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Abstract

COUPLING-BASED ANALYSIS OF OBJECT-ORIENTED SOFTWARE

Aynur Abdurazik, PhD

George Mason University, 2007

Dissertation Director: Jeff Offutt

Testing and maintenance of Object-Oriented (OO) software is expensive and dif-

ficult. Previous research has shown that complex relationships among OO software

components are among the key factors that make testing and maintenance costly and

challenging. Thus, measuring the relationships has become a prerequisite to develop

efficient techniques for testing and maintenance.

Coupling analysis is a powerful technique for assessing relationships among soft-

ware components. In coupling analysis, two components are coupled if any kind

of connection or relationship exists between them. The coupling nature is catego-

rized into different levels or types. Coupling analysis tries, by defining a theoretical

model, to capture all the attributes of the relationships among components of a given

program. It also quantifies the coupling levels by defining a set of measures. The theo-

retical model and the measurement set serve as a foundation for exercising complexity

analysis on various problems that are related to the interaction among components.

This research presents a theoretical model of OO coupling, quantitative analysis

techniques to measure coupling, engineering techniques to apply coupling to three

specific and well-known testing and maintenance problems, and empirical evaluations



0

based on a tool that was developed as part of this research.

The coupling measures are validated theoretically and empirically. Theoretically,

coupling measures are validated using a published unified coupling framework. Em-

pirically, the measures are applied to three well known problems and the results are

compared with published work in these areas.

The result is a collection of coupling measures that quantify basic connections for

different high level relationships. These measures are useful in finding solutions to

the three specific problems posed in this research. For two of the three problems,

Class Integration and Test Order (CITO) and Design Pattern Detection (DPD), this

research developed a simpler technique than previous research has arrived upon. For

the third problem, Change Impact Analysis (CIA), the resulting impact set from

using the proposed coupling measures was more complete than previous research has

computed.

The importance of this work is in defining couplings in a more comprehensive

way. Previous research only considered inheritance relationships. Considering all

kinds of relationships is important, because it allows reasoning at different levels of

abstractions with coupling measures.



Chapter 1: INTRODUCTION

Software engineering defines the collection of techniques that apply an engineering

approach to the construction and support of software products [FP97]. Engineering

disciplines apply methods that are based on models and theories. The scientific

method includes stating a hypothesis, designing and running an experiment to test its

truth, and analyzing the results. Underpinning the scientific method is measurement:

measuring the variables to differentiate cases, measuring the changes in behavior, and

measuring the causes and effects. Once the scientific method suggests the validity of a

model or the truth of a theory, measurement is continuously used to apply the theory

to practice. Measurements can be effective in making characteristics and relationships

more visible, in assessing the magnitude of problems, and in fashioning a solution to

problems [FP97].

Object-Oriented (OO) software construction uses objects to design applications

and computer programs. An object-oriented (OO) software consists of components

(objects) that interact with each other to carry out specified functionalities of a

software system. Principles of OO software development support reuse of software

components and easier development and maintenance through better modularity and

data encapsulation [CCHJ94]. However, dynamic binding, inheritance, and polymor-

phism increase the complexity of the relationships in the OO software. This increased

complexity of relationships has brought new challenges to integration, testing, and

maintenance of the OO software system. Software researchers and practitioners have

1
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addressed these problems by continually developing new techniques and tools, how-

ever, many of the techniques and tools are not based on rigorous measurements.

As Fenton and Pfleeger say, “methodological improvement alone does not make an

engineering discipline” [FP97]. Modeling and measuring the relationships among

components have become necessary and essential activities in finding solutions to the

emerged problems [FP97,LH93].

Coupling analysis is one of several techniques that model and measure the rela-

tionships among components in a software system. In coupling analysis, two compo-

nents are coupled if any kind of connection or relationship exists between them. The

coupling nature is often categorized into different levels or types. Coupling analysis

tries, by defining a theoretical model, to capture all the attributes of the relation-

ships among components of a given software program. It also quantifies the coupling

levels by defining a set of measures. The theoretical model and the measurement set

serve as a foundation for exercising complexity analysis on various problems that are

related to the interaction among components.

Deciding the order in which components are integrated and tested, computing the

impacts of changes to the system, and detecting design patterns in program source

are well known problems that directly depend on the analysis of relationships among

components in a system. Many studies have used coupling measurement to try to

solve the class integration and test order problem [BLW01,KGH+95b,TD97,BLW03,

BFL02] and change impact analysis [BWL99]. So far, there is no research that uses

coupling measures to detect design patterns. However, the coupling measures in

the these papers are not complete. A coupling analysis method should try to (1)

capture as many characteristics of relationships as possible, (2) distinguish among
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relationships not only according to the structure but also their level of abstraction,

(3) identify associations among different levels of relationships, and(4) define a unit to

measure the couplings. With these details, the coupling measures can be used to more

accurately solve problems that emerged from relationships among OO components.

If we do not precisely analyze and measure the relationships, the solutions will be

problematic regardless of the method employed. Of the previous research, the most

recent is by Briand et al. [BLW03]. They tried to address many of the problems in

the earlier papers, however in their research on the graph-based class integration and

test order problem, the number of distinct method calls from one class to another

is not computed. Instead, only the existence of connection between two classes are

considered. Moreover, research shows that the current set of coupling metrics do

not fully capture all of the code-visible dependencies that are important for impact

analysis [BWL99]. Researchers have tried find ways to detect patterns in source for

their importance in program understanding and reusing design experiences. Design

pattern detection is challenging for a number of reasons. A class can play multiple

roles in a specific design pattern. Thus, when a system has large number of classes, a

combinatorial explosion can occur in the detection process [TCSH06]. Furthermore,

the list of design patterns is continuously expanding. Whether coupling measures

be useful in finding improved solutions to design pattern detection has not been

addressed.



4

1.1 The Problem

The current research on modeling and measuring the relationships among software

components through coupling analysis is insufficient. Coupling measures are incom-

plete in their precision of definition and quantitative computation. In particular,

current coupling measures do not reflect the differences in and the connections be-

tween design level relationships and implementation level connections. Hence, the

way coupling is used to solve problems is not satisfactory.

1.2 Thesis Statement

Coupling measures that distinguish and connect design level relationships and imple-

mentation level connections can be used effectively to assess the magnitude of and to

fashion a solution to testing and maintenance problems.

1.3 Introduction to the Three Focus Problems

The basic theoretical results in this research, coupling-based analysis, have been ap-

plied to three specific engineering problems. Using the theory to solve three well stud-

ied problems demonstrates the power of this theory. Subsequent chapters describe,

in detail, how the theory is applied to the problems. The remainder of Chapter 1

introduces the concepts of the three sample problems: the class integration and test

order problem, change impact analysis, and design pattern extraction using coupling

measures. Figure 1.1 gives an overview of coupling-based analysis research and its

applications. Coupling-based source code analysis (CBASCA) starts with parsing

and analyzing the program source. Next, coupling measures are computed. Finally,
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the coupling measures are applied to class integration and test order, change impact

analysis, and design pattern detection. The measures can also be applied to other

software engineering problems.

«subsystem»

Class Integration and Test Order


«subsystem»

Change Impact Analysis


«subsystem»

Design Pattern Detection


«subsystem»

Future Work Problems


apply coupling

measures to


manipulates


computes


Source Code


Coupling Measures


CBASCA


Figure 1.1: Applications of the Coupling Model

1.3.1 Class Integration and Test Order Problem

Object-oriented software development tries to achieve high quality by applying in-

formation hiding, abstraction, modularization, and reuse concepts. As a result, OO

systems consist of classes that encapsulate concepts relative to some problem and

domain [Mey97]. These classes are developed and integrated gradually to form the

complete system.

One major problem in inter-class integration testing of object-oriented software

is to determine the order in which classes are integrated and tested. The class inte-

gration and test order is important for several reasons. First, it determines the order
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in which classes are integrated. Second, it impacts the use of test stubs and drivers

for classes and the preparation of test cases. Third, it determines the order in which

inter-class faults are detected.

The class integration and test order (CITO) problem is that of finding an optimal

order to integrate and test individual classes can be . The CITO problem is impor-

tant for several reasons [TD97]. First, it determines the order in which classes are

integrated. Second, it impacts the use of test stubs1and drivers for classes and the

preparation of test cases. Third, it determines the order in which inter-class faults

are detected. A solution for the CITO problem should have two goals:

1. minimize the total number of test stubs

2. minimize the total complexity of test stubs

1.3.2 Change Impact Analysis

Change is an inherent and necessary part of a software. The importance of change is

reflected in the distribution of software costs. Estimates show that 65-75% of total

software costs are subsumed in maintenance activities [Som95]. Software systems

change for two general reasons [War99]:

1. The environment in which a system operates is dynamic

2. Software development invariably introduces errors

As software systems become increasingly large and complex, it becomes more nec-

essary to predict and control the effects of software changes. Experience over the

1Test stubs are pieces of software that have to be built in order to simulate parts of the software

that are either not developed yet or have not yet been unit tested, but are needed to test classes

that depend on them.
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last three decades shows that making software changes without visibility into their

effects can lead to poor effort estimates, delays in release schedules, degraded software

design, unreliable software products, and premature retirement of software systems

[BA96].

Change impact analysis (CIA) is the task of identifying the potential consequences

of a change, or estimating what needs to be modified to accomplish a change. Change

impact analysis addresses the problem by identifying the likely ripple effects of soft-

ware changes and using this information to re-engineer the software system design

[BA96]. A ripple effect is caused by making a small change to a system, which can

affect many other parts [SMC74]. The purpose of impact analysis is to determine the

scope of change requests as a basis for accurate resource planning and scheduling,

and to confirm the cost/benefit justification.

There are two major technology areas for impact analysis: dependency analy-

sis and traceability analysis [BA96]. These complementary areas approach impact

analysis from quite different perspectives and each has advantages to enhancing the

potential of identifying software impacts.

Dependency analysis involves examining detailed dependency relationships among

entities (variables, logic, modules, etc.). It provides detailed evaluation of low-level

dependencies in code but does little for software objects at other levels. Dependency

analysis determines how different parts of a program interact, and how various parts

require other parts in order to operate correctly. A control dependency governs how

different routines or sets of instructions affect each other. A data dependency governs

how different pieces of data affect each other.

Traceability analysis involves examining dependency relationships among differ-

ent software objects. Although traceability covers many of the relationships among
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artifacts that a software project library or repository might store, these relationships

typically are not very detailed.

Coupling-based change impact analysis is in the category of dependency analysis.

1.3.3 Design Pattern Detection

A design pattern is a general repeatable solution to commonly occurring problems in

software design. It is a description or template for how to solve a problem that can

be used in many different scenarios. A design pattern is not a finished design that

can be transformed directly into code. Object-oriented design patterns typically show

relationships and interactions among classes or objects, without specifying the final

application classes or objects that are involved. Algorithms are not regarded as design

patterns, since they solve computational problems rather than design problems.

Design patterns can speed up the development process by allowing designers to use

structures that have been successful in previous projects. Effective software design

requires considering issues that may not become visible until later in the implemen-

tation after deployment, or when portions of the system are reused in other systems.

Reusing design patterns helps to prevent subtle issues that can cause major problems

and improves code readability for programmers and design architects who are familiar

with the patterns.

Often, software developers only understand how to apply certain software design

techniques to certain problems. However, these techniques are difficult to apply to a

broader range of problems. Design patterns provide general solutions, documented in

a format that does not require specifics to be tied to a particular problem. In addi-

tion, patterns allow developers to communicate using well-known names for software

interactions. Common design patterns can be improved over time, making them more

robust than single-use designs.
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Because most current software projects deal with evolving products consisting

of a large number of components, their architectures can become complicated and

cluttered. Design patterns can impose structure on the system through common ab-

stractions. Consequently, identifying implemented design patterns could be useful

for comprehending existing designs and provide information needed for refactoring

[Vok06]. Thus, design pattern identification from source code can help improve soft-

ware maintainability and reuse of designs.



Chapter 2: LITERATURE REVIEW

This section summarizes the related work. There is an increasing amount of research

in coupling-based analysis and testing of software. The subsections that follow de-

scribe the contributions in detail. The first subsection describes the coupling types.

The second subsection describes the coupling-based software metrics and precise mea-

surement. The third subsection describes the coupling-based testing techniques. The

fourth subsection describes the coupling-based software analysis techniques.

2.1 Coupling Background

Stevens et al. first introduced coupling in the context of structured development tech-

niques, and defined coupling as “the measure of the strength of association established

by a connection from one module to another” [SMC74]. Myers [Mye74] refined the

concept of coupling by presenting well-defined, though informal, levels of coupling.

Since his levels were neither precise nor prescriptive definitions, coupling could only be

determined by hand, leaving room for subjective interpretations of the levels. Other

researchers [TZ81,KH81,HB85,SB91] have used coupling levels or similar measures to

evaluate the complexity of software design and relate this complexity to the number

of software faults. El Amam et al. have established a similar correlation for predicting

faulty classes in object-oriented software [EMM01]. Fenton and Melton [FM90] devel-

oped a measurement theory that provides a basis for defining software complexity and

used hand-derived coupling measures to demonstrate their theory. They enhanced

10
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previous work in coupling by incorporating the number of interconnections between

modules into the measure and by considering the effects on coupling of return values

and reference parameters as well as input parameters.

Historically, module coupling was used as an imprecise measure of software com-

plexity. Jalote said that coupling is “an abstract concept and is as yet not quantifi-

able” [Jal91]. Offutt and Harrold [OHK93] extended previous work to reflect type

abstraction, and quantified coupling by developing a general software metric system

to automatically measure coupling. They offered precise definitions of the coupling

levels so that they can be determined algorithmically, incorporated the notion of di-

rection into the coupling levels, and accounted for different types of non-local variables

as found in newer programming languages. To precisely define the coupling levels,

they classified each call and return parameter by the way it is used in the module.

They used the classification of uses as computation-uses (C-uses) and predicate-uses

(P-uses) from data flow testing [FW88] and defined indirect-uses (I-uses). A C-use

occurs whenever a variable (or parameter) is used in an assignment or output state-

ment. A P-use occurs whenever a variable is used in a predicate statement. An I-use

occurs whenever a variable is a C-use that affects some predicate in the module. They

defined precise coupling levels between two modules A and B in the following list and

indicated which of the coupling levels are bidirectional and which are commutative.

0. Independent Coupling (commutative) - A does not call B and B does not call A,

and there are no common variable references or common references to external

media between A and B.

1. Call Coupling (commutative) - A calls B or B calls A but there are no pa-

rameters, common variable references or common references to external media

between A and B.
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2. Scalar Data Coupling (bidirectional) - A scalar variable in A is passed as an

actual parameter to B and it has a C-use but no P-use or I-use.

3. Stamp Data Coupling (bidirectional) - A record in A is passed as an actual

parameter to B and it has a C-use but no P-use or I-use.

4. Scalar Control Coupling (bidirectional) - A scalar variable in A is passed as

an actual parameter to B and it has a P-use.

5. Stamp Control Coupling (bidirectional) - A record in A is passed as an actual

parameter to B and it has a P-use.

6. Scalar Data/Control Coupling (bidirectional) - A scalar variable in A is passed

as an actual parameter to B and it has an I-use but no P-use.

7. Stamp Data/Control Coupling (bidirectional) - A record in A is passed as an

actual parameter to B and it has an I-use but no P-use.

8. External Coupling (commutative) - A and B communicate through an external

medium such as a file.

9. Non-Local Coupling (commutative) - A and B share references to the same

non-local variable; a non-local variable is visible to a subset of the modules in

the system.

10. Global Coupling (commutative) - A and B share reference to the same global

variable; a global variable is visible to the entire system.

11. Tramp Coupling (bidirectional) - A formal parameter in A is passed to B as an

actual parameter, B subsequently passes the corresponding formal parameter to

another procedure without B having accessed or changed the variable.
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Jin and Offutt later used couplings as a basis for integration testing [JO95,JO98].

They determined that the previous twelve-item ordered list contained more detail

than was needed for integration testing, thus combined coupling into four unordered

types:

• Call coupling is the same as in the previous levels.

• Parameter coupling refers to all parameter passing. This type combines

scalar data coupling, stamp data coupling, scalar control coupling, stamp con-

trol, scalar data/control coupling, stamp data/control coupling and tramp cou-

pling.

• Shared data coupling refers to procedures that both refer to the same data

objects. This type combines nonlocal coupling and global coupling.

• External device coupling refers to procedures that both access the same

external medium. This type is analogous to external coupling.

These were used to define formal integration testing criteria that required testing

to proceed through couplings from data definitions to data uses.

Chidamber and Kemerer [CK92] developed six design metrics for OO systems and

analytically evaluated the metrics against Weyuker’s [Wey88] proposed set of mea-

surement principles. They developed and implemented an automated data collection

tool to collect an empirical sample of these metrics at two field sites in order to

demonstrate their feasibility and suggested ways in which managers may use these

metrics for process improvement.

Briand et al. [BDW99] provided a standardized terminology and formalism for

expressing coupling measures in a consistent and operational manner. Based on their
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review of existing frameworks and measures for coupling measurement, they provided

a unified framework and classified all existing measures according to this framework.

The proposed coupling framework has the following six criteria:

1. The type of connection, i.e., what constitutes coupling

2. The locus of impact, i.e., import or export coupling

3. Granularity of the measure, the domain of the measure and how to count cou-

pling connections

4. Stability of server

5. Direct or indirect coupling

6. Inheritance: inheritance-based vs. noninheritance-based coupling, and how to

account for polymorphism, and how to assign attributes and methods to classes

The framework by Briand et al. is useful for the comparison, evaluation, and

definition of coupling measures in object-oriented systems. However, this framework

is not complete. It did not differentiate noninheritance-based relationships. Different

coupling measures represent different complexities of the relationships. Hence, the

framework should reflect this criteria as well.

Arisholm [Ari02] proposed dynamic coupling measures quantifying the flow of

messages between objects at runtime. His motivation for investigating dynamic cou-

pling was that (1) static coupling is not up to the task of measuring the scope of

a scenario; (2) static coupling analysis may include coupling that results from dead

code; and (3) static coupling metrics cannot measure polymorphism. He defined 12

dynamic coupling measures and explored their relationship with change proneness of

the classes. The result was that the dynamic coupling measures can indicate change
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proneness in classes. The comparison between static coupling and dynamic coupling

was left as future work.

2.2 Class Integration and Test Order

The class integration and test order problem has been addressed by several researchers

and several solutions have been proposed. The solutions can be categorized into

graph-based and genetic algorithm-based approaches. This section summarizes exist-

ing solutions and discusses their advantages and disadvantages.

In graph-based approaches, classes and their relationships in software are modeled

as object relation diagrams (ORD) or test dependency graphs (TDG). An ORD or

TDG is a directed graph G(V, E) where V is a set of nodes representing classes and

E is a set of edges representing the relationships among classes. The class integration

and test order problem is to find an ordering of nodes in the graph so that the classes

can be integrated and tested with minimum effort.

In most papers [BLW03,KGH+95a,TD97,TJJM00], the testing effort is estimated

by counting the number of test stubs that need to be created during integration

testing. This method assumes that all stubs are equally difficult to write. One

recent paper tries to consider test stub complexity when estimating the testing effort

[MCL03].

In the genetic algorithm-based approach [BFL02], inter-class coupling measure-

ments and genetic algorithms are used in combination to assess the complexity of test

stubs and to minimize complex cost functions.

Kung et al. [KGH+95a] were the first researchers to address the class test or-

der problem and they showed that, when no dependency cycles are present among
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classes, deriving an integration order is equivalent to performing a topological sort-

ing of classes based on their dependency graph – a well known graph theory prob-

lem. In the presence of dependency cycles, they proposed a strategy of identifying

strongly connected components (SCCs) and removing associations until no cycles

remain. When there is more than one candidate for cycle breaking, Kung et al.’s

approach chooses randomly. They mention that a possible alternative would involve

the use of the complexity of the associations involved in cycles.

Tai and Daniels proposed a number of properties for inter-class test ordering

[TD97]. They assumed that aggregation and inheritance relations do not form cycles,

but association relations may. Tai and Daniels defined a major and a minor level for

classes, and sorted classes according to these levels. First, classes are assigned major

level numbers according to the inheritance and aggregation relationships only. There

are no inheritance or aggregation edges between classes in the same major level. Be-

cause there are no cycles in the ORG when there are only inheritance and aggregation

relationships, the classes can have a topological order, and major level numbers are

assigned according to the reverse topological order of classes in the increasing order.

Then, within each major level, minor-level numbers are assigned based on the associa-

tion relationships only. At each major level, cycles may appear and must be broken in

order to apply topological sorting. In this case, first, strongly connected components

(SCCs) in a major level are identified, then each edge in a SCC is assigned a value,

called weight (e), which is defined as the sum of the number of incoming dependencies

of the origin node of e and the number of outgoing dependencies of the target node

of e. Edges with higher values are selected to break cycles. The hypothesis is that

removing edges with higher values will break more cycles. However, Briand et al.

[BLW03] showed this hypothesis is not always true. Another problem is that their



17

algorithm may break an association edge that crosses major levels but is not involved

in any cycles [BLW03].

Le Traon et al. assigned weights to each node in the ORD, then removed the in-

coming edges of the node with maximum weight [TJJM00]. This process is repeated

until no cycle remains in the ORD. To assign weights, they first used Tarjan’s algo-

rithm to identify strongly connected components. In each SCC, edges are partitioned

into four classes: (1) tree edges lead from a node to an unvisited node, (2) forward

edges are non tree-edges that go from a node to a descendent, (3) frond edges go from

a node to an ancestor, and (4) cross edges are the remaining edges. The weight of a

node is the sum of the number of incoming and outgoing frond edges.

Le Traon et al.’s approach is non-deterministic in two ways. First, different sets of

edges can be labeled as frond edges depending on the different starting node. Second,

the approach arbitrarily chooses a node when two or more nodes have the same weight.

Thus, different runs of the algorithm result in different outcomes.

Briand et al. [BLW01,BLW03] proposed a graph-based strategy for ordering classes

for testing that combines Tai and Daniels and Le Traon et al.’s approaches. They first

used Tarjan’s algorithm to identify strongly connected components (SCCs). Next,

weights are assigned to association edges in the SCCs. The weight of an edge is the

estimated number of cycles that the edge may be involved in. Let Gi(Vi, Ei) be a SCC

of graph G(V, E) and v1, v2 ∈ Vi, e ∈ Ei, and e = v1 → v2. The estimated weight

of edge e is weight(e) = (v1)in × (v2)out, where (v1)in is the number of incoming

dependencies of node v1 and (v2)out is the number of outgoing dependencies of node

v2. Then, the edge with the highest weight value is removed. These steps are repeated

until no SCC remains.
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Briand et al.’s approach has the advantage over Le Traon’s approach of not break-

ing inheritance and aggregation edges and also the weight computation for edges is

more precise than Tai and Daniels’ approach.

Subsequently, Briand et al. [BFL02] used a genetic algorithm and coupling metric

to try to break cycles by removing edges that will reduce the complexity of stub

construction. A genetic algorithm is a heuristic that mimics the evolution of natural

species in searching for the optimal solution to a problem. It is a search algorithm

that locates optimal binary strings by processing an initially random population of

strings using artificial mutation, crossover and selection operators, in an analogy with

the process of natural selection [Gol89]. Briand et al. conclude that composition and

inheritance relationships should never be removed since, according to their heuristic,

removal of these edges would likely lead to complex stubs. The complexity of stub

construction for parent classes is induced by the likely construction of stubs for most

of the inherited member functions [BLW01]; moreover, inherited member functions

must be tested in the new context of the derived class rather than the context of the

parent class [HM92]. Their experiment showed that genetic algorithms can be used

to obtain optimal results by using more complex cost functions and perform as well

as graph-based algorithms under similar conditions.

Malloy et al. developed a Class Ordering System that is driven by a parameter-

ized cost model [MCL03]. They used a strategy similar to Briand et al.’s graph-based

approach [BLW03]. They defined six types of edges, association, composition, de-

pendency, inheritance, owned element, and polymorphic. These edges are assigned

weights of (2, 2, 20, 5, 20, 20) based on their estimation of the cost of stub con-

struction for untested classes based on heuristics. For an ORD G = (V,E), where V

is a set of nodes representing classes and E is a set edges representing relationships
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among classes, their cost model C = 〈W, f(e), w(mx,y)〉 is a 3-tuple where W is a set

of weight assignments and f(e) and w(mx,y) are weight functions defined as:

W = {w1, w2, w3, w4, w5, w6} (2.1)

f : E → W (2.2)

for a given x, y ∈ V, mx,y = {(x, y) ∈ E} (2.3)

W = w(mx,y) = σe∈mx,yf(e) (2.4)

This cost model assigns values to the relationships among classes. When there is

a cycle, the edge with the smallest weight is removed from the strongly connected

component. When there is no cycle, the reverse topological sort of the nodes in the

ORD is the order for integration testing.

To summarize, the existing graph-based approaches use high level, course grained

estimates of test stub complexity. The GA approach must be run many times, greatly

complicating the process.

2.3 Change Impact Analysis

Logical ripple effect analysis [YCM78] is defined as identifying program areas that re-

quire additional maintenance activity to ensure their compatibility with the original

change. Yau et al. developed a technique for analyzing ripple effects for functional

programs from both logical and performance perspectives [YCM78]. Yau et al. used

error flow analysis to compute logical ripple effects. Error sources propagate across
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module boundaries and are used to measure potential error propagation in the sub-

sequent modules. All program variable definitions involved in an original change

represent primary error sources from which inconsistencies can propagate to other

program areas. Secondary error resources represent variables or control definitions

implicated through the use of a primary error source. Identification of affected pro-

gram areas is made by initially tracking each primary error source and its secondary

error sources within the changed module to a point of exit. At each point of exit,

a determination would be made as to which error sources propagate across module

boundaries. Propagated error sources then became primary error sources within the

subsequent modules. Tracing continues until no new secondary error sources are cre-

ated. The ripple effect computation is carried out in two functional stages: lexical

analysis and application of an algorithm for ripple effect computation.

Performance ripple effect analysis identifies modules whose performance may change

when software is modified. Yau et al. [YCM78] identified eight mechanisms that may

exist in large-scale programs by which changes in performance as a consequence of

a software modification are propagated throughout the program: parallel execution,

shared resources, interprocess communication, called modules, shared data structures,

sensitivity to the rate of input, execution priorities, and abstractions. These mecha-

nisms are linked to 13 performance attributes, which are associated with performance

requirements. The performance ripple effect is analyzed by tracing the changes to

performance requirements.

