(m) = {ve state-vars(class(m)) | Jj e N, ve defs(j)}



131

i-uses (m) : PVariable : The set of variablesin the state space of the class con-
taining mthat are indirectly used by acall to m made through some instance con-
text. Formally:

i-uses(m) = {v e state-vars(class(m)) ] Jdj e N,eVve uses(j)}

LD(s x.C.v) : The set of nodes in the antecedent method of s with instance con-

text c that have last-definitions of v.
paths(s; ) : PPath : The set of coupling paths for coupling sequence § .

sequences(f) : PCouplingSequence : The set of coupling sequences contained in

method f.

trace(p,i,§ k.C) : The coupling path (i.e. execution trace) that results from the exe-
cution of method f using input i for coupling sequence s i in an instance context
of the type family of c. For a Type | coupling sequence, the coupling path begins
at anode in the antecedent method of 5 that contains a |ast-definition of a cou-
pling variablein s, and ends at a node in the consequent method that has a first-
use of the same coupling variable. For a Type |1 sequence, the coupling path
begins at a node in the coupling method that defines a coupling variable directly
through an object reference. Like the Type | sequence, the coupling path ends at a
node in the consequence method that has a first use of the same coupling vari-
able. Finally, a Type Il sequence, like a Type | sequence, begins at anode in the
antecedent method that defines a coupling variable. However, the coupling path

ends at a node in the coupling method that has the first-use of the coupling vari-



132

able. In all three cases, when the coupling method f is executed using input i, a
path is traced from the entry node of f to its exit node. The coupling path is a sub-

path of this path.

. TSj . The set of test cases that satisfy coupling sequence s; . These are test
cases that have been verified to test 5 .

The criteria described in the sections that follow are each presented with two definitions.
Thefirst isaformal definition that is based on the coupling theory presented in Chapter 4.
The other isan intuitive definition stated in termsthat make the criteriapractical for testing
purposes, whereas the formal definition is more suited for the static and dynamic analysis

of the coupling properties of object-oriented programs.

5.1.2 All-Coupling-Sequences
Arguably, the minimum acceptable level of integration testing for an object-oriented pro-

gram should cover every coupling sequence in every method of every class. Here, coverage
means that each coupling sequence is executed by at least one test case. Accordingly, the
All-Coupling-Sequences requires that every coupling sequence in a method be covered by
at least one test case. Note that this criterion is coarse-grained in that it does not consider
the definition and use interactions that can occur for the coupling variables that participate

in a particular coupling sequence.

Observethat thereisasimilarity to Jin and Offutt's definition for call coupling. Intheir def-
inition, every call siteisrequired to be executed by at least one test. The key differenceis
that All-Coupling-Sequences considers those calls made through an instance context. Jin
and Offutt's call coupling criterion is a degenerate case of All-Coupling-Sequences. Each
procedure-oriented language program can be considered to have a single class that corre-
sponds to the system itself. In the running system, there is a single instance of that class.
Every procedure and function in the system are methods in that class. Thus, All-Coupling-

Sequencesis equivalent to Jin and Offutt's call coupling criterion where every call to apro-



133

cedure or function is considered to be through an implicit self instance context (similar to

thisin C++ and Java). Note, however, that the converse, in general, is not true.

DerINITION All-Coupling-Sequences: For every coupling sequences;  in coupling method
f, thereisat least onetest case t TS ) such that when f is executed using t, thereis a
path p in the coupling paths of s tha{’is a sub-path of the trace of f. The All-Coupling-
Sequences criterion is stated formally in Equation 5-1, where ¢ € fami Iy(context(sj, k)) .
The symbol mindicates that the path p is a sub-path of another path. In Equation 5-1, it is

used to denote that p is a sub-path of an execution trace of f.

Equation 5-1. Criterion All-Coupling-sequences
Vs, € sequences(f) o (Jte Ty o (Ipe paths(s; ) o
pmtrace(f, t, s |, context(s; ))))

5.1.3 All-Poly-Classes
The All-Poly-Classes criterion extends All-Coupling-Sequences to consider the effects of

inheritance and polymorphism on coupling sequences. Thisisachieved by requiring at |east
one test for every class that could provide an instance context for each coupling sequence.
The underlying idea is to know that a particular integration is successful with respect to
every possible type substitution that can occur in agiven coupling context. Each such sub-
stitution must be tested. Like All-Coupling-Sequences, All-Poly-Classes does not consider

the possible definition and use interactions that can occur for particular coupling variables.

The All-Poly-Classes criterion requires that for every coupling sequences; , in amethod f,
and for every class c in the type family defined by the context of s, there is at least one
test that covers every feasible combination of ¢ and s;  for f. The combination (c, ) is
feasibleif and only if cisthe declared type T of the context variablefor 5, or c isaproper
descendant of T and c defines an overriding method for the antecedent or consequent
method. Thus, we do not consider classes that do not override the antecedent and conse-
quent methods. We say that such aclassisobliviouswith respect to 5 |, because without an

overriding definition, regardless of which methods actually execute for the antecedent and



134

consequent, the thread of control will not enter such a class. This assumes that for a class
¢, the methods that will execute against the instance context when called in that context do
not call other polymorphic methods.! For aclass ¢ that isamember of some type family F,
wherem = antecedents(sj’ Wy N = consequent(sj’ 1), and ne methods(F) theeffec-
tive method for mor n when the context is an instance of ¢ will be the nearest definition of
mor n, respectively, when traversing up the inheritance hierarchy from c to F. When mis
not polymorphic, the corresponding effective method will always be in the specification of
the type that is the base of the family, F in this example.

DEerFINITION All-Poly-Classes: For every coupling sequence s;  in coupling method f, and
for every classin the family of types defined by the context of 5, there is at least one test
caset such that when f is executed using t, thereis a path p in the coupling paths of 5;  that

isa sub-path of the trace of f.
The All-Coupling-Sequences criterion is stated formally in Equation 5-2.

Equation 5-2. Criterion All-Poly-Classes
Vsj} « € sequences(f) e Vce fami Iy(context(sj’ )

o (dte Tq e(dpe paths(sj’ W e pe trace(f, t, Sk ©)))

j, k
5.1.4 All-Coupling-Defs/Some-Coupling-Uses
The criterion All-Coupling-Defs/Some-Coupling-Uses requires that for every coupling
sequence in amethod f, and every coupling variable v in the sequence and corresponding
coupling-use d of v, there must be at least one test that executes a coupling path that begins

at d and ends at a coupling-use of v.

DEerFINITION All-Coupling-Defs/Some-Coupling-Uses: For every coupling sequence s,  in
coupling method f, and for every coupling variable v of s;  and every node d in the ante-

cedent method of s;  that contains a last definition of v, thereis at least one test case t such

1. If the assumption does not hold, then it is possible that the thread of control can enter aclassthat is appar-
ently oblivious.



135

that when f is executed using t, there is a coupling path p in the trace of f that begins at d

and that reaches some use of v in the consequent method of 5 ..

The All-Coupling-Sequences criterion is stated formally in Equation 5-3.

Equation 5-3. Criterion All-Coupling-Defs/Some-Coupling-Uses
All-coupling-sequences = Vsj’ k € sequences(f)

e Yce fami Iy(context(sj’ W) e (Vve G)Sj )

e (Vme LD(sj’ kwC V), Ne FU(sj} G V)ev

€ i-defs(m) A v e i-uses(n) e (dt e TS“- (3p

€ CouplingPaths(sL K

e p.first mtrace(f, t, Si, ke c) Afirst(pfirst) = m

A last(pfirst) = n))))

5.1.5 All-Coupling-Uses/Some-Coupling-Defs
The All-Coupling-Uses/Some-Coupling-Defs criterion is the converse of All-Coupling-

Defs/Some-Coupling-Uses. For every coupling sequencein amethod f, and every coupling
variable v in the sequence and corresponding coupling-use u of v, there must be at least one

test that executes a coupling path that begins at some coupling-definition of v and ends at u.

DEerFINITION All-Coupling-Uses/Some-Coupling-Defs: For every coupling sequence s,  in
coupling method f, and for every coupling variable v of s; and every node u in the conse-
quent method of 5 that contains a first use of v, there is at least one test case t such that
when f is executed using t, there is a coupling path p in the trace of f that begins at a node
in the antecedent method of s;  that has a last definition of v and that reaches the first-use

at u.

The All-Coupling-Uses/Some-Coupling-Defs criterion is stated formally in Equation 5-4.



136

Equation 5-4. Criterion All-Coupling-Uses/Some-Coupling-Defs

VS- KE sequences(j) o (Vv e 0Sq °

(Vne FU(S; context( K- V) eVve i-uses(n) o
(dte T °® (Elpe CoupllngPaths( )
o pflrst mtrace(f t, 5 . context(s; ,)) A last(p.first) = n))))

5.1.6 All-Coupling-Defs-Uses
The criterion All-Coupling-Defs-Uses is the combination of All-Coupling-Uses/Some-

Coupling-Defs and All-Coupling-Defs/Some-Coupling-Uses. It requiresthat, for every cou-
pling sequence in amethod f, and for every coupling variable v in the sequence, there must
be at least one test case that executes each coupling path with respect to v. That is, every
feasible coupling path between each coupling-definition and coupling-use pair for v must
be executed by at |east one test case.

DEerINITION All-Coupling-Defs-Uses: For every coupling sequence s  in coupling method
f, and for every coupling variablev of s , and every node d in the antecedent method of s;
that contains a last definition of v, there is at least one test case t such that when f is exe-
cuted using t, thereis a coupling path p in the trace of f that begins at d and that reaches a

node in the consequent method of s;  that has a first-use of v.
The All-Coupling-Defs-Uses criterion is stated formally in Equation 5-5.

Equation 5-5. Criterion All-Coupling-Defs-Uses
Vs .k ® sequences(f) e Vv e 8 o(Vm
€ LD( Kk context( KV, ne FU( | context(s J) V)
lve i- defs(m)/\VG i-uses(n) e (3t e qu.k
e (dp e Coupli ngPaths(sJ-’ k) ] p.first mtrace(f, t, Sj, k- CONtext(s; )
A (first(p.first) = ma last(p.first) = n))))



137

5.1.7 All-Poly-Coupling-Defs-Uses
The criterion All-Poly-Coupling-Defs-Uses takes into account the effects of inheritance and

polymorphism and serves to unify the two branches of the criteria shown in Figure
Figure 5-1. All-Poly-Coupling-Defs-Uses requires that all coupling paths be executed for

every member of the type family defined by the context of a coupling sequence.

DEFINITION All-Poly-Coupling-Defs-Uses: For every coupling sequence s in coupling
method f, every class in the family of types defined by the context of s \, every coupling
variablev of s, every node m having alast definition of v and every node n having afirst-
use of vthereisat least onetest caset such that when f is executed using t. Further, thereis

apath p in the coupling paths of 5 | that is a sub-path of the trace of f.
The All-Poly-Coupling-Defs-Uses criterion is stated formally in Equation 5-6

Equation 5-6. .Criterion All-Poly-Coupling-Defs-Uses
VSL « € sequences(f) e Vc e fami Iy(context(sj} W) e (Vve QSM
e (Vme LD(sL kG V),Nne FU(sL ke G V)
|ve i-defsm) Ave i-uses(n) e (Fte T
e(dpe CouplingPaths(sL k)

Si. k

\ p.first mtrace(f, t, Sk ©) Afirst(pfirst) = malast(p.first) = n
))))

5.2 Generation of Test Requirements

A question that must be considered for the criteria presented in section Section 5.1, with
respect to inheritance and polymorphism, is which classes should be selected for consider-
ation when generating test requirements according to a particular criterion. Both All-Poly-
Classes and All-Poly-Classes-Defs-Uses require coverage of all members of the type
family for a particular coupling sequence. However, in the general case, this will only be
feasible in those cases where the context variables are passed as formal arguments to the
method under test, and the binding occurs at the site where the method is called. In this sit-

uation, the coupling variables passed as formal arguments can potentially be bound to an



138

instance of any type that is amember of the type family defined by the variable's declared
type. Unfortunately, there are other cases where a coupling variableis bound to aninstance,
but where the type of the instance cannot so easily be generalized. The first occurs when
the type of an instance bound to a context variableis explicitly named. Thisoccursin state-
ments where an instance creation operator appears (e.g. new in Javaand C++). In thiscir-
cumstance, the type of the instance bound to the coupling variable must be from a member
of the coupling variable's type family. However, since the type is explicitly named, there

can be no variation in the type bound at a particular statement (referred to asabinding site).

The next case occurs when the actual type of the instance bound to a coupling variable
cannot be controlled. Thishappenswhen the context variableis part of the state of an object
and the binding results from some state dependent behavior caused by some prior sequence
of method calls. In this case, varying the type of the instance bound to the context variable
means varying the sequence of method calls, which may not be feasible. Further, even if
the sequence can be varied, it is not guaranteed that it can be varied in such a way as to

result in the desired variation of the types of the instance bound to the context variable.

The final difficulty in varying the type of the instance bound to a coupling variable occurs
when the binding is to the result of amethod call. Since the called method has the freedom
to determine which instance is created, it may not be possible to achieve the desired varia-
tion of types. Thus, without the benefit of knowing what the called method does, it is not
possible to assume anything stronger other than that someinstance of the context variable's
type family will be returned.> When the binding is a function of some state dependent
behavior, the sequence of methods called prior to the method under test determines which
binding isin effect, and cannot be determined as part of the input parameters to the method

under test. From atesting perspective, this meansthat it is not possible to control all of the

1. Note that under this scenario, it is possible for the called method to return no instance at al. However,
this would be considered a data flow anomally where a use of the context variable occurred after the context
variable had been killed.



139

inputs to the method under test in every case desired [31]. Thus, there is an element of non-

determinism in the testing process where inheritance and polymorphism are a factor.

From the perspective of generating test requirements according to a particular criterion, it
IS not reasonable, or practical, to require that the context variable of every coupling
sequence be tested using an instance of every possible type. Instead, these criteria must be
relaxed.

In the case where the type of the instance bound to a context variable cannot be controlled,
the All-Poly-Classes criterion is relaxed to require only that only at least one test case that
results in the binding of the context variable to some member of the corresponding type
family be used. Similarly, All-Poly-Classes-Defs-Uses is relaxed to require that only the
definitions and uses be tested that result from a binding of the context variable to some

member of the corresponding type family.

For the case where the type of instance bound to a context variable is explicit, the require-
ment for All-Poly-Classesisthat there be at | east one test case that causes the explicit bind-
ing to occur. For All-Poly-Classes-Defs-Uses, the requirement is relaxed to require that all
definitions and uses of coupling variables be tested through an instance of the explicit type

bound to the context variable.



6. Analyzing Coupling Properties of Object-
oriented Programs

This chapter discusses the static analysis of object-oriented programs to determine their
coupling properties that are relevant to coupling-based testing. It presents algorithms for
identifying coupling sequences for a method under test, and the corresponding coupling

sets that result from the various types of instances that can be bound to a context variable.

This chapter also presents a discussion of the instrumentation mechanism for object-ori-
ented programs that is used to collect coupling information and to support the coupling-
based testing criteria presented in Chapter 5. The details of the instrumentation are out of
necessity specific to the Java programming language. However, the techniques themselves
are generally applicable to many strongly typed object-oriented language, including C++,
Eiffel, C#, and Ada.

6.1 Definitions

The following definitions are used in this chapter:
« aliases(vy,Vo) : boolean : Returnstrueif v; aliases vy, and vice versa

* antecedent(s ) : Node : Returns the antecedent node associated with coupling
sequence §; .

* antecedent_method( s ) : Method : Returns the antecedent method associ ated

with coupling sequence s .

» calleg( ¢) : method : Returns the method that is called at callsite c.

140



141

calls( n) : PCall : Returnsthe set of calls that appear in the statement that corre-
sponds to node n. Each Call is the pair (o,m), where o is the context variable for
the call, and mis the called method.

consequent( s ) : Node : Returns the consequent node associated with coupling
sequence s k.

consequent_method( s ) : Method : Returns the consequent method associated
with coupling sequence s .

context( 5 ) : Variable : Returns the context variable associated with the cou-
pling sequences .

context-var( c) : Variable : Returns the context variable used in a method call.

For example, inthe call 0.m(), o is the context variable.

control-successor( n,, N4 ) : boolean : Returnstrueif n, isacontrol successor of
nq.
family( 0) : PType : Returns the set of typesin the type family defined by o’'s

declared type.

i-defs( m) PVariable : Returns the set of state variables indirectly defined by m

in the class that contains min its specification.

i-uses( m) PVariable : Returns the set of state variablesindirectly used by min

the class that contains min its specification.