Yau et al. also proposed an expression to estimate the complexity of program

modification and to evaluate various modifications. A programmer’s effort required

to perform a modification np on module Mj taking into account all its ripple effects
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is estimated by the following expression:

G(Qj, Bjp) +
∑

Mi∈ψjp

{D(Qi) + F (Qi, Eip) + G(Qi, Eip)}, (2.5)

where Qi is the complexity of module Mi, D(Qi) is the amount of programmer’s effort

to understand Mi that is a function of Qi, G(Qj, Bjp) is the programmer’s effort for

making the modification np, F (Qi, Eip) and G(Qi, Eip) is the programmer’s effort for

examining Eip and making the necessary change due to np’s ripple effect in Mi.

Their research did not establish quantitative measures for the terms in equation

2.5.

Kung et al. [KGH+94] defined change types and provided methods to identify

changes and their impacts. They formally modeled the impacts of class relationship

changes, but not the impacts of variable and method related changes. Since this

research was done in the early 1990s, some features of Java are not included. In

particular, adding or deleting “import” statements were omitted.

Lee et al. developed an analysis technique for object-oriented software [LOA00].

The technique includes definitions for object-oriented dependency graphs, a set of

algorithms that evaluate proposed changes on object-oriented software, a set of object-

oriented change impact metrics to quantitatively evaluate the change impacts, and a

proof of concept tool that computes the impacts of changes.

Briand et al. [BWL99] investigated the use of coupling measurements to identify

classes likely to contain ripple effects when another class is being changed. Their

study showed that aggregation and invocation coupling measures are related to a

higher probability of changes. This indicates that these coupling measures should

be good indicators of ripple effects and can be used in a decision model for ranking
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classes according to their probability to contain ripple effects. Experimental results

showed that their coupling-based model indicates class pairs with higher ripple effect

probability. However, a substantial number of ripple effects were not covered by

the selected highly coupled classes. Their conclusion is that it is very likely that the

current set of coupling measures, as defined in the literature, does not fully capture all

the code-visible dependencies that are important for impact analysis, e.g., inherited

aggregation relationships. They suggest expanding the coupling measure set and

building models derived not only from code, but all sorts of requirement and design

artifacts, thus providing additional information for coupling measurement.

Ryder and Tip [RT01] transformed source code edits into a set of atomic changes

, as shown in Table 2.1, and proposed breaking source code edits into unique sets of

atomic changes. CM captures changes to a method body, including (i) adding a body

to a previously abstract method, (ii) removing the body of a non-abstract method

and making it abstract, and (iii) making any number of statement-level changes inside

a method body. The LC category “abstracts” any kind of source code change that

affects dynamic dispatch behavior. Some source code changes correspond to more

than one atomic change. For example, the addition of an empty method may imply

several atomic changes, of types AM and LC. Here, the AM change denotes the

added method as a node in the call graph of P’, and the LC change(s) specifies the

change(s) in dynamic dispatch behavior caused by this method addition. LC changes

can be caused by adding or deleting methods, and by adding or deleting inheritance

relations.

Ryder and Tip ignored source code level changes that have no direct semantic

impact apart from controlling visibility, including changes to access rights of classes,

methods, and fields, addition/deletion of comments, and addition/deletion of import
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Table 2.1: Types of Changes (I)

AC Add an empty class
DC Delete an empty class
AM Add an empty method
DM Delete an empty method
CM Change body of a method
LC Change virtual method lookup
AF Add a field
DF Delete a field

statements.

They have also developed a tool, Chianti, that analyzes changes to Java pro-

gram and how they impact test cases [RST+04]. Chianti analyzes two versions of

an application and decomposes their difference into a set of atomic changes. Change

impacts are reported in terms of affected (regression or unit) tests whose execution

behavior may have been modified by the applied changes. For each affected test,

Chianti also determines a set of affecting changes that were responsible for the test’s

modified behavior. Isolating changes that induce the failure of one specific test from

those changes that only affect other tests can be used as a debugging technique in

situations where a test fails unexpectedly after a long editing session.

Tsantalis et al. [TCS05] proposed a probabilistic approach to estimate how prone

an object-oriented design is to being changed by evaluating the probability that each

class of the system will be affected when new functionality is added or when existing

functionality is modified. When a system exhibits a high sensitivity to changes, the

corresponding design quality is questionable. The extracted probabilities of change

can be used to assist maintenance and to observe the evolution of stability through

successive generations and identify a possible “saturation level” beyond which any
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attempt to improve the design without major re-factoring is impossible. The proposed

model has been evaluated on two multi-version open source projects. The process

has been fully automated by a Java program, and statistical analysis shows improved

correlation between the extracted probabilities and actual changes in each of the

classes in comparison to a prediction model that relies simply on past data.

Wilkie and Kitchenham [WK00] empirically investigated the effects of class cou-

plings on changes made to a commercial C++ application over a period of two and

half years. They used the Chidamber and Kemerer CBO metric [CK92] and investi-

gated whether classes with high CBO are more likely to be affected by ripple changes.

This hypothesis was not proven true, but CBO was found to be an indicator of change-

proneness in general. They also investigated whether classes that are affected by the

same ripple change are coupled to at least one another. The conclusion was that CBO

cannot account for all changes and other dependencies are needed to to be considered

to explain the remaining ripple effects.

Arisholm [Ari01] proposed and validated a measurement framework for assessing

the changeability of object-oriented software. Arisholm viewed changeability as a two-

dimensional quality characteristic, related both to the effort to implement changes

and to the resulting quality of the software after the changes. Arisholm defined

changeability and proposed three alternative approaches for measuring changeability:

Structural Attribute Measurement (SAM), Change Profile Measurement, and Bench-

marking. In his definitions, changeability can only be compared between two systems,

and changeability decay can be compared between two successive versions of a soft-

ware.

Chaumun et al. [CKKL02,CKK+00] computed change impacts among classes to

assess the changeability of object-oriented software. They define changeability as
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a program’s ability to absorb a change. A system easily absorbs a change if the

number of impacted components is low. They defined a change impact model at the

conceptual level and mapped it onto the C++ language. Then, the change impact

model is used to assess the changeability of software system. This approach was

validated empirically by making one change to a telecommunications system. They

defined and used these terms in their research: changeability, change impact, the

ability to absorb a change, using design metrics as indicators of changeability.

They defined a change to a system as a modification to any component in the

system. A component refers to either a class, a method, or a variable. A change

in a class may affect other classes if other classes are connected to the changed class

through some links. They defined four types of links: association(S), aggregation

(G), inheritance (H), and invocation (I). The absence of an operator between two

links, a special notation used in Boolean algebra, is used to mean an intersection. The

“+” and “∼” operators are used to represent an union and a negation. Aggregation

is defined as “a form of association that specifies a whole-part relationship between

two classes.” When methods defined in one class are being invoked by methods in

other another class, this is referred to as invocation. For association, they used the

definition in [BRJ98]. For the local impact of changes, they introduced a link called

“local” (L).

They defined impact separately for each type of change. For example, the impact

of a method signature change is the average number of impacted classes by a change

to each method’s signature. They indicate that this definition cannot be used for

other changes. In their experiment, the software under experiment was parsed each

time to analyze a change.
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2.4 Design Pattern Detection

Before design patterns appeared in the literature, design pattern notions were de-

scribed using clichés. Rich and Waters called “commonly used combinations of ele-

ments with familiar names” as clichés [RW88]. This project developed an intelligent

assistant for building reusable and well structured software. This project included a

tool called Recognizer, which analyzed source code in various languages and derived a

representation in a form that could be compared to the clichés stored in a knowledge

base. The Recognizer part of the Programmer’s Apprentice was similar to today’s

automated design pattern detection techniques.

The first attempt to automatically detect design patterns was performed by Brown

[Bro96], in which Smalltalk code was reverse-engineered in order to detect four well-

known patterns from the catalog by Gamma et al. [GHJV01]. The algorithm was

based on information retrieved from class hierarchies, association and aggregation

relationships, as well as the messages exchanged between classes of the system.

Prechelt and Krämer [PK98] developed a system that could identify a number of

design patterns that are present in C++ source code. OMT class diagrams repre-

senting the patterns were inspected to build Prolog rules aiding their recognition. As

a result, such an approach required the definition of new Prolog rules when a novel

design pattern had to be detected.

According to Wendehals [Wen03], a combination of static and dynamic analysis

is desirable to efficiently detect design patterns. In terms of UML notations, this

requires the analysis of class diagrams in order to recover the static information and

the examination of sequence or collaboration diagrams for the dynamic information.

Heuzeroth et al. [HHHL03] first applied static analysis to obtain a candidate set of
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pattern instances and then performed dynamic analysis of this set. However, this ap-

proach heavily depends on the characteristics of each pattern: For every new pattern,

one has to come up with a specific algorithm for computing the static candidates and

then set up the rules that will enable the dynamic analysis. Consequently, this is

prohibitive for the development of an extensible automated design pattern detection

methodology.

To examine how useful a design pattern recovery tool could be in program un-

derstanding and maintenance, Antoniol et al. [ACPF01] developed a technique to

identify structural patterns in a system. In the first stage metrics are used to identify

possible pattern candidates. In the second stage, shortest path constraints are gener-

ated from the shortest paths between roles in the patterns. Finally, for some patterns

where method calls are important, delegation constraints are generated. The above

three-stage pattern recovery approach aims to reduce the exploration space. The final

pattern instances are extracted based on structural information. Their technique has

been tested on small to medium size public domain systems. As the authors also

note, the main disadvantage of the approach is low precision (many false positives).

Balanyi and Ferenc [BF03] use the Columbus [Fro07] reverse engineering frame-

work to extract an abstract semantic graph and DPML (Design Pattern Markup

Language) to describe the characteristics of pattern roles. The pattern mining al-

gorithm tries to match roles present in the DPML files with classes in the abstract

semantic graphs. In this approach, the search space is reduced by filtering based on

structural information. The technique has been tested on four medium to large size

public domain projects. Their study revealed that the more the description of the

patterns is simplified, the more false positives appear. Since the algorithm performs

exact matching, this approach may not be able to identify modified pattern versions.
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A different solution proposed by Costagliola et al. [CLD+05], uses a graphical

format as an intermediate representation. Design patterns are expressed in terms

of visual grammars and a design pattern library is built. A visual language parsing

technique is used to detect patters in the system under study by simultaneously

comparing the results of parsing with the existing library. The main advantage of

this approach is that the process can be directly visualized; however, the approach

has not been evaluated on real systems since the tool does not integrate with existing

source-code to class-diagram extractors.

The methods described above are not able to detect modified versions of patterns

that deviate from their standard representation. This poses a serious limitation on

the applicability of these techniques to real software systems.

Bergenti and Poggi [BP00] developed a method in which UML diagrams are exam-

ined to propose modifications to the software architecture that would lead to design

patterns. Automated detection of design patterns in the system is part of this pro-

cess. The input to their tool is the UML design (class and collaboration diagrams) of

the software system in XMI (XML Metadata Interchange) format. Both static and

dynamic analysis is performed by exploiting a knowledge base consisting of Prolog

rules that describe the main characteristics of the patterns to obtain the final set of

pattern instances. New Prolog rules have to be composed to introduce new design

patterns to the tool. Furthermore, no evaluation results for real software systems are

presented in this study.

More recently, a method for detecting design patterns through so-called “finger-

printing” has been proposed by Gueheneuc et al. [GSZ04]. This approach reduces

the search space by identifying classes playing certain roles in design motifs using

metrics based on their external attributes. Actual pattern realizations are found with
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structural matching in the next phase. The efficiency of such an algorithm depends

strongly on the learning samples that compose the repository of design motif roles.

Albin-Amiot et al. [AACGJ01] developed a technique that claims to identify mod-

ified versions of design patterns. Using their pattern detection subsystem “PTIDEJ”

the authors examine the problem as a constraint satisfaction problem. This prob-

lem is formulated by examining the pattern’s abstract model and the source code

under consideration. The set of the variables and the constraints for the variables

are derived from the pattern’s abstract model while the domain for the problem are

the entities present in the source code of the examined system. The source code

microarchitectures that are identical or similar to the microarchitecture defined by

the design pattern are identified by a tool called PALM. The main drawback of the

approach is that a new abstract model (for the constraint satisfaction problem) has

to be embedded in the tool in order to achieve the detection of a new pattern.

Tonella and Antoniol [ACPF01] used concept analysis based on class relationships.

No knowledge base of design pattern representations are used in their application. The

design patterns present in a system are inferred directly from the system under study

by finding recurrent groups of classes. The advantage of this approach is that it is

easily extensible since new patterns can be easily discovered. One disadvantage of this

approach is computational complexity, which is reduced by considering up to order

3 class-context. That means that class sequences of length up to 3 are considered to

build a concept.

Smith and Stotts [SS] present a different approach to automated design pattern

detection based on the notion of elemental design patterns. Elemental design patterns

[SS02] are base concepts on which more complex design patterns are built. The main

power of an approach based on the notion of elemental design patterns is the ability



30

to detect a design pattern after “refactorings” [FBB+99] have been applied to it.

Such elemental design patterns are identified at a first level and then these findings

are composed to identify actual design patterns. In order to represent relationships

between objects directly, methods, and fields, a formal language called rho-calculus

is used. The same language is used to formalize both the design patterns as well

as the system under consideration. Next, an automated theorem prover is used to

detect instances of patterns in the system. However, it is not clear which heuristic

is used to combine the existing predicates in order to achieve this result. Obviously,

the computational complexity of examining all the possible combinations, i.e., when

no heuristic is applied, is prohibitive. The applicability of this technique is presented

with an illustration of the steps required to detect the Decorator pattern in a small

author-made system.

Vokác [Vok] tried to find a relation between the presence of specific design patterns

in software and the number of defects. A reverse engineering tool called “Understand

for C++” parses the source code and produces structural metadata, which is stored

in a database. Patterns are then recovered through database queries [Vok06] that

correspond to the structural signature of each pattern. Both the recall (few false

negatives) and precision (few false positives) are quite good. A large commercial

system is used to perform the validation of the technique. Recall has been evaluated

on a random sample of classes using statistical analysis.

Tsantalis et al. [TCSH06] proposed a graph vertices similarity scoring based

methodology to detect design patterns. To detect design patterns in source, they

reduced the search space by constructing subsystems according to the inheritance

hierarchy. Furthermore, they identified nine characteristics for patterns and used un-

weighted directed graphs to represent each characteristic. As a result, subsystems
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and patterns can have a number of graph representations depending on how many

characteristics they have. Finally, they used a graph similarity algorithm for each pair

of subsystem and pattern graphs to detect patterns. They evaluated their method

on three open-source projects, and several patterns were missed. They explain that

those missed patterns lack certain pattern requirements to be considered as patterns,

although the documents claim that they are patterns.



Chapter 3: COUPLING MODEL

“When you can measure what you are speaking about and express it in

numbers, you know something about it; but when you cannot measure,

when you cannot express it in numbers, your knowledge is of a meagre

and unsatisfactory kind: it may be the beginning of knowledge, but you

have scarcely, in your thoughts, advanced to the stage of science.”

Lord Kelvin

“You cannot control what you cannot measure.”

De Marco, 1982

“You cannot control who you do not understand.”

Mao

Software testing and maintenance are generally recognized to consume the major-

ity of resources in many software organizations [BBC+]. Testing and maintenance of

Object-Oriented (OO) software are costly and expensive [Bei90,AN91,HC90]. Previ-

ous research has shown that complex relationships among OO software components

are among the critical factors that make testing and maintenance difficult and costly

[KGH+95c]. Therefore, analyzing and measuring software component relationships

has gained increasing importance [FP97,LH93].

32
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Coupling analysis is a powerful tool for analyzing interactions among components

in software. In coupling analysis, two components are coupled if a connection or

relationship exists between them. The coupling nature is categorized into different

levels. Coupling analysis tries to capture all the attributes of a software that are

related to relationships among components by defining a theoretical model, and to

quantify the coupling levels by defining a set of measures. The theoretical model

and the measurement set serve as a foundation for exercising complexity analysis on

various problems that are related to the interaction among components.

A large number of coupling measures have been defined for object-oriented (OO)

systems. Previous research has revealed limitations of existing OO coupling mea-

sures in terms of their capability to assist certain testing and maintenance tasks

[BDW99,BFL02,BWL99]. As these coupling measures can be considered to be de-

fined mostly using low level connections, we investigate how high level relationship

information can be used to enhance the coupling measures in the context of testing

and maintenance activities. Such coupling measures could be used to further refine

the solutions to testing and maintenance problems. This research presents a compre-

hensive methodology to perform coupling analysis of OO software. In particular, we

explore different relationships and connections between OO components and define

coupling measures accordingly. Moreover, we separate coupling measures for different

relationships so that our measures are more comprehensive with respect to interaction

characteristics of components.

This research is based on several concepts including UML relationships, high level

relationship, low level connection, and message passing. UML relationships appear in

the Unified Modeling Language (UML) class diagrams. High level relationships refer

to the design level abstract relationships among OO classes. This research considers
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UML relationships as high level relationships. Low level connections are at the source

code level and they are reducible to mathematical formal notation. Message passing

is a low level connection in which classes or objects send messages to each other to

request a service.

Our approach relies on the following intuition. First, message passing can occur

for different UML relationships. Second, separate coupling measures for different

relationship makes the measures useful in more situations.

This chapter makes the following contributions:

• It presents both high level and low level connection analysis to identify the

couplings that need to be measured for testing and maintenance activities; in

particular, for class integration and test order, change impact analysis, and

design pattern detection activities.

• It presents a set of coupling measures based on UML and other relationships.

These measures include the measurement of return types and parameters of

method invocations.

The rest of the chapter is organized as follows. Section 3.1 analyzes the object-

oriented approach, including UML relationships and OO program coupling mecha-

nisms. Section 3.2 formally defines coupling measures for this research, justifies the

measures by identifying their mathematical properties, and presents a format that

associates coupling measures to their base relationship types. Section 3.3 provides

Java source code patterns for identified couplings.
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3.1 Object-Oriented Approach

Understanding the object-oriented approach is the first step towards defining mea-

sures for that approach. The study of the object-oriented approach results in object-

oriented concepts such as class, object, attributes, method, message passing, inheri-

tance, and other relationships.

Terminology varies among object-oriented programming languages, however, all

object-oriented languages share some common concepts. The characteristics of the

object-oriented approach considered in this research include the concepts of message

passing and relationships. Message passing is a common communication mechanism

among objects. Whenever an object requests a service that another object provides,

it sends a message to the other object. A relationship is a general term covering the

specific types of logical connections among classes and objects. Message passing and

relationships are different, yet they are associated with each other. Relationships are

realized through message passing. This research uses UML concepts for relationships

and Java language mechanisms for message passing. We study their characteristics

in Sections 3.1.1 and 3.1.2.

3.1.1 Object-Oriented Relationship Types for Classes and

Objects

In the context of object-oriented (OO) development, the Unified Modeling Language

(UML) [Obj05] has become the de-facto standard language for analyzing and design-

ing software systems. UML relationships are connections between model elements

that add semantics to a model. UML relationships are used to define the structure be-

tween model elements. Examples of relationships include associations, dependencies,

generalizations, realizations, and transitions. Associations indicate that instances of
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one model element are connected to instances of another model element. Dependen-

cies indicate that a change to one model element can affect another model element.

Generalizations indicate that one model element is a specialization of another model

element. Realizations indicate that one model element provides a specification that

another model element implements. Transitions trigger state change and flow between

activities.

Variations of these categories of relationships can be created by setting properties

and using keywords. A property is a typed element that represents an attribute of

a class. We have identified the following four types of variations of relationships for

classes and objects that are relevant to our research [Gom00,RJB04].

1. Association. An association specifies a semantic relationship that can occur

between typed instances. An association relationship is a structural relationship

between two model elements that shows that objects of one classifier (actor,

use case, class, interface, node, or component) connect and can navigate to

objects of another classifier. An association relationship has three variations:

association, aggregation, and composition.

• An association is a relationship between two classifiers, such as classes or

use cases, that describes the reasons for the relationship and the rules that

govern the relationship.

• An aggregation relationship depicts a classifier as a part of, or as subor-

dinate to, another classifier. Aggregation represents “is part of” relation-

ships. An engine is part of a plane, a package is part of a shipment, and an

employee is part of a team. Aggregation is a specialization of association,

specifying a whole-part relationship between two objects. In aggregation,

the whole does not manage the life cycle of its parts.
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• A composition relationship represents wholepart relationships and is a form

of aggregation. A composition relationship specifies that the lifetime of the

part classifier depends on the lifetime of the whole classifier. Composition

is a stronger form of aggregation where the whole and parts have coincident

lifetimes, and it is common for the whole to manage the life cycle of its

parts.

2. A dependency relationship is a relationship in which changes to one model ele-

ment (the supplier) impact another model element (the client). A dependency

implies the semantics of the client are not complete without the supplier. There

are several types of dependencies: abstraction, substitution, and usage.

• An abstraction relationship is a dependency between model elements that

represents the same concept at different levels of abstraction or from dif-

ferent viewpoints. Abstraction relationships can be added to a model in

several diagrams, including use-case, class, and component diagrams. If an

abstraction element has more than one client element, the supplier element

maps into the set of client elements as a group. For example, an analysis-

level class might be split into several design-level classes. The situation is

similar if there is more than one supplier element. In summary, an abstrac-

tion relationship is between model elements at two different development

stages. Therefore, we do not consider abstraction relationships in source

code level coupling analysis.

• A usage relationship is a type of dependency relationship in which one

model element (the client) requires another model element (the supplier)

for full implementation or operation. The model element that requires the

presence of another model element is the client, and the model element
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whose presence is required is the supplier.

• A substitute dependency declares that the source classifier may be substi-

tuted in a place where the target classifier has been declared as a type

[Obj05]. The substitute dependency has similarities with “implements”

but a substitute is not formally a specialization. This research does not

consider the substitution relationship.

3. A generalization relationship is a relationship in which one model element (the

child) is based on another model element (the parent). Generalization rela-

tionships are used in class, component, deployment, and use case diagrams. A

generalization is a taxonomic relationship between classifier and a more specific

classifier. Each instance of the specific classifier is also an indirect instance of

the general classifier. Thus, the specific classifier inherits the features of the

more general classifier. A generalization relates to a specific classifier to a more

general classifier, and is owned by the specific classifier.

4. A realization relationship is a relationship between two model elements, in which

one model element (the client) realizes the behavior that the other model ele-

ment (the supplier) specifies. Several clients can realize the behavior of a single

supplier. Realization relationships can be used in class diagrams and component

diagrams.

• An InterfaceRealization or Implementation is a specialized realization re-

lationship between a Classifier and an Interface. This relationship signifies

that the realizing classifier conforms to the contract specified by the In-

terface. A classifier that implements an interface specifies instances that

conform to the interface and to any of its ancestors. A classifier may
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implement a number of interfaces.

3.1.2 Object-Oriented Connection Types Among Classes

The UML relationships described in Section 3.1.1 are abstract. They define the

structure between model elements. They are visible at the design level but not directly

visible at the implementation level. In other word, relationships are elements of

a design model, but except for inheritance and realization, they are not part of a

programming language. Table 3.1, which is adapted from Briand et al. [BDW99],

gives a summary of connections that will occur among components using program

constituents.

3.1.3 Metamodel

We briefly summarize the object-oriented approach by means of the metamodel in

Figure 3.1. A metamodel is a precise definition of the constructs and rules needed for

creating semantic models [Met07]. A model is an abstraction of phenomena in the

real world, and a metamodel is yet another abstraction, highlighting properties of the

model itself. A model is said to conform to its metamodel like a program conforms

to the grammar of the programming language in which it is written.

We define any relationship that occurs because of exceptions to be a separate

category because of the importance of exception handling. Exception handling deals

with abnormal situation. The goal of exception handling mechanisms is to make

programs robust and reliable. Incompletely or incorrectly handling of some abnormal

situations causes failures in systems [PRT00]. If exceptions are not used correctly,

they can slow down a program, as it takes memory and CPU time to create, throw,

and catch exceptions. If they are overused, they make the code difficult to read and
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Table 3.1: Types of Connections

# Client item Server item Description

1 attribute a of a class ci class cj, cj 6= ci class cj is the type of a
2 method m of a class ci class cj, cj 6= ci class cj is the type of a

parameter of m, or the re-

turn
type of m

3 method m of a class ci class cj, cj 6= ci class cj is the type of a local
variable of m, or the return
type of m

4 method m of a class ci class cj, cj 6= ci class cj is the type of a
parameter of a method
invoked by m

5 method m of a class ci attribute a of a
class cj, cj 6= ci m references a

5.1 class ci attribute a of a
class cj, cj 6= ci ci references a

6 method m of a class ci method m’ of a
class cj, cj 6= ci m invokes m′

6.1 class ci method m’ of a
class cj, cj 6= ci ci invokes m′

7 class ci class cj, cj 6= ci high level relationships
between classes, such as
“uses” and “consists-of”

8 class ci class cj, cj 6= ci ci extends cj

9 class ci interface cj, cj 6= ci ci implements cj

10 class ci exception handler cj handles an exception
cj, cj 6= ci thrown by ci

frustrating for the programmers using the API [Dos03].

3.2 Object-Oriented Coupling Measures

A large number of Object-Oriented coupling measures exist in the literature. Informal

definitions of terminologies and metrics in coupling analysis brings about ambiguities
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Figure 3.1: A Metamodel for Object-Oriented Systems

in interpreting their meaning, thus makes the coupling computation difficult. This

also makes it difficult to understand how different coupling measures relate to one

another. By using standardized terminologies and formalism, we can express coupling

measures in a consistent and unambiguous manner. Considering how hard it is to

determine how such measures relate to one another and for which application they

can be used, Briand et al. provided a unified framework for OO coupling measure-

ment. This framework comes with a standardized terminology and formalism so that

measures can be expressed in a consistent and operational manner [BDW99].
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Briand et al. investigated the properties of couplings and proposed five mathe-

matical properties. The motivation behind defining mathematical properties is that

a measure must be supported by some underlying theory of the internal quality at-

tribute it measures. The five proposed coupling properties are defined as follows. Let

Coupling be a candidate measure for coupling of a class or an object-oriented system.

Relationships capture the connections between classes the respective coupling mea-

sure is focused on. As the coupling measure can measure import or export coupling

(or both), OuterR(c) will denote the relevant set of relationships from or to class c

(or both). Let InterR(C) = ∪c∈COuterR(c) be the set of interclass relationships in

system C. The five coupling properties are:

Coupling.1: Nonnegativity. The coupling [of a class c | of an object-oriented

system C] is nonnegative:

[Coupling(c) ≥ 0 | Coupling(C) ≥ 0]

Coupling.2: Null value. The coupling [of a class c | of an object-oriented system

C] is null if [OuterR(c) | InterR(C)] is empty:

[OuterR(c) = ∅ ⇒ Coupling(c) = 0

| InterR(C) = ∅ ⇒ Coupling(C) = 0]

Coupling.3: Monotonicity. Let C be an object-oriented system and c ∈ C be

a class in C. Class c is modified to form a new class c′ which is identical to c

except that OuterR(c) ⊆ OuterR(c′), i.e., some relationships are added to c.

Let C ′ be the object-oriented system which is identical to C except that class c
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is replaced by class c′. Then

[Coupling(c) ≤ Coupling(c′) | Coupling(C) ≤ Coupling(C ′)]

Coupling.4: Merging of classes. Let C be an object-oriented system, and c1, c2 ∈
C two classes in C. Let c′ be the class which is the union of c1 and c2. Let C ′

be the object-oriented system which is identical to C except that classes c1 and

c2 are replaced by c′. Then

[Coupling(c1) + Coupling(c2) ≥ Coupling(c′)| Coupling(C) ≥ Coupling(C ′)]

Coupling.5: Merging of unconnected classes. Let C be an object-oriented sys-

tem, and c1, c2 ∈ C two classes in C. Let c′ be the class which is the union of c1

and c2. Let C ′ be the object-oriented system which is identical to C except that

classes c1 and c2 are replaced by c′. If no relationships exist between classes c1

and c2 in C, then

[Coupling(c1) + Coupling(c2) = Coupling(c′)|Coupling(C) = Coupling(C ′)]

The unified coupling framework proposed by Briand et al. [BDW99] has the fol-

lowing six criteria:

1. The type of connection, i.e., what constitutes coupling. Choosing a type of

connection implies choosing the mechanism that constitutes coupling between

two classes.

2. The locus of impact, i.e., import or export coupling

3. Granularity of the measure: the domain of the measure and how to count cou-

pling connections
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4. Stability of server

5. Direct or indirect coupling

6. Inheritance: inheritance-based vs. noninheritance-based coupling, and how to

account for polymorphism, and how to assign attributes and methods to classes

Each of the above criterion is provided with a range of options [BDW99].

Many different decisions have to be made when defining a coupling measure –

these decisions have to be made with respect to the goal of the measure and by

defining an empirical model based on clearly stated hypotheses. The framework is

applied to select existing measures or to derive new measures for a given measurement

goal. The six criteria of the framework are necessary to consider when specifying a

coupling measure, but they are not sufficient. In addition to the criteria, a coupling

measure should be theoretically validated using the five mathematical properties and

empirically validated using experiments [BDW99].

3.2.1 Derivation of Object-Oriented Coupling Measures

This section applies the unified OO coupling framework to derive new measures for

testing and maintenance activities. The application is performed in the following two

steps:

1. For each criterion of the framework, choose one or more of the available options

basing each decision on the objective of measurement. The criteria must be

dealt with in the introduced order because a decision made for one criterion can

restrict the available options for subsequent criteria.

2. Choose the existing measures accordingly or, if none exists to match the deci-

sions made, construct new coupling measures. Then use coupling properties to
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guide the definition and theoretical validation of new measures.

In the context of applying this framework, the measurement goal must at least

specify the development phase at which measurement is to take place and the under-

lying hypothesis which drives measurement.

The specific goals are to compute an optimal class integration and test order, to

carry out change impact analysis, and to detect design patterns in the source code.

The measurement takes place in the testing and maintenance phases of software

development, and it is driven by the following hypotheses:

Hypothesis 1: OO relationships among classes in an OO system can be quanti-

fied through coupling measures.

Hypothesis 2: An impact set of a change can be computed by performing cou-

pling analysis.

Hypothesis 3: Coupling measurement help optimize class integration and test

order.

Hypothesis 4: Coupling measurement can be used in design pattern detection.

Hypothesis 5: Coupling measures can be automatically computed.

Hence, for each criterion of the framework, the following six decisions are made.

1. Type of connection (criterion 1): all types of connections (options 1 through 10

of Table 3.1).

Justification: Hypothesis 1 alone needs all types of connections.

2. Locus of impact (criterion 2): Count both import and export coupling.

Justification: High import coupling of a class indicates that the class strongly
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depends on other classes and their methods and attributes [BDW99]. High ex-

port coupling of a class means that the class is used heavily by other classes and

their methods and attributes. Both import and export couplings are therefore

relevant in conjunction with the following activities:

• Class integration and test order computation: in order to compute the test

stub complexity for each class, we must know about the clients that use

the class as a server.

• Change impact analysis: to understand how likely a class or a method is

to be changed, we must know about the services the class uses. Likewise,

to understand how a change in a class or in a method affects others, we

must know about the clients that use the class as a server.

• Design pattern detection: each pattern consists of several collaborating

participants. A participant of a pattern is identified through how it col-

laborates with other participants. Therefore, it is essential to know both

its import and export couplings.

3. Granularity (criterion 3):

a) Required domain is “class”.

Justification: All hypotheses are tested at the class level.

b) Count both individual and distinct connections (options C, D and F of

Table 3.2).

Justification: We need to measure distinct connections for CITO and in-

dividual connections for CIA. Any connection to a class should also be

considered, because this is relavant in testing and maintenance. The more
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often a method is invoked, the more effort is likely to be required to mod-

ify the invoking method when modification of the invoked method takes

place. However, frequency of invocation a method do not make a difference

in creating test stub for that method.

4. Stability of server (criterion 4): only count connections to unstable classes (op-

tion 1).

Justification: In general, stable classes are not included in testing and mainte-

nance. Hypothesis 1, 4, and 5 can be tested on stable classes. However, we do

not consider them in this research.

5. Indirect or direct connections (criterion 5): Count both types of connections.

Justification: there is no clear rationale for choosing one particular type of

connection. All the available options should be investigated. In particular, con-

sidering indirect connections is important for connections through inheritance

hierarchies. If class A inherits from B and B inherits from C, then A is cou-

pled with C through inheritance. Not considering this can result in incorrect

analysis.

6. Inheritance (criterion 6):

a) Count both inheritance-based and noninheritance-based coupling and dis-

tinguish between these types of couplings (option III). Furthermore, we

classify noninheritance-based couplings into the following categories:

(2) Interface implementation-based

(3) Abstract class implementation-based

(4) Composition-based

(5) Aggregation-based
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(6) Association-based

(7) Dependency-based

(8) Exception-based

Justification: We do not know whether inheritance-based or noninheritance-

based coupling is more important. Therefore, we need to measure all

relationship types of coupling separately to investigate their relative im-

portance.

b) Account for polymorphism.

Justification: For Hypothesis 2, any method that is used by a class may

give rise to a modification to the class. For Hypothesis 3, any method that

is used by a class should be included in the test stub. Therefore, we must

include all methods that can be possibly invoked through polymorphism

and dynamic binding.

c) Only methods implemented in a class contribute to the coupling of the

class. Justification: We must choose this option because we count inheritance-

based coupling separately.

We have chosen all connection types. However, some connection types reflect the

relationships. For example, connection type 1 could implement an aggregation or

composition relationship. Connection types 2, 3, and 4 are in fact usage dependency

relationships. Connection types 7 through 10 also reflect higher level relationships.

Therefore, connection types 1-4 and 7-10 can be combined with criterion 6. This

means that we measure connection types 5 and 6 for eight different relationships.

Connection types 5 and 5.1 measures the number of attributes of class cj referenced

in ci, either in a method of ci or at class level. We added connection type 5.1 to
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Table 3.2: Options for Counting Connections at the Attribute and Method

Level

# Description Import Coupling Output Coupling
Example Example

A) count individual connections for each method, the for each attribute the
number of references number of references
to attributes to the attribute

B) count number of distinct for each method, the for each attribute the
items at the other end of the number of attributes number of methods
connections referenced that reference the

attribute
C) add up the number of the total number of the total number of

connections counted as in A) attribute references references to
for each method or by methods in the attributes of the
attribute of the class class class

D) add up the number of add up the number of add up or for each
connections counted as in B) attributes referenced attribute of the class:
for each method or attribute by each methods of the number of meth-
of the class the class ods that reference

the attribute
E) count number of distinct the number of the number of

items at the end of attributes referenced methods referencing
connections starting from or by the methods of attributes of
ending in methods or the class the class
attributes of the class

F) for each class c, count the the number of classes the number of classes
number of other classes to which have an which have a method
which there is at least one attribute that is that reference an
connection referenced by a attribute of class c

method of class c

the original table because Java allows programmers to reference an attribute in the

scope of a class. Connection types 6 and 6.1 measure the number of methods of

class cj invoked in ci, either in a method of ci or at class level. Connection type

6.1 was added because Java allows programmers to invoke a method in the scope



50

of a class. Method invocation needs further discussion. There are four different

types of method calls: (1) method calls with parameters and a return value, (2)

method calls with parameters and without a return value, (3)method calls without

parameters and with a return value, (4) method calls without parameters and without

a return value. Each have different impacts in computing testing effort and change

impact. To differentiate different method invocations, we measure the following two

items in addition to counting number of method invocations: (1) the total number

of return values that class ci receives from class cj (through method invocation), and

(2) the total number of parameters that are sent from class ci to cj (through method

invocation).

Section 3.2.2 formally defines these coupling measures.

3.2.2 Formal Definition of Coupling Measures

This section introduces the concept of coupling base type (CBT) to represent the

abstract relationships in coupling measures.

DEFINITION 1 (Coupling Base Types).

Let CBT be a set that includes coupling base types. CBT = {inheritance,

abstract class implementation, interface implementation, composition, ag-

gregation, association, dependency, exception}.

Each coupling base type is formally defined using the definitions in Appendix A,

and assigned values to be differentiated in computation. The values do not indicate

a quantitative judgement on the base types.

1. Inheritance Coupling Base (InhrCB) for a coupling measure between classes ci

and cj is defined as follows:
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Let ci, cj ∈ UC.

InhrCB(ci, cj) =

{
256 (cj ∈ Parents(ci)) ∧ (cj ∈ RC)
0 cj 6∈ Parents(ci)

}

2. Abstract Class Implementation Coupling Base (AbsCB) for a coupling measure

between classes ci and cj is defined as follows:

Let ci, cj ∈ UC.

AbsCB(ci, cj) =

{
128 (cj ∈ Parents(ci)) ∧ (cj ∈ AC)
0 cj 6∈ Parents(ci)

}

3. Interface Implementation Coupling Base (IfimCB) for a coupling measure be-

tween classes ci and cj is defined as follows:

Let ci, cj ∈ UC.

IfimCB(ci, cj) =

{
64 (cj ∈ Parents(ci)) ∧ (cj ∈ IC)
0 cj 6∈ Parents(ci)

}

4. Composition Coupling Base (CompCB) for a coupling measure between classes

ci and cj is defined as follows:

Let ci, cj ∈ UC.

CompCB(ci, cj) =

{
32 cj ∈ Compositions(ci)
0 cj 6∈ Compositions(ci)

}

5. Aggregation Coupling Base (AggrCB) for a coupling measure between classes ci

and cj is defined as follows:

Let ci, cj ∈ UC.
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AggrCB(ci, cj) =

{
16 cj ∈ Aggregations(ci)
0 cj 6∈ Aggregations(ci)

}

6. Exception Coupling Base (ExcpCB) for a coupling measure between an excep-

tion throwing class ci and an exception handling class cj is defined as follows:

Let ci, cj ∈ UC.

ExcpCB(ci, cj) =

{
8 cj ∈ Exceptions(ci)
0 cj 6∈ Exceptions(ci)

}

7. Association Coupling Base (AssoCB) for a coupling measure between classes ci

and cj is defined as follows:

Let ci, cj ∈ UC.

AssoCB(ci, cj) =

{
4 cj ∈ Associations(ci)
0 cj 6∈ Associations(ci)

}

8. Dependency Coupling Base (DpdnCB) for a coupling measure between classes

ci and cj is defined as follows:

Let ci, cj ∈ UC.

DpdnCB(ci, cj) =

{
2 cj ∈ Dependencies(ci)
0 cj 6∈ Dependencies(ci)

}

For each coupling base type, CBTi, we define sets, multisets, and coupling mea-

sures. A multiset can be formally defined as a pair (A,m) where A is some set and

m : A → N is a function from A to the set N = {1, 2, 3, ...} of positive natural

numbers. The set A is called the underlying set of elements. For each a in A the
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multiplicity (that is, number of occurrences) of a is the number m(a). The concept

of a multiset is a generalization of the concept of a set. A multiset is a set if the

multiplicity of every element is one [Sta97]. Many systems have been designed to

support multisets in their data model (whether relational or object-oriented). The

use of this type of data structure is motivated by its ability to manage quantities

[Roc]. In the context of this research, sets are used for the distinct counting option

and multisets are used for the individual counting option. The following definitions

differentiate sets and multisets by using subscripts D and T . D stands for distinct and

is used with sets, and T stands for total and is used with multisets.

DEFINITION 2 (Attribute Reference Coupling).

Let ci, cj ∈ C. The set of attributes of cj that are referenced by ci is

denoted by AD and is formally defined as

AD = {a|a ∈ AI(cj)∧a ∈ AR(m)∧m ∈ MI(ci)}∪{a|a ∈ AI(cj)∧a ∈ AR(ci)}

(3.1)

The multiset of attributes of cj that are referenced by ci is denoted by AT

and is formally defined as

AT = [[a|a ∈ AI(cj)∧a ∈ AR(m)∧m ∈ MI(ci)]]][[a|a ∈ AI(cj)∧a ∈ AR(ci)]]

(3.2)

Distinct attribute reference coupling between classes ci and cj is denoted

by Vd,

Vd = |AD|

and total attribute reference coupling between classes ci and cj is denoted
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by Vt,

Vt = |AT |

DEFINITION 3 (Method Invocation Coupling).

The set of methods of cj that are invoked by ci is denoted by MD and is

formally defined as

MD = {m|m ∈ (SIM(ci, cj) ∪ PIM(ci, cj)} (3.3)

The multiset of methods of cj that are invoked by ci is denoted by MT

and is formally defined as

MT = {m|m ∈ (SIM(ci, cj) ∪ PIM(ci, cj)} (3.4)

Distinct method invocation coupling between classes ci and cj is denoted

by Md.

Md = |MD|

Total method invocation coupling between classes ci and cj is denoted by

Mt.

Mt = |MT |

DEFINITION 4 (Method Return Value Coupling).

The set of returned values by methods in MD is denoted by RVD and is

formally defined as

RVD = {rv|rv ∈ RV (m) ∧m ∈MD} (3.5)

The multiset of returned values by methods in MT is denoted by RVT
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and is formally defined as

RVT = {rv|rv ∈ RV (m) ∧m ∈MT } (3.6)

Distinct return value coupling between classes ci and cj is denoted by Rd.

Rd = |RVD|

Total return value coupling between classes ci and cj is denoted by Rt.

Rt = |RVT |

DEFINITION 5 (Method Parameter Coupling).

The set of parameters of methods in M is denoted by PD and is formally

defined as

PD = {p|p ∈ Par(m)) ∧m ∈MD} (3.7)

The multiset of parameters of methods in M is denoted by PT and is

formally defined as

PT = {p|p ∈ Par(m)) ∧m ∈MT } (3.8)

Distinct method parameter coupling between classes ci and cj is denoted

by Pd.

Pd = |PD|

Total method parameter coupling between classes ci and cj is denoted by

Pt.

Pt = |PT |
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Analysis of the measures with respect to Briand’s mathematical properties of cou-

plings [BDW99] shows that measures with individual counts do not violate any prop-

erties, but measures with distinct counts violate property 5, merging of unconnected

classes. This is summarized in Table 3.3. Measures with distinct counts are necessary

in CITO problem analysis because only distinct elements used by other classes are

considered in constructing a stub for a class. Therefore, we keep these measures and

will consider the validity of those mathematical properties in the future.

Table 3.3: Mathematical Properties of Coupling Measures

Nonnega- Null Merging Merging of
Measure Monotonicity of Unconnected

tivity value Classes Classes

Vd X X X X
Vt X X X X X
Md X X X X
Mt X X X X X
Rd X X X X
Rt X X X X X
Pd X X X X
Pt X X X X X

3.2.3 A Unified Representation of Coupling Measures

We have now defined coupling base types and measures for each base type. The

formal definition of a coupling between two classes ci and cj in a system is a tuple:

CP (ci, cj) = 〈CBT, V,M, R, P 〉

where CBT is a finite set of coupling base types, V represents the number of
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public variables declared in cj that are directly used by ci, M represents the number

of public methods of cj that are called by ci, R represents the number of return types

that appear in M , and P represents the number of parameters that appear in M .

To keep the coupling base type and the corresponding measures connected, we use

matrix and a dot notation in our coupling representation. If a system has n unstable

classes, we construct an n × n adjacency coupling matrix, where n is the number of

unstable classes. A cell entry of the matrix, cpij, represents the couplings between

classes ci and cj. This coupling is an import coupling for ci and an export coupling

for cj.

The following equation uses a “dot” notation to represent a coupling measure

(CM) for couplings between two classes ci and cj:

CM(ci, cj) = CBT.V.M.R.P (3.9)

where ci and cj represent two classes that are coupled together, ci being a client and

cj a server. CBT is a coupling base type indicator with the values

CBT =





256 when coupling is based on inheritance

128 when coupling is based on abstract class implementation

64 when coupling is based on interface (implementation)

32 when coupling is based on composition

16 when coupling is based on aggregation

8 when coupling is based on exception

4 when coupling is based on association

2 when coupling is based on dependency

(3.10)

Equation 3.10 assigns different values to CBT to distinguish different coupling

types in our measure so that they can be analyzed and used methodically when

needed. The dot notation is used to indicate that the five measures are independent
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but related. For example, if CBT is an aggregation, the V and M measures indicate

the number of attribute references and number of method calls under the aggregation

relationship. Furthermore, the R and P measures indicate the number of return types

and the number of parameters under the method calls in this relationship. When two

classes are connected through more than one base coupling types, the overall coupling

measure is the sum of the individual coupling measures.

After all couplings are measured in the form of equation 3.10, the total incoming

coupling of a class c from k client classes (d1...dk) is denoted as cmcin
, and is computed

as one measure as follows:

cmcin
= {

k∑
i=1

CM(di, c) | di, c ∈ C}

=
k∑

i=1

CBTdi,c.

k∑
i=1

Vdi,c.

k∑
i=1

Mdi,c.

k∑
i=1

Rdi,c.

k∑
i=1

Pdi,c

= CBTin.Vin.Min.Rin.Pin (3.11)

and the set contains all incoming coupling base types is denoted as Rcin
, and is

computed as follows:

Rcin
= {CBTdi,c | di, c ∈ C, i = 1...k} (3.12)

The total outgoing coupling of a class c to k server classes (d1...dk) is denoted as



59

cmcout , and is computed as one measure as follows:

cmcout = {
k∑

i=1

CM(c, di) | c, di ∈ C}

=
k∑

i=1

CBTc,di
.

k∑
i=1

Vc,di
.

k∑
i=1

Mc,di
.

k∑
i=1

Rc,di
.

k∑
i=1

Pc,di

= CBTout.Vout.Mout.Rout.Pout (3.13)

and the set contains all outgoing coupling base types is denoted as Rcout , and is

computed as follows:

Rcout = {CBTc,di
| c, di ∈ C, i = 1...k} (3.14)

The total coupling base type set for class c is denoted as Rc,

Rc = Rcin
∪Rcout (3.15)

Finally, the set of total incoming coupling base types, Rin, of the system is equal to

the set of total outgoing coupling base types, Rout, and denoted as total coupling base

type set R.

Rin =
n⋃

j=1

{CBTdi,cj
| cj, di ∈ C, i = 1...k} (3.16)

Rout =
n⋃

j=1

{CBTcj ,di
| cj, di ∈ C, i = 1...k} (3.17)

R = Rin = Rout (3.18)

Next, we will explain how we use this form to quantitatively represent each cou-

pling type through examples.
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3.2.4 A Simple Example

The following is a sample implementation of the Adapter pattern from the “Gang of

Four” book [GHJV01].

// Adapter pattern -- Structural example

class Client

{

public static void main(String args[])

{

// Create adapter and place a request

Target target = new Adapter();

target.request();

}

}

// "Target"

public interface Target

{

public void request();

}

// "Adapter"

class Adapter implements Target
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{

private Adaptee adaptee = new Adaptee();

public void request()

{

// Possibly do some other work

// and then call specificRequest()

adaptee.specificRequest();

}

}

// "Adaptee"

class Adaptee

{

public void specificRequest()

{

System.out.println("Called specificRequest().");

}

}

Output from running Client class:

Called specificRequest().

Table 3.4 shows the couplings for each pair of classes. For example, this table

indicates that there is an interface implementation based coupling from Adapter to

Target, i.e., Adapter implements the Target interface. Furthermore, it indicates that
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Table 3.4: Couplings in Object Adapter Pattern Structure

Classes Client Target Adapter Adaptee Rcout

Client 4.0.1.0.0 4.0.1.1.0 {4}
Target {}

Adapter 64.0.1.0.0 32.0.2.1.0 {64, 32}
Adaptee {}

Rcin
{} {4, 64} {4} {32} {4, 32, 64}

within this relationship, there is a method invocation with no return values and

parameters.

3.3 Java Source Code Patterns for Object-Oriented

Couplings

We chose Java programs for our source code coupling analysis. Guéhéneuc and Albin-

Amiot noticed that there is a discontinuity between object-oriented modeling and

programming languages, and provided definitions and Java code patterns for associa-

tion, aggregation, and composition relationships [GAA04]. We used the code patterns

from their paper to identify association, aggregation, and composition coupling base

types. The code patterns for other coupling base types are based on our programming

knowledge and experience. The following subsections give details of code patterns for

each coupling base types.
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3.3.1 Java Source Code Pattern for Association Coupling

Association Coupling refers to couplings that occur between two classes through mes-

sage passing. The following sample code contains the patterns of Association Cou-

pling. There are two classes A and B. Class A has two methods, method1() and

method3(); class B has one method, method2(). The first parameter coupling be-

tween class A and B occurs in A.method1(B b). Here a reference to a variable of

type B is passed to method1(B b) and the method2() of class B is invoked. A second

parameter coupling occurs in A.method3(). Here a local variable of type B is defined

in method3(), then a method of class B is invoked through this local variable.

public class A {

public void method1( B b ) {

b.method2();

}

public void method3() {

B anotherB = new B():

anotherB.method2();

}

}

public class B {

public void method2() {

...

}

}
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In summary, association coupling occurs in two situations. The first is when a

parameter is passed to an instance of a class, and then the receiver class invokes a

method of the parameter. The second is when a class is instantiated and used inside

the methods of a class.

3.3.2 Java Source Code Pattern for Aggregation Coupling

Aggregation coupling occurs between classes A and B when the definition of class A

contains instances of class B, and A does not manage the lifecycle of the instances of

B.

public class A {

private B b; //aggregation

public A( B b ) {

this.b = b;

}

public void method1() {

this.b.method2();

}

}

public class B {

public void method2() {

...

}

}

The following classes also represent a pattern of aggregation coupling:
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public class A {

private List listOfBs;

public void method3() {

((B) listOfBs.get(0)).method2();

}

}

public class B {

public void method2() {

...

}

}

Aggregation coupling happens in two situations. First, when a class is the type

of a class variable of another class. Second, when a container variable of a class has

elements that have the type of another class.

3.3.3 Java Source Code Pattern for Composition Coupling

Composition coupling occurs between classes A and B when the definition of class A

contains instances of class B, and A manages the lifecycle of the instances of B.

public class A {

private B b = new B();

public void method1(){

this.b.method2();

}

}
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public class B {

public void method2() {

...

}

}

Composition coupling happens in two situations. The first is when a class is the

type of a class variable of another class, the class variable is instantiated through the

new operator, and the methods of the class used as the type are called. The second

is when a container variable of a class has elements that are the type of another class,

and the methods of the class used as the type are called. The following is an example

of the second case.

public class A {

private List listOfBs;

private void init() {

for (int i = 1; i < 10; i++)

listOfBs.add(new B());

}

public void method3() {

((B) listOfBs.get(0)).method2();

}

}

public class B {

public void method2() {

...

}

}
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3.3.4 Java Source Code Pattern for Usage Dependency Cou-

pling

In UML class diagrams, dependency relationships in a Java application connect two

classes to indicate that there is a connection between the two classes, and that the

connection is more temporary than an association relationship. A dependency rela-

tionship indicates that the consumer class does one of the following: (1) temporarily

uses a supplier class that has global scope, (2) temporarily uses a supplier class as a

parameter for one of its operations, (3) temporarily uses a supplier class as a local

variable for one of its operations, or (4) sends a message to a supplier class.

Java has three types of use. One is that class A uses a variable of type B, as in

examples 1.1 through 1.3; second is that class A directly uses a variable that is defined

in class B, as in example 2; third is that class A directly invokes a static method of

class B, as in example 3. The examples are taken from the implementation of the

ATM system, which is provided by Briand and his colleagues [BFL02].

Example 1.1 shows that class ATMApplet uses an object of type Money by passing

it in a method call. Example 1.2 shows that class ATM uses a Money type object

as a return value. Example 1.3 line 7 shows that the parameter amount, which is an

object of Money type, is used as a parameter in a method call. Example 1.3 line 10

shows that the parameter amount which is an object of Money type is assigned to a

local variable, currentTransactionAmount. Here the whole object is used. If classes

A and B are coupled through this kind of relationship, the structure of class B is

not used at all. Only an object of class B type is used in its entirety. Hence, any

change to the internal structure and content of B, for example, a variable change, or

a method change, will not impact A. However, a change to the class name will have

an impact, because it is used in A. Also, class B must exist to test A.
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Example code 1.1

public class ATMApplet extends Applet implements Runnable {

...

public void run() {

while (true) {

Money initialCash = _theATM.startupOperation();

_theATM.serviceCustomers(initialCash);

}

}

...

}

Example code 1.2

public class ATM {

...

public synchronized Money startupOperation() {

...

return _operatorPanel.getInitialCash();

}

}

Example code 1.3

public class Bank {

...

public int initiateWithdrawl

( int cardNumber, int PIN, int ATMnumber,
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int serialNumber, int from,

Money amount,

Money newBalance /* return value */,

Money availableBalance /* returnValue */) {

...

if (_availableBalance[_currentTransactionAccount ].less(amount))

return Status.INSUFFICIENT_AVAILABLE_BALANCE;

...