142

* isinstance-method( m) : boolean : Returnstrue if mis specified as an instance

method by some class. If mis not an instance method, then it is a class method.

 transmitted( o, v, nq, N, ) : boolean : Returnstrueif there is a definition-clear

path from n4 to n, with respect to state variable v in the instance referenced by o.

* type( V) : Type: Returnsthetype of variable v.

6.2 ldentifying Coupling Sequences

The algorithm for identifying coupling sequences within a method f under test is presented
in Algorithm 6-1. It begins by initializing the set of coupling sequences $ to the empty set.
It then iterates over pairs of distinct nodes ny, n, (represented by the two outer loops) that
have call sites containing calls to methods made through an instance context. For each such
pair, where there is at least one control flow path from n4 to n,, the algorithm iterates over
the pairs of calls ¢, and ¢, to instance methods made at each site such that the context vari-
able of each call is the same (or aliases one another). For each pair, a coupling sequence
(f, nqg, Ny, callee(c,), callee(c,)) isadded to the set of coupling sequencesfor f. Therunning
time of thisalgorithmis O(n2), where nisthe number of nodes having call sitesthat involve
instance contexts and n < N;, where N is the number of nodesin f. Note that ¢, and ¢, rep-
resent the number of individual calls on individual statements. Their product contributes
only a small constant to the running time of the algorithm, and thus n? is the dominating
term. Thisisjustified by observing that most statements, the number of calls will be one
(e.g. a=1() + g), thus the term of the complexity contributed by the number of calls will
also be one. However, suppose that the number of calls at both call sites were greater than
one, say four. Inthiscase, the term contributes afactor of 16 to the overall expression. Still,
in the majority of cases this is insignificant when compared to the number of nodes (i.e.

statements) in a method.



Algorithm 6-1: Identifying coupling sequences

143

5; = O
for n, € call-sites(f):
for n, € call-sites(f) [n, # n; A control-successor(n, mn):
for c; € calls(n;)|is-instance-method(callee(c;)) :

for c, € calls(n2)|c1 # Cc, Als-instance-method(callee(cy)) :

if (context-var(cy;) = context-var(cy) Vv
aliases(context-var(c;),context-var(c,))) =
Sg U= { (f, context-var(cl),type(context (cl)),ny,
n,, callee(c;), callee(cy)) }
end if
end for
end for
end for
end for

6.3 Identifying Coupling Sets

The algorithm for identifying the coupling set associated with each coupling sequence for

amethod under test f is presented in Algorithm 6-2. The algorithm iterates over each cou-

pling sequence s; i in f, and each t in the type family defined by the declared type of s 's

context variable. For each such t, the coupling set is formed by taking the intersection of

the state variablesindirectly defined by the antecedent method with those that areindirectly

used by the consequent method. The coupling set is further restricted to only those state

variables that are transmitted between antecedent and consequent nodes of f. Asdefined in

Section 4.4 on page 101, transmitted means for each state variable v in the coupling set: (1)

there is no other method called between the antecedent and consequent nodes that use the

sameinstance bound to the context variable o that resultsin the definition of v; and (2) there

isno direct assignment of v through the same instance bound to o.



144

Algorithm 6-2: Identifying coupling sets

for s; € Sr.

for t € family(context(sj x)):

o, -

s
), k
for v € (i-defs(antecedent_method(s; x)) N i-uss(consequent_method(s; x)):
if transmitted( v, antecedent(s; ,), consequent(s; ;)) =
t
951, ;
end if
end for

U= {v}

end for
end for

6.4 Instrumenting OO Programsfor Coupling Analysis

To test object-oriented programs, we need to know which elements of interest are covered
during the execution of a method under test for a particular input. From a coupling-based
testing perspective, this means that for a given input (i.e. test case), we need to determine
which coupling sequences are executed, which definitions and uses occur, and which calls
are made. To this end, a number of coverage mappings are defined that formally specify
the information that must be collected. Each mapping is arequirement for instrumentation

necessary to collect coverage data.

6.4.1 Coverage M appings
Each coverage mapping relates a particular event of interest to corresponding coverage

information. For example, the execution of a statement that contains a call to a method
made through an instance context isimportant if we are concerned with the coupling-based
testing criteria. For the same reason, binding sites are also of interest since they are where

the identify of the instances bound to object references are determined.

There are twelve coverage mappings relevant to collecting coverage information for cou-
pling-based testing, as summarized in Table 6-1. The first column of the table gives the
name of the mapping, while the second gives the corresponding form. The third column

givestheinterpretation of the mapping. Except for the last mapping (TracedPath), the form



145

of each mapping is that of a function that relates a mapping tuple to an integer. The tuple
contains the parameters that characterize the mapping, and the integer gives the count of

the times that the corresponding event of interest occurs in the method under test aruntime

(e.g. the number of times that a particular variable has been defined).

Table 6-1. Coverage Mappings

Map

Form

I nterpretation

Coupling Sequences

(context variable, context type,
object id, antecedent node, con-

sequent node, f) — (integer,
integer)

Execution counts for antecedent and con-
sequent nodes, respectively.

Definitions

(identifier, node, line, f) — inte-
ger

Number of definitions of identifier at loca-
tion nodein line of mut.

Indirect Definitions

(identifier, node, line, f) — inte-
ger

Number of definitions of state variable
identifier a location node in line of mut.

Last Definitions

(identifier, node, line, f) — inte-
ger

Number of last definitions of identifier at
location nodein line of mut.

Last Indirect Defini-

(identifier, node, line, f) — inte-

Number of last definitions of state vari-
able identifier at location nodein line of

ger

i er
tions g mut.
(identifier, node, line, f) —> inte- Number of uses of identifier at location
Uses ger node in line of mut.
_ (identifier, node, line, f) —> inte- Number of uses of state variable identifier
Indirect Uses ger at location node in line of mut.
Firt Uses (identifier, node, line, f) —> inte- Number of first uses of identifier at loca-

tion nodein line of mut.

First Indirect Uses

(identifier, node, line, f) — inte-
ger

Number of first uses of state variableiden-
tifier at location nodein line of mut.

(identifier, method, node, line,
bound type, object id, f) — inte-

method is called through identifier (identi-
fier.method()), whereidentifier isbound to
an instance of bound type.

Cdls ger
(method, node, line, f) — inte- method is called independent of any
ger instance context (method()).
Traced Nodes Node —> integer Number of times Node has been executed.
Sequence of Node Sequence of traced nodes as encountered
Traced Path during an execution of the method under

test.

Asan example of amapping tuple, the first coverage mapping, CouplingSequences consists
of the parameters context variable, context type, object id, antecedent node, consequence

node, and the name of the method under test (given asf in thetable). These mapping param-



146

eters are based on the definition of a coupling sequence given in Section 4.2 on page 93.
Both the antecedent node and consequent node (and all other references to node in the
table) are the names of nodesin the control flow graph that correspondsto the method under
test f. The parameter object id is a value that corresponds to the identify of the instance
bound to the context variable. This ensures uniqueness across coupling sequences that
would otherwise not be if identity is ignored. The ability to discriminate coupling
sequences by instance identity is important for purposes of determining coverage ade-

quacy.

The Taced Path mapping is a sequence of nodes. For a given execution of thef, it records

the nodes that were executed and captured by the Traced Nodes mapping.

6.4.2 I nstrumentation Requirements
The coverage mappings described in Section 6.4.1 are used to determine the set of instru-

mentation requirements necessary to collect coupling-based coverage data for a given pro-
gramming language L. For a given L, each instrumentation requirement yields an
instruction set || that contains one or more instrumentation instructions expressed as state-
ments of L. Each || isinjected into the method under test (MUT) m at |ocations where the
corresponding coverage data can be collected as m executes. Table 6-2 presents the instru-
mentation instructions that correspond to the coverage mappings given in Table 6-1. The
first column gives the instrumentation category, the second the name of the instruction,
which maps one-to-one to the column labeled Map in Table 6-1. The third column gives

the placement for the instrumentation instruction in relation to the statement of the MUT



147

that yields the event of interest. The fourth column provides commentary that further clar-

ifies the placement of the corresponding instrumentation instruction.

Table 6-2. Instrumentation instructions

Miscellaneous

node where call is made.

Category Instruction Placement Comments
registerCouplingSequence It,:?]r;?i; aslicsle)./ after each SOer;(Ej sne(r: E;eachabl e coupling
Immediately before each | One per coupling sequence
Coupling Sequences AntecedentCall call sitewhere t_he ante- thqt has the called method
cedent method is called. | asits antecedent.
Immediately before each | One per coupling sequence
ConsequentCall call sitewherethe conse- | that has the called method
quent method is called. asits consequent.
def Immediately before each
o iDef node where definition
Definitions TasDe oceurs.
lastl Def
Use Immediately before each
iUse node where use occurs.
Uses -
firstUse
firstiUse
call Immediately before each

trace

Immediately before exe-
cution of traced node.

6.5 Instrumenting Java Programs
The research in this thesis is validated using programs written in Java. Accordingly, a set

of instrumentation instructions and data collection mechanism is required that will collect

the necessary information within the constraints imposed by the syntax and semantics of

Java.



148

6.5.1 Instrumentation Instructions
Table 6-3 summarizes the methods that implement the coverage mappings and instruction

requirementsgivenin Table 6-1 and Table 6-2. Note that the signatures of each method are

isomorphic to the tuples of the corresponding coverage mapping.

Table 6-3. Java instrumentation methods

Category Java Method Signature

registerCouplingSeq( String contextVar,
String couplingType,
int objectId,
String antecedentNode,
String consequentNode,
String mut )

antecedentCall ( String contextVar,
String couplingType,

int objectId,
Coupling String antecedentNode,
Sequences String consequentNode,
int line,

String mut )

ConsequentCall ( String contextVar,
String couplingType,
int objectId,
String antecedentNode,
String consequentNode,
int line,

String mut )

def ( String identifier, String nodeId, int line, String mut )

Defini- iDef ( String identifier, String nodelId, int line, String mut )

tions lastDef ( String identifier, String nodeld, int line, String mut )

lastIDef ( String identifier, String nodeId, int line, String mut )

use( String identifier, String nodeld, int line, boolean puse, String mut )

iUse( String identifier, String nodelId, int line, boolean puse, String mut )

Uses firstUse( String identifier, String nodeId, int line, boolean puse, String mut

)

firstIUse( String identifier, String nodeId, int line, boolean puse, String mut

)

call( String method, String nodeId, int line, String mut )

Miscella- | call( String identifier, String method, String nodeId, int line, String bound-
neous Type, int objectId, String mut )

trace( String nodeId )




149

The instructions for Java are defined as methods in a special class called DataCollector
whose purposeisto provide theimplementation of a suitable mechanism for collecting cou-
pling-based coverage data. This class is depicted in the UML Class Diagram shown in
Figure 6-1 along with supporting classes CouplingSequence, Definition, Use, and Call. The
supporting classes are used to hold information specific to the events of interest (e.g. vari-
able definitions, method calls, etc.) that occur at runtime. The MUT is instrumented by
adding calls to these methods at the appropriate pointsin its execution. An instance of the
DataCollector itself isinstantiated upon entry to the MUT before any of its statements are

executed. A detailed example is presented in the next section.

CouplingSequence

sequences

firstilUses lastiDefs

¢ )

DataCollector

+registerCouplingSequence() )
+antecedentNode() iDefs
+consequentNode() >
’ +def() ‘
+iDef()
+lastDef() defs
+lastiDef() >
+use()
+iUse() ‘

iUses

Use uses Definition

X lastDefs
+firstUse()
’+firstIUse() &
+trace()
+call()
+call()

’ firstUses

calls

Call

Figure 6-1. Java mechanism for collecting coupling-based coverage data



150

6.5.2 An example
The class diagram shown in Figure 6-2 depicts a class Client that has a method f that takes

an instance of A as an argument, or an instance a descendant of A. Figure 6-3 shows the
specification of Client with the body of f. The control flow graph is depicted in the right
portion of the figure. Observe that f's control flow graph shows two coupling sequences,
labeled s, 6 and ss g. These correspond to the callsin f at lines 16 and 21, and 19 and 25,

respectively.
Client A
+(in o : A) :nm(g)
B
+n()
C
+m()

Figure 6-2. Sample hierarchy



151

Entry
1l class Client
2 {
3 protected int z = 42;
4
5 protected String s = "test"; 0 = hew BO
6
7 protected java.io.PrintStream out = System.out;
8
9 public void £( A o, int x )
10 {
11 if ((x % 2 == 0 )
12 o = new B();
13 0.m()
14 if ((x > z )
15 {
16 o.m() ; .
17 ) S4s6 o out.printin(s)
18
19 out.println( s );
20
21 o.n();
22
23 zZ = X + 1; 55’8
24
25 out.close () ;
26 }
27 \
28 } // class Client \\; out.close()

Figure 6-3. Method Client.f (without instrumentation) and corresponding CFG

Figure 6-4 on page 154 shows the instrumented version of f using the instrumentation
instructions for Java. Each statement in the method is numbered down the left-hand side.
The numbersin parentheses immediately to the right of the line numbers correspond to the
original uninstrumented version of f. For example, adjacent to the line number 20is*(11)”,
indicating that line 20 corresponds to line 11 in Figure 6-3. The control flow nodes of the
uninstrumented version of f are also shown, depicted as large circles containing the corre-
sponding node of the control flow graph. The circles are shaded to identify each antecedent

node and its corresponding consequent node. Directed arcs are drawn between call sites.

Immediately upon entry to the MUT and before any of the original instrumentation state-

ments are executed, an instance of DataCollector must be created. Thisis shown at line 11



152

of Figure 6-4 where the instance is created with the name of the MUT passed as the argu-
ment to the constructor of DataCollector. Line 13 then records the event of entry to the
method.

6.5.2.1 Registration of Coupling Sequences

There aretwo locationsin f where a binding to the context variable o occurs. Thefirstisan
implicit binding at the entry node to f where o isaformal argument, and the other isat line
23 intheinstrumented version (12 inthe original) of Figure 6-4. It is at these pointsthat the
instance for any coupling sequence involving o isdetermined. That is, for agiven coupling
sequences;  having o asthe context variable, the binding of o occurring at one of the bind-
ing sitesmust reach § .. Otherwise, there would be no coupling sequence. Since we cannot
know at analysis time which input will cause which binding to reach a particular coupling
sequence, we assume without loss of generality that every binding of the same context vari-
able will reach every coupling sequence that uses that same context variable. Thus, we
instrument al locations where a binding site occurs to register al possible coupling
sequencesthat use the same context variable.X Thisoccursat lines 15 and 16 for the binding
that occurs at entry to f, and at lines 24 and 25, immediately following the binding of o at
line 23.

Observe that the hash code associated with the instance bound to the context variable o is
passed as the third argument to the instrumentation method register CouplingSeq().2 This
corresponds to the object id parameter given in Figure 6-1, and allows for the discrimina-

tion between potentially different instances bound to the same context variable.

1. Thisappliesonly to those coupling sequences that a particular binding site reaches.

2. In Java, every object (instance) has an associated hash code that is guaranteed to be unique at runtime.
The method hashCode() is defined by class Object in the java.lang package.



153

6.5.2.2 Collection of use and definition infor mation

Thefirst use of theformal argument x occurs at line 20 of Figure 6-4. Thisevent isrecorded
by theinstrumentation instruction at line 19 in the call to firstUse, which also automatically
recordsthe event asause of x. Thefact that x isused in aconditional expressionis captured
by the fourth actual argument to firstUse, which is the expression true. A first indirect use
of the state variable z occurs at line 31. Thisis captured by the instrumentation instruction
firstiUse at line 29. Thisevent is also recorded as a use a line 30. An indirect use of state
variable soccursat line 44, which isrecorded by the instrumentation instructioniUse at line
41. Note that the control flow node corresponding to the original statement in the uninstru-
mented version of f is used as the node id passed as the second actual argument to these
methods.!

Definition information is captured in a similar fashion to use information. A last indirect
definition of state variable zoccursat line 55. Thisevent isrecorded by the instrumentation
instruction lastIDef at line 53.

6.5.2.3 I dentifying execution of coupling sequences

Each call to an antecedent method or consequent method is recorded by the instrumentation
instructions antecedentCall and consequentCall, respectively. Examples of this are shown
at lines 36 and 43 for a call to an antecedent method, and at lines 50 and 61 for acall to a

consequent method.