_currentTransactionAmount = amount;

}

}

Example 2 shows that class ATM directly uses the NO CARD variable of class

CardReader. In this case, the NO CARD variable is a public static final variable,

which serves as a constant. Only public static final variables can be used in this

manner. This is similar to the traditional global coupling, and it is measured with the

attribute reference coupling measures Vd and Vt.

Example code 2

public class ATM {

...

public void serviceCustomers( Money initialCash ) {

...

while (_state == RUNNING ) {

int readerStatus = CardReader.NO_CARD;

}

}



70

...

}

Example 3 shows that class Session directly calls the chooseTransaction() method of

class Transaction. The chooseTransaction() method is a public static method. Only

public static methods can be used in this manner.

Example code 3

public class Session {

...

public void doSessionUseCase() {

...

_currentTransaction =

Transaction.chooseTransaction(this, _atm, _bank);

}

...

}

3.3.5 Java Source Code Pattern for Generalization (Inheri-

tance) Coupling

Generalization is also called Inheritance. It occurs when one class inherits from

another. In Java, we identify generalization/inheritance relationships through the

“extends” keyword.

public class A {

public void method1(){

}
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}

public class B extends A {

public void method2() {

...

}

}

In this example, class A is a generalization of class B. In other words, class B extends

from class A. Class A can be an abstract class or a regular class. When class A

is an abstract class, this relationship forms an abstract class implementation type

coupling, and then class A is a regular class. Thus, the inheritance relationship forms

an inheritance coupling.

Analyzing inheritance requires us to consider several issues:

• How much of the super class is inherited by the subclass? It seems that we

cannot treat all inheritance as the same. The amount of content that a subclass

inherits from its superclass should affect how we find optimal test orders and

carry out our change impact analysis.

• If a super class has an aggregation, composition, or association relationship with

other classes, do subclasses have the same relationship with those classes? The

following code is an example:

public class WithdrawalTransaction extends Transaction {

public int getTransactionSpecificsFromCustomer() {

_fromAccount =
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_bank.chooseAccountType( "withdraw from", _atm );

...

}

}

The bank and atm variables are defined in the superclass Transaction, and

they form aggregation relationships in class pairs {Transaction,ATM} and

{Transaction, Bank}.

• It seems that the super() method makes a difference in this issue. For example,

in the following sample code, the WithdrawalTransaction class calls the super()

method of the Transaction class. The things to consider are whether With-

drawalTransaction has its own objects of Session, ATM, and Bank. When an

object is created, the Java virtual machine allocates enough space for all the

object’s instance variables, which include all fields defined in the object’s class

and in all its superclasses. A subclass inherits only accessible members of its

superclasses – and only if the subclass does not override or hide those accessible

members. A class’s members are the fields and methods actually declared in

the class, plus any fields and methods it inherits from superclasses. A subclass

does not inherit fields with private access specifier. As a result, the methods

declared in a subclass can not directly access those private fields. Despite this,

those fields are still part of the instance data of a subclass object. A superclass’s

constructor can explicitly be invoked using the super() statement.

public class Transaction {

public Transaction(Session session, ATM atm, Bank bank) {
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_session = session;

_atm = atm;

_bank = bank;

_serialNumber = ++_lastSerialNumberAssigned;

_newBalance = new Money();

_availableBalance = new Money();

}

}

public class WithdrawalTransaction extends Transaction {

public WithdrawalTransaction(Session session,

ATM atm, Bank bank) {

super( session, atm, bank );

}

}

This research counts the not-overridden methods and attributes in inheritance

coupling. In abstract class implementation, the implemented abstract methods are

counted in addition to the not-overridden methods and attributes. When a super

class has an aggregation, composition, or association relationship with other classes,

if a subclass can access and does not redefine those members of superclass that define

these relationships, then subclasses have the same relationships as their superclasses.
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3.3.6 Java Source Code Pattern for InterfaceRealization Cou-

pling

InterfaceRealization Coupling between a class and an interface occurs when the class

implements the interface. InterfaceRealization is identified through the “implements”

keyword.

public interface A {

public void method1();

}

public class B implements A {

public void method1()

{

...

}

}

In this example, class A is an Interface, and class B implements the methods that

are specified in class A. The interface based coupling measures measure the number

of implemented methods and their return types and parameters.

3.3.7 Java Source Code Pattern for Exception Coupling

We define exception coupling between two classes to be when one class throws an

exception and another class handles it. Exceptions occur in three situations: pro-

gramming errors, client code errors, and resource failures. Java defines Checked and

Unchecked exceptions to handle abnormal situations. Checked exceptions inherit from
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the Exception class and has to be handled by the client code either in a catch

clause or by forwarding it outward with the throws clause. Unchecked exceptions

are RuntimeExceptions that also inherit from the Exception class. However,

they get special treatment and are not required to be handled by the client code.

A checked exception thrown by a lower layer is a forced contract on the invoking

layer to catch or throw it. Checked exceptions can also break encapsulation. For

example, in the following code

public List getAllAccounts() throws

FileNotFoundException, SQLException {

...

}

the method getAllAccounts() throws two checked exceptions. The client of this

method has to explicitly deal with the implementation-specific exceptions, even if it

has no idea what file or database call has failed within getAllAccounts(), or has

no business providing filesystem or database logic. As a result, exception handling

forces an inappropriately tight coupling between the method and its callers.

There are three ways for a class to be coupled with an Exception handling class.

One is through the “throws” keyword, another is through the “throw” keyword, and

the last is through the “catch” statement.

public class A {

public void method1() throws UserException1 {

...

}

public void method2( boolean a, boolean b) {
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if ( a <> b )

throw UserException2;

}

}

public class B {

public void foo() {

A a = new a();

boolean x,y;

try {

...

a.method1( x, y );

}

catch (UserException1 ue) {

...

}

}

}

public class UserException1 extends Exception {

...

}

public class UserException2 extends Exception {

...

}

The “throws” and “throw” keywords can be used together in one method as in

the following example:
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public class Foo {

public void execute() throws BuildException {

super.execute();

if (path == null) {

throw new BuildException

("Must specify ’path’ attribute");

}

execute("/sessions?path=" + URLEncoder.encode(this.path));

}

}



Chapter 4: PROOF OF CONCEPT TOOL: JCAT

The purpose of the Java Coupling Analysis Tool (JCAT) is to analyze the structure

and components of software packages written in Java, so that the individual object-

oriented couplings among classes in the package can be identified automatically. This

will allow the user to repair, debug, and modify a piece of software as needed.

JCAT was developed in Java using the JBuilder software application develop-

ment tool. JCAT collaborates with a few other software applications to compute

couplings. Figure 4.1 shows the system context diagram of JCAT. A system context

diagram shows data flows between the main application and the other entities and

abstractions with which it communicates. System context diagrams were developed

to help understand the boundaries of systems [Gom00].

As shown in Figure 4.1, JCAT takes the absolute pathname of a Java Code pack-

age as an input argument, and asks the JavaParser to generate abstract syntax trees

(ASTs) for each class file in the package. JavaParser is generated by the ANother Tool

for Language Recognition system (ANTLR) [Par] from the Java grammar. ANTLR

is a language tool that provides a framework for constructing recognizers, compil-

ers, and translators from grammatical descriptions containing Java, C#, or C++

actions. ANTLR provides support for tree construction, tree walking, and transla-

tion. ANTLR helps to build abstract syntax trees (ASTs) by providing grammar

annotations that indicate what tokens are to be treated as subtree roots, which are

to be leaves, and which are to be ignored with respect to tree construction. The

78
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Figure 4.1: Context Diagram of JCAT

ASTs are saved as ASCII text files in the AST Files folder. JCAT reads the AST

file of a Java class, then extracts information about inheritance, variables, method

definitions, method calls, and variable uses for each class. The extracted information

is stored in the Microsoft Access database tables. The database schemas are described

in Section 4.3. According to the definitions of the couplings, we formulated queries

for each coupling level. JCAT sends these queries to the database to compute the

couplings, and reformats the query results into tabular forms. Finally, JCAT writes

the coupling tables either in ASCII text files in the ASCII Text Files folder or in

Microsoft EXCEL Spreadsheets, at the user’s direction.
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Figure 4.2: The Main User Interface of JCAT.

4.1 JCAT User Interface

Figure 4.2 shows JCAT’s main screen. There are seven tabs in JCAT’s user in-

terface: Main, Parameter, External/File, Common/Global/Shared, Inheri-

tance, All Couplings, and Total. The Main tab is shown in Figure 4.2; it lets the

user enter a package to be analyzed, select the desired coupling level(s), choose the

presentation format of the computed coupling(s), and determine where to save the
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computation results. The user can either enter the pathname of the target Java source

code package or browse to the target. JCAT can compute four levels of couplings.

The user can select which couplings to compute by choosing from the checkboxes;

any subset or all four can be chosen. The Record choice gives the user the option

of either finding the existence of, or computing the number of occurances of a cou-

pling between two classes. These choices are called “Names,” “Binary,” and “Count.”

“Names” and “Binary” choices will lead to computation of the existence of a coupling.

The difference between “Names” and “Binary” options is that with the “Names” op-

tion, the existence of a coupling between two classes will be shown with the name of

the coupling for easy vision, where as with the “Binary” option, the existence of a

coupling between two classes will be shown with the number “1”. With the “Count”

option, JCAT computes all the instance couplings for each coupling level. The Save

to option allows the user to save the coupling results to either ASCII text files or

MS EXCEL spreadsheets. In either case, the coupling data is saved in a tabular

format. The table rows and columns both represent file names. Each table entry has

the coupling information between the two files. Finally, the “Run” button starts the

computation, and the “Exit” button terminates JCAT.

After the target Java source code package is analyzed, the Parameter tab shows

the parameter coupling result among the classes. The External/File, Common/

Global/Shared, and Inheritance tabs show the external, common, and inheritance

couplings. The All Couplings tab shows all couplings together in one table. The

Total tab shows the total number of each coupling for each class and for the whole

package.
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Figure 4.3: Class Diagram of Package coupling

4.2 JCAT Design

There are two packages in JCAT: coupling, the main package, and query, a subpackage

of coupling. Figure 4.3 shows the class diagram for coupling. The coupling package

is responsible for accepting the input, parsing the Java source code, invoking the

methods of classes in the query package to extract coupling information, formatting

the coupling results for presentation, and exporting the results to an output file and

user interface. The following paragraphs describe each class in coupling.

The query package is responsible for computing the summary tables that are

described in Section 4.3. Before explaining the responsibilities of each class, we present

the abstract syntax tree (AST) nodes of Java classes that are used by JCAT in
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Figure 4.4: AST Nodes for Coupling Computation

computation.

Figure 4.4 (b) shows the AST nodes that JCAT pays particular attention to.

Figure 4.4 (a) shows the tree structure of a name space. Since every node in Figure

4.4 (b) can have Figure 4.4 (a) as a subtree in a detailed description, we single out

this structure and present it to explain some of the functions of the classes.

The Dummy node in Figure 4.4 is used to connect all the nodes. The package



84

node represents the package name of a class. A class may or may not have this node.

The import node represents one imported package or class. There can be zero, one, or

more of these nodes. The CLASS DEF node contains two categories of information:

(1) the name, type (class or interface), and pathname of a class, and (2) the name

of any super classes this class inherits from. CLASS DEF consists of zero or more

VARIABLE DEF, CTOR DEF, and METHOD DEF nodes. The VARIABLE DEF

node has information about the name, type, modifiers, and value of a variable. All

VARIABLE DEF nodes, whether they are for the class variables or for the method

variables, have the same tree structure. For the sake of simplicity of the figure, the

CLASS DEF and METHOD DEF nodes point to the same VARIABLE DEF node

in Figure 4.4. The VARIABLE DEF node has zero or more EXPR nodes as children

when this node assigns a value to the defined variable.

The CTOR DEF node has information about a constructor of the class. The

METHOD DEF node has information about the modifier, return type, name, and

parameters of a method. Both CTOR DEF and METHOD DEF nodes may consist

of many child nodes such as VARIABLE DEF, TRY, EXPR, CATCH, and FINAL,

etc. JCAT is mainly concerned with the VARIABLE DEF and EXPR nodes among

the children of METHOD DEF. The EXPR node contains information about an ex-

pression. EXPR is a complicated node and it has many children, including VARI-

ABLE DEF, METHOD CALL, and itself. This is because an expression may contain

variable definitions, method calls, and other expressions. JCAT extracts information

about variable definitions, variable usages, and method calls from the EXPR node

and its children.

The METHOD CALL node has information about a method call, which consists

of a callee method name and a list of parameters. The METHOD CALL node has
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Figure 4.5: Class Diagram of Package query

zero or more EXPR nodes as children. We can see that the EXPR node is both a

child and a parent node. This is because the list of parameters may contain variable

definitions and expressions.

Figure 4.5 shows the class diagram of the query package. The classes in the query

package extracts and processes the information at the AST nodes that are shown in

Figure 4.4. The following paragraphs describe each class.
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4.3 Summary Tables

JCAT computes the summary information for a class by using a combination of

textual inspection, static structure analysis, and a restricted form of forward program

slicing. First, the classes in the JavaParser package generates an Abstract Syntax

Tree (AST) file for a Java source code file. Next, the classes in the query package make

one pass over the text of the AST file, identify the class information, the definitions

and uses of all variables, constructors, and methods, inheritance between classes, and

the definitions and uses of external files, and saves them in MS Access database tables.

We have created 20 database tables to put the information that is related to

the couplings in question. The information can be divided into six categories: class,

method, variable, variable usage, method calls, and external device. The class category

information is stored in class def, class modifiers, imported classes, imported packages,

and inheritance tables. Figure 4.6 shows the tables and their structure in this cat-

egory. The acronym “PK”in the figure stands for “Primary Key” and “FK” stands

for “Foreign Key”.

The table class def is designed to store the class name, pathname, class type (i.e.,

class or interface), and package name of each class. Each class has a unique class id.

The imported classes and packages in a class are saved in separate tables. Sometimes

one physical file may contain several classes and all classes contained in this file would

share the same imported classes and packages. The file id field, which is used in

three tables, is used to associate the class def table with the imported classes and the

imported packages tables. The class modifiers table stores the modifier information

of class definitions. This table uses the class id field of the table class def as a foreign

key to associate the table entries in tables class def and class modifiers.
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Figure 4.6: Table Schema for Class Category

Filling the inheritance table requires computation beyond simple text scanning.

We first obtain the sub class id, inhr type (e.g., extends or implements), and super

class name when scanning the AST file. The sub class id is computed later. Algo-

rithm 1 shows the steps in getting the sub class id.

The second of the six categories of information, method information, is stored

in the method def and method modifiers tables, as shown in Figure 4.7. Because

these two tables are related to the table class def, they are shown together, but the

class def table is shaded to make it distinct. The method name and return type of

each method are saved in the method def table. Each method is distinguished by

a pair of method id and class id. The modifiers of each method are saved in the

method modifiers table. The method id key connects the two tables.

The variable level information is stored in the var def, var modifiers, method

var def, method var modifiers, method parameters, and param modifiers tables, as
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Algorithm 1 Get super class id

Require: class def, imported classes, imported packages tables have been filled out.

Ensure: The class id of a super class is identified.

1: super class id ⇐ −1

2: // Check imported classes

3: Iterator itr ⇐ imported class names

4: String superClassName, subClassName

5: while itr.next() 6= null do

6: superClassName ⇐ next imported class name

7: if superClassName = subClassName then

8: super class id ⇐ class id of superClassName, break

9: end if
10: end while
11: if super class id = −1 then

12: // Check the classes in the imported packages

13: Iterator itr ⇐ class names in imported packages

14: String superClassName, subClassName

15: while itr.next() 6= null do

16: superClassName ⇐ next class name

17: if superClassName = subClassName then

18: super class id ⇐ class id of superClassName, break

19: end if
20: end while
21: end if
22: if super class id = −1 then

23: // Check the classes in the local container package

24: Iterator itr ⇐ class names in the local package

25: String superClassName, subClassName

26: while itr.next() 6= null do

27: superClassName ⇐ next class name

28: if superClassName = subClassName then

29: super class id ⇐ class id of superClassName, break

30: end if
31: end while
32: end if
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Figure 4.7: Method Level Tables

shown in Figure 4.8. There are three types of variables: class, method, and pa-

rameter. A class variable is a variable that is defined at the class level. A method

variable is defined in a method. The parameters to a method are saved separately

in the method parameters table to make it convenient for later analysis. The related

class def and method def tables are presented as well to show their relationship with

the variable tables.

The variable usage level information is stored in the var use method and var use

class tables. Figure 4.9 shows these two tables and other related tables. Since only

the class level variables can be shared among classes, the var def table is shown from

the variable level tables. In the first step of the computation, class id or method id,

var name, and var actual type information are obtained by scanning the AST file.

The var id is obtained through the computation in Algorithm 2.

The method call level information is stored in the constructor call method,

constructor call class, method call class, and method call method tables. Figure
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Figure 4.8: Variable Level Tables

4.10 shows the tables and their structure. The shaded tables are the parent tables

and the arrows show the relationship among the tables. The method calls are saved in

separate tables according to their scope. For example, if a method call occurs inside a

method, this event and the related information are saved in the method call method

table. Similarly, if a method call occurs at the class level, the information is saved in

the method call class table. The invocation of a constructor is processed in the same

way.

The caller’s id and the callee’s name can be obtained at the scan of the AST file.

However, obtaining the callee’s id requires some computation. The process of getting

callee class id is the same as in Algorithm 1.
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Algorithm 2 Get var id

Require: class def, method def, var-def tables have been filled out.

Ensure: The var id of a given var name is identified.

1: var id ⇐ −1
2: var name ⇐ objectName.varName

3: // separate object name and variable name

4: objectName ⇐ obj

5: separate object name and var name.

6: // For example, varname = a.b, then a is object, b is variable

7: get class id of a

8: query var def table with class id and varname b

9: if var id = -1 then get super class ids of class a

10: WHILE not empty

11: look into super class i for varname

12: if var id = 0 then look next
13: String qry1 ⇐ “SELECT class id FROM class def WHERE class name = ”

14: String qry2 ⇐ “SELECT class id FROM external-device-usage WHERE device id = ”

15: Database db

16: ResultSet rs1, rs2

17: Hashtable externalCouplings

18: rs1 ⇐ db.execute(qry1)

19: while rs1.next() 6= null do

20: did = rs1.getDeviceID()

21: rs2 ⇐ db.execute(qry2 + did)

22: if rs2.size() ≥ 2 then

23: record external coupling among classes in rs2 into externalCouplings

24: end if
25: end while
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Figure 4.9: Variable Usage Level Tables
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Figure 4.10: Method Call Level Tables



Chapter 5: APPLICATIONS OF THE

COUPLING MODEL

This chapter gives an overview of how the coupling model and measures are applied to

the three problems of this thesis. As such, it serves as an introduction to the following

three chapters. Figure 5.1, a UML conceptual analysis model, gives an overview of

the current application of coupling measures defined in this research. The research

starts by parsing program source. Although not shown in the figure, the parsing is

done by the help of parsing tools. A parsing tool generates abstract syntax trees

for each class in a package. Next, as described in Chapter 4, coupling measures are

computed by analyzing the abstract syntax trees. Then, the coupling measures are

applied to three specific problems: class integration and test order, change impact

analysis, and design pattern detection. Other possible applications are discussed in

the future work section of Chapter 10.

5.1 Applying Coupling Measures to Class Integra-

tion and Test Order

In theory, a high quality software design would not include dependency cycles. In

reality, however, dependency cycles are common. Some designers explicitly include

cycles, either accidentally or disregarding the best advice of their teachers and books.

Programmers make implementation decisions that add cycles that did not exist in the

design. Consequently, software developers must break cycles to find optimal orders

93
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Figure 5.1: Application of the Coupling Model

to integrate and test classes.

The goal of class integration and test order research is to find an optimal inte-

gration order of classes for testing. When no cycle of dependency exists, then classes

can be integrated and tested in reverse topological order. However, when dependency

cycles exist, ordering becomes nontrivial. Figure 5.2 gives an example of a depen-

dency cycle. There are three nodes and three edges in this diagram. Any edge can

be broken to have a test order. When an edge is broken to eliminate a cycle, a test

stub must be created for the absent class. Test stub creation adds additional cost to

testing. Depending on the nature of relationships among classes, the cost of creating

a stub can be quite different. This research defines test stub complexity using cou-

pling measures, and computes it for each class. Then, the test stub complexities of

classes are used to compute an optimal order for integration and testing of classes.

The details of this work are given in Chapter 6.
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Class A


Class B
Class C


Figure 5.2: An Example of a Dependency Cycle

5.2 Applying Coupling Measures to Change Im-

pact Analysis

A major problem for developers in a changing environment is that changes in one

class, even small changes, can ripple through software to cause major unintended im-

pacts elsewhere. Change impact analysis identifies possible ripple effects of a change

and tries to build change or effort prediction models for how to effectively and effi-

ciently implement changes. The key insight to this research is that a change can only

have ripple effects through its relationships with other classes. Thus, it can be said

that there is no ripple effect without couplings between classes. This research

uses coupling measures to compute the change impact set of a given change at imple-

mentation level, then uses the result in computing two related metrics, change impact

and sensitivity to change. The details of this work are given in Chapter 7.
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5.3 Applying of Coupling Measures to Design Pat-

tern Detection

Design patterns are used to impose structure on the system through abstractions.

Consequently, the ability to automatically identify design patterns in the implemen-

tation can help developers comprehend existing designs and provide the information

needed for refactoring. Thus, design pattern identification from source code can help

improve software maintainability and evaluate how well implementation conform to

design.

We have developed a design pattern detection methodology in which both the

system under study as well as the design pattern to be detected are described in

terms of graphs. In particular, the approach employs a coupling matrix representing

all important aspects of their static structure. To detect patterns, we employ a graph

similarity algorithm, which takes the system and the pattern graph as input, and

calculates similarity scores between their vertices. The details of this work are given

in Chapter 8.



Chapter 6: COUPLING-BASED CLASS

INTEGRATION AND TEST ORDER

A common problem in inter-class integration testing of object-oriented software is to

determine the order in which classes are integrated and tested [KGH+95a]. When

one class requires another to be available before it can be executed, we define this

kind of relationship to be a dependency. These two classes can be characterized as

server and client classes. The client class is being compiled or executed and the server

class must be present. This dependency has a direction, and is based on one or more

object-oriented relationships.

Computing an optimal class integration and test order (CITO) is a focus of the

software testing community. When there is no cycle in the dependency of classes

or subsystems, the class integration and test order (CITO) can be computed by a

simple reverse topological ordering of classes based on their dependencies. However,

dependency cycles are common in real-world systems and when present, topological

sorting is not possible [KGH+95a].

To solve the CITO problem in the presence of cycles, the cycles must be broken.

The effect of breaking a dependency cycle is that a stub must be created for the class

that is no longer present, thus increasing the cost of integration testing. Our goal is to

find an optimal order that minimizes the stubbing effort. Stubbing effort has many

elements to consider, and, therefore, cannot be completely measured or estimated

[BFL02]. It has also been suggested that creating stubs can be error prone and costly

97
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[Bei90].

Coupling measurements capture class relationships. The main goal of this study

is to use coupling measurement to estimate stubbing effort and develop an efficient

technique to find an optimal integration order.

This chapter discusses existing solutions, introduces our model, then presents

results from a case study taken from Briand et al.’s paper [BFL02].

Section 6.1 summarizes existing approaches to the class integration and test order

(CITO) problem and Section 6.2 describes our model and algorithms. The algorithms

are explained in detail with a running example. Section 6.4 presents a case study that

uses the same system as used by Briand et al. [BFL02] and Section 6.6 summarizes

the results.

6.1 Summary of Existing Solutions

The class integration and test order problem has been addressed by several researchers

and several solutions have been proposed. The solutions can be categorized into graph-

based and genetic algorithm-based(GA) approaches. Section 2.2 recapitulates existing

solutions and discusses their advantages and disadvantages.

In graph-based approaches, classes and their relationships in software are modeled

as object relation diagrams (ORD) or test dependency graphs (TDG). An ORD or

TDG is a directed graph G(V, E), where V is a set of nodes representing classes and

E is a set of edges representing the relationships among classes. The class integration

and test order problem is to find an ordering of nodes in the graph so that the classes

can be integrated and tested with minimum effort.

In most papers [BLW03,KGH+95a,TD97,TJJM00], the testing effort is estimated
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by counting the number of test stubs that need to be created during integration

testing. This method assumes that all stubs are equally difficult to write. One

recent paper tries to consider test stub complexity when estimating the testing effort

[MCL03].

In the genetic algorithm-based approach [BFL02], inter-class coupling measure-

ments and genetic algorithms are used in combination to assess the complexity of test

stubs and to minimize complex cost functions.

To summarize, the existing graph-based approaches use high level, course grained,

estimates of test stub complexity. The GA approach must be run many times, greatly

complicating the process. The coupling-based algorithms described here only run once

and use more information to provide a more precise estimation of test stub complexity.

6.2 A New Model and Algorithms

This section introduces a new graph-based solution for the CITO problem. Our

approach is different from other graph-based approaches in three respects. First, we

model classes and their relationships with weights on both nodes and edges. Second,

weights of nodes and edges are based on a quantitative measure of coupling. Last,

we use algorithms that incorporate edge and node weights as well as the number of

cycles in breaking cycles.

6.2.1 Modeling Class Integration and Test Order

As said in Section 6.1, dependencies among classes are usually modeled in graphs.

The CITO problem then becomes finding an acyclic graph with minimum cost. The

cost is usually modeled as the number of test stubs to be generated during the testing
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activities. This section uses a different abstraction to test dependencies among classes

and a different cost model for the testing effort. We model the test dependencies

among classes using a Weighted Object Relation Diagram (WORD), and model the

testing effort by computing test stub complexities using coupling information.

Chapter 3 defined eight coupling base types and four coupling measures for each

base type. The coupling base types are Inheritance, Abstract class implementation,

interface implementation, Composition Coupling, Aggregation, Exception Coupling,

Association, and Dependency. For each coupling base type, coupling measures are

defined to measure the dependencies between a server and client class in terms of the

number of distinct and total variables used, the number of distinct and total methods

(including constructors) called, the number of distinct and total parameters sent, and

the number of distinct and total return value types. These measures are connected

through a “dot” notation. In this research, the CITO problem is addressed using the

distinctly counted measures defined in Chapter 3 with slight modification.