1. Thisistrue of al the instrumentation instructions that capture definition, use, call, and trace information.



154

i

¢

i

f(yystury op

1 waTxe, )e0ea3’OD

¢ ()eso1o-3n0 ‘,0 (52)

LT IUeTTION ST i uBa MuSu “(Yopopyseyrano L {)sweNieb ()sseroaebigno 4iano, ) Trepiusnbssucoop

Y aF:i3UeTIOw ! ()Spopysey’3Ino ‘()eweN3sb: ()sserp3ebiano ‘gz .8 ‘wuIauTady ‘43noy ) TIESOD
f( w3::3UsITO. ‘O81B3 ‘G ‘u8a ’w3aNO, )OS0 0P
${iwgu )o0ea] 0P

T +xXx =2

P w3riausI(O. 'OBTRX ‘7 fuia ‘uXa )OSN°0OD
L0 wFIPAUSTION PET Tuwla fwZa )FSATISEI OD
£ wis )20RI3'OD

AN
g5
S |

\
\
(k2
}
I

|
1

1
f()uo 12)
-9/

£( w3::3U9TTDw “TT ‘uBs ‘uwe ‘()OPODUsEy‘o ‘()oweN3sh: ()sserpisbio ‘,0, )1I®Dausnbesucs:op
FEGTIaURTTIDG () opopyseyto Y ()ameNgeb () ssernaeb o ATz g Ly L0 ) TTeD oD

{{ w3F:i3USTID. 'OSTBI 'TZ ‘u9w ‘u0Oe )9EN3SATIOD

1 w94 )eoEI3’OD

f( s )uraurad-yno
WFIIaUSTTID. F6T ‘uBa ‘uGe ’()OPOOUseEu-ano ()ewreNjeb’ (Jsse1yjebiinc ‘,amo, ) 1TEDAUSPSDejuT oD
4 wF::3USTTON ‘() SPODYSEU gnO f(joweN3eb- ()Esei53e6:300 ‘6T ‘ugu fWUT3IUTIdy ‘w300, )TTEO°OP
L wFsAUSTIO 'OSTRI 'ET ‘aGu 'w3N0, )SSATOD
4{ wGe )e0RI30D

{
f()m*o -~-
( w3133USTT0. ‘9T 'u9s ‘uba ‘()OPODYSEUO ! ()eweNieb- (jsseipiebio .o, ) ITEDIUSPEDEIUR DD
£ w»3::3USTTO. ‘()9DPoOYyseyro ! ()ouweN3sb: ()jsserpisbro o ‘upw ‘ully “x0s )[TED'OD
f( w3i:3USTION ‘S5TET 9T ‘upa ‘uOu )SSnOp
£( upu )oPEIIIOP

-

}

(z<x) 3T

L{ wFiI3USTIDN fenad UpT Yug. “uXa j9ED‘OPD

4 wFFiaUSTIDw oAl YpT fuey Y4z )eSNIISITICOP
1( uEa )oDRI3OD

{
WIIIAUSTIDw Yu8n “aSe f()opopuseyrano Y ()eweNaeb: (ysseroasbiano ‘;3ano, ybegburrdnopreasrbeaiop
WFIIAUSTITON Tu9n Tabw f()opODUSEUTO ! ()oweNasb: ()sselDasb o ‘.0, )bagbuirdnopisisibaiiop
(yg meu = o
f( w3:i3USTION T 'aZu 'uOu )Fvaaser’o
}

(0==2¢%x) 3T
i X ) 98NS ITFOP:
1{ I« )oo®I3 0D

Sl g aue TIDN  fenaAg AT

3133USTION ‘wBa 'uGa ’()OPODUSEY’INO ’(joureN3eb’ () seerpgebtino ‘.3no, )bsgburidnopisistbei’op
{

L( WFITIUSTION ‘w9 “ubu f()opopyseyro ‘()suweN3isb'()sserp3sbro ‘o )begburrdnopasisrbex’op

snkTgus iy ooy op

f(.373usTIo. )Ao3beTTODEdRQ MEU = op aojbeTropedEd

}

uot3deoxmOI " oT ‘eael ‘ucTideoxmsousnbsgburidnoppsutiopun smoaysz ( X 3uT ‘o ¥ )3 proa orrqnd

(1)

(zT)

(IT)

Figure 6-4. Method Client.f instrumented for coupling coverage

6.6 Summary

This chapter has presented the algorithms and data structures used to perform static and

IS are Cov-

ted programs. Included with th

ect-orien

]

f ob

dynamic coupling-based analysis o



155

erage mappings that define a set of elements used to represent coupling analysis informa-
tion. Each element contains a form and interpretation that describes the structural

representation and meaning of the information the elements contain.

Thischapter has al so described the instrumentati on requirements used to instrument obj ect-
oriented programs for the collection of coupling information. The requirements are based
on the coverage mappings and yield an instruction set for each object-oriented program-
ming language. Elements of thisinstruction set are used to inject instrumentation into meth-
ods under test, antecedent methods, and consequent methods. The instrumentation
requirements along with the coverage mappings are used as the basis for generation and
instrumentation activities, and are incorporated into the research proof of concept tool

developed over the course of this research.



7. CBAT - Coupling-based Analysis Tool

CBAT isaresearch proof of concept tool developed for the purpose of demonstrating the
practicality of the coupling-based testing approach for typed object-oriented languages. In
its present form, CBAT is capable of analyzing programswrittenin Java. However, itsrep-
resentations are sufficiently rich to support other object-oriented and object-based lan-
guages such as C++, C#, Eiffel, Modula-2 and Ada. The following sections describe the
representations supported by CBAT, its architecture, and how it isimplemented.

7.1 Objectives of CBAT

CBAT satisfies a number of objectives. First, it supports the coupling-based testing of
object-oriented programs. CBAT includes representations, algorithms, and utilitiesfor pro-
ducing programs that are instrumented for collecting coverage information for the cou-

pling-based testing criteria presented in Chapter 5.

Second, CBAT isintended to be ageneral purpose research tool. Whileitsinitial objectives
lie squarely at supporting the research described by this dissertation, it aso is intended o
support future research activities that both involve and do not involve coupling-based test-
ing. For example, it isenvisaged that CBAT will be used to extend the coupling-based test-
ing techniques to include inter-method coupling sequences and aso for the reverse
engineering of software contracts (i.e. preconditions, postconditions, etc.) from existing

object-oriented and procedural programs.

Finally, CBAT is intended to provide a general purpose analysis platform for conducting
many different types of static and dynamic program analysis, such as slicing, code cover-
age, change impact analysis, dependency analysis, slicing, and the collection of OO met-

rcs.

156



157

7.2 Representations provided by CBAT

CBAT includes a number of high-level abstractions that represent all of the syntactic and
semantic entities specific to the Java programming language. However, the abstractionsare

generalized to support similar entities found in other object-oriented languages.

The primary representations of CBAT are the class and method graphs. The class graph
contains abstractions that model the high-level entities of an object-oriented program, such
as packages, classes, and interfaces. The method graph provides a representation for indi-
vidual functions and procedures that implement control flow. Each of these graphs is
described below.

7.2.1 Class Graph
The class graph models the high-level structural elements of an object-oriented program.

It includes abstractions that model packages, classes, and interfaces, aswell as abstractions
that model program variables, functions. and procedures. Figure 7-1 depicts a UML class
diagram that contains the classes that correspond to the key abstractions of the class graph
and their structural relationships. The primary classes include Package, ClassElement,
Interface, Variable, and Method. Instances of Package define individual name spaces that
may contain instances of Package, ClassElement, or Interface.’ Instances of ClassElement
and Interface represent user-defined types, with ClassElement being an instantiable type
that defines both state and behavior.? Interface corresponds to non-instantiable types that
only define method signatures and variable constants. Instances of Variable are used to
model variables that defined the state space of a class, and also variables that appear as
arguments to methods or that are local to a block of code. Finally, instances of Method are
used to model the procedures and functions (i.e. methods) that occur in the definition of a

class.

1. Packages can also contain other packages, though thisis only anotional concept in Java since thereisno
semantic or syntactic relationship between a package and sub-package in Java.

2. Built-in types, such asint, float, and char found in Java are represented by instances of class BuiltinType
shownin Figure 7-1.



158

Language Elementimplementaion

VariableImplementation ‘Pa.clmgehnplemenhﬁon | Typelmplementation MethodImplemeniation
oo Defined Tipe Implementation BuiltinTypeImple mentation
InterfaceImplementation | ClassElementImplementation ‘PhaanT}'pehlplemzntaﬁnn

Figure 7-1. UML Class Diagram for package ClassGraph

7.2.1.1 Method Graph

The method graph is the structure used by CBAT to represent the program text of individ-
ua methods. In readlity, the method graph is a multi-graph that consists of several different
sub-graphs. These sub-graphs represent various aspects of a method's structure, such as
control and dataflow. A method graph consists of three key components: an abstract syntax
tree, a set of intra-method representations, and a set of inter-method representations. A
method graph aso contains a robust set of analysis data. Each of these elements are

described in detail in the following subsections.

7.2.2 Abstract Syntax Tree
The fundamental structure underlying the method graph is an abstract syntax tree that rep-

resents the structure of a program at the statement and expression level. This structure is
derived directly from the source code of the program being analyzed, and consists of two

parts: the control tree and the expression tree. The control treeis ahigh-level model of the



159

individual statementsin amethod, including thosethat alter control flow (selection and iter-
ation statements) as well asindividual statements that perform computation. Key abstrac-
tions of the control tree, shown in Figure 7-2, include ControlNode, SequenceNode,

BreakTransferNode, and ExceptionBlockNode.

ControlNode defines atype family of nodesthat represent method instructionsthat ater the
flow of control in aprogram through the use of a conditional expression (loopsand if state-
ments). Instances of SequenceNode correspond to the individual instructions of a method,

such as assignments and output statements, that whose control flowsto the next instruction.

Instances of BreakTransferNode are used to represent those statements in a method that
correspond to unconditional transfers of control. This includes break, continue, goto, and
return statements. Instructions that yield the raising of an exception are also instances of
BreakTransfer Node. ExceptionBlockNode represents a single exception condition handler,

such as acatch block in Java or C++.

Additional abstractions include nodes for representing case statements (CaseNode, Case-
DisiunctNode, and DefaultCaseDisunctNode), a node for represent statement labels
(LabelNode), and a node that correspondsto ablock of sequential statements (BlockNode).
Certain elements of the control tree have an expression tree associated with them. These
elements include members of the type family defined by ControlNode, and instances of
SequenceNode, ExceptionBlockNode and CaseNode. An expression tree model s the syntax
of the computation that takes place at a given statement of a method. Examples include
assignment statements, output statements, and conditional expressions. Together, the con-
trol tree and the expression tree model the complete syntax of a method's program text and
are used by CBAT to generate higher-level graph representations for analysis purposes.

The class diagram for the expression tree is shown in Figure 7-3.



ALTNode

TreeNode

BlockMode

LahelMode

160

Case Disjunciliode - — DefaultCaseDisjunciNode
CaseMNode
DeclarationNode
CatchBlockMode
UnitillterationNode
SequenceNode
ForMNode
ExceptionBlockMNode
[Mode
Control Node
WhilelterationMode
/T}mﬂ‘hde
Control TrangferlNode o —— | ctotoMNode
Return™Mode
BreakMNode
ContinueMNode

Figure 7-2. UML class diagram for Control Tree



161

Instance Creation Operator

Conditional OperatorMNode
ReturnOperatorNode
UseDefOperatorNode
Defllse OperatorMNode

State: AL Vi)
Empty mentOperator AssignmentOperatorMNode

CoercionOperator

e

]
g
B
B
7
:

HP

¥l

Binar

Nod
Node

Membericcess OperatorNode |

)
; —
LiingOperatorNode |7 inaryOperaiorNode

MetaType Operator

DefiningOperatorNode :

[=-]

A5THode
Expreasion Tree Node

!

ArrayAccess OperatorMNode

=

maryOperatorNode

P

=]
=
=

FunctionCallNode

CperandNode

Figure 7-3. UML Class Diagram for AST expression tree

The key abstractions of the expression tree include OperatorNode (a family of types, each
corresponding to a particular type of operator), OperandNode (afamily of typesthat repre-
sent individual expression operands) and FunctionCallNode. OperatorNode is subdivided
further into operators that define state (DefiningOperatorNode), those that use state (Usin-
gOperatorNode), and other miscellaneous operators that support operations such as
instance creation (InstanceCreationOperator), type coercion (CoercionOperator), condi-
tional operators as found in Java and C++ (Conditional OperatorNode), and so on. The

operator family also includes the abstractions DefUseOperator and UseDefOperator for



162

representing prefix and postfix operators, respectively. Support for expression operands
includes abstractionsfor representing types (TypeOperand), constants (ConstantOperand),

and identifiers (IdentifierOperand).

7.2.2.1 Intra-method Graph Representations

CBAT includes a number of higher-level representations that are used for various types of
static analyses, including coupling-based testing. The most important of these isthe control
flow graph (CFG). The CFG is generated directly from the control tree and includes
abstractions that model the various types of control flow statements at a high-degree of
granularity. For example, each of the loop constructs for, while, and until are represented
as distinct node types. This allows for ease in identifying distinct syntactic constructs for
the purpose of anaysis and code generation. These abstractions are language independent
and the complete set is sufficiently rich to support the control flow constructsfound in most
object-oriented and procedural languages. New constructs can be easily added to account

for new language features.

Figure 7-4 depicts the components of a method graph used to represent a control flow
graph. The graph includes the following type families: CallNode, CallReturnNode, Condi-
tionNode, TransferNode, and PlaceholderNode. The type family defined by CallNode
includeslower level abstractionsthat are used to represent intra-method transfers of control
that resemble procedure calls. These occur when an exception is thrown or when a code
block protected by an exception handler successfully reaches the end of its body (the Java
finally block is an example of the latter). At present, CBAT models the exception handling
behavior found in Java, which is ageneralization of that found in C++. When an exception
isthrown in a block of code that is part of a try block, control first transfers to the catch
handler associated with the try block. If no catch handler is present, control then transfers
to either the nearest enclosing catch handler, or the method's exit node if noneis present. If
the exception is caught by the handler, then control is passed to the finally block, if present,
and then to the first statement that follows the try block. Logically, this behavior can be



163

modeled as series of procedure callsthat are internal to the method containing the try block,
which is the approach adopted by Sinha and Harrold [67]. Thisis achieved in CBAT by
modeling the throw of an exception first asacall to the catch handler, followed by acall to
the finally block. Each call isrepresented as a pair of nodes, one that connects to the catch
handler (atype of CallNode shown in Figure 7-4) and another (a type of CallReturnNode)
that is connected to the last node of the catch handler and models the return of control. The
CallReturnNode is then connected to another pair of nodes that model the call-return of a
finally block.

Other high-level graph types maintained by CBAT include data dependency graphs, con-
trol dependency graphs, and coupling graphs. The representation for all of these graphsis
straight forward and augments the control flow graph by adding a set of annotated edges

between nodes that exhibit some relationship such as data or control dependency.

CBAT does not have an explicit abstraction for representing edges. Instead, edges are rep-
resented as a mapping between nodes. The set of mappings for a particular type of edge is
implemented as a hash map. This affords the flexibility to treat all edges uniformly and to
expand the type of edges supported by CBAT at any time. The sacrifice for this flexibility
isadded complexity for maintaining edge annotations, such as recording the fact that a par-
ticular edge has been traversed while conducting a depth first traversal (for example).
CBAT'ssolution for handling thisto maintain a hash map for each pair of nodesthat iscon-
nected by some type of edge. This hash map preserves a mapping between a pair of nodes
and another hash map that maintains the annotations. Thislater hash map isindexed by the
kind of annotation that labels the node pair, and maps directly to the value of the label. The
complexity of this solution is hidden behind a set of methods that allow edge annotations

to be easily assigned and manipulated for a given pair of nodes.



P
FPlaceholderNode :é
o)
R
EntryMNode
S
TransferMode ;‘.._‘
-
R
ExitlNode
RegionMNode

A
CondifionNode [}

%

CatchNode

Y
Call Mode ]

.g

e

g

NullNode

TryExitMNode

BlockSatementhode CatehEntryNode

/5| FinallyEniryNode
el

CalledBlockEnty Node

CalledBlock Exitiode |1 FinallyExitNode
F

CatchExiiNode

Goto TransferNode

.—]
I:
g
Ig.

=
:

g
£
&

Return

Continue TransferNode

TansferMNode

=
:
=

TransferNode

ForConditionNode
Case ConditionNode
LoopCondifion Node |- While ConditionMNode
S
Until ConditionNode

i

CatchConditionMNode

z
IEL
3

HConditionMode CatchReturnMNode
ReturnFinallyReturnNode |
L :
CallReturnMode &% FinallyReturnNode
ThrowFinallyReturnMNode |
CatchCallNode

BreakFinallyRe turnMode I
ContinueFinallyReturnNode |

turnFinally CallNode

ContinueFinallyCallNode I

FinallyCallNode

Figure 7-4. Class Diagram for package MethodGraph.