CM(ci, cj) = CBT.Vd.Md.Rd.Pd, (6.1)

where ci and cj represent two classes that are coupled together,

CBT =





5 when coupling is based on inheritance

or composition

1 for other coupling types

(6.2)

The dot notation is used to indicate that the five measures are independent but

related. Vd, number of distinct vars, represents the number of distinct public vars of

cj that are directly used by ci. Md, number of distinct methods, represents the number

of distinct public methods of cj that are called by ci. Rd, number of distinct return



101

types, represents the number of distinct return types that appear in Md. Pdist, number

of distinct parameters, represents the number of distinct parameters that appear in

Md.

Equation 6.2 assigns two values to CBT . This is because in CITO problem, in-

heritance, implementation, and composition relationships are considered as complex

relationships and considered in one category, and the rest of the relationships consid-

ered in one category. We observe that the combination of coupling base types and the

four coupling measures can syntactically estimate the content of a test stub needed

by a client class. Thus, using the coupling measures, a test stub complexity for each

class can be estimated in the context of the entire system.

We define two kinds of stub complexity. If a client class A depends on a server class

B to function, we can quantify this dependency by identifying the scope of B used by

A, as measured by coupling. We define this to be a specific test stub complexity of B

to A. However, there can be other client classes that depend on B, and some usage

of B can be overlapped among client classes. Figure 6.1 shows an example. In this

example, classes A, B, and C all depend on D. Although it seems that D is heavily

used, in fact only m1() is called by all three classes. Thus, if we stubbed D, we would

only need a stub for one method. We define the sum of dependencies/usages from

all other client classes to B as the total stub complexity of server class B. When we

compute the total stub complexity of a class, we will take into account the overlapping

possibility of specific stubs. Thus, a total stub complexity of a class takes a value

between the maximum and sum of several specific stubs complexity. Previous research

did not consider overlapping.

We use the specific test stub complexity and total stub complexity to assign weights

to edges and nodes in our WORD. In a WORD, nodes represent classes and edges
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Figure 6.1: Example of Method Call Overlap

represent test dependencies among classes. Both nodes and edges are weighted. The

node weight represents the total stub complexity of a class, and the edge weight repre-

sents the specific stub complexity of a server class to the client class that is connected

by the edge. The graph can be acyclic or cyclic. If the graph is acyclic, then we

can carry out integration testing in the reverse topological order of the graph. If

the graph is cyclic, then we have to first break cycles. This forces us to create test

stubs for the broken edges or removed nodes. We model the testing effort as the total

complexity of stubs that are introduced during integration testing. The goal is to

make the graph acyclic by removing certain edges and/or nodes, and the total weight

of removed edges and/or nodes has to be minimum.

The model for the class integration and test order problem is formally defined as

follows:

Let G(V,E) be a node- and edge-weighted directed graph that models classes or

components and their relationships. In the graph, nodes represent classes or com-

ponents, and edges represent test dependencies among classes. The edge weights

represent specific stub complexities and node weights represent total stub complexi-

ties. Our problem is to determine the nodes and edges with minimum total weight
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to remove so that there are no cycles in G.

6.2.2 Measuring Stub Complexity

We use coupling measures to assign weights to edges and nodes in our weighted object

relation diagram (WORD). After all couplings are measured in the form of equation

6.1, coupling measures between the source and target node classes are aggregated as

one measure as follows:

cmei
= {

8∑

k=1

CMk(vm, vn)

| vm, vn ∈ V, ei = vm → vn, ei ∈ E}

= max(CBT ).
8∑

k=1

Vdk
.

8∑

k=1

Mdk
.

8∑

k=1

Rdk
.

8∑

k=1

Pdk
(6.3)

This measure will be used to compute the weight of an edge and represents a specific

test stub complexity of a class.

The coupling measures on edges are then further aggregated to nodes. A coupling

measure on a node is computed from the coupling measures of the incoming edges of

the node in the following manner:

cmvi
=

{[
max(cme1,i

, cme2,i
, ...cmek,i

),
k∑

l=1

cmel,i

]

| vi ∈ V, el,i = vl → vi, el,i ∈ E, |el,i| = k} (6.4)

where cme1,i
, cme2,i

, ...cmek,i
are coupling measures on the incoming edges of node vi

and the summation of coupling measures is the same as in equation 6.3. Equation cmvi
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takes a value between the maximum and sum of coupling measures on the incoming

edges of node vi. This measure will be used to compute the weight of a node and

represents the total test stub complexity of a class.

Our rationale for introducing weights for nodes is that specific stubs for a class

may overlap. It is possible that certain methods or variables of a server class can be

used by a number of clients in the same way. In this case, creating one stub for the

server class can satisfy the needs of several clients.

We use Briand et al.’s method for estimating stubbing complexity [BFL02] from

the coupling measures of edges and nodes. For a measure Cplx(), a complexity

measure Cplx() is normalized as

Cplx(i, j) = Cplx(i, j)/(Cplxmax − Cplxmin) (6.5)

where Cplx(i, j) represents a complexity information matrix, Cplxmin = Min{Cplx(i, j),

i, j = 1, 2, ...} and Cplxmax = Max{Cplx(i, j), i, j = 1, 2, ...}. They use two coupling

measures A() and M(), the number of locally defined variables and the number of

methods, to compute overall stubbing complexity:

SCplx(i, j) = (WA.A(i, j)2 + WM .M(i, j)2)1/2 (6.6)

where WA and WM are weights and WA + WM = 1. Thus, for a given test order o,

with d dependencies to be broken, an overall stubbing complexity for the order o is

computed as

OCplx(o) =
d∑

k=1

SCplx(k) (6.7)

The principle of not breaking inheritance and composition edges was ensured by
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constraints in Briand et al.’s work. This paper takes a different approach, specifically,

assigning higher values to the variable C in equation 6.1.

As shown in equation 6.1, our coupling measures use the number of parameters

and the number of return value types in addition to the number of variables and the

number of methods. We use the same normalization method as Briand et al., and

include the additional coupling measures in the stubbing complexity estimation.

Using aggregated coupling measures on edges and nodes, a stubbing complexity

is estimated as follows:

SCplx(i, j) = CBT+ (WV × V (i, j)2 + WM ×M(i, j)2 +

WR ×R(i, j)2 + WP × P (i, j)2)1/2 (6.8)

where CBT is the first measure from equations 6.3 and 6.4, WV , WM , WR, and WP

are weights and WV + WM + WR + WP = 1. The V (i, j), M(i, j), R(i, j), and P (i, j)

values are computed from equation 6.5 using values from equations 6.3 and 6.4.

Our objective is to find an optimal integration and test order o by determining a

set of k nodes and/or l edges to be removed to make the WORD acyclic such that

the sum of the stubbing complexities for these nodes and edges is minimum:

OCplx(o) =
k∑

i=1

SCplxnode(i) +
l∑

j=1

SCplxedge(j) (6.9)

The following subsections present three general algorithms for making a cyclic

graph acyclic using simple weight assignments on edges, nodes, and both.
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6.2.3 Heuristics Algorithm for Breaking Cycles Using Edge

Weights

This subsection presents an algorithm for breaking cycles using weight assignments

on edges.

Algorithm 3 Eliminating Cycles in WORD (V,E)

1: Find all SCCs in WORD

2: for (each scci(Vscci
, Escci

) ∈ SCCs) do

3: find all cycles CYCLES (totalCycles)

4: for (each e ∈ Escci
) do

5: find the number of cycles that use e (cardinal{cycles− through− e})
6: compute the cycle-weight ratio

7: end for

8: while (totalCycles != 0) do

9: order all edges in descending order of their cycle-weight ratio

10: remove edge with highest cycle-weight ratio

11: totalCycle = totalCycle - number of cycles broken

12: update the number of cycles that use e (cardinal{cycles− through− e}) in

the remaining edge set

13: recompute the cycle-weight ratio for the remaining edges

14: end while

15: end for

Algorithm 3 is illustrated through the example in Figure 6.2. Figure 6.2 is

taken from Briand et al.’s paper [BFL02]. The edges represent general dependencies

between two classes, not UML-specific relationships, with edge labels representing

the specific stub complexity. Step 1 in Algorithm 3 finds one SCC in Figure 6.2,

{E,A, C, H, D, B, F}. Steps 2 and 3 find the following 11 cycles in the SCC:
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Figure 6.2: Example Weighted Object Relation Diagram (WORD)

(1) E → F → E

(2) E → A → C → E

(3) E → F → D → A → C → E

(4) E → F → D → H → C → E

(5) E → F → D → H → B → C → E

(6) A → C → H → B → D → A

(7) A → C → A

(8) C → H → C

(9) C → H → B → C

(10) H → B → H

(11) H → B → D → H

Table 6.1 shows the results from steps 4 through 7 of Algorithm 3. After the initial

computation of CWR values for edges, the algorithm works in the following steps:
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Table 6.1: Cycle-weight Ratio for Edges in SCC {E, A, C, H,B,D, F}

Cycles
No. Edge Wt. Invol- NC CWR

ved
1 A → C 2 {2, 3, 6, 7} 4 2
2 B → C 4 {5, 9} 2 0.5
3 B → D 2 {6, 11} 2 1
4 B → H 3 {10} 1 0.33
5 C → E 5 {2, 3, 4, 5} 4 0.8
6 C → A 3 {7} 1 0.33
7 C → H 4 {6, 8, 9} 3 0.75
8 D → A 6 {3, 6} 2 0.33
9 D → H 7 {4, 5, 11} 3 0.43
10 E → A 4 {2} 1 0.25
11 E → F 3 {1, 3, 4, 5} 4 1.33
12 F → D 5 {3, 4, 5} 3 0.6
13 F → E 4 {1} 1 0.25
14 H → B 4 {5, 6, 9, 10, 11} 5 1.25
15 H → C 5 {4, 8} 2 0.4

1. Choose an edge from table 6.1 with maximum cycle-weight ratio (CWR) and

remove that edge from the WORD. At this point, the edge with the maximum

cycle-weight ratio is A → C with a ratio of 2. Removing edge A → C breaks

four cycles, 2, 3, 6, and 7, leaving seven cycles.

2. Recompute the cycle-weight ratio for the remaining edges. The result is shown

in table 6.2. Two edges have the same maximum cycle-weight ratio, 14 and 11

with ratios of 1 (shown in bold). Our rule in this situation is to choose the

edge that is involved in the larger number of cycles. This is edge 14, H → B.

Removing H → B breaks four cycles, 5, 9, 10, and 11, leaving three cycles.

3. Recompute the cycle-weight ratio for remaining edges in table 6.2. The result
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Table 6.2: Cycle-weight Ratio for Edges in SCC {E, A,C, H, B,D, F} − {A →

C}

Cycles
No. Edge Wt. Invol- NC CWR

ved
2 B → C 4 {5, 9} 2 0.5
3 B → D 2 {11} 1 0.5
4 B → H 3 {10} 1 0.33
5 C → E 5 {4, 5} 2 0.4
6 C → A 3 { } 0 0
7 C → H 4 {8, 9} 2 0.5
8 D → A 6 { } 0 0
9 D → H 7 {4, 5, 11} 3 0.43
10 E → A 4 { } 0 0
11 E → F 3 {1,4,5} 3 1
12 F → D 5 {4, 5} 2 0.4
13 F → E 4 {1} 1 0.25
14 H → B 4 {5, 9, 10, 11} 4 1
15 H → C 5 {4, 8} 2 0.4

is shown in table 6.3. In this table, the edge with maximum cycle-weight ratio

is edge 11, E → F . Removing edge E → F breaks two cycles, 1 and 4, leaving

only cycle 8.

4. Recompute the cycle-weight ratio for the remaining edges, and at this point the

edge with maximum cycle-weight ratio is edge 7, C → H. Removing C → H

breaks cycle 8, and makes the WORD acyclic.

Thus, we break all 11 cycles by removing four edges, A → C, H → B, E → F ,

and C → H. The total cost is 2+4+3+4 = 13.
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Table 6.3: Cycle-weight Ratio for Edges in SCC{E, A, C, H, B,D, F} -{A →

C, H → B}

Cycles # of Cycles Cycle-Weight
Edge No. Edge Weight Involved Involved Ratio

2 B → C 4 { } 0 0
3 B → D 2 { } 0 0
4 B → H 3 { } 0 0
5 C → E 5 {4} 1 0.2
6 C → A 3 { } 0 0
7 C → H 4 {8 } 1 0.25
8 D → A 6 { } 0 0
9 D → H 7 {4} 1 0.14
10 E → A 4 { } 0 0
11 E → F 3 {1,4} 2 0.66
12 F → D 5 {4} 1 0.2
13 F → E 4 {1} 1 0.25
15 H → C 5 {4,8} 2 0.4

6.2.4 Applying Algorithm 3 to A Special Case

A key difference between this research and previous research is the modeling of the

cost of stubbing as edge weights. If we assign a weight of 1 to each edge, then our

model is equivalent to the previous models. In addition, previous researchers modeled

node weights as the sum of all incoming edges, which corresponds to our pessimistic

approach. To facilitate comparison, we assign all edges in the graph in Figure 6.2

weight 1, to see if our algorithm gets the same results as Briand’s [BLW03,BFL02].

Table 6.4 shows initial CWR values for edges. We briefly describe the process:

first, edge H → B is chosen to be removed, breaking five cycles. The re-computation

of CWR values for the remaining edges are not shown, but the next edge to remove

is E → F , breaking three cycles. Next, edge A → C is chosen, breaking two cycles.
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Table 6.4: Cycle-weight Ratio for Edges in SCC {E, A,C,H, B, D, F} - All

Edges Have the Same Weight

Cycles
No. Edge Wt. Invol- NC CWR

ved
1 A → C 1 {2, 3, 6, 7} 4 4
2 B → C 1 {5, 9} 2 2
3 B → D 1 {6, 11} 2 2
4 B → H 1 {10} 1 1
5 C → E 1 {2, 3, 4, 5} 4 4
6 C → A 1 {7} 1 1
7 C → H 1 {6, 8, 9} 3 3
8 D → A 1 {3, 6} 2 2
9 D → H 1 {4, 5, 11} 3 3
10 E → A 1 {2} 1 1
11 E → F 1 {1, 3, 4, 5} 4 4
12 F → D 1 {3, 4, 5} 3 3
13 F → E 1 {1} 1 1
14 H → B 1 {5, 6, 9, 10, 11} 5 5
15 H → C 1 {4, 8} 2 2

There is one cycle left, 8, and we can break it by either removing H → C or C → H.

Here we can apply the heuristic of not breaking an Aggregation relationship and choose

C → H to remove. Thus, we removed four edges in total: H → B, E → F , A → C,

and C → H. This result is the same as the result from Briand et al.’s graph-based

research, although the edges were removed in a different order.
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6.2.5 Heuristics Algorithm for Breaking Cycles Using Node

Weights

This subsection presents an algorithm for breaking cycles using weight assignments

on nodes. Algorithm 4 is illustrated through the following examples.

Algorithm 4 Eliminating Cycles in WORD(V,E) Using Node Weights

1: Find all SCCs in WORD

2: for (each scci(Vscci
, Escci

) ∈ SCCs) do

3: find all cycles CYCLES (totalCycles)

4: for (each v ∈ Vscci
) do

5: find the number of cycles that use v (cardinal{cycles− through− v})
6: compute the cycle-weight ratio

7: end for

8: while (totalCycles != 0) do

9: order all nodes in descending order of their cycle-weight ratio

10: remove node with highest cycle-weight ratio

11: totalCycle = totalCycle - number of cycles broken

12: update the number of cycles that use v (cardinal{cycles− through− v}) in

the remaining node set

13: recompute the cycle-weight ratio for the remaining nodes

14: end while

15: end for

The node weights model the amount of effort needed to create a stub for that

class, which will be used by all classes that use it (user classes). In a pessimistic

approach, each user class will need completely different stub functionality, so each

user class needs a completely independent stub. For example, one user class may

call methods M1() and M2(), and another may call methods M3() and M4(). This

situation is modeled by case (1), where the node weight is the sum of incoming edge
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Figure 6.3: WORD - Node Weight is the Sum of Incoming Edge Weights (Algorithm

2, case 1)

weights. In an optimistic approach, all the user classes will need the exact same stub

functionality, so one stub can satisfy all user classes. This situation is modeled by

case (2), where the node weight is the maximum of incoming edge weights. In most

situations, the reality is probably in between. So case (3) models the situation where

the node weight is between the maximum and the sum of the incoming edge weights.

Which choice to make depends on domain knowledge and probably needs to be made

by the tester. Figures 6.3 and 6.4 show node weights for case 1 and 2.

Case 1 is the same as considering all edges only, and thus no further explanation

is given. Cases 2 and 3 are illustrated through examples.

Case 2:

The node weight is defined as the maximum incoming edge weight. Table 6.5 shows

the results from applying steps 4 through 7 of algorithm 4 on Figure 6.4. After the

initial computation of CWR values for nodes, the algorithm follows the following
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Figure 6.4: WORD - Node Weight is the Maximum of Incoming Edge Weights

(Algorithm 2, case 2)

Table 6.5: Cycle-weight Ratio for Nodes in SCC{E, A,C,H, B, D, F} in Figure

6.4

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 6 {2, 3, 6, 7} 4 0.67
2 B 4 {5, 6, 9, 10, 11} 5 1.25
3 C 5 {2, 3, 4, 5, 6, 7, 8, 9} 8 1.6
4 D 5 {3, 4, 5, 6, 11} 5 1
5 E 5 {1, 2, 3, 4, 5} 5 1
6 F 3 {1, 3, 4, 5} 4 1.33
7 H 7 {4, 5, 8, 9, 10, 11} 6 0.86

steps:

A. Choose a node with maximum cycle-weight ratio in table 6.5 and remove that

node from the WORD. The node with maximum CWR is C with a CWR of
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Table 6.6: Cycle-weight Ratio for Nodes in SCC{E, A, C, H,B,D, F} -{C} in

Figure 6.4

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 6 {} 0 0
2 B 4 {10, 11} 2 0.5
4 D 5 {11} 1 0.2
5 E 5 {1} 1 0.2
6 F 3 {1} 1 0.33
7 H 7 {10, 11} 2 0.29

1.6. Removing C breaks eight cycles, 2, 3, 4, 5, 6, 7, 8, and 9, leaving three

cycles.

B. Recompute the cycle-weight ratio for the remaining edges in table 6.5. The

result is shown in table 6.6.

The node with maximum CWR value is node B. Removing node B breaks two

cycles, 10 and 11, leaving cycle 1.

C. Recompute the cycle-weight ratio for the remaining nodes in table 6.6. The

result is shown in table 6.7. The node with the maximum cycle-weight ratio is

F . Removing F breaks cycle 1 and makes the WORD acyclic.

Thus, removing three nodes, C, B, and F, made the graph acyclic with a total

cost of 12. This is a lower cost than with algorithm 1 (cost of 13).

Case 3:

The node weight is assumed to be between the maximum and the sum of the incoming

edge weights. Table 6.8 shows the result from steps 4 to 7 of algorithm 4 on Figure
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Table 6.7: Cycle-weight Ratio for Nodes in SCC{E, A,C,H, B, D, F} -{C, B}

in Figure 6.4

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 6 {} 0 0
4 D 5 {} 0 0
5 E 5 {1} 1 0.2
6 F 3 {1} 1 0.33
7 H 7 {} 0 0

6.5. After the initial computation of CWR values for nodes, the algorithm works in

the following steps:

A. Choose a node with maximum cycle-weight ratio in table 6.8 and remove that

node from the WORD. Both C and F have the same maximum CWR. Our

rule in this situation is to choose the node that is involved in more cycles (node

C). Removing C breaks eight cycles, 2, 3, 4, 5, 6, 7, 8, and 9, leaving three

cycles.

B. Recompute the cycle-weight ratio for the remaining edges in table 6.8. The

result is shown in table 6.9. The node with maximum CWR value is node B.

Removing node B breaks two cycles, 10 and 11, leaving one cycle.

C. Recompute the cycle-weight ratio for the remaining nodes in table 6.9. The

node with maximum cycle-weight ratio is F . Removing F breaks cycle 1 and

makes the WORD acyclic.
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Figure 6.5: WORD - Node Weight is between the Maximum and Sum of Incom-

ing Edge Weights (Algorithm 2, case 2)

Table 6.8: Cycle-weight Ratio for Nodes in SCC{E, A,C,H, B, D, F} in Figure

6.5

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 9 {2, 3, 6, 7} 4 0.67
2 B 4 {5, 6, 9, 10, 11} 5 1.25
3 C 6 {2, 3, 4, 5, 6, 7, 8, 9} 8 1.33
4 D 6 {3, 4, 5, 6, 11} 5 0.83
5 E 7 {1, 2, 3, 4, 5} 5 0.71
6 F 3 {1, 3, 4, 5} 4 1.33
7 H 10 {4, 5, 8, 9, 10, 11} 6 0.60

Thus, we break all 11 cycles by removing three nodes, C, B, and F . The total cost

is 6+4+3 = 13. In this example, the cost is the same as the cost of using algorithm

3.
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Table 6.9: Cycle-weight Ratio for Nodes in SCC{E,A, C, H, B, D, F} − {C}

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 9 {} 0 0
2 B 4 {10, 11} 2 0.5
4 D 6 {11} 1 0.17
5 E 7 {1} 1 0.14
6 F 3 {1} 1 0.33
7 H 10 {10, 11} 2 0.20

Table 6.10: Cycle-weight Ratio for Nodes in SCC{E, A, C, H,B,D, F}−{C,B}

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 9 {} 0 0
4 D 6 {} 0 0
5 E 9 {1} 1 0.11
6 F 3 {1} 1 0.33
7 H 10 {} 0 0

6.2.6 Heuristics Algorithm for Breaking Cycles Using Node

and Edge Weights

This section presents an algorithm for breaking cycles using weight assignments on

both nodes and edges. The algorithm is shown in Algorithm 5 and illustrated through

examples in Figures 6.4 and 6.5.

Recall that a node can have one of three possible weights. The first, where the

node weight is equal to the sum of the incoming edge weights, gives the same result as
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Algorithm 5 Eliminating Cycles in WORD (V,E) Using Node and Edge

Weights

1: Find all SCCs in WORD

2: for (each scci(Vscci
, Escci

) ∈ SCCs) do

3: find all cycles CYCLES (totalCycles)

4: for (each v ∈ Vscci
) do

5: find the number of cycles that use v (cardinal{cycles− through− v})
6: compute the cycle-weight ratio

7: end for

8: for (each e ∈ Escci
) do

9: find the number of cycles that use e (cardinal{cycles− through− e})
10: compute the cycle-weight ratio

11: end for

12: while (totalCycles != 0) do

13: order all nodes and edges in descending order of their cycle-weight ratio

14: remove the node or edge with the highest cycle-weight ratio

15: totalCycle = totalCycle - number of cycles broken

16: update the number of cycles that use v (cardinal{cycles− through− v}) or

that use e (cardinal{cycles− through− e}) in the remaining node and edge

sets

17: recompute the cycle-weight ratio for the remaining nodes and edges

18: end while

19: end for

considering only edge weights. Hence, two cases are considered: (1) node weights are

the maximum of incoming edge weights, and (2) node weights are between the sum

and maximum of incoming edge weights. Figures 6.4 and 6.5 are used for illustration.

Figure 6.4 shows node weights as the maximum of incoming edge weights. Previous

tables 6.1 and 6.5 provide initial CWR values for edges and nodes. The rest of

algorithm 5 works as follows:

1. Choose an edge or a node with maximum CWR from both tables 6.1 and 6.5.
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Then remove whichever has the greater CWR value from the WORD. Among

the edges, A → C has a maximum CWR value of 2, and among the nodes, C

has a maximum CWR value of 1.6. Thus, the edge A → C is chosen. Removing

edge A → C breaks four cycles, 2, 3, 6, and 7, leaving seven.

2. Recompute the cycle-weight ratio for the remaining edges and nodes in tables

6.1 and 6.5. The result for edges is the same as in table 6.2. The result for

nodes is shown in table 6.11. Note that the weight of the node associated with

the removed edge is also recomputed. The new node weight is reduced by the

removed edge weight. From tables 6.2 and 6.11, choose a node or an edge with

maximum CWR, which is node C. Removing node C breaks four cycles, 4, 5,

8, and 9, leaving three.

3. Compute the cycle-weight ratio for the remaining edges in table 6.2 and nodes

in table 6.11. Note that removing a node also removes all edges associated with

the node. The results are shown in tables 6.12 and 6.13. Two edges and one

node have the same maximum value of 0.5. Our rule in this situation is to

choose the node that is involved in more cycles, in this case B. Removing B

breaks two cycles, 10 and 11, leaving one cycle, 1.

4. Compute the cycle-weight ratio for the remaining edges and nodes in tables 6.12

and 6.13. The results are not shown because they are simple and can be seen

in tables 6.12 and 6.13. According to the rule, F is removed, completing the

cycle removing process.

In conclusion, the graph is made acyclic by removing one edge, A → C, and three

nodes, C, B, and F . The total cost is 2 + 3 + 4 + 3 = 12. In this example, this is
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Table 6.11: Cycle-weight Ratio for Nodes in SCC{E, A,C,H, B, D, F}−{A →

C}

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 6 {} 0 0
2 B 4 {5, 9, 10, 11} 4 1
3 C 3 {4, 5, 8, 9} 4 1.33
4 D 5 {4, 5, 11} 3 0.60
5 E 5 {1, 4, 5} 3 0.60
6 F 3 {1, 4, 5} 3 1
7 H 7 {4, 5, 8, 9, 10, 11} 6 0.86

Table 6.12: Cycle-weight Ratio for Edges in SCC{E, A,C,H, B, D, F} -{A →

C, C}

Cycles
No. Node Wt. Invol- NC CWR

ved
3 B → D 2 { 11 } 1 0.5
4 B → H 3 { 10} 1 0.33
8 D → A 6 { } 0 0
9 D → H 7 {11} 1 0.14
10 E → A 4 { } 0 0
11 E → F 3 {1 } 1 0.33
12 F → D 5 { } 0 0
13 F → E 4 {1} 1 0.25
14 H → B 4 {10,11 } 2 0.5

the same cost as using node weights as the maximum of incoming edge weights and

not considering edge weights.
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Table 6.13: Cycle-weight Ratio for Nodes in SCC{E, A,C,H, B, D, F}−{A →

C, C}

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 6 {} 0 0
2 B 4 {10, 11} 2 0.5
4 D 5 {11} 1 0.20
5 E 5 {1} 1 0.20
6 F 3 {1} 1 0.33
7 H 7 {} 0 0

Figure 6.5 shows node weights for case 3, between the maximum and the sum of

incoming edge weights. Previous tables 6.1 and 6.8 provide initial CWR values for

edges and nodes. The rest of algorithm 5 works as follows:

1. Choose an edge or a node with maximum CWR from both tables 6.1 and 6.8.

Then remove whichever has the greater CWR value from the WORD. Among

the edges, A → C has a maximum CWR value of 2, and among the nodes, C

and F have a maximum CWR value of 1.33. Thus, edge A → C is removed.

Removing edge A → C breaks four cycles, 2, 3, 6, and 7, leaving seven.

2. Recompute the cycle-weight ratio for the remaining edges and nodes in tables

6.1 and 6.8. The result for edges is the same as in table 6.2. The result for

nodes is shown in table 6.14. Note that the weight of the node associated with

the removed edge is also recomputed. The new node weight is reduced by the

removed edge weight. From tables 6.2 and 6.14, choose a node or an edge

with maximum CWR value. When more than one node or edge has the same
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maximum CWR value, our rule is to choose a node that is involved in the larger

number of cycles. B and C have the same weight and are also involved in the

same number of cycles. In this situation, we arbitrarily chose B. Removing B

breaks four cycles, 5, 9, 10, and 11, leaving three.

3. Recompute the cycle-weight ratio for the remaining edges in table 6.2 and nodes

in table 6.14. Note that removing a node also removes all edges associated with

the node. The results are shown in tables 6.15 and 6.16. Node F is removed,

which breaks two cycles, 1 and 4, leaving one cycle, 8.

4. Recompute the cycle-weight ratio for the remaining edges and nodes in tables

6.15 and 6.16. The results are not shown because they are simple and can be

seen in tables 6.15 and 6.16. According to the rule, C is removed, and this

completes the cycle removing process.

In conclusion, the graph is made acyclic by removing one edge, A → C, and three

nodes, B, F , and C. The total cost is 2 + 4 + 3 + 4 = 13. This is the same cost as

using edge weights only.

In conclusion, using both node and edge weights are similar to using node weights

only. This is because node weights are computed using edge weights.

6.3 Algorithm for Ordering Classes for Integration

Testing

Once cycles are broken by automation, the integration tester needs a specific ordering

of the classes, especially for classes that appear in different SCCs [Tar72]. Algorithm

6 describes an approach for ordering classes for integration and testing. Although
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Table 6.14: Cycle-weight Ratio for Nodes in SCC{E, A,C,H, B, D, F}−{A →

C}

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 9 {} 0 0
2 B 4 {5, 9, 10, 11} 4 1
3 C 4 {4, 5, 8, 9} 4 1
4 D 6 {4, 5, 11} 3 0.50
5 E 7 {1, 4, 5} 3 0.43
6 F 3 {1, 4, 5} 3 1
7 H 10 {4, 5, 8, 9, 10, 11} 6 0.60

Table 6.15: Cycle-weight Ratio for Edges in SCC{E, A,C,H, B, D, F} -{A →

C, B}

Cycles
No. Node Wt. Invol- NC CWR

ved
5 C → E 5 {4 } 1 0.2
6 C → A 3 { } 0 0
7 C → H 4 {8 } 1 0.25
8 D → A 6 { } 0 0
9 D → H 7 {4} 1 0.14
10 E → A 4 { } 0 0
11 E → F 3 {1,4} 2 0.67
12 F → D 5 {4} 1 0.2
13 F → E 4 {1} 1 0.25
15 H → C 5 {4, 8} 2 0.4

this algorithm is not particularly hard to develop, no algorithm has been published

for this problem. The algorithm first generates a precedence table for nodes in the
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Table 6.16: Cycle-weight Ratio for Nodes in SCC{E, A,C,H, B, D, F}−{A →

C, B}

Cycles
No. Node Wt. Invol- NC CWR

ved
1 A 9 {} 0 0
3 C 4 {4, 8} 2 0.5
4 D 6 {4} 1 0.17
5 E 7 {1, 4} 2 0.29
6 F 3 {1, 4} 2 0.67
7 H 10 {4, 8} 0 0

WORD, then finds all strongly connected components (SCCs) in the weighted object

relation diagram (WORD). A precedence table is indexed by the number or name

of nodes in the WORD, and shows the nodes that are connected to a node through

outgoing edges from the node. Then, each SCC is compressed into a node, and the

multiple edges between SCCs are combined into one edge. As a result, an acyclic

directed graph WORDcomp, a compressed WORD, is produced. For example, Figure

6.6 represents a WORD with three SCCs, {1, 2}, {3, 4}, and {5}. Figure 6.7 shows

the resulting WORDcomp. The algorithm finds the reversed topological order, OSCCs,

for the WORDcomp as (1) {5}, (2) {3, 4}, and (3) {1, 2}.

Then, each scci is made acyclic using Algorithm 3, and scci−acyclic represents the

resulting subgraph. The removed edges represent specific test stubs to be developed.

Suppose edges 1 → 2 and 3 → 4 are removed from SCCs {1, 2} and {3, 4}. The

result is that there are two specific test stubs for 2 and 4. A reverse topological
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Algorithm 6 Ordering Classes for Integration and Testing

1: Generate precedence table for nodes in the WORD

2: Find all SCCs in WORD

3: Generate an acyclic compressed version of WORD, WORDcomp, by representing

each scci as a single node and by compressing multiple edges between every two

nodes

4: Find reverse topological order, OSCCs, of nodes in WORDcomp

5: for (each scci ∈ SCCs) do

6: make scci acyclic by using Algorithm 3 and record removed edges

7: find reverse topological order, Oscci
, for nodes in the acyclic scci−acyclic

8: end for

9: Start testing according to the order of SCCs in OSCCs

10: for (each ordered scci ∈ SCCs) do

11: test nodes in the order Oscci

12: end for

1


3


2


4


5


Figure 6.6: Finding Overall Test Order in a WORD

order, Oscci
, is generated for scci−acyclic. In this example, SCCs {1, 2} and {3, 4} have

reverse topological orders of 1, 2 and 3, 4. Testing starts according to the order

OSCCs. For each node in OSCCs, first, scci−acyclic is restored, and included nodes are
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1, 2 3, 4  5

Figure 6.7: Compressed WORD

tested according to the order Oscci
. For Figure 6.6, the integration and test order is

5, 3, 4, 1, 2. Before a node is tested, the precedence table is checked. If a node was

connected to a removed edge, then include the corresponding test stub in the test

order. For example, when node 3 is tested, the precedence table indicates that node

3 is connected to an untested node. Thus, the test stub for node 4 is included at this

point.

6.4 Case Study

This section provides an evaluation of the model and algorithms by comparing results

with the same project, the ATM system, used by Briand et al. [BFL02]. Briand et

al. chose the number of broken dependencies, attribute couplings, method couplings,

and a combination of attributes and methods as four cost functions to produce an

integration test order, and compared the results to decide which cost function gives the

best result. Our approach is first to use dependencies, attribute coupling measures,

method coupling measures, and a combination of attribute and method coupling

measures as weights on edges and apply our algorithm to check what kind of result

can be obtained under similar situations. Then, we collect coupling data from the

implementations using coupling definitions and coupling measures defined in Section

6.2.1, construct the weighted object relation diagram (WORD), and compute the
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Table 6.17: Coupling Measures for Edges in SCC {8, 9, 10, 11, 12, 13, 14, 15}

No. 8 9 10 11 12 13 14 15
8 1.0.0.0.0 1.0.2.1.3
9 1.0.1.1.3
10 1.0.6.4.4 1.0.1.1.1 1.0.3.5.3 1.0.1.1.0 10.1.1.0 1.0.1.1.0 1.0.1.1.0
11 1.0.1.1.3 1.0.0.0.0 1.0.1.1.0
12 1.0.4.3.11 1.0.4.3.11 1.0.2.2.0 5.0.0.0.0
13 1.0.4.3.6 1.0.4.3.14 1.0.2.2.0 5.0.0.0.0
14 1.0.3.2.6 1.0.3.3.12 1.0.2.2.0 5.0.0.0.0
15 1.0.2.1.6 1.0.3.3.10 1.0.2.2.0 5.0.0.0.0

edge weights for SCCs in the WORD using equations 6.3 and 6.8.

The ATM system has 21 classes and eight form a strongly connected component

that has 30 cycles [BFL02]. Table 6.17 shows the coupling measures in the format

of equation 6.1. Table 6.18 shows the different edge weights that are used in this

evaluation. In particular, the columns labeled Dependency, # of Attributes, # of

Methods, and A & M show the edge weights obtained from Briand et al.’s four cost

functions. The last column shows edge weights that are computed from Table 6.17

using equations 6.5, 6.3, 6.4, and 6.8. The constraints of not breaking inheritance

and composition edges are achieved by assigning 5 to variable CBT in equation 6.1

for inheritance and composition, and 1 for the others.

In all five approaches, seven dependencies were removed. When using weights in

the columns labeled # of Attributes, # of Methods, A & M, and A & M-new of

Table 6.18, exactly the same set of edges were removed. Hence, the stubbing cost for

these approaches are equal. Although seven dependencies were broken when using

the existence of dependencies as a cost function, the stubbing cost may vary because

the edge weights are the same and thus cannot reflect any stubbing cost at the time

of deciding to choose an edge to remove between two equal weight edges.
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Table 6.18: Different Weights for Edges in SCC {8, 9, 10, 11, 12, 13, 14, 15}

# of # of A & A &
No. Edge Dep. Attr. Meth. M M-new
1 8 → 9 1 13 1 0.71 1
2 8 → 10 1 9 2 0.53 1.22
3 9 → 8 1 13 7 1 1.17
4 10 → 8 1 13 7 1 1.66
5 10 → 9 1 13 2 0.74 1.13
6 10 → 11 1 0 0 0 1.57
7 10 → 12 1 2 2 0.23 1.13
8 10 → 13 1 2 2 0.23 1.13
9 10 → 14 1 3 2 0.26 1.13
10 10 → 15 1 1 2 0.21 1.13
11 11 → 8 1 13 2 0.74 1.17
12 11 → 9 1 13 1 0.71 1.00
13 11 → 10 1 9 2 0.53 1.13
14 12 → 8 1 13 4 0.81 1.60
15 12 → 9 1 13 4 0.81 2.59
16 12 → 10 1 9 2 0.53 2.01
17 12 → 11 1 ∞ ∞ ∞ 5.00
18 13 → 8 1 13 4 0.81 1.50
19 13 → 9 1 13 4 0.81 2.62
20 13 → 10 1 9 2 0.53 2.01
21 13 → 11 1 ∞ ∞ ∞ 5.00
22 14 → 8 1 13 3 0.77 1.39
23 14 → 9 1 13 3 0.77 2.58
24 14 → 10 1 9 2 0.53 2.01
25 14 → 11 1 ∞ ∞ ∞ 5.00
26 15 → 8 1 13 2 0.74 1.29
27 15 → 9 1 13 3 0.77 2.58
28 15 → 10 1 9 2 0.53 2.01
29 15 → 11 1 ∞ ∞ ∞ 5.00

The results indicate that when we consider the stub complexity as weights on

edges, graph-based algorithms can produce results as good as those produced by

genetic algorithms, but with significantly lower costs. A larger empirical evaluation



130

needs to be carried out to verify that this result generalizes.

6.5 Summary of Existing Graph Algorithms for

Cycle Elimination

For a given directed graph G = (V, E), the problem of eliminating cycles with min-

imum cost has been formulated as the maximum acyclic subgraph problem [BS90],

the minimum feedback arc set problem [ELS93], and the minimum feedback vertex set

problem [LJ00]. The problem is known to be NP-complete on general graphs and on

bipartite graphs.

Given a directed graph G = (V, E), the maximum acyclic subgraph problem is to

identify the minimum subset E ′ in E such that G′ = (V,E ′) is acyclic and E’ has

maximum cardinality [BS90].

Given a directed graph G = (V,E), the feedback arc set problem is to determine a

minimum cardinality set of arcs that breaks all cycles [ELS93].

Given a directed graph G = (V,E), the minimum feedback vertex set (MFVS)

problem is to identify the minimum subset V ′ in V such that after removing all

vertices in V ′, the remaining graph is acyclic [LJ00].

Lin and Jou [LJ00] developed an algorithm for the MFVS problem, which can be

used to improve our heuristic algorithms for the CITO problem. Given a directed,

node-weighted graph G = (V, E), Lin and Jou used (α× (number of Π-edges) +

β× (in-degree + out-degree))/(vertex cost) as the weight function for a vertex. The

Π-edges are defined as follows.

Π-edge Definition: Given a directed graph G = (V, E) and an edge
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(u, v) in E, the edge (u, v) is a Π-edge if there also exists an edge (v, u)

in E.

Our heuristic algorithms can be improved by using the Π-edge concept. First, the

Π-edges are ordered in descending order of their cycle-weight ratio values. The Π-edge

with the maximum CWR is removed, then CWR is re-computed for the remaining

Π-edges. This process is repeated until there are no more Π-edges. After this step,

our original algorithms can be used as defined in Section 6.2.

6.6 Summary

This chapter presents an improved technique and algorithms to automate the CITO

problem. The technique uses weights to represent the cost of creating stubs. This

has been done before, but the weights in this research are derived from quantitative

analysis of couplings, thus obtaining more precise results. These weights are placed

on a Weighted Object Relation Diagram (WORD), which represents classes as nodes

and relationships as edges. This chapter also introduces the idea of applying weights

to nodes to estimate the cost of removing the nodes. If a class is used by multiple

classes, then all or part of the same stub for that class may be shared among all

classes that use it, thus reducing the cost of stubbing. The weight of a node is at

least as high as the maximal weight of all incoming edges (assuming total sharing of

the stub), and no higher than the sum of the weights of all incoming edges (assuming

no sharing of the stub).

New algorithms to solve the CITO problem are introduced. These algorithms use

edge and node weights. They were compared with algorithms by previous researchers,

and found to be just as effective if edge weights are ignored. They can be more effective
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if edge weights are used. Overall, the results in this research improve the ability for

developers to automate the CITO problem.



Chapter 7: COUPLING-BASED CHANGE

IMPACT ANALYSIS

Change is an inherent and necessary part of a software system’s life. The importance

of change is reflected in the distribution of software costs. Estimates show that 65-

75% of total software costs are subsumed in maintenance activities [Som95]. Warren

[War99] states that software systems change for two reasons: (1) the environment in

which a system operates is dynamic, and (2) software development invariably intro-

duces errors. As software systems become increasingly large and complex, it becomes

more necessary to predict and control the effects of software changes. Studies over

the last three decades have shown that making software changes without fully under-

standing their effects can lead to poor effort estimates, delays in release schedules,

degraded software design, unreliable software products, and premature retirement of

software systems [BA96].

Key aspects of change impact analysis include identifying possible changes in a

system, defining the concept of an impact, developing algorithms for computing the

impact set of a proposed change, and defining cost and effort prediction models for

implementing changes. Once changes are identified and their impacts are defined,

computing impact sets becomes a critical part of the analysis activity. Three dif-

ferent approaches to computing the impact set of a software change are qualitative,

quantitative, and theoretical. The qualitative approach computes the impact set from

intuition of developers or a manager. The quantitative approach computes the impact

133
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set from information from software design, program source code, and dynamic run

time information. The theoretical approach tries to compute the theoretical minimum

impact set. It relies on determining whether definitions reach their uses. This prob-

lem can be reduced to the halting problem, which is undecidable. Hence, finding a

theoretical minimum is not possible.

Precision and size are two main factors to consider in change impact set com-

putation. A precisely computed impact set of a change includes the exact elements

that will be affected by the change. The size of a change impact set is the number

of elements that will be affected by the proposed change. The elements of a change

impact set are classes, methods, and statements. The goal is to compute the exact

change impact set so that the maintenance model based on the change impact set

is precise. An impact set that is computed for a change could look like one of the

sets shown in Figure 7.1. The exact set includes only those elements that are truly

affected by a change. Set 1 includes the exact set and some other elements that will

not be affected by a change. Set 2 includes part of exact set and some other elements

that will not be affected by a change. Since the theoretical minimum is impossible to

compute, the goal of an algorithm used to compute change impact set is to compute

Set 1 with as small a size as possible. The size of an impact set is important because

it will be used as a prediction model for the cost and effort of making a change in

the system. If the size of a computed impact set is bigger than the actual size of the

impact set then more cost and effort is required to accomplish the change. However,

it is difficult to decide whether a set includes the impact set.

If we refine the aforementioned approaches to include more details, we get the

following five possible ways to compute impact sets:

1. Qualitative-based on intuition. A person estimates an impact set that includes
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Exact Set


Set 2


Set 1


Figure 7.1: Change Impact Sets

all components that could possibly be impacted by a change. The size of this

type of computed impact set is usually the largest, but depends to a large degree

on the person making the estimate.

2. Quantitative-based on design analysis. This approach computes the impact set

based on the interactions among components in the design of a system. This

set is smaller than the qualitative set mentioned above.

3. Quantitative-based on program static analysis. In this approach, program

source code is statically analyzed to extract the detailed interaction infor-

mation among components of a system. Although the computed impact set

will be smaller than if based on design information, it cannot take run time

interactions into consideration.

4. Quantitative-based on run time dynamic information. The computation consid-

ers both static and run time information. This allows the computed impacted

set to be smaller.

5. Theoretical minimum impact set-relies on whether definitions reach uses. This
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Figure 7.2: Change Impact Analysis

problem can be reduced to the halting problem, which is undecidable. Hence,

the theoretical minimum is not reachable.

Figure 7.2 summarizes these five approaches. Previous research has been on the

first and second approaches, and less with the third approach. This chapter presents

research based on the third approach; static program analysis. We will consider the

fourth approach in the future.

Coupling analysis is a powerful tool for analyzing interactions among components

in software. Because changes in one component propagate to other components only

through interactions, the results from coupling analysis can be used for change impact

analysis, saving time and effort.
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7.1 Class Change Impact and Change Sensitivity

When one class requires another to be available before objects of that class can be

compiled, we call this relationship a dependency between a server and a client class.

The client class is being compiled or executed and the server class must be present.

This dependency has a direction, and, at a more detailed level, is based on one or

more object-oriented relationships.

Existing systems are modified for the purpose of corrective, adaptive, perfective, or

preventive maintenance. One problem in modifying an existing system is that small

changes can ripple through the software and have unintended impacts elsewhere.

Figure 7.3 categorizes changes according to their potential effects on client classes.

First, not all changes cause ripple effects. For example, if the value of a variable

changes within its bounds, this change should not impact other classes. However, if

the access specifier of a variable changes from public to private, then this change may
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have ripple effects.

Definition 1: If a change can have a ripple effect, this type of change is

a causal change.

When a causal change is made in a class c, the change can only possibly affect

c’s clients. Furthermore, only changes to those elements of c that are used by others

can impact its client classes. We define this to be the set of impactful elements of

c, IEc. IEc determines the change impact of c in the system. Change Impact is a

metric that measures a class’s overall impact on other classes. In addition to changes

to itself, class c can be affected by changes in classes that it depends on. If c depends

on k classes, c1, c2, ..., ck, only changes to elements in ∪k
i=1IEci

can affect c. Hence,

∪k
i=1IEci

, c1, c2, ..., ck, can be said to determine the sensitivity of c to changes in other

classes. Sensitivity is a metric that measures the reactiveness of a class to changes in

the system.

In this research, dependencies among classes are estimated using couplings. To

distinguish directions of dependencies, a class’s interactions with other classes are

measured using two sets of couplings.

Definition 2: Let C be the set of classes in a system, and c ∈ C. Let

Client(c), Client(c) ⊂ C, be the set of classes that uses IEc. The coupling

measure cmcin
represents the incoming coupling of c.

Definition 3: Let C be the set of classes in a system, and c ∈ C. Let

Server(c), Server(c) ⊂ C, be the set of classes that c uses as servers. The

coupling measure cmcout represents the outgoing coupling of c.
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A class’s coupling to its clients determines its change impact. Couplings from

server classes determine the sensitivity of a class to changes in the system. In other

words, the incoming couplings define the change impact of a class, and the outgoing

couplings define a class’s sensitivity to changes in other classes.

7.2 Measuring Class Change Impact and Class

Change Sensitivity

This section uses the coupling measures defined in Chapter 3. Chapter 3 defined the

incoming couplings of a class c, cmcin
, from k clients (d1..dk) as follows

cmcin
= {

k∑
i=1

CM(di, c) | di, c ∈ C}

=
k∑

i=1

CBTdi,c.

k∑
i=1

Vdi,c.

k∑
i=1

Mdi,c.

k∑
i=1

Rdi,c.

k∑
i=1

Pdi,c

= CBTin.Vin.Min.Rin.Pin (7.1)

and the outgoing couplings of a class c, cmcout , to k servers (d1..dk) as follows

cmcout = {
k∑

i=1

CM(c, di) | c, di ∈ C}

=
k∑

i=1

CBTc,di
.

k∑
i=1

Vc,di
.

k∑
i=1

Mc,di
.

k∑
i=1

Rc,di
.

k∑
i=1

Pc,di

= CBTout.Vout.Mout.Rout.Pout (7.2)
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The sets that contain all incoming and outgoing coupling base types of a class c are

denoted as Rcin
and Rcout , and are computed as follows:

Rcin
= {CBTdi,c | di, c ∈ C, i = 1...k} (7.3)

Rcout = {CBTc,di
| c, di ∈ C, i = 1...k} (7.4)

For change impact analysis, we use the measures with the individual counting

options. This means the V , M , R, and P measures are computed from the AT

(Equation 3.2 from Chapter 3), MT (Equation 3.4 from Chapter 3), RVT (Equation

3.6 from Chapter 3), and PT (Equation 3.8 from Chapter 3) multisets. The rationale

is that a change to an element will impact all (repeated) uses of that element. In

addition, we consider the number of coupling base types as one measure. This is

because a server class will impact its clients even if its methods or variables are not

used. We define Tin as the number of incoming coupling base types, Tin = |Rin|, and

Tout as the number of outgoing coupling base types, Tout = |Rout|.

Thus, cmcin
and cmcout become

cmcin
= Tin.Vin.Min.Rin.Pin (7.5)

cmcout = Tout.Vout.Mout.Rout.Pout (7.6)

To estimate change impact and sensitivity of a class from the total incoming

and outgoing coupling measures, we employ Briand et al.’s method [BFL02]. For a

measure Cplx(), a complexity measure Cplx() is normalized as

Cplx(i, j) = Cplx(i, j)/(Cplxmax − Cplxmin) (7.7)
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where Cplx(i, j) represents a complexity information matrix, Cplxmin = Min{Cplx(i, j),

i, j = 1, 2, ...} and Cplxmax = Max{Cplx(i, j), i, j = 1, 2, ...}. Briand et al. used two

coupling measures, A() and M(), the number of locally defined variables and the

number of methods, to compute overall stubbing complexity in testing:

SCplx(i, j) = (WA.A(i, j)2 + WM .M(i, j)2)1/2 (7.8)

where WA and WM are weights and WA + WM = 1.

We use Briand et al.’s concept [BFL02] in computing the change impact and

sensitivity. As shown in equations 7.5 and 7.6, our coupling measures measure the

number of coupling base types, the number of parameters, and the number of return

value types in addition to the number of variables and the number of methods. We use

the same normalization method as Briand et al., and include the additional coupling

measures in the stubbing complexity estimation.

Using the five total incoming coupling measures, Tin(), Vin(), Min(), Rin(), and

Pin(), the change impact of a class c is estimated as follows:

Chimp(c) = (WT × Tin(i, j)2 + WV × Vin(i, j)2 + WM ×Min(i, j)2 +

WR ×Rin(i, j)2 + WP × Pin(i, j)2)1/2 (7.9)

where WT , WV , WM , WR, and WP are weights and WT +WV +WM +WR +WP = 1.

The Tin(i, j), Vin(i, j), Min(i, j), Rin(i, j), and Pin(i, j) values are computed from

equation 7.7 using values from equation 7.5.

Using the five total outgoing coupling measures, Tout(), Vout(), Mout(), Rout(), and
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Pout(), the sensitivity of a class c to changes in the system is estimated as follows:

Chsen(c) = (WT × Tout(i, j)
2 + WV × Vout(i, j)

2 + WM ×Mout(i, j)
2 +

WR ×Rout(i, j)
2 + WP × Pout(i, j)

2)1/2 (7.10)

where WT , WV , WM , WR, and WP are weights and WT +WV +WM +WR +WP = 1.

The Vout(i, j), Mout(i, j), Rout(i, j), and Pout(i, j) values are computed from equation

7.7 using values from equation 7.6.

7.2.1 Usefulness of Measures

The change impact and sensitivity measures can be used by developers in several

ways:

1. If a class is known to have a large change impact, then developers should try to

avoid changing the class.

2. Both measures can be used to evaluate design patterns. For example, a system

can be designed using different patterns. Then each pattern can be evaluated

according to the sensitivity and change impact of classes in each pattern.

3. These measures will help developers and maintainers understand the system

and its structure.

4. The sensitivity measure of a class can be used to predict its stability. Sensitivity

of a class is a snapshot view of the class at a particular moment while stability

is measured over a period of time.

5. The sensitivity measure can be used to rank classes for their reusability. Classes

with lower sensitivity are more desirable candidates for reuse.
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7.2.2 Object-Oriented Program Changes

One activity in change impact analysis is to identify changes and explore their natures.

This research considers source code level changes of object-oriented software. Object-

oriented software consists of classes and their relationships. Furthermore, classes are

composed of member variables and methods. A class defines variables and the meth-

ods common to all objects that are in the type hierarchy defined by the class. For

the purposes of corrective, adaptive, perfective, or preventive maintenance, changes

can be made to any element of the software: classes, their member variables, their

methods, and relationships among classes. While the concepts of class declaration,

variables, and methods have representations in the source code, most class relation-

ships do not have explicit actualization. In fact, most class relationships are hidden

in the definitions and uses of variables and methods. This research only considers

changes to explicit class relationships in the source and thus identifies four categories

of changes: changes to class structure, changes to variables, changes to methods,

and changes to class relationships. Furthermore, only causal changes are identified

for each category.

Deleting a variable, changing the visibility of a change, and changing the type of

a variable are considered to be causal changes for variables. For methods, changes

such as adding or deleting a method (could be empty), changing the access specifier

of a method, changing the return type of a method, changing the type of any of the

parameters of a method, adding or deleting parameters of a method, making a method

abstract, and adding a body to an abstract method are considered to be causal changes.