164



165

7.2.2.2 Inter-method Graph Representations

In addition to the method level graph representations described above, CBAT aso main-
tains a call graph that links each call site within a method to the called method. Each call
siteisactually represented as two distinct nodes in the calling method's control flow graph:
acall node and call-return node. The call node is connected by a call-return edge that is
incident upon the entry node of the called method, and the call-return node is connected by
a call-return edge that emanates from the called method's exit node. Together, these call-
return edges are used to represent the inter-method flow of control. CBAT also hasthe abil-
ity to support inter-method control and data dependencies, though the implementation of

these are | eft as future work.

7.2.2.3 Analysis Data

During the analysis of amethod, CBAT collects an enormous quantity of datarelated to the
method's control flow and data flow characteristics. Some of thisinformation is collected
specifically to support the coupling-based testing techniques described in this thesis. The
following subsections describe the types of analysis data collected at the method level in
terms of control flow, data flow, and coupling-related information.

7.2.2.4 Control-flow information

The following control-flow information is collected for each method in a class:

Anonymous Calls. The set of anonymous calls made at aparticular node. A call isanon-
ymous if the instance context through which the call is made is not specified by a vari-
able, but rather is supplied by the return value of a called method. For example, in the
expression 0.m().n(), the call to n is made through the anonymous context provided by

the value returned from o0.m().



166

Binding Sets. The set of types that a context variable can be bound to for a particular
call site. For example, if oisdeclared to be of type A, and A isthe base of an inheritance
hierarchy containing B and C, then o can potentially be bound to instances of A, B, or C.
The actual types comprising the binding set are determined by the binding mechanisms
that reach a call site that uses o as the context variable. However, the actual binding set

will be a subset of the type family defined by the declared type of the context variable.

Call Sites. The set of nodesin the control flow graph that contain callsto other methods.

Called Class Methods. The set of class methods called at a particular node.

Called Instance M ethods. The set of instance methods called at a particular node.

Control Flow Paths. List of logical paths through the control flow graph. Each path is
represented as a sequence of nodes that result from a depth-first traversal from the entry

node to the exit node, traversing the body of any loops at most once.

Explicit Calls. Records the set of superclass methods called explicitly at a given node

through the keyword "super”, asin super.m().

Indirect Calls. Records the list of calls made at a given node through an instance con-

text, asin 0.m().

Node Predecessor s. Records the list of nodes that are control predecessors of a partic-

ular node.



167

Node Successors. Records the list of nodes that are control successors of a particular

node.

7.2.2.5 Data flow information

The following data-flow information is collected for each method in a class:

Anonymous Definitions. Records the set of anonymous variable definitions that are
made at a particular node. Anonymous definitions occur when the instance that specifies
the variable is not specified by avariable. This occur when the instance is returned by a
method call. For example, in the expression 0.m().v = 0, the definition of visanonymous

since the instance context is determined by the value returned by m.

Anonymous Uses. Records the set of anonymous variable uses that are made at a par-
ticular node. Anonymous uses occur when the instance that specifies the variable is not
specified by avariable. This occurs when the instance is returned by a method call. For
example, in the expression b = 0.m().v + 0, the use of v is anonymous since the instance

context is determined by the value returned by m.

Defined Class Variables. Recordsthelist of classvariables defined at aparticular node.

Defined Instance Variables. Recordsthe list of instance variables defined at a particu-

lar node.

Explicit Definitions. Recordsthe list of superclass methods called through the keyword

super at a particular node.



168

Explicit Uses. Records superclass variables used through the keyword super for a par-

ticular method.

Indirect Uses. Recordsthelist of state variables used at agiven node that are referenced

through an instance context, asin o.v.

Live Aliases. Records the list of variable aliases that reach a given node.

Reaching Definitions. Records the list of variable definitions that reach a particular

node.

Used Class Variables. Recordsthe list of class variables used by a particular node.

Used Instance Variables. Records the list of instance variables used by a particular

node.

7.2.2.6 Coupling-related infor mation

The following data-flow information is collected for each method in a class:

Coupling Sequences. Records the set of coupling sequences for the coupling method.
Each coupling sequence is represented by an instance of the type CouplingSequence.
Instances of thistype record the set of coupling variables in the sequence, the definition
in the coupling method that providesthe instance context, the antecedent and consequent

call sites, and the set of transmission paths between the call sites.

Fir st-use Paths. Records the set of paths that lead to each first-use of a state variable or

formal method argument.



169

First Uses. Records the set of nodes that have first uses of variables (state or formal
arguments). Each node is mapped to aset of pairs, with each pair containing the coupling

path p and the set of first-use variables that p is definition-clear with respect to.

L ast Definition Paths. Recordsthe set of last-def paths that |ead from the last definition

of astate variable or formal method argument to the exit node of the method.

L ast Definitions. Records the set of nodes that have last definitions of variables (state
or formal arguments). Each node is mapped to a set of pairs, with each pair containing
the coupling path p and the set of |ast-use variablesthat p is definition-clear with respect

to.

7.3 Architecture of CBAT

Figure 7-5 presentsthe high-level architecture of CBAT. The principle componentsinclude
the CBAT Core, the Analysis Engine, and the Instrumentation Engine. Each of theseisdis-

cussed in the following sections.

7.3.1 CBAT Core
The CBAT Core consists of the Parse Tree Generator, and the Class and Method Graph

Generator. Each of these components is described in the following subsections.

7.3.1.1 Parse Tree Generator

The Parse Tree Generator transforms Java compilation units expressed in source form into
a parse tree that is based on the language grammar (Javain this case). The transformation
process maps nodes corresponding to non-terminalsin the language grammar into nodes of
the parse tree that represent the individual syntactic units of the language. Each non-leaf

node of the parse tree corresponds to a single non-terminal in the language grammar, and



170

each leaf node correspondsto aterminal whose value is alexeme generated by the parsing

activity.

'/,— /, N , \\ /’ \\ .
.'" !/ tree \ ! syntax | Java \
! . | ! | lg——
\ \\ visitor , v ftree \\parser / / Generated Externally
. \\ ,/ \\\ /// \\ /// a
““\::\ R / o CBAT Core
"“’\~~~~~~-.~../l ____________________
Pianiniabb kbbb ke {--,"-_- ----------------------------------- ~
ala \
{ !
]
H ]
] Java Parse Tree Parse GEss e
¢ Generator Tree Mcinee ErEph :
. Source Generator H
[] ~ !
\ S ]
S e o o o o o = = - ==~ ~ !
LN ]
\ ]
AST ]
= :
H A ]
: Class Graph :
i i
! ]
: Method ]
] Graph h
! ]
! |
D S S, 1’
e mmmem———— N
\
’ 4 ]
\ ]
RN _ ]
T Analysis \
Instrumenter : Engine )
]
: !
1
L% y

Figure 7-5. CBAT architecture

The parse tree is generated from asource file using a parser generated by the compiler gen-
erator JavaCC.1 The grammar used by JavaCC was annotated by the Java Tree Builder
(JTB) with semantic actions that yield a parse tree at runtime.? The resulting parse tree is
expressed as a class hierarchy that represents the elements of the language. Each classin
the hierarchy corresponds to a non-terminal or terminal in the language. The architecture
of the parse tree is based on the Visitor design pattern [GOF 95].

1. JavaCC is available from http://www.metamata.com.
2. The Java Tree Builder is avail able from http://www.cs.purdue.edu/jth.



171

7.3.1.2 Classand M ethod Graph Generator

The Class and Method Generator isimplemented as a pair of visitor-based utilitiesthat pro-
cess the parse tree and generate a corresponding Class Graph and Method Graph. The
Class Graph Generator (CGG) walks the parse tree produced by the parser and creates
instances of Package, ClassElement, Interface, Variable, and Method as the corresponding
syntactic elements are encountered. When amethod body isfound, the Method Graph Gen-
erator (MGG) creates the corresponding control tree that represents the individual state-
ments of the method. Individual expressions are transformed by the MGG into expression

trees and associated with the corresponding control tree nodes.

7.3.2 Analysis Engine
The Analysis Engine is a collection of static analysistools that utilize the information rep-

resented in the class and method graphs (and parse tree in some circumstances) to produce
additional or refine existing representations and to generate various analysis information.
For example, the ControlFlow Analyzer uses the information contained in the Method
Graph for a particular method to generate the corresponding control flow and data flow
graphs. The corresponding Method Graph is then updated to reflect this newly derived
information. The other analyzersthat currently exist in CBAT include Control Dependency
Analyzer, Coupling Sequence Analyzer, and Call Graph Analyzer. Additional analyzerscan

easily be added as new types of information are required.

7.3.3 Instrumentation Engine
The final component of CBAT is the Instrumentation Engine. Similar to the Analysis

Engine, Instrumentation Engine is a collection of utilities that are used to generate instru-

mented source code.

The strategy used for generated instrumented programs does not produce a new program
directly from the Class and Method Graphs. Rather, a set of instrumentation instructions
expressed in XML are generated that are subsequently used to produced the instrumented
code. Thisisillustrated in Figure 7-6. As shown, ainstruction generator is utilized that gen-



172

eratesinstructionsfor instrumenting a Java program to collect coverage information for the

All-Coupling-Sequences test adequacy criterion. The instructions are then used to generate

Class Graph

All-Coupling-
Sequences Instrumentation
Methohd Instruction Instructions
Grap Generator
Corresponds to ,:"" Java
T et
. | Instrumenter

A

Figure 7-6. CBAT Instrumenter

an instrumented source file by the Java Instrumenter, along with the origina source code

corresponding to the class and method graphs of the unit under test.

7.4 Implementation
The CBAT coreand Analysis Engine areimplemented in Javaand consist of approximately

90,000 lines of code. Approximately 20,000 lines were generated by the JavaCC and JTB
tools. The Instrumentation Engine is written in Perl and consists of approximately 2,000

lines of code.

The following tools were used in the development of CBAT:

» JavaDevelopment Kit 1.1.2
* javacc (parser generator)
» JavaTreeBuilder (JTB) version 1.2.2



Java Generic Library (JGL) version 3.1

OROMatcher (regular expression package) version 1.1.0a
CodeWright (program editor) version 6.5

BugSeeker2 (source debugger) version 1.0.2

Togetherd (UML modeling tool) version 4.1

Perl version 5.6

173



8. Validation

This chapter describes the experiments used to empirically validate the efficacy of the
object-oriented coupling-based testing criteria described in Chapter 4. It begins with dis-
cussion of the experimental design, which includes a description of the experimental sub-
jects, the test adequacy criteria used for comparative purposes, the test data, and the fault
types that are used for evaluating the effectiveness of the criteria. The procedures for the
actual conduct of the experiment are then described, followed by the results of the experi-

ments. Finally, the chapter concludes with a discussion of the significance of the results.

8.1 Experimental design

The following sections describe the experimental design used to validate the research con-

tained in this thesis.

8.1.1 Subject programs
Each subject program used in these experiments consists of a collection of classesthat are

integrated with a client method, the method under test. Each of these classes includes at
least one method having one or more coupling sequences with respect to a particular class

hierarchy, referred to as the subject hierarchy.

Table 8-1 summarizes the subject programs used in these experiments. The column labeled
f identifies the method under test and || is the number of coupling sequences contained
within f. Each coupling sequence has a context variable, which definesinduces a type fam-
ily. The column |abeled st gives the number of classes in this type family (inheritance
hierarchy) for the corresponding program.! The column labeled Description indicates the

source from which each program was obtained. Five programs (P1, P2, P3, P5, and P6)

1. Theterm program includesf (the method under test), the class that specifiesf, and all classesin the type
family specified by the context variable of each coupling sequence.

174



175

were examples created specifically to ensure that all of the subject faults were tested by at
least one experiment. Of the remaining five subject programs, one was developed by a
graduate student (P4), two were developed by a professional programmer having 15 years
of experience (P7 and P8). The remaining two are open source products: ANTLR (aparser

generator) and JMK (a build system, similar to make).!

Table 8-1. Subject program characteristics

f |Sf| FSr Description

PL| 4 4 Polymorphic Example
P2 | 5 5 Polymorphic Example
P3| 1 5 Polymorphic Example
P4 | 1 4 Student Developer

P5| 3 4 Polymorphic Example
P6 | 3 5 Polymorphic Example
P7 | 6 4 Professional Devel oper
P8 | 20 5 Professional Devel oper
PO | 11 16 | Open Source (ANTLR)
P10| 7 9 Open Source (JMK)

8.1.2 Test adequacy criteria
This experiment evaluated the following four test adequacy criteria:

1. All-Coupling-Sequences
2. All-Poly-Classes
3. All-Poly-Defs-Uses

4. Branch Coverage

1. ANTLR isavailable from http://www.antlr.org/ and IMK from http://sourceforge.net/projects/jmk.



176

The first three of these are the primary coupling-based testing criteria presented in
Chapter 5 and are the subjects of the investigation for the experiments described in this
chapter. The fourth, Branch Coverage, is used as the control to determine if the other crite-
ria are effective at detecting faults. Branch testing is a unit-level white box testing tech-
nigue, and seeks to “execute enough tests to assure that every branch alternative has been
executed at least once” [9]. Attaining this goal yields a branch coverage measure of 100
percent. The justification for selecting Branch Coverage as the control isthat Branch Cov-
erage is a commonly used white box testing technique and is commonly used to test indi-
vidual procedures and functions, and the coupling-based testing criteria are a so white box

testing approaches.

8.1.3 Test data
The test data used in the experiments were drawn randomly according to a uniform distri-

bution. The dataitself was produced from custom test data generators devel oped in Perl for
each of the test adequacy criteria. In al cases, sufficient data was generated to achieve

100% coverage for a given criterion.

The strategy used to select test casesis similar to how test cases are selected for the Branch
Coverage test adequacy criterion. For each coupling sequence, the path expression [9] nec-
essary to execute the sequence was identified. These expressions were then used to create
Perl programs that would generate the test data necessary to execute the set of sequences
for themethod under test. A similar procedure wasfollowed for testing the state spaceinter-
actions between antecedent and consequent methods. These path expressions ensured that
the required coupling paths were covered. Table 8-2 summarizes the number of test cases

for each combination of subject program and test adequacy criterion. For ACS, the number

Table 8-2. Number of test cases per subject program and criterion
f |ACS|APC | APDU | BC

P1| 2 4 6 1
P2 | 2 5 320 2
P3| 2 5 80 2




177

Table 8-2. Number of test cases per subject program and criterion

f |ACS|APC | APDU | BC
P4 | 1 3 3 1
PS5 | 2 5 75 1
P6 | 2 5 105 1
P7r| 1 2 64 1
P8 | 4 2 42 4
PO | 6 15 95 6
P10| 4 9 27 4

of test cases is determined by the number of coupling sequences and control flow paths
present in the method under test. For APC, the number of test cases is also determined by
the size of the type family for the coupling variable. Finaly, for APDU, the number of test
cases is determined by adding the number of control flow paths in the antecedent and con-
sequent methods to the test cases for APC and ACS.

8.1.4 Injected Faults
Each subject program P was seeded by injecting faultsinto the bodies of the antecedent and

consequent methods for each member of each type family induced by the declared type of
the coupling sequences in P. The types of faults injected into each unit under test are a
subset of those described in Chapter 3.1 Not all of those fault types will manifest failures
asaresult of integration of atype hierarchy with amethod under test. For example, the fault
types that involve anomal ous construction behavior (e.g. ACB1 and ACB2) require testing
approaches that focus on integrating anew class into an existing hierarchy, which is differ-
ent from the testing approach required for integration of a hierarchy with a calling client
method. Consequently, different testing approaches (possibly using aderivation of the cou-
pling-based techniques) will be required, and these are left as future work. Table 8-3 sum-

marizes both the number and type of faults that were injected.

1. Unit under test refers the method under test f and all artifacts associated with the integration of a particu-
lar type family through the coupling sequences defined by f. Thisincludes all types, and the corresponding
state variables and methods specified by those types.



178

Table 8-3. Number of faultsinjected into method under test

f |SDA [IC |SDI |IISD | SDIH
PL| 9 0| 6 3 3
P2 39 | 6| 39 0 39
P3| 36 | 3| 33 0 36
P4 | 24 | O | 24 0 18
P5| 36 | 3| 36 0 36
P6 | 18 | O | 18 0 18
P7| O 0| 55 0 30
P8 | O 0| 76 0 30
PO | 42 | 0| 42 | 12 42

P1O| 27 | O | 27 6 27

8.2 Conduct of Experiments
Thetesting and eval uation procedure used to validate the research in this thesis consists of

four essential steps: (1) test oracle derivation, (2) fault injection, (3) test execution, and (4)
result evaluation. The objective of thefirst step isto create atest oracle that can be used to
evaluate the results of subsequent tests. That is, given atest result associated with a partic-
ular test case, the oracle determines if the test passes or fails. For the second step, fault
injection, each subject program is injected with faults that yield a seeded version. This
seeded version is used as the primary experimental subject. The third step executes each
subject program using the test cases and records the outcome. The final step uses the test
oracleto determineif the outcome of each execution for the corresponding test case detects
afault. The actual procedures in some of these steps vary according to the test adequacy

criterion being eval uated.