For class relationships, changes such as adding or deleting inheritance relationship,

adding or deleting an implementation, and adding or deleting import statements are
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considered to be causal changes. For class declarations, adding a new class, deleting

a class, changing class visibility are considered to be causal changes. Renaming is the

same as deleting and then adding, hence, it is not considered separately.

7.2.3 Computing Impact Sets for Individual Changes

Two factors affect the impact of a change [CKKL02]. One is that different types of

changes lead to different sets of impacted classes. The other is the type of interaction

among components. The interactions can be captured by coupling analysis. By the

definition of coupling, a change can only impact those classes that are coupled with

the class that is being changed.

Definition: Maximum Impact Set. Let C be the set of classes in a

system, and c ∈ C. Let SCc be the set of classes are coupled with c by

using c as a server. For all changes in c, the maximum impact set of c,

MISc, is equal to SCc.

The set MISc includes those classes that can possibly be impacted through ripple

effects of changes in c. The size of MISc can be large and using it may lead to

unnecessary maintenance effort. It is possible to compute a more precise impact

set for a particular change, which should be substantially smaller than the MISc, by

examining the usage of impactful elements of c, IEc, by each client class. Furthermore,

impactful elements of classes can be identified during coupling analysis. If a class c

is coupled with k classes, d1, d2, ..., dk, and c is a server, the impactful elements of c,

IEc, is

IEc = ∪k
i=1AD(di,c)

⋃
∪k

i=1MD(di,c)

⋃
∪k

i=1RVD(di,c)

⋃
∪k

i=1PD(di,c) (7.11)
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where AD(di,c), MD(di,c), RVD(di,c), and PD(di,c) are sets defined in equations 3.1, 3.3,

3.5, and 3.7 in Chapter 3.

In the JCAT tool, the impactful elements are saved in database tables. Figures

7.4 through 7.6 show tables that are designed for impactful elements. This research

computes the impact set of variable and method related changes. Intuitively, variable

and method level changes can impact only classes that use the changed variables or

invoke the changed methods.

Figures 7.4 and 7.5 show tables about variable definition and variable usage. The

variable definition level information is stored in the var def, var modifiers, method var

def, method var modifiers, method parameters, and param modifiers tables, as shown

in Figure 7.4. There are three types of variables: class, method, and parameter. A

class variable is defined at the class level. A method variable is defined in a method.

The parameters to a method are saved separately in the method parameters table to

make it convenient for later analysis. The related class def and method def tables are

also presented to show their relationship with the variable tables.

The variable usage level information is stored in the var use method and var use

class tables. Figure 7.5 shows these two tables and other related tables. Since

only the class level variables can be shared among classes, the var def table is shown

from the variable level tables. The method call level information is stored in the

constructor call method, constructor call class, method call class, and method call

method tables. Figure 7.6 shows the tables and their structure. The shaded tables

are the parent tables and the arrows show the relationships among the tables. The

method calls are saved in separate tables according to their scope. For example, if

a method call occurs inside a method, this event and the related information are

saved in the method call method table. Similarly, if a method call occurs at the class
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Figure 7.4: Variable Level Tables

level, the information is saved in the method call class table. The invocation of a

constructor is handled in the same way.

By querying these tables, change impact sets of each element can be precisely

computed. Algorithms 7 and 8 describe the impact set computation steps for a

variable and method change, including changes to return type and parameters of a

method.

qry1 : SELECT vd.var id AS vchi
id

FROM class def AS c, var def AS vd

WHERE c.pathname = cchi
.pathname AND c.class name = cchi

.name
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Algorithm 7 Find Variable Change Impact Set

Require: The change type, chi, the variable to be changed, vchi
, and the class cchi

to which

vchi
belongs, are specified.

Ensure: The impact set IS(vchi
) is identified.

1: if cmcin
6= 0 then

2: if (chi is causal change) AND (vchi
∈ IEc) then

3: execute qry1 (find the ID of vchi
in database)

4: execute qry2 (find classes that uses vchi
in their class space)

5: execute qry3 (find classes that uses vchi
in their methods)

6: end if

7: end if

AND vd.var name = vchi
.name AND vd.class id = c.class id;

qry2 : SELECT C.pathname AS impacted class name

FROM class def AS C, var use class AS vuc

WHERE vuc.var id = vchi
id AND vuc.class id = C.class id;

qry3 : SELECT C.pathname AS impacted class name

FROM class def AS C, var use method AS vum, var def AS vd,

method def AS md

WHERE vum.method id = md.method id AND md.class id = C.class id

AND vum.var id = vchi
id;

Algorithm 7 first checks if a change is a causal change, then it checks if the variable

to be changed is in the set of impactful elements of class c. If these conditions are

met, then the algorithm selects classes that use the variable by making queries to

tables that store the impactful variables. qry1 identifies the ID of the variable in

the table. If a variable is used in the scope of a class, then this information is
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stored in the var use class table; if a variable is used in the scope of a method,

then this information is stored in the var use method table. qry2 and qry3 make

separate queries to these two tables and select classes that use the variable that will

be changed.

Algorithm 8 Find Method Change Impact Set

Require: The change type, chi, the method to be changed, mchi
, and the class c to

which

mchi
belongs are specified.

Ensure: The impact set IS(mchi
) is identified.

1: if cmcin
6= 0 then

2: if (chi is causal change) AND (mchi
∈ IEc) then

3: execute qry4 (find the ID of mchi
in database)

4: execute qry5 (find classes that calls mchi
in their class space - mchi

is a

method)

5: execute qry6 (find classes that calls mchi
in their methods - mchi

is a method

)

6: execute qry7 (find classes that calls mchi
in their class space - mchi

is a

constructor)

7: execute qry8 (find classes that calls mchi
in their methods - mchi

is a con-

structor )

8: end if

9: end if

qry4 : SELECT md.method id AS mchi
id

FROM class def AS c, method def AS md

WHERE c.pathname = cchi
.pathname AND

c.class name = cchi
.name AND

md.method name = mchi
.name AND
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Figure 7.5: Variable Usage Level Tables

md.class id = c.class id;

qry5 : SELECT C.pathname AS impacted class name

FROM class def AS C, method call class AS mcc WHERE mcc.method id =

mchi
id AND

mcc.class id = C.class id;

qry6 : SELECT C.pathname AS impacted class name

FROM class def AS C, method call method AS mcm, method def AS vd,

method def AS md

WHERE mum.method id = md.method id AND md.class id = C.class id

AND mum.method id = mchi
id;

qry7 : SELECT C.pathname AS impacted class name
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FROM class def AS C, constructor call class AS ccc, method def AS md

WHERE ccc.method id = md.method id AND

md.class id = C.class id AND

ccc.method id = mchi
id;

qry8 : SELECT C.pathname AS impacted class name

FROM class def AS C, constructor call method AS ccm, method def AS md

WHERE ccm.method id = md.method id AND md.class id = C.class id AND

ccm.method id = mchi
id;

Algorithm 8 first checks if a change is a causal change, then it checks if the method

to be changed is in the set of impactful elements of class c. If these conditions are

met, then the algorithm selects the classes that call the method by making queries to

tables that store impactful methods. qry4 identifies the ID of the method in the table.

If a method or a constructor is called in the scope of a class, then this information is

stored in the method call class table or the constructor call class table; if a method

or a constructor is called in the scope of a method, this information is stored in the

method call method or in the constructor call method table. qry5, qry6, qry7, and

qry8 make separate queries to these four tables and select classes that call the method

to be changed.

7.3 Case Study

This section illustrates the CIA method described in this research through the JRGrep

application. JRGrep is a graphical, Java-based, implementation of the well-known

grep utility [Fie06].
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Figure 7.6: Method Call Level Tables

Figure 7.7 depicts the class diagram of JRGrep. Table 7.2 summarizes the cou-

plings found among classes in Figure 7.7. Table 7.3 shows an analysis of class relations

and the values for the change impact and the sensitivity to change metrics. Rank-

ings based on the sensitivity and the change impact values of classes are presented

in Tables 7.4 and 7.6. According to Table 7.4, MainWindow is the most sensitive.

FileSearchListener, ResultsListModel, FileFoundEvent, and Bundle are not sensitive

to any change. The class diagram shows that MainWindow uses or depends on five

other classes while the not-sensitive classes do not use or depend on any other class

except for FileSearchListener. There is an association between FileSearchListener

and FileFoundEvent but an instance of FileFoundEvent is referenced without using

any of its variables or calling its methods. According to Table 7.6, Bundle has the

greatest impact. tty and Main do not have any change impacts. The class diagram
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Figure 7.7: Class Diagram for JRGrep Application

shows that Bundle is used by two classes while the non-impactive classes tty and

Main are not used or depended on by any other classes. The tables show that there

is no correlation between the change impact metric and the size of the client set, and

there is no correlation between the sensitivity to change metric and the size of the

server set.

7.3.1 Visualization of Metrics

Applying visualization to software metrics is a valuable technique for rapid analysis

and decision making. Examples of metrics that could be visualized include sensitivity,

change impact, number of impactful elements, number of clients, number of servers,

number of methods, number of public variables, lines of code. A popular method of

visualizing software metrics on a given code module is the Kiviat diagram [SG01].
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Table 7.1: Descriptive Statistics of JRGrep Application

CN Classes LOC NOM NOV NIE

1 Bundle 18 3 2 2
2 FileFoundEvent 10 2 2 4
3 FileSearchListener 6 3 0 5
4 Main 7 1 0 0
5 MainWindow 285 10 17 0
6 ResultsListModel 22 5 2 4
7 RunSearch 29 4 7 7
8 Searcher 115 14 11 9
9 tty 62 6 3 0

Table 7.2: JRGrep Application Coupling Matrix

CN 1 2 3 4 5 6 7 8 9
1
2
3 2.0.0.0.0
4 2.0.1.1.0
5 4.0.19.0.19 2.0.1.1.0 8.0.3.0.2 2.0.3.1.1 64.0.3.1.6
6
7 32.0.0.0.0 64.0.4.1.6
8 2.0.1.1.2 6.5.3.0.2
9 4.0.7.0.7 2.0.1.1.0 8.0.3.0.2 64.0.4.1.7

This diagram allows multiple components of varied ranges to be shown on the same

chart. Each software measurement (metric) is indicated by radial axes. The upper

and lower limit for each metric are indicated by the outer- and inner-concentric circles,

respectively. The measured value for each category then is plotted on each axis, and

the connecting lines form a visual pattern of code complexity.

Figure 7.8 depicts the Kiviat diagram for class FileSearchListener. In this figure,

NOV is for number of variables defined in FileSearchListener, NOM is for number
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Table 7.3: JRGrep Application Coupling Analysis

Outgoing Incoming Sensitivity Change
CN Servers Clients Coupling Coupling to

Sum Sum Changes Impact
1 5, 9 4.0.26.0.26 0.00 0.71
2 3, 5, 8, 9 2.0.3.3.2 0.00 0.50
3 2 5, 7, 8, 9 2.0.0.0.0 46.5.9.0.6 0.00 0.21
4 5 2.0.1.1.0 0.17 0.00
5 1, 2, 3, 6, 7 4 80.0.29.3.28 2.0.1.1.0 0.87 0.17
6 5 2.0.3.1.1 0.00 0.18
7 3, 8 5 96.0.4.1.6 64.0.3.1.6 0.21 0.21
8 2, 3 7, 9 6.5.4.1.4 64.0.8.2.13 0.54 0.44
9 1, 2, 3, 8 78.0.15.2.16 0.51 0.00

Table 7.4: JRGrep Application Class Ranking Based On Change Sensitivity

Rank Class Sens. to Server
change set size

1 MainWindow 0.89 5
2 tty 0.61 4
3 Searcher 0.59 2
4 RunSearch 0.34 2
5 Main 0.25 1
6 FileSearchListener 0.20 1
7 ResultsListModel 0.00 0
8 FileFoundEvent 0.00 0
9 Bundle 0

of methods defined in FileSearchListener, LOC is for lines of code of FileSearchLis-

tener, ChIm is for the change impact metric of FileSearchListener, and Sen is for the

sensitivity to change metric. The Kiviat diagram also shows the number of servers

(NOS), the number of client (NOC), and the number of impactful elements (NIE) of

class FileSearchListener.



155

Table 7.5: JRGrep Application Class Ranking Based On Change Impact

Rank Class Change Client
impact set size

1 FileSearchListener 0.66 4
2 Bundle 0.66 2
3 FileFoundEvent 0.58 4
4 Searcher 0.44 2
5 RunSearch 0.21 1
6 ResultsListModel 0.18 1
7 MainWindow 0.17 1
8 tty 0.00 0
9 Main 0.00 0

Table 7.6: Maximum and Minimum Values of JRGrep Application Metrics

No Metric Max Min FileSearchListener

1 LOC 285 6 6
2 NOV 17 0 0
3 NOM 14 1 3
4 NOC 4 0 4
5 NOS 5 0 1
6 NIE 9 0 5
7 ChIm 0.66 0 0.66
8 Sen 0.89 0 0.20

7.4 Summary

This chapter analyzed the characteristics of changes in OO software and presented

techniques to analyze their impacts. The techniques are based on automated analysis

of couplings in the program source. Several algorithms for computing the impact

of different change categories are presented and metrics for evaluating classes are

defined. The technique is illustrated through a case study.
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Chapter 8: COUPLING-BASED DESIGN

PATTERN DETECTION

A design pattern is a general repeatable solution to commonly occurring problems in

software design [GHJV01]. It is a description or template for how to solve a problem

that can be used in many different situations. A design pattern is not a finished design

that can be transformed directly into code. Object-oriented design patterns typically

show relationships and interactions among classes or objects, without specifying the

final application classes or objects that are involved. Algorithms are not regarded as

design patterns, since they solve computational problems rather than design problems.

Design patterns can speed up the development process by allowing designers to

use structure that have been successful in previous projects. Effective software design

requires considering issues that may not become visible until later in the implemen-

tation, after deployment, or when portions of the system are reused in other systems.

Reusing design patterns helps to prevent subtle issues that can cause major problems

and improves code readability for programmers and design architects who are familiar

with the patterns.

Often, software developers only understand how to apply certain software design

techniques to certain problems. However, these techniques are difficult to apply to a

broader range of problems. Design patterns provide general solutions, documented in

a format that does not require specifics to be tied to a particular problem. In addi-

tion, patterns allow developers to communicate using well-known names for software

157
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interactions. Common design patterns can be improved over time, making them more

robust than single-use designs.

Because most current software projects deal with evolving products consisting

of a large number of components, their architectures can become complicated and

cluttered. Design patterns can impose structure on the system through common ab-

stractions. Consequently, identifying implemented design patterns could be useful

for comprehending existing designs and provide information needed for refactoring

[Vok06]. Thus, design pattern identification from source code can help improve soft-

ware maintainability and reuse of designs.

This research presents a design pattern structure detection methodology, in which

both the system under study as well as the design pattern to be detected are de-

scribed in terms of graphs. The approach employs a coupling matrix representing

all important aspects of their static structure. Relations in patterns are realized as

couplings in software, and we find these couplings through analysis. To detect pat-

terns, we employ a graph similarity algorithm [BGH+04], which takes the system and

the pattern graph as input, and calculates similarity scores between their vertices.

The major advantage of this approach is the ability to detect patterns in their ba-

sic form (the one usually found in the literature), as well as their modified versions.

This is a significant prerequisite since most design patterns can be implemented with

innumerable variations [FBB+99], [SS].

8.1 Representation of System and Patterns

Prior to the pattern detection process, it is necessary to define a representation of the

structure of both the system under study and the design patterns to be detected. Such
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a representation should incorporate all information that is vital to the identification

of patterns. This research models the relationships between classes (as well as other

static information) in an object-oriented design using matrices. The key idea is that

the class diagram is essentially a directed graph that can be perfectly mapped into a

square matrix. The main advantage of this approach is that matrices can be easily

manipulated.

The relationships or attributes of the system entities to be represented depend

on the specific characteristics of the patterns that the designer wishes to detect.

Characteristics of a pattern include generalizations, implementations, associations,

dependencies, compositions, and aggregations with some specific conditions. For

example, generalization in the context of design patterns implies that the parent class

should be an abstract class. Furthermore, the overriding of a method may require

specifically that it should invoke the overridden method. However, the similarity

algorithm does not depend on the specific types of matrices that are used. The

designer can freely set any kind of information as input, provided that one can describe

the system and the pattern as matrices using this information.

In Chapter 3, section 3.2.3, we defined couplings in terms of object-oriented re-

lationships and assigned weights for each coupling base type. We use the sum of

weights of coupling base types in matrices that model the system and patterns.

8.1.1 Analysis and Representation of Design Patterns

Design patterns have two aspects: structure and semantics. Structural aspects of

design patterns tell us what kind of relationship should be formed among the partici-

pants of a design pattern. Semantics tell us what functionalities or actions should be

performed in this relationship.
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Design patterns have been decomposed into recurring elements in order to improve

their detection process and results [SS02]. SPQR (System for Pattern Query and

Recognition) [SS] is one of a few tools that exploit this approach, and it detects

design patterns automatically in C++. Elemental Design Patterns (EDPs), the sub-

components of design patterns, play a central role in the context of SPQR. EDPs are

divided into three groups [AMR]:

1. Object Element, which contains three elemental patterns dealing with the cre-

ation and definition of objects (Create Object, Abstract Interface, and Retrieve)

2. Type Relation, which contains one elemental pattern describing the inheritance

relationship

3. Method Invocation, which contains twelve elemental patterns describing the

common method calls identified in the GoF catalog [GHJV01]

Coupling measures try to capture the structural aspects of software systems. Thus,

coupling measures can be used to identify the structural aspects of design patterns

that have interacting participants. Identifying the structural aspects as a first step

greatly reduces the search space for final confirmation of design patterns.

The following subsections analyze Adapter, Composite, and Observer patterns,

and identify couplings among their participants from a sample implementation. Dozens

of patterns have been defined in the literature [GHJV01]. These three patterns are

chosen for several reasons: frequency of usage, number of participants, maintenance

related traits, and feasibility for this study. Other patterns would be analyzed and

detected in similar ways. These three patterns are used in OO design with medium

to high frequency and they each have at least three participants [dof07], which makes
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coupling analysis possible. Among these patterns, the observer pattern is considered

to have the least change impact effect. They are also among the identified patterns in

the evaluation of a recent published design pattern detection methodology [TCSH06],

which makes it possible for us to compare our results.

8.1.2 Adapter Pattern

The intent of the Adapter pattern is to convert the interface of a class into another

interface that clients expect [GHJV01]. The Adapter pattern is implemented by

creating a new class with the desired interface and then wrapping the original class

methods to effectively contain the adapted object. Adapter lets classes work together

that could not otherwise because of incompatible interfaces, and it binds the client

to an interface, not an implementation.

The Adapter pattern has four participants: Target, Adapter, Adaptee, and Client.

Target defines the domain-specific interface that Client uses. Adapter adapts the

interface Adaptee to the Target interface. Adaptee defines an existing interface that

needs adapting. Client collaborates with objects that conform to the Target interface.

There are two kinds of adapters: Object Adapters and Class Adapters [FFBS04].

Object Adapters use composition in adapting the adaptee, while Class Adapters use

inheritance. A Class Adapter uses multiple inheritance, which Java does not support.

Therefore, this research does not consider Class Adapter pattern. Figures 8.1 and

8.2 depict the structure of Object and Class Adapter patterns. Table 8.1 shows

the couplings that are expected in a proper implementation of the Object Adapter

pattern.
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Adaptee -> specificRequest()


All requests get delegated to the Adaptee.


Figure 8.1: UML Class Diagram of the Object Adapter Pattern

Client


+request()


Target


+request()


Adapter


+specificRequest()


Adaptee


Figure 8.2: UML Class Diagram of the Class Adapter Pattern

Table 8.1: Couplings in Object Adapter Pattern Structure

Classes Client Target(I) Adapter Adaptee Rcout

Client 4.0.1.0.0 4.0.1.1.0 {4}
Target {}

Adapter 64.0.1.0.0 32.0.2.1.0 {64, 32}
Adaptee {}

Rcin
{} {4, 64} {4} {32} {4, 32, 64}

8.1.3 Composite Design Pattern

The Composite pattern composes objects into tree structures to represent part-whole

hierarchies. The Composite pattern lets clients treat individual objects and compo-

sitions of objects uniformly. The Composite pattern is frequently used.
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+remove(in comp : Component)
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+operation()

+add(in comp : Component)

+remove(in comp : Component)

+getChild(in i : int)


Composite


*


*


*
 *


Figure 8.3: UML Class Diagram of Composite Pattern

There are four participants in the Composite pattern: Component, Leaf, Com-

posite, and Client. Component declares the interface for objects in the composition,

implements default behavior for the interface that is common to all classes, declares

an interface for accessing and managing its child components, and optionally, defines

an interface for accessing a component’s parent in the recursive structure, and im-

plements it if needed. Leaf represents leaf objects in the composition. A leaf has

no children and defines behavior for primitive objects in the composition. Composite

defines behavior for components that have children, stores child components, and

implements child-related operations in the Component interface. Client manipulates

objects in the composition through the Component interface.

Figure 8.3 depicts the structure of the Composite design pattern, and Table 8.2

presents the couplings that are expected in a proper implementation of the Composite

pattern.
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Table 8.2: Coupling Matrix for Composite Pattern Structure

Classes Component(A) Leaf Composite Client Rcout

Component 2.0.0.0.0 {2}
Leaf 128.0.1.0.0 {128}

Composite 128.0.3.0.2
16.0.0.0.0 {128, 16}

Client 16.0.1.0.0 {16}
Rcin {2, 16, 16, 128, 128} {} {} {} {2, 16, 16, 128, 128}

8.1.4 Observer Pattern

The Observer pattern is one of the most commonly used design patterns [GHJV01].

It defines a one-to-many dependency between a subject object and any number of ob-

server objects so that when the subject object changes state, all its observer objects

are notified and updated automatically. The intent of this pattern is to minimize the

change impacts of the subject object through loose coupling to observers. Figure 8.4

depicts the structural characteristics of the Observer pattern. The Observer pattern

has four main participants: Subject, Observer, ConcreteSubject, and ConcreteObject.

Subject knows its observers and can have any number of observers. Subject provides

an interface for attaching and detaching Observer objects at run time. Observer pro-

vides an update interface to receive a signal from the Subject. ConcreteSubject stores

subject states of interest to the observer and sends notifications to its observers. Con-

creteObserver maintains a reference to a ConcreteSubject object, maintains observer

state, and implements the update operation. Table 8.3 gives the coupling matrix for

Figure 8.4.

Several variations are possible in implementations of the observer pattern. Par-

ticipants can be combined so that one participant can play several roles [JUn07]. For
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Figure 8.4: UML Class Diagram of the Observer Pattern

Table 8.3: Coupling Matrix for Standard Observer Pattern Structure

Classes Subject(I) Observer(I) Concrete- Concrete- Rcout

Subject Observer
Subject 2.0.0.0.0 {2}
Observer {}

ConcreteSubject 64.0.3.0.2 16.0.1.0.0 {64, 16}
ConcreteObserver 64.0.1.0.0 16.0.2.1.1 {64, 16}

{2, 16, 16,
Rcin {64} {2, 16, 64} {16} {} 64, 64}

example, in Figure 8.5 the Subject combines the roles of three participants: Sub-

ject, ConcreteSubject, and ConcreteObserver. Table 8.4 gives the coupling matrix

for Figure 8.5.

Figure 8.6 shows another variation of the Observer pattern. Here Subject combines

the roles of Subject and ConcreteSubject. Table 8.5 gives the coupling matrix for

Figure 8.6.



166
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Figure 8.5: UML Class Diagram of a Variation of the Observer Pattern

Table 8.4: Coupling Matrix for the Observer Pattern Variation 1

Classes Subject Observer(I) Rcout

Subject 4.0.1.0.0 2.0.0.0.0
64.0.3.0.2
16.0.1.0.0 {4, 2, 64, 16}

Observer {}
Rcin

{4} {2, 64, 16} {2, 4, 16, 64}

+registerObserver()

+removeObserver()

+update()


Subject


+update()


«interface»

Observer


1


#


1..*


+update()

+otherMethods()


ConcreteObserver


Figure 8.6: UML Class Diagram of another Variation of the Observer Pattern

8.2 Similarity Scoring Algorithm

The similarity scoring algorithm is the foundation of the design pattern detection

methodology used in this paper. Blondel et al. [BGH+04] introduced a concept of
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Table 8.5: Coupling Matrix for the Observer Pattern Variation 2

Classes Subject Observer(I) ConcreteObserver Rcout

Subject 16.0.0.0.0 {16}
Observer {}

ConcreteObserver 4.0.2.0.2 64.0.1.0.0 {4, 64}
Rcin

{4} {16, 64} {} {4, 16, 64}

similarity between vertices of directed graphs. Let GA and GB be two directed graphs

with nA and nB vertices. They defined an nB × nA similarity matrix S whose real

entry sij expresses how similar vertex j (in GA) is to vertex i (in GB); in other words,

sij is their similarity score. In the special case where GA = GB = G, the matrix S is

square and the score sij is the similarity score between the vertices i and j of G.

Let A be the matrix whose entry (i, j) is equal to the number of edges between the

vertices i and j in GA (the adjacency matrix of GA), and let B be the matrix whose

entry (i, j) is equal to the number of edges between the vertices i and j in GB (the

adjacency matrix of GB). These matrices are combined to create a similarity matrix,

S(GA, GB). This is calculated by recomputing a recurrence relation until the value of

the recurrence relation converges (stops changing). The recurrence relation is based

on the matrices A, B, and their transposes, AT and BT . The recurrence relation is:

Sk+1 = BSkA
T + BT SkA

S0 is the identity matrix–all entries are 1. Unfortunately, this function does not

always converge. Sometimes it oscillates between two convergent values; one when k

is even and one when k is odd. To avoid this problem, Blondel et al. [BGH+04] used

the one-norm of the matrix Sk+1 to equalize the relation. The 1-norm of a matrix is
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the maximum sum of the columns1, usually denoted by ‖M‖1. Thus, the complete

expression is

Sk+1 =
BSkA

T + BT SkA

‖BSkAT + BT SkA‖1

(8.1)

The recurrence computation stops after an even number of iteration (k is even).

The number of floating point operations for this algorithm [BGH+04] is on the

order of

knAnB(
eA

nA

+
eB

nB

), (8.2)

where eA and eB are the number of edges of graphs GA and GB. In the worst case,

eA = n2
A and eB = n2

B (all entries in the corresponding adjacency matrices are equal

to 1) and, therefore, the maximum number of floating point operations is on the order

of k(n2
AnB + nAn2

B). However, the adjacency matrices required for pattern detection

are usually sparse, reducing the computational complexity to eX ¿ n2
X .