The testing and evaluation procedure is discussed in detail in the following subsections.
The steps of the procedure that are specific to particular criteria are labeled with the names
of the applicable criteria in parentheses at the beginning of each step. Those steps not
having thislist are applicable to all of the subject criteria.



179

8.2.1 Test oracle derivation
For each S k€S where & is the set of coupling sequences for the method under test f:

1. Executef using at |east onetest case ce C; S such that the context variable o of § cis
bound to an instance of the declared type of o, where C¢ S\ isthe set of test cases for f

associated with coupling sequence qyk.l
2. Record this result as R, = fSq (©), where & is the set of coupling sequences in the

S k
method under test, and T is the declared type of the context variable of s . Add the

result to the test oracle for f, Q.

3. (All-Poly-Def-Uses): Foreach t < T, each ve G)Sq ,

the antecedent method Og and each corresponding first-use of v in the consequent

method N where G)t31 ) is the coupling set that results when the context variable of

5k Is bound to an instance of t:2

for each last-definition d, of u, in

* Execute f using at least one test case ce C¢ S such that the context variable is
bound to an instance of its declared type, and there is a coupling path from d, to u,

with respect to v.

4. (All-Poly-Def-Uses): Record the state of the instance bound to the context variable after

the antecedent has executed, “S:k = f(c), and immediately after each first-use in the

consequent method, oL = f(c). Add the result tuple [(t, v), (oc::k, w;Vk)] to the test

S,k
oracle €, where the pair (t,v) records the type of the instance bound to the context
variable and aso the coupling variable v that corresponds to the coupling path being

d . .
tested; (ocS:k, w;Vk) isthe result pair for the test.

1. Traditionaly, in the scientific testing literature, the letter “t” is used to represent atest case, In thisthesis,
wereservet for representing the type of the instance bound to a coupling variable. Therefore, “ ¢’ isused to
represent atest case.

2. For the All-Poly-Classes criterion, this same procedureis used except that the state variables V € (95q
are not captured and recorded as part of the test oracle Qf, .



180

8.2.2 Fault injection
1. For each S k€ S and te (family(T)—{T}), inject faults into each method of t that

overrides either the antecedent or consequent methods of 5. This yields the fault-
seeded type t” < T. Thisresultsin ashadow inheritance hierarchy rooted at T, where T
is the declared type of the context variable of 5, as illustrated in Figure 8-1. The
shadow hierarchy mirrors the original hierarchy in structure below the root, but is

seeded with faults.
Declared type of
context variable
A 47/,_//”/ Shadow
Hierarchy
A l//
/' Seeded types
,,,,,,,,,,,,, » Poe
Type S ‘
family B B' R
defined <. [ |eecee== > - !
by i i //
A T B el /

Figure 8-1. Class hierarchy with seeded shadow hierarchy for All-Poly-Classes

2. (All-Poly-Def-Uses): For each s; € §, te (family(T)—{T}), andve (921 K
<) ) is the coupling set that results when the context variable of s is bound to an

S,
instance of t, inject corresponding faults into the antecedent and consequent methods,

where

yielding the fault seeded type t”” < T (i.e. t” is a subtype of T) contains methods 0°'s] )
and (n's1 , respectively. This results in a shadow inheritance hierarchy rooted at T,

where T is the declared type of the context variable of sy, asillustrated in Figure 8-2.



181

_--One test case

One per coupling variableve ¢
- \\\ i
7 | N
I
I
I
|
Type Vol = Y Y hS
family B v Bav i Bs., B E
defined < E i ; LA N} -
by L : } .
\\ ,l \
A = - Seeded
~ . shadow
- types
‘ . :
i c Ce.. C H ’
5 (X Y] -
\ j
,/

N i .
\\‘~, ! . -7

One per coupling variableve @fk

i

Figure 8-2. Class hierarchy with seeded shadow types for All-Coupling-Defs-Uses

8.2.3 Test execution
1. Foreach s e § and te (family(T) —{T}), executef using atest case ¢ that binds
the context variable to the corresponding fault-seeded type t’. Add the result

v
st,k = fsﬁ’k(c) to the test result set for f, ‘¥;.

2. For each test case ce Cy 5, execute f using ¢, and record the state of the instance
bound to the context variable for the corresponding pairs of last-definitions and first-
.dv — .uv — H dv IJv
uses o’y = f(c) and W, = f(c), respectively. Add (assk’ (’Jsj,k) to the test result
set for f, ;.

8.2.4 Result evaluation

’

1. Compare each test result R; = ¥ with the corresponding pair in the test oracle:
Rg = R; = pass;. This ascertains whether or not an instance of the descendant

typet can be substituted freely for an instance of the declared type T of the context vari-
able.



182

d .

2. (All-Poly-Def-Uses): Compare each test result (oc'S: - m';vk) e ¥; with the correspond-
. . o4 d, U, . ..
ing pair in the test oracle: (ocsSk = (xssk) A (oasj,k = ‘”sj,k) = pass,. This ascertains if
the method under test preserves the fidelity of the interactions between the antecedent
and conseguent methods when the context variable o is bound to an instance of a partic-

ular type in the family determined by the declared type of o.

3. pass; A pass, = PasS;qg

8.3 Reaults

Table 8-4 summarizes the results of each experiment. The table shows for each fault type
the number of faults seeded, the number of faults detected, and the detection effectiveness
(see Table 3-1 on page 56 for a summary description of the fault types) . The last column
presents the average detection effectiveness per combination of criterion and fault type for
each program. Effectiveness is defined as a ratio of the number of faults detected to the
number of faults seeded. The shaded blocks correspond to combinations of program and
fault type that were not tested. In these cases, the subject programs did not exhibit the struc-
tural characteristics necessary to support the syntactic pattern for the fault type. The last
group of rows in the table summarizes by criterion the number of faults that were seeded,

the number of faults detected, and the average detection effectiveness.



183

Table 8-4. Experimental Results

Faults Seeded Faults Detected Detection Effectiveness
Program | Criterion] SDA| IC | SDI | ISD |SDIH]| SDA| IC | SDI | liISD |SDIH] SDA | IC | SDI | ISD | SDIH JAverage
APDU 9 6 3 3 7 0 3 3 3 0.78 0.50| 1.00| 1.00 0.82
p1 ACS 9 6 3 3 7 0 3 3 3 0.78 0.50| 1.00| 1.00 0.82
APC 9 6 3 3 7 0 3 3 3 0.78 0.50| 1.00| 1.00 0.82
BC 9 6 3 3 0 0 0 0 0 0.00 0.00| 0.00| 0.00 0.00
APDU 39 6 39 10 3 10 0.26 0.26 0.32
P2 ACS 39 6 39 0 0 0 0 0.00| 0.00{ 0.00 0.00 0.00
APC 39 6 39 5 3 1 3 0.13| 0.50{ 0.03 0.08 0.18
BC 39 6 39 8 0 9 9 0.21| 0.00{ 0.23 0.23 0.17
APDU 36 3 36 36 3 30 36 1.00{ 1.00[ 0.91 1.00 0.98
P3 ACS 36 3 36 7 3 3 7 0.19] 1.00{ 0.09 0.19 0.37
APC 36 3 36 9 3 5 12 0.25| 1.00{ 0.15 0.33 0.43
BC 36 3 36 0 0 0 0 0.00] 0.00{ 0.00 0.00 0.00
APDU 24 12 8 0.46 0.50 0.44 0.47
pa ACS 24 4 0 0.00 0.17 0.00 0.06
APC 24 12 8 0.46 0.50 0.44 0.47
BC 24 5 2 0.21 0.21 0.11 0.18
APDU 36 3 31 33 1.00{ 1.00{ 0.86 0.92 0.94
p5 ACS 36 0 8 6 0.19] 0.00{ 0.22 0.17 0.15
APC 36 3 10 7 0.22 0.19 0.42
BC 36 0 0 0.00 0.00 0.00
APDU 18 18 1.00 1.00 0.91
P6 ACS 18 0.00 0.00
APC 0.89 0.78
BC 0.00) 0.00
APDU 0.867 0.77
ACS 0.72
P APC 0.74
BC 0.26
APDU 0.61
ACS 0.07
P8 APC 0.11
BC 0.55
APDU 0.93
ACS 0.32
P9 APC 0.68
BC 0.14
APDU 0.95
ACS 0.44
P10 APC 0.59
BC 0.27
APDU | 231 | 12 | 356 [ 21 | 279 | 183 9 233 | 21 | 219 | 0.80| 0.83] 0.67| 1.00{ 0.80 0.82
Summary ACS 231 | 12 | 356 | 21 | 279 ] 31 3 77 15 66 0.19] 0.33| 0.23| 0.81] 0.29 0.37
APC 231 | 12 | 356 | 21 | 279 ] 80 9 133 | 21 | 116 | 0.42 0.83] 0.42[ 1.00{ 0.49 0.63
BC 231 | 12 | 356 | 21 | 279 ] 20 0 74 5 50 0.08/ 0.00/ 0.16] 0.22| 0.16 0.12

8.4 Analysis and Discussion
Figure 8-3 shows a plot of the detection effectiveness per criterion for each fault type aver-

aged (i.e. the mean) over all programs. The individual data points were weighted to reflect
the differences in the number of faults seeded for each combination of program and test

adequacy criterion.Thus, the data points are comparable.



184

A cursory examination of the plot reveal sthat apparently the most effective of the coupling-
based test adequacy criteriawithin the experimental is All-Poly-Def-Uses (APDU), having
an average detection effectiveness across fault types of Xappy = 0.66. The other cou-
pling-based criteria have average detection effectiveness of 0.45 (APC) and 0.25 (ACYS),
with Branch Coverage having the lowest detection effectiveness of 0.11. Plotsfor the aver-
age effectiveness of each program across al subject criteria are given in the figures 8-4
through 8-11.

Detection Effectiveness per Test Adequacy Criterion
for each Fault Type averaged over all Subject Programs

1.10 |
—— |\ P D
1.00 A — B —ACS
0.90 - e
0.80
0.70
0.60
~
0.50 - A
0.40 -
AN
0.30 O
0.20 we
0.10
0.00 T
SDA IC SDI 11SD SDIH

Fault Type

Figure 8-3. Average detection effectiveness by fault type

All three of the coupling-based testing criteria exhibit basicaly the same fault detection
pattern. That is, eachismoreor less effectivefor the same fault types. For example, all three
do reasonably well at detecting faults of type SDA, SDI, and SDIH, with the corresponding
detection effectiveness across this sequence being monotonically increasing. In contrast, all

three are much less effective at detecting faults of type IC and 11SD. Note that in all cases,



185

across all fault types all four criteria appear to exhibit an ordering with respect to the aver-

age detection effectiveness across fault types (i.e. BC < ACS< APC < ADIH).

Average Effectiveness for Program P1 across all Subject Criteria

110

———APDU
—®——ACS
- -k - ‘APC
—8 = BC

Effectiveness

Fault Type

Figure 8-4. Average effectiveness for program P1 across all subject criteria



100

0.90

0.80

0.70

0.60

Fault Type

Average Effectiveness for Program P2 accross all Subject Criteria

SDA IC SDI SDIH

Effectiveness

Figure 8-5. Average effectiveness for program P2 across all subject criteria

Average Effectiveness accross all Subject Criteria

110

0.80 -

o o
@ ~
S <}

Fault Type

0.40

0.30

0.20

0.10

0.00

Effectiveness

Figure 8-6. Average effectiveness for program P3 across all subject criteria

186

———APDU
— B —ACS
- -k - ‘APC
— @ - -BC

———APDU
— W —Acs
- -& - APC
— @ —BC




Effectiveness

Effectiveness

Average Effectiveness for Program P4 accross all Subject Criteria

120

110

100

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

APDU, APC

0.00

110

100

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00 7

SDA SDI SDIH
Fault Type

Figure 8-7. Average effectiveness for program P4 across all subject criteria

Average Effectiveness for Program P5 across all Subject Criteria

Fault Type

Figure 8-8. Average Effectiveness for Program P5 across all Subject Criteria

187

—e——APDU
— B —ACS
- -k = ‘APC
— @ - -BC

—e&——APDU
— B —ACS
- =& - ‘APC
— @® = -BC




Effectiveness

Effectiveness

Average Effectiveness for Program P6 accross all Subject Criteria

10

0.60

0.50

0.40

0.30

0.20

0.10

0.00

10

100

0.40

0.30

0.20

0.10

0.00

SDA SDI SDIH
Fault Type

Figure 8-9. Average effectiveness for program P6 across all subject criteria

Average Effectiveness for Program P7 across all Subject Criteria

SDI SDIH
Fault Type

Figure 8-10. Average effectiveness for program P7 across all subject criteria

188

———APDU
—®——ACS
- -k - ‘APC
— @ - -BC

———APDU
— B —ACS
- =& - ‘APC
— @® = -BC




Effectiveness

Effectiveness

Average Effectiveness for Program P8 across all Subject Criteria

110

100

0.90

0.30

0.20

0.10

0.00

110

0.60

0.50

0.40

0.30

0.20

0.10

0.00

,,,,,,,,,,,,,!;,T,i:f,?,-,g*,w ,,,,,,,,,,,,,,,,,,,,,,
._--_--_--_--_'._.'}.-.
SDI SDIH

Fault Type

Figure 8-11. Average effectiveness for program P8 across all subject criteria

Average Effectiveness for Program P9 across all Subject Criteria

,,,,,,,,,,,,,,,,,,,, A
'/I.\

"‘ / .\N
,,,,,,,,;,3,,,,,,,,,,,,,,,,#: ,,,,,,,,,,,,,,, ~N.- -
,,,,,,, TG R
************* e e

'::_’/ ~~-_‘
SDA SDI IISD SDIH

Fault Type

Figure 8-12. Average effectiveness for program P9 across all subject criteria

189

———APDU
— @ - -ACS
— [l —APC
- -k - BC

——_——APDU
= W =—=ACS
= =k = '‘APC
— @ - -BC




190

Average Effectiveness for Program P10 across all Subject Criteria

10
\
’ AY
3 0.70 P / ’ N\ N
() A' . ~ AN
S 0601 ——— e L-cA 7 AN T ——APDU
o L - - N — B —ACS
= - Ve ~
S 0501 - ——————— - SR D .———————\—x 77777777777 & - ‘APC
Q .- PR — o - -BC
o A l e RS AN
= 040 - e ~ N\
L - - . ~
-~ -~ ~ \\
030 —————-———— D . N - - ‘ ———————
- L]
’ _-©® .
020 3 = Ne
.—
L i i
0.00
SDA SDI IISD SDIH
Fault Type

Figure 8-13. Average effectiveness for program P10 across all subject criteria

8.4.1 Analysis of the coupling-based criteria
APDU has an average detection effectiveness of 0.80 for SDIH, suggesting that it is most

effective of the three coupling-based criteria at detecting faults of thistype. In comparison,
criterion APC has a detection effectiveness of 0.49 for the SDIH faults while ACS has a
detection effectiveness of only 0.29. The average detection effectiveness of Branch Cover-

age is approximately 0.16.

For the SDI fault type, the average detection effectiveness of APDU is 0.66 which is
approximately an 18 percent reduction, making it not quite as effective asfor SDIH faults.
Similarly, the remaining coupling criteria also reflect a reduced average detection effec-
tiveness. APC is reduced by approximately 14 percent, yielding 0.42, and for ACS, the
reduction is sightly more at 21 percent, yielding a detection effectiveness of 0.23. The

detection effectiveness for Branch Coverage remains the same at 0.16.

For the SDA fault type, APDU remains the most effective, having the same average detec-
tion effectiveness as SDIH fault types (0.80). Both APC and ACS suffer reductions, having



191

a detection effectiveness of approximately 0.42 and 0.19. This represents a decrease of
approximately 14 percent for APC as compared to its average detection effectiveness for
SDIH faults. APC did no worse for SDA faults than it did for SDI Faults. For ACS, the
reduction is approximately 34 percent from its detection effectiveness for SDIH faults, and
a decrease of approximately 17 percent as compared to its effectiveness for SDI faults.

Branch coverage drops to a detection effectiveness of 0.08, a decrease of 50 percent.

For the 11SD fault type, both APDU and APC have an average effectiveness of 1.0. ACS
has an effectiveness of 0.81, and Branch Coverage having the lowest average effectiveness,
0.22. For fault type IC, both APDU and APC have an average effectiveness of 0.83, while
ACS dropsto 0.33 as compared to 11SD. Branch Coverage again has the lowest detection
effectiveness at 0.00.

Compared to the other coupling-based criteria, APDU did the best job of detecting the type
of faults that were seeded, having an average detection effectiveness of 0.82. In contrast,
APC has an average detection effectiveness across al fault types of 0.63, a reduction of
approximately 23 percent, and for ACS, effectiveness reduces further to 0.37, which is a
reduction of approximately 55 percent as compared to APDU and 41 percent as compared
to the detection effectiveness of APC. Finally, Branch Coverage has the worst average
detection effectiveness across the types of seeded faults, 0.12. Compared to APDU, thisis
areduction of approximately 85 percent, and for APC and ACS, the reduction is approxi-
mately 81 percent and 66, respectively.

8.4.2 Explanation of effects
The variation in the detection effectiveness among the coupling criteriais of no surprise.

The weakest of the coupling criteria, ACS, does not consider the effects on state space
interactions caused by inheritance and polymorphism, and this could account for its rela-
tively poor performance as compared to the remaining two. As described in Section 3.1 on
page 53, the first condition of the fault/failure model isthat alocation that contains afault
must be reached before the fault can manifest afailure. The shortcoming of ACSisthat its



192

requirements areweak in that not all locations that can contain faults due to inheritance and
polymorphism must be executed. By their very nature, these faults will be located within
the hierarchy associated with the objects being integrated, not in the method under test.
Thus, faults at these locations will not necessarily be executed as aresult of testing accord-

ing to the ACS criterion.

Asexpected, the APC criterion performs better than ACS. Thisisdueto the stronger testing
requirements imposed by APC. As described in Section 5.1.3 on page 136, APC requires
that all possible type substitutions be tested for each coupling sequence appearing in the
method under test. Thus, the possibility of executing a fault located in the hierarchy being
integrated isincreased simply because control flow enters each type at |east once. However,

thisis not sufficient to ensure all feasible locations containing faults will be executed.t

The most effective of the three coupling-based test adequacy criteriais APDU. Thistoois
of no surprise since its requirements are stronger than ACS and APC. In particular, it
requires that all state interactions be tested with respect to the coupling variable for each
coupling sequence, and for al types of instances that can be bound to the coupling variable
(see Section 5.1.7 on page 139). In terms of the fault/failure model, the requirements
imposed by APDU have the greatest chance of causing a fault to be executed, and this

accounts for the better performance observed over all the experimental trials.

8.4.3 Effectiveness of the Coupling-based Criteria
Log-linear analysis permits one to analyze categorical datain much the same manner asin

analysis of variance. The sampling distribution underlying Table 8-4 is a product of inde-
pendent multinomials. According to Bishop, Fienberg and Holland, the kernel of the appro-
priate likelihood function is the same as that for a ssmple multinomial or a simple Poisson

[16]. Therefore the estimation procedures for the ssmpler sampling distributions may be

1. A feasiblelocation correspondsto a statement in amethod or procedure for which there exists at |east one
input that will cause the statement to be executed.



193

used, at least for large samples. The resulting estimates are close to the correct maximum

likelihood estimates and the usual goodness of fit statistics are asymptotically chi-square.

8.4.3.1 Details of the Hypothesis Tests
We first fitted the experimental results to a model corresponding to a 4-way contingency

table with i, k marginals fixed. The model consists of the dimensions Fault x Response,
Fault x Program, Programx Criterion x Response, and all lower level nested factors. The
factor Response consists of two levels, each corresponding to success or failure of a partic-
ular test case. Denote these four factors by u; (Program), u, (Fault Type), uz (Criterion),
and u4 (Response). Denote cell counts by my ; i |, wherei, j, k, and | correspond to the four

factors. The best fitting model was found to be:
Log(m; j 1) = UptUptUptUy gy g+ Uy gt Uy ot Ug g+ U547t ..

The terms with one subscript represent main effects; the terms with two subscripts repre-
sent two-factor interactions; and the termswith three subscripts represent three-factor inter-
actions. In Figure 8-14, we can see that the fitted cell counts closely match the observed

cell counts.

The procedure for testing the significance of afactor isto fit the best model with that factor
included and then fit the same model with that factor removed and observe the changein

the chi-square goodness-of-fit statistic.

For theinitial hypothesis test, we tested for an interaction between criterion and fault type
by fitting the model described above with and without the fault-type/criterion term. If there
isnointeraction, we can simply pick the best criterion and only useit for our testing. If there
isan interaction, then we will have to use two or more of the criteriato adequately test for
al of the fault types. For thistest, the differencein the tota )(2 that the term of criterion x
fault type accounted for is negligible. Thus, we do not rgject the null hypothesis (Hp), and

hence conclude that there is no interaction between these two factors.



194

Observed versus Fitted Cell Frequencies

45 3 j j j
Fault x Response, Fault x Program, Program x Criterion x Response
(and all lower-level nested factors) ;
T T s By
» :
@ ;
(&) .
5 : : : :
2 25 [ O g P
o : : : :
C :
° ;
O : : : :
Q15 [ s o P o oo
b : (ont : :
) :
(%] H
Q :
o] :
5 |, 0.0.0D7 T 0. e
5 ;
-5 5 15 25 35 45

Fitted Cell Frequencies

Figure 8-14. Observed versusfitted cell frequencies

For the remaining hypothesis tests, we selected out only the datafor a particular pair of cri-
teria (indicated by the column labeled Hypothesisin Table 8-5) and then tested for an inter-
action between these two by fitting the model described with and without the corresponding
fault-type/criterion term. Table 8-5 on page 195 summarizes the results of these tests. The
column labeled Hypothesis states the null (Hg) and aternative hypothesis (H) for each test.
The columns |abeled )(2 and A)(z give the change in value of the chi-square goodness-of -
fit statistic, and the columns labeled df and Adf give the corresponding change in degrees
of freedom. Finally, thelast column givesthe result of each test, indicating whether the null
hypothesisis rejected or not.

As the table shows, for hypotheses one through six, there was a net change in the degrees

of freedom and )(2 goodness of fit value. In all cases, thereis statistical significance at ap-



195

value less than 0.001. Therefore, we reject the null hypothesis (Hp) in favor of the alterna-
tive (H,) for all six of these hypotheses. Thefirst three hypotheses allow usto conclude that
each of the three coupling-based criteriaare more effective than Branch Coverage at detect-
ing the types of faults seeded into the subject programs. The remaining three hypotheses
allow us to compare the effectiveness among the coupling-based criterion. Since the null
hypothesis (Hp) was rejected for each, we can conclude that there is statistical evidence to
suggest that APDU ismore effective than APC and ACS at detecting the subject fault types,
and also that APC is more effective than ACS.

Table 8-5. Results of hypothesistests

N | Hypothesis X’ df Ay* | Adf | Conclusion

Ho: APDU is no more effective than BC

1 _ . 91.74 | 164 | 816.74 | 36 | RejectHy
H,: APDU is more effective than BC

Ho: APC isno more effective than BC

2 _ _ 3593 | 68 | 17500 | 12 | RejectHqy
H,: APC is more effective than BC

Ho: ACS is no more effective than BC )
3 . . 19.00 | 63 | 97.94 | 12 | ReectHy
Hq: ACSis more effective than BC

Ho: APDU is no more effective than APC

4 _ _ 51.87 | 68 | 44147 | 12 | RejectHg
H,: APDU is more effective than APC

Ho: APDU is no more effective than ACS _
> . _ 47.89 | 68 | 103.88 | 12 | Reject Hg
H.: APDU is more effective than ACS

Ho: APC isno more effective than ACS .
6 _ . 69.28 | 68 | 256.97 | 12 | Reject Hy
H1: APC is more effective than ACS




196

8.4.4 Discussion
The three hypothesesin Table 8-5 that tested the effectiveness of each coupling-based cri-

teria against Branch Coverage indicate that the coupling criteria are better at detecting the
object-oriented faults used in the experiment. A remaining question is which of the three
coupling criteriaisthe most effective. Hypotheses one, two, and three have established that
each of the coupling criteria are better than Branch Coverage. Observation of the plot in
Figure 8-3 suggests that APDU is, on average, more effective that APC and ACS. Simi-
larly, APC is, aso on average, more effective that ACS. This observation is, in fact, sup-
ported by the last three hypothesis tests.

Given the above conclusion, akey question that remainsiswhich criterion or combination
of criteria should be used? The plot in Figure 8-3 also suggests that there is no coupling-
based criterion that is particularly better for detecting one fault type versus another (i.e. the
criterion do not specialize in the faults that they detect). If any criterion is good for a par-
ticular fault type, they all are. Therefore we could pick best of the coupling criteriaand use

that for all fault types.

Redlisticaly, there are other factors that must be considered when choosing to use a partic-
ular test adequacy criteria C. Cost can be defined in many ways, including the number of
test cases required to satisfy C and the amount of time required to analyze a program to
determine if adesired level test coverage has been attained. An observation made during
the course of thisresearch isthe difference between the number of tests required to achieve
APDU as compared to APC and ACS was an order of magnitude. The total number of
APDU test cases created for all the subject programsis 817, whilefor APC it is 55, and 26
for ACS. If we define cost in terms of the number of required test cases, clearly APDU is
significantly more expensive than APC and ACS. From a practical perspective, isthe addi-
tional cost worth the benefit received? The answer to thisimportant question isleft asfuture

work.



197

8.5 Conclusion
The experiments described in this chapter show that coupling-based testing techniques can

be (and have been) extended to detect the faults that result from the polymorphic relation-
shipsamong componentsin an object-oriented program. Further, the results show that these
techniques are an effective testing strategy for object-oriented programs that use inherit-
ance and polymorphism. Thisisan important result for devel opers, testers, and consumers
of software developed using object-oriented languages. Devel opers now have an approach,
techniques, and guidelines for addressing certain aspects of integrating object-oriented
components. Professional testers also have a repeatable and verifiable means of testing the
work products produced by developers and a means of targeting specific types of faults
peculiar to object-oriented software. Consumers of software-based and software-embedded

products will also benefit by receiving products that are of higher quality.



198



9. Contributions and Future Wor k

In this dissertation, a new approach to integration testing of object-oriented programs has
been presented. This approach takes into account those state interactions that result from
the use of inheritance and polymorphism and their effect on a method under test. The
approach is based heavily on the static and dynamic analysis of object-oriented programs,
and solves akey problem in the area of testing object-oriented programs: how to effectively

test programs that make use of inheritance and polymorphism.

The research presented in this thesis has severa aspects that have not been explored in this
dissertation. Some of these are related directly to coupling-based testing approach while
others are specific to related areas of object-oriented software development. The following
section discusses the contributions of this research in detail, and the final section of this

chapter discusses future research related to the other aspects.

9.1 Contributions
A key contribution is atechnique for analyzing and testing polymorphic relationships. The

foundation of thistechnique is the coupling sequence, which is a new abstraction for rep-
resenting state space interactions between pairs of method invocations. The coupling
sequence provides the analytical focal point for methods under test, and is the foundation
for the algorithmsfor identifying and representing polymorphic relationshipsfor both static
and dynamic analysis. With this abstraction and the algorithms, both testers and developers
of object-oriented programs now have a means to analyze and better understand the inter-
actionswithin their software. Though the coupling sequence has been cast for testing prob-
lems involving inheritance and polymorphism, is generally applicable to any program that

makes uses of encapsulated data types (e.g. Modula-2, Ada83, etc.).

199



200

This thesis also contributes a set of test-adequacy criteria that are based on coupling
sequences and that take inheritance and polymorphism into account. These criteria provide
the tester and devel oper with away of judging when atesting goal has been achieved. The
criteria naturally vary in their effectiveness, but this variation also correlates with the
required level of testing effort and is reflected by the subsumptive relationship among the
criteria. In ideal circumstances, the level of required to achieved perfect or near-perfect
software would be expended. In this case, only asingle criterion would be necessary. How-
ever, the nature of the world dictates that limited amounts of effort can be expended. The
variation of the criteria alow the tester and developer to develop test requirements that
reflect this world view. Critical areas are less tolerant to failures, and thus more effective
testing is required than in less critical areas. The coupling-based testing criteriafor object-
oriented programs presented in this thesis, combined with the original criteria of Jin and
Offutt [38], allow this objective to be achieved.

Another contribution is atechnique for identifying data flow anomalieswithin class hier-
archies. Asthisthesis has shown, inheritance rel ationships within object-oriented programs
yield greater complexity due to the implicit coupling throughout class hierarchies. This
thesis has identified and defined specific patterns with respect to state space interactions

that indicate anomalous and potentially faulty behaviors.

Thisthesis has also produced a model of faults associated with the use of inheritance and
polymorphism. This model is based on the distinction between overriding methods that
extend the behavior of a new class with respect to its parents, and overriding methods that
make refinements to inherited behavior. The model takes into consideration both the
semantics of inheritance and polymorphism, and also the syntactic patterns of inheritance
that lead to anomalies and faults. This model benefits testers and devel opers by providing
aspecific set of fault types based on syntactic patternsthat can be used for code inspections,
and to guide the production of test cases. The model also benefits researchers by providing
a foundation for understanding and reasoning how failures are manifested in object-ori-

ented programs.



201

This thesis has aso resulted in a proof of concept tool that demonstrates the practicality

and effectiveness of the coupling-based analysis techniques.

Finally, this thesis has contributed a graphical model for analyzing and understanding the
effectsof polymorphism within aclasshierarchy. The enhanced yo-yo graph clearly shows
the control flow across class boundaries between descendants and ancestors that results
from a method invocation. It is often difficult to see and understand the path taken by the
flow of control because the apparent path is not always the path that is actually executed.
Unfortunately, thisis the rule rather than the exception, and is due to the non-determinism
induced by polymorphism. The yo-yo graph provides away to gain insight into such com-

plexities.

9.2 Future Work

There are anumber of additional problemsthat related to the research reported in thisthesis

that warrant further investigation. The following sub-sections discuss 11 of these in detail.

9.2.1 Testing inter-method coupling sequences
This thesis has focused on testing polymorphic relationships that manifest themselves

through state space interactions resulting from pairs of method invocations within the same
method. However, as described in Section 4.2.5 and illustrated by Figure 4-5 on page 100,
there are other interactions that can occur between methods that are not invoked from the
same methods. These interactions form inter-method coupling sequences and represent
interactions that occur indirectly as the result of two or more separate method invocations.
To accommodate this, the definition of the types of coupling sequences (Section 4.2) will
have to be expanded along with the definitions for the coupling method, antecedent node
and method, and consequent node and method. The algorithms for identifying coupling
sequences and coupling sets must also be redefined (Algorithm 6-1 on page 143 and
Algorithm 6-2 on page 144, respectively). The expected benefit of thisresearch will be the

detection of more faults, but at the cost of a more expensive analysis.



202

9.2.2 Specification and coupling-based testing of object-oriented
programs
One of the assumptions underlying this research is that no formal or systematic specifica-

tionisavailablefor the classes and methods under test. The validity of thisassumption rests
upon common practice in industrial (and academic) settings. The result of this assumption
isthat anumber of anomaliesareidentified that can only be characterized as potential faults
(e.g. data flow anomalies due to inconsistent state space definitions and uses across meth-
ods). It islikely that if some type of formal or systematic specification were available (e.g.
state transition diagram and method sequence diagram), static analysis using coupling-
based techniques could precisely identify certain anomalies as faults or eliminate them

from further consideration.

9.2.3 Integration testing within class hierarchies
Another key areanot emphasized by thisthesisis the integration testing of classeswithina

class hierarchy. Each class C has the potential to define state and behavior. This servesthe
constrain the behavior of its set of descendants D, particularly if elements of D can possibly
be used in contexts where an instance of C is expected. In this case, the behavior of each
descendant d e D must be consistent with the externally observable behavior defined by
C. Each d may provide additional behaviors (i.e. extensions), but it must behavelikeC. It's
not clear what testing strategies should be employed to determineif thisin fact the case, but
two criteria come to mind that can possibly bound the set of testing requirements. All-Sub-
types and All-Immediate-Subtypes. The All-Subtypes criterion would require that for a
given class C that can be used in its own context (i.e. used as the declared type of avariable
or the type of atype coercion), every descendant of C be tested asif it were an instance of
C. That is, every descendant would be subjected to the same set of testsrequired for C, with
the expected outcome being state and behavior identical to C (thus C can be used as a test
oraclefor its descendants). From the perspective of practically, All-Subtypes has the unfor-
tunate effect of requiring that for every C in a hierarchy, each of its descendants is tested
with C'stests.



203

All-Immediate-Subtypes relaxes All-Subtypes by requiring that only the direct descendants
of C betested with C’ stests. This hasthe effect of reducing the testing effort while attempt-
ing to ensure that the each descendant is substitutable for al its ancestors, both direct and
indirect (i.e. grandparents, great-grandparents, and so on). Thereis some basisfor thissince
inheritanceisatransitiverelation. If B isadescendant of A, and C isadescendant of B, then
by transitivity, Cisalso adescendant of A. Thus, if Bisfirst tested using A’ stest cases (and
passes), and C isthen tested using B's (which includes A’s) and also passes, then C should
be behaviorally compatible with A and an instance of C can safely be used where an
instance of A is expected (conjecture). If this conjecture holds, then All-Immediate-Sub-
types has the advantage of achieving the same testing objective as All-Subtypes, but with
reduced effort because the number of test requirements is reduced. Unfortunately, thisis
not likely to hold in all cases given Weyuker’ s antidecomposition axiom [69] as described
by Perry and Kaiser [64].

9.2.4 Coupling-based testing of concurrent object-oriented programs
Many object-oriented languages, such as Java, Eiffel, and Ada 95, incorporate some type

of threading mechanism. Thisresultsin greater complexity of software, and likely exacer-
bates the number (and perhapstypes) of faultsthat can occur in an object-oriented program.
Aninteresting areaof investigation that remains open iswhether or not coupling-based test-

ing techniques would be effective in the presence of multiple threads.

9.2.5 Testing of reflective object-oriented programs
Some object-oriented languages, such as Java and C#, provide runtime features that permit

the utilization and manipulation of the underlying metadata within their runtime environ-
ments (i.e. class, variable, and method names, field type information, and method return
types). For example, in Javait is possible to obtain a reference to an object whose typeis
unknown at some location within the program. The program can then query the underlying
metadata to determine the object’ s type, including information such as the methods it pro-
vides, the interfaces implemented, and the variables contained in its state space. The latter,

with few restrictions, can be manipulated even if itsvariables are not declared to be publicly



204

available. This type of dynamic semantic manipulation offers a number of testing issues
and challenges. For example, at compile time, we do not know what the actual type of an
object will be that is loaded through reflection, and thus we do not know what the test
requirements should be. At least the problem is bounded with inheritance and polymor-
phism to thefinite set of typesthat appear in aclass hierarchy. With reflection, there are no

restrictions on the type.

9.2.6 Generation of test casesfor coupling-based testing
A key area of research related to thisthesisisthe generation of test cases that satisfy a par-

ticular coupling-based criterion. During the research reported in this thesis, test case gen-
eration was accomplished primarily through manual analysis of the subject programs used
inthevalidation. Whilethisis acceptablefor ascientific investigation, it isof limited appli-
cability in practical settings. Thus, there is a need to enhance the test case generation pro-

cess through automation, to the extent possible.

9.2.7 Metricsfor coupling-based testing
A number of questions naturally result from the application of the coupling-based testing

approach, such as how effective is the testing effort expended thus far, how much effort is
required to test a given program using criterion C, etc. The coupling-based testing
approach naturally yields anumber of artifacts (e.g. coupling sequences and coupling sets),
and object-oriented programs also have adistinct set of artifacts (e.g. classes, methods, and
inheritance hierarchies). There is the potential to combine these and use them the basis of
a measurement theory for the approach. For example, there likely is a strong positive cor-
relation between the depth of an inheritance hierarchy and number of overridden methods
with the number of test requirements generated from the coupling-based test adequacy cri-
teria. Having this theory along with a practical process for its use would add significantly

to the practical application of the coupling-based testing approach.

9.2.8 Mutation testing of object-oriented programs
One of the key questionsthat arisesintesting is: how effective arethetest cases at detecting

faults? This question applies equally to the testing approach described in this thesis and to



205

all other approaches to testing software. A testing technique that has been used to answer
this question for procedural programs is mutation testing [23]. Mutation testing is a fault-
based approach, and represents the actual faultsthat occur in programs using afault model.
Testing techniques usually make assumptions about the types of faults that occur in pro-
grams, and are used to (hopefully) select test cases that detect faults of those types. In muta-
tion testing, static changes called mutations are made to programs. Mutations are
accomplished by the application of set of mutation operators. Examples of these operators
include substituting one operator for another (e.g. subtraction for addition) and using a dif-

ferent constant or variable in an expression.

The changed programs, referred to as mutants, correspond to the original unchanged pro-
gram but with the addition of asingle fault. Thisprocessisrepeated to produce a popul ation
of mutants that corresponds to a particular set of fault types. The mutants are then used to
assess the adequacy of a set of test cases at detecting the faults. If the behavior of a mutant
is different from the behavior of the original program when executed with test t, thent is
said to kill the mutant and thus is capable of detecting the type of fault associated with the
mutant. In this manner, mutation testing is used to assess the effectiveness of a particular
test set.

It seems plausible that mutation testing techniques can also be applied to object-oriented
programs. However, there are some challenges that must be overcome. An underlying
assumption in the process of mutating a program to model a particular fault is that the
semantics of the mutation operators and the underlying types of the operands are well
defined and understood. For example, to change the expressionx =y + ztox =y - z, where
X, Y, and z are integers, it is necessary to understand that both addition and subtraction are
binary operators, and also that addition and subtraction are valid for instances of integer. If
the type of X, y, and zis string, and where addition means concatenation, then subtraction
is meaningless with respect to the type string, and thus the resulting mutated expression x

=y-zissemantically invalid. It follows from this argument that to extend mutation testing



206

to object-oriented programs al so requires knowledge of the semantics of the mutation oper-

ators and of the types. Herein lies the challenge.

In object-oriented programs, types and operators are not static, but are an intentional side-
effect of the design process, and hence are not fixed across problem and solution domains.
Thus the key insight to applying mutation testing techniques requires that the variation of
types and operators be taken into account. The consequence of thisinsight isthat the muta-
tion process cannot be treated solely as an instance of syntactic manipulation, as it can
wherethe set of typesisfixed and well-defined. A key challenge is coming up with amuta-
tion process that can be generalized across object-oriented languages and problem/solution
domains. A likely solution isthe use of amutation engine that can be customized to account
for the variation of semantics among types and operators. For example, a specia inherit-
ance hierarchy H could be used to mirror a subset of the problem/solution domain hierarchy
D. For eachtype T in D that is subject to mutation, H would have a corresponding type that
“knows’ how to mutate instances of T in a manner consistent with T's semantics. Out of
necessity, this would require the implementer of D to also implement H (or someone with
knowledge of D). Clearly this has the potential to be an onerous task. However, it may be
the case that certain subsets of D can be treated uniformly, thus allowing the use of inher-

itance and polymorphism to reduce the effort required to implement H.

9.2.9 CBAT Enhancements
There are anumber of enhancements and modifications that need to be madeto CBAT. In

no particular order, these include:

» Graphical user interface. At present, CBAT is driven by a command line inter-
face along with a set of properties maintained in a separate file. Using CBAT for
aparticular analysis problem requires that a number of steps be carried out manu-
aly. This is both time consuming and tedious. A graphical user interface (or an

HTML forms-based interlace) would vastly improve the usability of CBAT.



207

* Adding a database backend. CBAT collects an enormous amount of informa-
tion during an analysis, all of which is held in memory and discarded when the
analysis is complete. Subsequent analyses requires that this information be re-
computed, and much of it is common to prior analyses performed. Further, the
fact that all of this information is held in memory necessarily places an upper
bound on the size of the problem that CBAT can handle. Storing and staging this
information in a database would increase the net performance of CBAT and

increase the size of the problem that can be handled.

» Support for additional languages. CBAT was developed for analyzing pro-
grams written in the Java programming language. However, its design was inten-
tionally generalized so that programs expressed in other object-oriented
languages (e.g. C++, C#, Eiffel, Ada 95) could also be analyzed. To support a
new language requires that a new language-specific front-end (i.e. parser) be pro-
vided. Also, a new language-specific code instrumentation engine on the back-

end would also need to be provided.

9.2.10 XML -based program representations for testing and analysis
One of the problemsthat must be faced by a developer of any program analysistool iswhat

representation to use for analysis and storage of information. Thisincludesinformation that
results from the analysis itself (e.g. the set of coupling sequences for a method), and also
the information that describes the program itself (e.g. abstract syntax tree and inheritance
hierarchy). Historically, the representations used to store this information are custom and
specific to the tool at hand (as in the case of CBAT). While thisis good in that it helps to

ensure that the representation is optimized for the specific requirements of the analysis, it



208

usually limits the ability for additional tools and analyses to the specific representation. A
better solution would be a generalized canonical form for describing program information.
Thiswould eliminate the necessity of having to start from scratch when devel oping an anal-
ysistool, and also allow for easy exchange of analysis information among tools. Further,
standardized tools could be developed for performing various analyzing tasks, such as the
construction of program dependence graphs and dlicing. Such a form caled JavaML has
been developed for Java programs using XML asthe basis [6]. The question is how effec-
tive this representation is for analyzing programs and what are its limitations. A useful
exercise to answer this question would be to extend CBAT to produce an instance of

JavaML for program under analysis, and to use this for storage and analysis.

9.2.11 Rever se engineering of softwar e contracts
If anything, object-oriented (and object-based) programing is about specifying and imple-

menting types, and then acting on instances of those types to affect computation and
achieve behavior. A useful technique for specifying types (classes) is Design by Contract
wherein preconditions, postconditions, and invariants are specified for the type and each of
its operations (method) [51]. These serve not only as specifications to constrain the imple-
mentation, but may also be used as passive testing mechanisms [52]. With suitable lan-
guage support, preconditions and invariants can automatically be checked on entry to a
method, and postconditions and invariants checked just prior to exiting [40, 52]. A precon-
dition violation indicates afault in the client of atype, and postcondition or invariant vio-
lation indicates afault in theimplementation of thetype. Unfortunately, even with language

support, such specifications are often not produced or become lost over time.

There is a need for a mechanism or tool that will reverse engineer and recover contracts
from existing type implementations. Clearly the resulting contracts would be based solely
on the implementation (at least initially), and an underlying implicit assumption would be
that the implementation is correct. This, of course, is a dubious assumption, However, itis
not without merit since theimplementati on does exists and the corresponding original spec-

ification does not. Furthermore, any maintenance changes to the code have to be made



209

locally in the context of that code without the benefit of a specification. Thus, without other
reasons to the contrary, assuming the correctness of the code as a starting point is reason-
able.

Once the contracts have been recovered and the type’ simplementation instrumented appro-
priately, testing can begin to determine if clients that use the type do so correctly. At this
stage, violations of preconditions may indicate a fault in the client, but could equally indi-
cate afault in the implementation. This at least gives the basis for more focused probing to
determine where the fault lies. Postconditions are more difficult since they are based
directly on the code analyzed, and thus never should be violated. Determining their correct-
ness, and hence the correctness of theimplementation, would have to be determined by how
instances of the type are used after the operation is complete. Anomalous behavior in a
client after the method has returned might indicate a problem with the implementation of
the method.

On the surface, contract recovery seems to be of limited value given the uncertainty that
initially arises with respect to the postcondition and the correctness of the implementation.
However, over time this concern should diminish, particularly as further maintenance
activities are applied to the implementation. While a postcondition violation shortly after
contract recovery raises suspicions about the contract (and the implementation) the likeli-
hood that violations occurring during the course of maintenance result from a malformed
postcondition decrease, while the likelihood of a problem in the maintenance increases.
Overtime, one would expect that the recovered contracts would become the actual con-

tracts, even if they are different from the original contracts.



References

Testability of Object-Oriented Systems. 1994: Reliable Software Technologies.
Unified Modeling Language, version 1.1. 1997, Object Management Group.

Alexander, R. T., J. M. Bieman, and J. Viega, Coping with Java Programming
Stress. Computer, 2000. 33(4), April: p. 30-38.

Alexander, R. T. and A. J. Offutt. Analysis Techniques for Testing Polymor phic
Relationships. In Proceedings of Thirtieth International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS30 '99). 1999, August. Santa
Barbara CA: IEEE Computer Society.

Alexander, R. T. and A. J. Offutt. Criteria for Testing Polymorphic Relationships.
In Proceedings of International Symposium on Software Reliability and Engineer-
ing (ISSRE0O). 2000, October. San Jose CA: |EEE Computer Society.

Badros, G. J., JavaML: A Markup Language for Java Source Code. 2000, Dept. of
Computer Science and Engineering. University of Washington. Seattle, WA USA.

Balcer, M. J., W. M. Hadling, and T. J. Ostrand. Automatic generation of test scripts
fromformal test specifications. In Proceedings of ACM SSGSOFT '89 Third Sympo-
sium on Software Testing, Analysis and Verification (TAV3). 1989. Key West, FL,
USA.

Barbey, S. and A. Strohmeier. The Problematics of Testing Object-Oriented Soft-
ware. In Proceedings of SQM'94 Second Conference on Software Quality Manage-
ment. 1994. Edinburgh, Scotland, UK.

210



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

211

Beizer, B., Software Testing Techniques. 1990, New Y ork, New York: Van Nos-
trand Reinhold.

Berard, E. Issues in the Testing of Object-oriented Software. in Proceedings of
Electro'94 International. 1994: |IEEE Computer Society Press.

Berard, E. V., Essays on Object-Oriented Software Engineering. Vol. 1. 1993:
Prentice Hall.

Binder, R. V., Testing Objects. Myth and Reality. Object Magazine, 1995. 5(2): p.
73-75.

Binder, R. V., Trends in Testing Object-oriented Software. Computer, 1995.
28(10): p. 68-69.

Binder, R. V., The FREE Approach for System Testing: Use-cases, Threads, and
Relations. Object Magazine, February, 1996. 6(2).

Binder, R. V., Testing Object-Oriented Software: A Survey. Journal of Software
Testing, Verification & Reliability, 1996. 6(3/4), September / December: p. 125-
252.

Bishop, Y. M. M., S. E. Fienberg, and P. W. Holland, Discrete Multivariate Anal-
ysis. Theory and Practice. 1975, Cambridge, Massachusetts: MIT Press.

Capper, N. P., R. J. Colgate, J. C. Hunter, and M. F. James, The Impact of Object-
oriented Technology on Software Quality: Three Case Histories. IBM Systems
Journal, 1994. 33(1): p. 131-157.

Cheatham, T. J. and L. Méellinger. Testing Object-oriented Software Systems. In
Proceedings of ACM 18th Annual Computer Science Conference. 1990, February:
ACM Press.

Chen,H. Y., T.H. Tse, F. T. Chan, and T. Y. Chen, In Black and White: An Inte-
grated Approacht to Class-Level Testing of Object-Oriented Programming. ACM
Transactions on Software Engineering and Methodology, 1998. 7(3): p. 250-295.



20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

212

Chen, M.-H. and M..-H. H. Kao. Testing Object-Oriented Programs- An Integrated
Approach. In Proceedings of Tenth International Symposium on Software Reliabil-

ity Engineering. 1999, 1 - 4 November. Boca Raton, Florida.

Chow, T. S, Testing software design modeled by finite-state machines. |EEE
Transactions on Software Engineering, 1978. SE-4(3): p. 178-87.

DeMillo, R. A., D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt. An
Extended Overview of the Mothra Softwar e Testing Environment. in Proceedings of
Second Workshop on Software Testing, Analysis, and Verification. 1988, July.
Banff Alberta: IEEE Computer Society Press.

DeMillo, R. A. and A. J. Offutt, Constr ai nt-Based Automatic Test Data Generation.
| EEE Transactions on Software Engineering, 1991. 17(9), September: p. 900-910.

Doong, R.-K. and P. G. Frankl, The ASTOOT Approach to Testing Object-Oriented
Programs. ACM Transactions on Software Engineering and Methodology, 1994.
3(4): p. 101-130.

Dorman, M. Unit Testing of C++ Objects. in Proceedings of EuroSTAR 93. 1993,
October. Jacksonville, Flordia: SQE, Inc.

Fiedler, S. P., Object-Oriented Unit Testing. Hewlett-Packard Journal, 1989. 40(2):
p. 69-75.

Firesmith, D. G., Testing Object-Oriented Software. 1992, Advanced Technology
Specialists.
Firesmith, D. G. Testing Object-Oriented Software. In Proceedings of Eleventh

International Conference on Technology of Object-Oriented Languages and Sys-
tems (TOOLSUSA, '93). 1993: Prentice-Hall, Englewood Cliffs, New Jersey.

Frankl, P. G. and S. N. Weliss, An experimental comparison of the effectiveness of
branch testing and data flow testing. |EEE Transactions on Software Engineering,
1993. 19(8): p. 774-87.



30.

31.

32.

33.

35.

36.

37.

38.

39.

213

Frankl, P. G. and E. J. Weyuker, An applicable family of data flow testing criteria.
| EEE Transactions on Software Engineering, 1988. 14(10): p. 1483-98.

Freedman, R. S., Testability of software components. |EEE Transactions on Soft-
ware Engineering, 1991. 17(6): p. 553-64.

Harrold, M. J., J. McGregor, and K. Fitzpatrick. Incremental Testing of Object-Ori-
ented Class Structures. In Proceedings of 14th International Conference on Soft-

ware Engineering. 1992: |EEE Computer Society.

Harrold, M. J. and G. Rothermel. Performing Data Flow Testing on Classes. In
Proceedings of Second ACM SIGSOFT Symposium on Foundations of Software
Engineering. 1994: ACM Press, New Y ork, New Y ork.

Harrold, M. J. and M. L. Soffa, Selecting and using data for integration testing.
|EEE Software, 1991. 8(2): p. 58-65.

Hayes, J. H. Testing of Object-Oriented Programming Systems (OOPS): A Fault-
Based Approach. In Proceedings of Object-Oriented Methodologies and Systems.
1994: Springer-Verlag.

Hong, H. S, Y. R. Kwon, and S. D. Cha Testing of Object-oriented Programs
Based on Finite Sate Machines. In Proceedings of 1995 Asia Pacific Software
Engineering Conference. 1995: IEEE Computer Society Press, Los Alamitos, Cal-
ifornia.

Hong, H. S., Y. R. Kwon, and S. D. Cha, A State-Based Testing Method for Classes.
Journal of Korea Information Science Society(B, 1996. 23(11): p. 1145-1154.

Jin, Z. and A. J. Offutt, Coupling-based Criteria for Integration Testing. The Jour-
nal of Software Testing, Verification, and Reliability, 1998. 8(3), September: p.
133-154.

Jorgenson, P. C. and C. Erickson, Object-Oriented Integration Testing. Communi-
cations of the ACM, 1994. 37(9): p. 30-38.



40.

41.

42.

46.

47.

49,

214

Kramer, R. iContract - The Java(tm) Design by Contract(tm) Tool. In Proceedings
of Technology of Object-Oriented Languages and Systems. 1998, August 3-7. Santa
Barbara, California: IEEE Computer Society.

Kung, D., J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. A Test Strategy for Object-
Oriented Systems. In Proceedings of Nineteenth Annual International Computer
Software and Applications Conference. 1995: IEEE Computer Society Press, Los
Alamitos, Calif.

Kung, D., N. Suchak, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. On Object Sate
Testing. In Proceedings of Eighteenth Annual International Computer Software \&
Applications Conference. 1993. IEEE Computer Society Press, Los Alamitos,
Calif.

Leavens, G. T., Modular Specification and Verification of Object-oriented Pro-
grams. |EEE Software, 1991. 8(4): p. 72-80.

Leavens, G. T. and W. E. Weihl, Specification and Verification of Object-oriented
Programs Using Supertype Abstraction. Actalnformatica, 1995. 32(8): p. 705-778.

Liskov, B. and J. M. Wing. Specifications and their use in defining sub-types. in
Proceedings of OOPSLA'93. 1993. New York: ACM Press.

McGregor, J. D. Constructing Functional Test Cases Using Incrementally Derived
Sate Machines. In Proceedings of 11th International Conference on Testing Com-
puter Software. 1994: USPDI, Washington, DC.

McGregor, J. D. Functional Testing of Classes. in Proceedings of 7th International
Software Quality Week. 1994: Software Research Institute, San Francisco.

McGregor, J. D. and D. M. Dyer, A Note on Inheritance and State Machines. Soft-
ware Engineering Notes, 1993. 18(4): p. 61-609.

McGregor, J. D. and D. M. Dyer. Selecting Functional Test Cases for a Class. In
Proceedings of 11th Annual Pacific Northwest Software Quality Conference. 1993:
PNSQC, Portland, Oregon.



50.

51

52.

53.

55.

56.

57.

58.

59.

60.

215

Meyer, B., Introduction to the Theory of Programming Languages. 1990: Prentice
Hall.

Meyer, B., Design By Contract, in Advances in Object-Oriented Software Engi-
neering, D. Mandrioli and B. Meyer, Editor. 1991, Prentice Hall: Englewood Cliffs,
N.J. p. 1-50.

Meyer, B., Object-Oriented Software Construction. 1997, Englewood Cliffs, New
Jersey: Prentice Hall.

Meyer, S., Effective C++. 1992, Reading, Massachusetts: Addison-Wesley.

Morell, L. J. Theoretical Insightsinto Fault-Based Testing. In Proceedings of ACM
SGSOFT '89 2nd Symposium on Software Testing Analysis and Verification
(TAV2). 1988. Banff Alberta.

Morell, L. J., A Theory of Fault-Based Testing. IEEE Transactions on Software
Engineering and Methodology, 1990. 16(8), August: p. 844-857.

Offutt, A. J. Software testing: Sate-of-the-art Vs. Sate-of-the-practice. Position
Paper: Software Testing: From Theory to Practice. In Proceedings of 1997 Annual
Conference on Computer Assurance (COMPASS 97). 1997, June. Gaithersburg
MD: IEEE Computer Society Press.

Offutt, A. J. and A. Irvine. Testing Object-Oriented Software Using the Category-
Partition Method. in Proceedings of TOOLSUSA'95. 1995. Santa Barbara, Califor-

nia Prentice Hall.

Orso, A., Integration Testing of Object-Oriented Software, in Dipartimento di

Elettronica e Informazione. 1999, Politecnico Di Milano: Milan, Italy.

Ostrand, T. J. and M. J. Balcer, The category-partition method for specifying and
generating functional tests. Communications of the ACM, 1988. 31(6): p. 676-86.

Overbeck, J., Integration Testing for Object-Oriented Software. 1994, Vienna Uni-

versity of Technology.



61.

62.

63.

65.

66.

67.

68.

69.

216

Pande, H. D., W. A. Landi, and B. G. Ryder, Interprocedural def-use associations
for C systemswith single level pointers. IEEE Transactions on Software Engineer-
ing, 1994. 20(5): p. 385-403.

Parnas, D. L., J. E. Shore, and D. Weiss. Abstract types defined as classes of vari-
ables. In Proceedings of Conference on Data: Abstraction, Definition and Struc-
ture. 1976. Salt Lake City, UT, USA.

Payne, J. E., R. T. Alexander, and C. D. Hutchinson, Design-for-Testability for
Object-Oriented Software. Object Magazine, 1997. 7(5), July: p. 34-43.

Perry, D. E. and G. E. Kaiser, Adequate Testing and Object-Oriented Program-
ming. Journal of Object-Oriented Programming, 1990. 2(5): p. 13-19.

Rapps, S. and E. J. Weyuker, Selecting software test data using data flow informa-
tion. |EEE Transactions on Software Engineering, 1985. SE-11(4): p. 367-75.

Sanden, B., Software Systems Construction with Applicationsin Ada. 1993, Engle-
wood Cliffs, New Jersey: Prentice Hall.

Sinha, S. and M. J. Harrold, Analysisand Testing of Programswith Exception-Han-
dling Constructs. IEEE Transactions on Software Engineering, 2000. 26(9), Sep-
tember: p. 849-871.

Smith, M. D. and D. J. Robson. Object-oriented Programming: The Problems of
Validation. In Proceedings of 6th International Conference on Software Mainte-
nance. 1990: IEEE Computer Society Press, Los Alamitos, Calif.

Weyuker, E. J., Axiomatizing software test data adequacy. |EEE Transactions on
Software Engineering, 1986. SE-12(12): p. 1128-38.



CURRICULUM VITAE

Roger T. Alexander was born on December 9, 1958, in Louisville, Kentucky, and is an
American Citizen. He graduated from Louisville Male High School, Louisville, Kentucky,
in 1977. He received his Bachelor of Science from the University of the State of New
York in 1991. He received his Master of Science from George Mason University in 1994.

Mr. Alexander has worked in the software industry for 23 years, primarily as a developer
of software development tools. He is currently employed as a Senior Research Scientist in
the Center for Secure Information Systems at George Mason University. Mr. Alexander is
a Senior Member of the Institute of Electrical and Electronic Engineers, a Member of the
IEEE Computer Society, and a Professional Member of the Association for Computing
Machinery.

217



	1. Introduction and Overview
	1.1 Motivation
	1.2 Problem Statement
	1.2.1 System level testing techniques
	1.2.2 Unit level testing techniques
	1.2.3 Integration Testing Techniques

	1.3 Thesis Statement
	1.4 Object-oriented Programming
	1.4.1 Classes
	1.4.2 Compositional Relationships
	1.4.3 Polymorphism and Dynamic Binding

	1.5 Problems with method overriding and polymorphism
	1.6 Organization of Dissertation

	2. Background and Related Work
	2.1 Issues in Testing Object-oriented Software
	2.2 Test Adequacy
	2.3 Class Testing
	2.3.1 State-based Testing
	2.3.2 Method Sequence-Based Testing

	2.4 Integration Testing of Object-Oriented Programs
	2.5 Other Approaches of Testing Object-Oriented Software
	2.6 Coupling-Based Testing
	2.6.1 Coupling-Based Testing Definitions
	2.6.2 Coupling-Based Testing Paths
	2.6.3 Coupling-Based Testing Criteria
	2.6.4 Relationship to the Object-oriented Coupling-based Testing Criteria


	3. Inheritance and Polymorphism Faults
	3.1 A fault/failure model for polymorphic for object- oriented programs
	3.1.1 Reachability
	3.1.2 Infection
	3.1.3 Propagation

	3.2 Inheritance Faults and Anomalies
	3.2.1 Inconsistent Type Use (ITU)
	3.2.2 State Definition Anomaly (SDA)
	3.2.3 State Definition Inconsistency due to State Variable Hiding (SDIH)
	3.2.4 State Defined Incorrectly (SDI)
	3.2.5 Indirect Inconsistent State Definition (IISD)
	3.2.6 Anomalous Construction Behavior(1) (ACB1)
	3.2.7 Anomalous construction behavior(2) (ACB2)
	3.2.8 Incomplete (failed) Construction (IC)
	3.2.9 State Visibility Anomaly (SVA)

	3.3 Syntactic Patterns of Inheritance
	3.3.1 Descendant has No Methods (DNM)
	3.3.2 Descendant introduces extension methods
	3.3.2.1 Descendant introduces Non-interacting Extension Methods (DNEM)
	3.3.2.2 Extension method Calls another Extension method (ECE)
	3.3.2.3 Extension method Calls Inherited methods (ECI)
	3.3.2.4 Extension method Calls Refining method (ECR)
	3.3.2.5 Extension method Uses/Defines Inherited state Variable (EUIV/EDIV)
	3.3.2.6 Extension method Uses/Defines Local state Variable (EULV/EDLV)
	3.3.3 Descendant introduces refining methods
	3.3.3.1 Refining method Calls Extension method (RCE)
	3.3.3.2 Refining method Calls other Inherited method (RCI)
	3.3.3.3 Refining method Calls other another Refining method (RCR)
	3.3.3.4 Refining method Calls Overridden Method (RCOM)
	3.3.3.5 Refining method Defines/Uses Inherited state Variable (RDIV/RUIV)
	3.3.3.6 Refining method Defines/Uses Local state Variable (RDLV/RULV)
	3.3.4 Descendant Introduces Constructors
	3.3.4.1 Constructor Calls Inherited Method (CCIM)
	3.3.4.2 Constructor Calls Refining Method (CCRM)
	3.3.4.3 Constructor Calls Extension Method (CCEM)
	3.3.4.4 Constructor Defines/Uses Inherited state Variable (CDIV/CULV)
	3.3.4.5 Constructor Defines/Uses Local state Variable (CDLV/CULV)
	3.3.5 Special cases – Complete Behavioral Redefinition
	3.3.5.1 Complete Behavioral Redefinition(1) (CBR1)
	3.3.5.2 Complete Behavioral Redefinition(2) (CBR2)

	3.4 Discussion

	4. Coupling-based Analysis of Object-Oriented Programs
	4.1 Extended Coupling Definitions
	4.2 Coupling Sequences
	4.2.1 Type I Coupling Sequences
	4.2.2 Type II Coupling Sequences
	4.2.3 Type III Coupling Sequences
	4.2.4 Type IV Coupling Sequences
	4.2.5 Other Type of Coupling Sequences

	4.3 Coupling Variables and Coupling Sets
	4.4 Coupling Paths
	4.4.1 I-Def Paths
	4.4.2 I-Use Paths
	4.4.3 Transmission Paths

	4.5 The effects of inheritance and polymorphism on coupling
	4.6 Polymorphic coupling sequences and coupling sets
	4.6.1 Polymorphic Coupling Sequences
	4.6.2 Polymorphic Coupling Sets

	4.7 Coupling paths in object-oriented programs
	4.7.1 Non-Polymorphic Coupling Paths
	4.7.2 Polymorphic Coupling Paths
	4.7.2.1 Type 1 Polymorphic Coupling Paths
	4.7.2.2 Type II Polymorphic Coupling Paths
	4.7.2.3 Type III Polymorphic Coupling Paths
	4.7.3 Feasible and infeasible coupling sequences

	4.8 Summary

	5. A Set of Criteria for Testing Object-Oriented Programs
	5.1 Coupling Criteria
	5.1.1 Definitions
	5.1.2 All-Coupling-Sequences
	5.1.3 All-Poly-Classes
	5.1.4 All-Coupling-Defs/Some-Coupling-Uses
	5.1.5 All-Coupling-Uses/Some-Coupling-Defs
	5.1.6 All-Coupling-Defs-Uses
	5.1.7 All-Poly-Coupling-Defs-Uses

	5.2 Generation of Test Requirements

	6. Analyzing Coupling Properties of Object- oriented Programs
	6.1 Definitions
	6.2 Identifying Coupling Sequences
	6.3 Identifying Coupling Sets
	6.4 Instrumenting OO Programs for Coupling Analysis
	6.4.1 Coverage Mappings
	6.4.2 Instrumentation Requirements

	6.5 Instrumenting Java Programs
	6.5.1 Instrumentation Instructions
	6.5.2 An example
	6.5.2.1 Registration of Coupling Sequences
	6.5.2.2 Collection of use and definition information
	6.5.2.3 Identifying execution of coupling sequences

	6.6 Summary

	7. CBAT - Coupling-based Analysis Tool
	7.1 Objectives of CBAT
	7.2 Representations provided by CBAT
	7.2.1 Class Graph
	7.2.1.1 Method Graph
	7.2.2 Abstract Syntax Tree
	7.2.2.1 Intra-method Graph Representations
	7.2.2.2 Inter-method Graph Representations
	7.2.2.3 Analysis Data
	7.2.2.4 Control-flow information
	7.2.2.5 Data flow information
	7.2.2.6 Coupling-related information

	7.3 Architecture of CBAT
	7.3.1 CBAT Core
	7.3.1.1 Parse Tree Generator
	7.3.1.2 Class and Method Graph Generator
	7.3.2 Analysis Engine
	7.3.3 Instrumentation Engine

	7.4 Implementation

	8. Validation
	8.1 Experimental design
	8.1.1 Subject programs
	8.1.2 Test adequacy criteria
	8.1.3 Test data
	8.1.4 Injected Faults

	8.2 Conduct of Experiments
	8.2.1 Test oracle derivation
	8.2.2 Fault injection
	8.2.3 Test execution
	8.2.4 Result evaluation

	8.3 Results
	8.4 Analysis and Discussion
	8.4.1 Analysis of the coupling-based criteria
	8.4.2 Explanation of effects
	8.4.3 Effectiveness of the Coupling-based Criteria
	8.4.3.1 Details of the Hypothesis Tests
	8.4.4 Discussion

	8.5 Conclusion

	9. Contributions and Future Work
	9.1 Contributions
	9.2 Future Work
	9.2.1 Testing inter-method coupling sequences
	9.2.2 Specification and coupling-based testing of object-oriented programs
	9.2.3 Integration testing within class hierarchies
	9.2.4 Coupling-based testing of concurrent object-oriented programs
	9.2.5 Testing of reflective object-oriented programs
	9.2.6 Generation of test cases for coupling-based testing
	9.2.7 Metrics for coupling-based testing
	9.2.8 Mutation testing of object-oriented programs
	9.2.9 CBAT Enhancements
	9.2.10 XML-based program representations for testing and analysis
	9.2.11 Reverse engineering of software contracts