For design pattern detection, the similarity algorithm can be used to calculate

the similarity between the vertices of the graph describing the pattern (GA) and the

corresponding graph describing the system (GB). This will lead to a similarity matrix

of size nB × nA.

8.2.1 From Coupling Tables to Matrices

The similarity algorithm by Blondel et al. computes similarities between vertices of

unweighted directed graphs [BGH+04]. One way to apply this algorithm to design

pattern detection is to model the system and the patterns as unweighted directed

graphs. In this case, there could be several graphs for each pattern based on the

1The literature gives many definitions for 1-norm; this one is used by Blondel et al. [BGH+04].
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characteristics that distinguish patterns [TCSH06]. One question is whether it is

possible to use one weighted digraph to represent the patterns and the system and

whether the graph vertices similarity algorithm can still be applied to the weighted

digraph. Fortunately, Blondel et al. points out that their algorithm can also be

applied to networks (weighted directed graphs) [BGH+04]. Further, it is possible

to represent the patterns as weighted digraphs deriving weights from couplings. This

makes it possible to model the system and patterns using one graph for each and still

apply the similarity algorithm. The advantage of using one weighted digraph instead

of several unweighted digraphs is that it reduces the complexity of the design pattern

detection process. This research models the system and patterns as networks and

derives the weights from couplings.

The coupling measures defined in Chapter 3 has five sub-measures. Among these

sub-measures, the coupling base type indicates the type of relationship, and the other

four measures represent the number of attribute references, method calls, return types,

and parameters that appear in this relationship. The structural aspects of a design

pattern are reflected in coupling type indicators. Therefore, to detect design pattern

structures, we only need the values of the coupling base types.

A preliminary study of the similarity algorithm gives insight into how to apply this

algorithm. This algorithm computes similarity scores between a pair of vertices by it-

eratively and simultaneously computing the similarity scores of their in/out neighbors

pairs. Therefore, distinct values with large gaps should help increase the accuracy of

similarity scores. In addition, there could be more than one type of coupling among

classes. It should be kept in mind that the combination of these couplings should

not resemble any other coupling type, i.e., the combination should be distinct and

one should be able to tell the origins of this combination. Based on the analysis of
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the implementation of design patterns and the similarity algorithm, we developed the

following rules for deriving weights from couplings:

Rule 1:

1. Inheritance, interface implementation, and abstract class implementations are

assigned separate values in general. However, in some design pattern implemen-

tations, abstract class and interface are used interchangeably. For this reason,

interface implementation and abstract class implementation coupling types are

combined and assigned the value of the interface coupling type.

2. Association and dependency do not have clear cut differences in implementa-

tions. Hence, these two coupling types are combined for this application.

3. To distinguish each kind of relationship, the coupling categories are assigned

values as follows:

• inheritance – 20,000

• abstract class and interface implementation – 10,000

• composition – 8,000

• aggregation – 6,000

• association, dependency – 100

• exception – 1

• external – 0 (This means this coupling is not considered. One reason is that

the design patterns do not include external couplings. The other reason is

that there is no external coupling in our example application.)
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The weights may look arbitrary, however in our studies they fulfill the require-

ment for being distinctive for each coupling type in being used alone or com-

bined. They explicitly do not indicate a quantitative judgement on the types.

8.2.2 An Example

Let us assume the system under study is the sample Observer pattern implementation

in Appendix B. Figure 8.4 from section 8.1.4 depicts both the system and the pattern

to be detected, and both have the same coupling table as in Table 8.3. Their coupling

matrices are:

GA(observer) = GB(system) =




0 100 0 0
0 0 0 0

10000 100 0 0
0 10000 6000 0




The similarity algorithm produces the following similarity scores matrix for

GA(observer) and GB(system):

Sim(GA, GB) =




(Subject) (Observer) (Concrete− (Concrete−
Subject) Observer)

(Subject) 0.2321 0.0198 0.0106 0.0043

(Observer) 0.0198 0.6128 0.3675 0.0000
(Concrete−

Subject) 0.0106 0.3675 0.4453 0.0214
Concrete−
(Observer) 0.0043 0.0000 0.0214 0.6325




Sim(GA, GB) is called a self-similarity matrix of the observer pattern. As ex-

pected, the pattern participants have a high similarity score with themselves; that is,
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the diagonal entries are large. Blondel et al./ has shown that the largest entry of a self-

similarity matrix always appears on the diagonal and that, except for trivial cases, the

diagonal elements of a self-similarity matrix are non-zero [BGH+04]. In this example,

diagonal elements dominate all elements on the same row and column. The similarity

score between classes Observer and ConcreteSubject, s(Observer, ConcreteSubject),

is 0.3675, and higher than the similarity scores for other class pairs. This indicates

that next to themselves, Observer and ConcreteSubject are more similar to each

other in structure than other classes. A check of the sample Observer pattern struc-

ture shows that Observer class has three incoming relationships, ConcreteSubject

has two incoming relationships, Subject has one incoming relationships, and Concre-

teObject has no incoming relationships. The score affirms the fact that Observer and

ConcreteSubject are similar in having the higher numbers of incoming relationships.

8.3 Methodology for Detecting Design Pattern

Structures

The overall methodology for detecting design patterns in software can be summarized

as follows:

1. Reverse engineering of the system under study. All structural characteristics of

the system under study (i.e., association, generalization, etc.) is represented as

one n× n adjacency coupling matrix, where n is the number of classes.

2. Construction of subsystem matrices. A subsystem is defined as a portion of

the entire system consisting of classes belonging to packages related through

a pattern. We assume that there are at most two packages involved in any

pattern, and we justify this assumption based on the principle of cohesiveness



173

of packages.

3. Reducing search scope. All incoming and outgoing coupling type sets are pre-

pared for each pattern role in a pattern to be detected. Each class then is

checked for its possibility of playing a role in the pattern by examining its in-

coming and outgoing coupling type sets. If there is no possibility, then this

class and its corresponding row and columns are eliminated from the system

coupling matrix.

4. Application of the similarity algorithm between the subsystem matrices and the

pattern matrices. Similarity scores between each pattern role and each subsys-

tem class are calculated. This corresponds to seeking patterns in each subsystem

separately.

5. Extraction of patterns in each subsystem. Usually, one instance of each pattern

is present in each subsystem, which means that each pattern role is associated

with one class.

Similarity scores are used as a starting point. Every class that is identified as a

possible pattern role is further examined by comparing its incoming and outgoing

coupling type sets with incoming and outgoing coupling type sets of that pattern

role.

Before we apply the similarity algorithm, we transform the coupling measures table

of the system, CMs, into Reduced Design Pattern Detection Matrices (RDPDM) for a

given pattern. Algorithm 9 shows the steps for reducing the search space. Algorithm

10 shows the steps for extracting the structure of a pattern instance.

In Algorithm 9, Rs represents the set of relationships that appear in the target

subsystem, Rp represents the set of relationships that appear in a pattern, and Rci
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Algorithm 9 Find RDPDM (CMs, CMp)

Require: CMs is an (n + 1)× (n + 2) matrix, where n is the number of classes

in the system

Require: CMp is an (m + 1)× (m + 2) matrix, where m is the number of roles

in the pattern

1: i = 0; ci ∈ C, C is the set of classes

2: if Rs ⊇ Rp then

3: while (i < n) do

4: if (Rci
∩Rp = ∅) then

5: remove the row and column corresponding to ci from CMs

6: else

7: j = 0;

8: ciIsCandidatePatternRole = false;

9: while (NOT (ciIsCandidatePatternRole) ∧j < m) do

10: if (Rciin
⊇ Rpjin

∧Rciout
⊇ Rpjout

) then

11: ciIsCandidatePatternRole = true;

12: end if

13: j = j+1;

14: end while

15: if NOT (ciIsCandidatePatternRole) then

16: remove the row and column corresponding to ci from CMs

17: end if

18: end if

19: i = i + 1;

20: end while

21: end if

represents the set of incoming and outgoing relationships of class ci. CMs is an adja-

cency matrix of the system with one extra column for the total outgoing relationships

set, two additional rows for total incoming relationships set and total relationships

set for each class. The main purpose of Algorithm 9 is to remove classes that do

not have structural characteristics of any pattern role from consideration. It carries
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out two levels of checking. First it compares Rs and Rp. If Rs includes all relation-

ships that a patterns must have, Rp, then the algorithm carries out the next level of

checking. If Rs + Rp, then there is no need to check the subsystem for a pattern.

If Rs ⊇ Rp, then the algorithm examines each class by comparing its total incoming

and outgoing relationships set, Rci
, with Rp. If class Rci

and Rp have no common

relationship element, Rci
∩ Rp = ∅, then class ci is removed from consideration. If

Rci
∩ Rp 6= ∅, then ci is further examined by comparing its incoming and outgoing

relationships with the incoming and outgoing relationships of each pattern role. ci is

considered as a candidate pattern role if both its incoming and outgoing relationships

sets include the incoming and outgoing relationships of a pattern role.

Algorithm 10 first computes the similarity score matrix for the subsystem and

pattern. Next, it chooses the class and pattern role pair corresponding to the largest

similarity score and further examines the class to confirm its compatibility with the

pattern role. If a class matches to a pattern, then the algorithm removes the row

and column corresponding to the class and the pattern, and continues with the next

largest value in the remaining similarity matrix. The algorithm terminates when

all similarity scores greater than a value, epsilon, are examined. If the number of

identified pattern roles equals the number of roles in the pattern, then the algorithm

declares that the pattern structure is detected. Otherwise, it declares that there is

no possibility for the pattern.
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Algorithm 10 Design Pattern Structure Detection (GA, GB)

Require: Matrix GA represents a design pattern with m pattern roles (pr) (prj,

j = 1 to m)

Require: Matrix GB represents a software system with n classes (c) (ci, i = 1 to n)

1: Compute similarity scores matrix S for graphs GA and GB

2: rolesFound = 0; hopefulToFind = true; patternPossible = false; ε = 0.01

3: while (rolesFound < n ∧ hopefulToF ind) do

4: Find the largest similarity score, si,j, in the matrix

5: if (si,j < ε) then

6: hopefulToFind = false;

7: else

8: if (Rciin
⊇ Rprjin

) ∧ (Rciout
⊇ Rprjout

) then

9: choose ci for the corresponding pattern role prj, and add to patternRoleList

10: remove row i and column j from S

11: rolesFound = rolesFound + 1

12: si,j = 0

13: else
14: si,j = 0;

15: end if

16: end if

17: end while

18: if (rolesFound = m) ∧ (roles are compatible with each other) then

19: patternPossible = true;

20: end if

8.4 Case Study - Couplings and Design Patterns

in JUnit

The proposed methodology is evaluated on JUnit 3.7, which is a regression testing

framework for implementing unit tests in Java. JUnit is selected for three reasons:

1. it is an open-source project so its source code is publicly available.
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Figure 8.7: JUnit Package Diagram

2. JUnit relies heavily on some well-known design patterns.

3. the authors of JUnit explicitly indicate the implemented design patterns in the

documentation and it has been used in the evaluation of another design pattern

detection methodology [TCSH06]. Therefore, it was possible to compare the

results of the proposed methodology.

JUnit has five packages: framework for the basic framework, runner for some

abstract classes that run tests, textui and swingui for user interfaces, and extensions

for some useful additions to the framework. Figure 8.7 shows the packages and their

relationships, and Table 8.6 presents base type couplings among these five packages.

These five packages have a total of 40 classes. Dividing a large system into smaller

scopes improves efficiency by reducing the convergence time of the similarity algorithm

[TCSH06]. Depending on the purpose, a system can be partitioned into groups in

many ways. Our goal for dividing the system is (1) to improve efficiency, and (2)
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Table 8.6: Package Level Base Type Couplings

Packages framework runner extensions swingui textui

framework
runner 4, 128

extensions 4, 128
swingui 4, 128 4, 128 4
textui 4 4, 128

to minimize false negative, i.e., the partition should not separate participants of

a possible pattern. To detect patterns, we first consider each package separately,

then examine every pair of coupled packages. This case study focuses on framework

package and the combination of framework and swingui packages.

Table 8.7 gives aliases for each classes in the framework and swingui packages.

Table 8.8 presents the couplings in the framework package, Table 8.9 presents the

couplings in the swingui package, and Table 8.10 presents the couplings from swingui

to framework.

First, we transform the original coupling measures table into a coupling types

table by applying Rule 1. Table 8.11 is generated from Table 8.8, Table 8.12 from

3.4, Table 8.13 from 8.2, and Table 8.14 from 8.3.

8.4.1 Analysis of the Adapter Pattern

Applying Algorithm 9 to Table 8.11 for the adapter pattern removes Assert, Asser-

tionFailedError, and Protectable from the table, and generates the following RDPDM
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Table 8.7: Aliases for Class Names in framework and swingui Packages

framework Aliases swingui Aliases

Assert f1 AboutDialog s1
AssertionFailedError f2 CounterPanel s2
Protectable f3 DefaulFailureDetailView s3
Test f4 FailureRunView s4
TestCase f5 ProgressBar s5
TestFailure f6 StatusLine s6
TestListener f7 TestHierarchyRunView s7
TestResult f8 TestRunContext s8
TestSuite f9 TestRunner s9

TestCollector s10
TestSuiteLoader s11
Version s12
TestTreeModel s13

of the framework package for the adapter pattern:

GB(framework) =




0 0 0 100 0 0
10000 0 0 0 100 0
6100 0 0 0 0 0
100 0 0 0 0 0
100 0 8000 6000 0 0

16100 100 0 0 100 100




The following matrix represents the structure of the adapter

GA(adapter) =




0 100 100 0
0 0 0 0
0 10000 0 8000
0 0 0 0




The similarity algorithm in Section 8.2 produces the following similarity matrix
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Table 8.12: Coupling Types in Adapter Pattern Structure

Classes Client Target(I) Adapter Adaptee Rcout

Client 100 100 {100}
Target {}

Adapter 10000 8000 {10000, 8000}
Adaptee {}

Rcin
{} {100, 10000} {100} {8000} {100, 8000, 10000}

Table 8.13: Coupling Types in Composite Pattern Structure

Classes Component(A) Leaf Composite Client Rcout

Component 100 {100}
Leaf 10000 {10000}

Composite 10000
6000 {10000, 6000}

Client 6000 {6000}
Rcin

{100, 6000, 10000} {} {} {} {100, 6000, 10000}

Table 8.14: Coupling Types in Standard Observer Pattern Structure

Classes Subject(I) Observer(I) Concrete- Concrete- Rcout

Subject Observer
Subject 100 {100}
Observer {}

ConcreteSubject 10000 6000 {10000, 6000}
ConcreteObserver 10000 6000 {10000, 6000}

Rcin {10000} {100, 6000} {} {} {100, 6000, 10000}

between GA(adapter) and GB(framework) vertices:

Sim(GA, GB) =




(Client) (Target) (Adapter) (Adaptee)
(Test) 0.0000 0.4194 0.0000 0.3355

(TestCase) 0.0019 0.0017 0.3083 0.0014
(TestFailure) 0.0011 0.0012 0.1881 0.0009
(TestListener) 0.0000 0.0009 0.0031 0.0007
(TestResults) 0.0005 0.0028 0.0041 0.0022
(TestSuite) 0.0031 0.0017 0.4964 0.0014



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Table 8.15: Coupling Type Matrix for Observer Pattern Variation 1

Classes Subject Observer(I) Rcout

Subject 100 100
10000
6000 {100, 6000, 10000}

Observer {}
Rcin

{100} {100, 6000, 10000} {100, 6000, 10000}

Table 8.16: Coupling Type Matrix for the Observer Pattern Variation 2

Classes Subject Observer(I) ConcreteObserver Rcout

Subject 6000 {6000}
Observer {}

ConcreteObserver 100 10000 {100, 10000}
Rcin {100} {6000, 10000} {} {100, 6000, 10000}

Finally, we analyze this matrix using Algorithm 10. The algorithm finds only one

role, Test as Target, and terminates. This shows that there is no adapter pattern in

the framework package. A manual check of the JUnit documentation confirms these

results.

8.4.2 Analysis of the Composite Pattern

Applying Algorithm 9 to Table 8.11 for the composite pattern removes Assert, As-

sertionFailedError, Protectable, and TestListener from the table, and generates the

following RDPDM of the framework package for the composite pattern:

GB(framework) =




0 0 0 0 0
10000 0 0 100 0
6100 0 0 0 0
100 0 8000 0 0

16100 100 0 100 100



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The following matrix represents the structure of the composite pattern:

GA(composite) =




100 0 0 0
10000 0 0 0
16000 0 0 0
6000 0 0 0




The following is the similarity matrix between GraphA(composite) and

GraphB(framework):

Sim(GA, GB) =




(Component) (Leaf) (Composite) (Client)
(Test) 0.2951 0.0000 0.0000 0.0000

(TestCase) 0.0031 0.1933 0.3093 0.1160
(TestFailure) 0.0021 0.1179 0.1887 0.0708
(TestResults) 0.0020 0.0024 0.0039 0.0015
(TestSuite) 0.0043 0.3113 0.4981 0.1868




Algorithm 10 analyzes this matrix and identifies that the classes TestSuite, Test,

TestCase, and TestFailure form the composite pattern. Here TestSuite plays the role

of Composite, Test plays Component, TestCase plays Leaf, and TestFailure plays

Client. A manual check of the JUnit documentation confirms these results.

8.4.3 Analysis of the Observer Pattern

Applying Algorithm 9 to Table 8.11 for the standard observer pattern removes Assert,

AssertionFailedError, Protectable, and TestResult from the table, and generates the

following RDPDM of the framework package for the standard observer pattern:

GB(framework) =




0 0 0 100 0
10000 0 0 0 0
6100 0 0 0 0
100 0 0 0 0

16100 100 0 0 100



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The following matrix represents the standard structure of the observer pattern:

GA(observer) =




0 100 0 0
0 0 0 0

10000 100 0 0
0 10000 6000 0




The following is the similarity matrix between GA(observer) and GB(framework):

Sim(GA, GB) =




(Subject) (Observer) (Concrete− (Concrete−
Subject) Observer)

(Test) 0.0180 0.4451 0.2670 0.0000
(TestCase) 0.0023 0.0018 0.0118 0.3096

(TestFailure) 0.0014 0.0000 0.0065 0.1888
(TestListener) 0.0000 0.0000 0.0001 0.0031

(TestSuite) 0.0037 0.0018 0.0184 0.4985




Algorithm 10 analyzes this matrix. The algorithm finds two roles, Test as Observer

and TestSuite as ConcreteObserver, then terminates. This result indicates that there

is no standard observer pattern in the framework package. We then consider two

variations of the observer pattern. The following matrices represent the variations of

the observer pattern:

GA(observer−v1) =

(
100 16100
0 0

)

GraphA(observer−v2) =




0 6000 0
0 0 0

100 10000 0




Applying the similarity algorithm to the reduced system matrix and GA(observer−v1)
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generates the following similarity matrix:

Sim(GA1, GB) =




(Subject) (Observer)
(Test) 0.0024 0.3845

(TestCase) 0.3088 0.0016
(TestFailure) 0.1884 0.0000
(TestListener) 0.0031 0.0000

(TestSuite) 0.4973 0.0016




Analysis result from Algorithm 10 finds an observer pattern variation in the frame-

work package, where TestSuite is a Subject and Test is an Observer. This result is

confirmed with the JUnit documentation.

Applying the similarity algorithm on the reduced system matrix and GA(observer−v2)

generates the following similarity matrix:

Sim(GA2, GB) =




(Subject) (Observer) (ConcreteObserver)
(Test) 0.0024 0.3280 0.0000

(TestCase) 0.1857 0.0013 0.3096
(TestFailure) 0.1133 0.0000 0.1888
(TestListener) 0.0019 0.0000 0.0031

(TestSuite) 0.2991 0.0013 0.4985




Algorithm 10 could not find the observer pattern variation from this similarity score.

A manual analysis reveals that this variation of the observer pattern exists in collab-

oration of the framework package and swingui package.

We transform the original coupling measures for the framework and swingui pack-

ages into a coupling types table, Table 8.17, by applying Rule 1.

Applying Algorithm 9 to Table 8.17 for the observer pattern variation 2 removes

f1, f2, f3, s1, s2, s3, s5, s6, s10, s11, s12, and s13 from the table, and generates the
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following RDPDM:

GB(frame,swingui) =




0 0 0 0 100 0 0 0 0 0
10000 0 0 0 100 0 0 0 0 0
6100 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0
100 0 8000 6000 0 0 0 0 0 0

16100 100 0 0 100 100 0 0 0 0
100 0 100 0 100 0 0 0 6000 100
100 0 0 0 100 0 0 0 6000 100
100 0 0 0 0 0 0 0 0 0
100 100 100 10000 8100 0 100 100 10100 0




Applying the similarity algorithm on the reduced system matrix and GA(observer−v2)

generates the following similarity matrix:

Sim(GA2, GB) =




(Subject) (Observer) (ConcreteObserver)
(f4) 0.0024 0.3234 0.0001
(f5) 0.1776 0.0014 0.2961
(f6) 0.1083 0.0022 0.1806
(f7) 0.0018 0.0078 0.0030
(f8) 0.0051 0.0072 0.0087
(f9) 0.2860 0.0013 0.4767
(s4) 0.0020 0.0001 0.0034
(s7) 0.0042 0.0001 0.0070
(s8) 0.0018 0.0075 0.0030
(s9) 0.0130 0.0006 0.0217




Algorithm 10 identifies f9, which is TestSuite in the framework package, as Con-

creteObserver and f4, which is Test in the framework package, as Observer. Although

f5, which is TestCase in the framework package, has the highest similarity score with

respect to Subject, their incoming and outgoing couplings do not match. Hence, the

algorithm declares that it cannot find the variation of the observer pattern structure,

which is a false negative.
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This result questions the suitability of the similarity algorithm in the design pat-

tern detection. We have tried to detect three patterns using coupling measures and

the graph similarity scoring algorithm. There have been no false positives but one

false negative. The second variation of the observer pattern exists in the collaboration

framework and swingui packages, but our approach did not detect it. This indicates

that the similarity algorithm is not always reliable. The similarity algorithm is based

on the notion that two nodes are similar if they have similar in/out neighbors. In

general, graphs that represent patterns are sparse, but graphs that represent full sys-

tems vary. In detecting patterns in dense graphs, it is not guaranteed to have high

similarity scores for nodes that match pattern nodes. As a result, the largest similar-

ity score may help to find a single system node that matches a pattern node, but it

may not lead to find the pattern in its entirety.

8.4.4 Lessons Learned - New Approach

This research has found that coupling measures are useful in reducing the search scope

for design patterns. However, our approach with the the graph similarity algorithm

[BGH+04], which applies it on weighted graphs in design pattern structure detection,

does not always produce correct results, i.e. false negatives occurred. However, since

this approach produces results faster and with no false positives, it is still useful.

From the experience in this case study, Algorithm 11 was devised to address the

false negatives.

This algorithm identifies all possible subsets of classes that form a specific pattern

structure. Applying this algorithm on Tables 8.17 and 8.16 identified s9, which is

TestRunner in the swingui package, as ConcreteObserver, f7, which is TestListener

in the framework package, as Observer, and f8, which is TestResult in the framework
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package, as Subject. A manual check of the JUnit documentation confirms these

results.

To summarize, the core questions in this research are:

1. Can coupling measures be used in design pattern detection? If yes, then at

what extent? How much help can coupling measures offer?

2. Can the graph similarity scoring algorithm be used in combination with coupling

measures? Are there any restrictions?

The results from the case study indicate that:

1. Coupling measures can be used in the design pattern structure detection. The

semantics of patterns cannot be detected using coupling measures alone.

2. The graph similarity scoring algorithm can be used in combination with coupling

measures to detect the structure of a particular design pattern. It is fast and

does not give false positives. However, it is not always guaranteed to detect a

pattern structure in the system graph.

3. Algorithm 11 only uses coupling measures to detect a pattern structure. This

algorithm does not result in false negatives, and shows that coupling measures

are useful in detecting design pattern structures.

8.4.5 Discussion of Difference from Other Approaches

This research is different from most other research in that it uses a graph similarity

algorithm. There is one other method that uses the same graph similarity algorithm

to detect design patterns. This section discusses the difference of our approach from

the approach of Tsantalis et al. [TCSH06].
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To detect design patterns in source, Tsantalis et al. [TCSH06]

1. Reduced the search space by constructing subsystems according to inheritance

hierarchies.

2. Identified nine characteristics for patterns and used unweighted directed graphs

to represent each characteristic. As a result, subsystems and patterns can have

a number of graph representations depending on how many characteristics they

have.

3. Applied a graph similarity algorithm for each pair of subsystems and pattern

graphs to detect patterns.

The research in this dissertation

1. First used packages and package pairs to divide system into subsystems, then

developed an algorithm to remove classes that cannot be pattern roles from

the subsystem. Thus further reduced the search scope. The algorithm used

coupling measures to judge classes for their possibility of being a pattern role.

2. Used weighted graphs to represent the reduced subsystem and a pattern. As a

result, there is one graph for the subsystem and one for a pattern.

3. Applied the same graph similarity algorithm for a quick search of a design

pattern structure.

4. Developed a coupling-based method to identify all possible subsets of classes

that form a pattern structure.

Tsantalis et al. evaluated their approach on three projects: JUnit, JHotDraw,

and JRefactory. They missed some patterns in JHotDraw and JRefactory. They
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explain that those missed patterns lack certain pattern requirements to be considered

as patterns, although the documents claim that they are patterns. This research is

not evaluated on JHotDraw and JRefactory. Therefore, we currently cannot draw a

conclusion about those missed patterns.

This research complements existing design pattern detection techniques by identi-

fying classes that will possibly form a pattern. This result will simplify the rest of the

detection process and also help decrease the false negatives in the pattern detection.

8.5 Summary

We have modeled the system and design patterns as weighted directed graphs using

coupling information and then applied the graph vertices similarity algorithm. We

also developed algorithms to reduce the pattern search scope and to detect a de-

sired pattern structure from the similarity score matrix. The results are promising.

Coupling information can help identify the structure of a pattern. The key part is

to model the pattern correctly. Since there are variations in implementation, it is

crucial to reflect them in the model. As a result, one pattern can have several models

depending on possible implementations. Once the patterns and system are correctly

modeled using coupling information, applying the graph similarity algorithm yields

promising results.

Identifying design patterns also requires more specific examinations. Our current

results help reduce the search scope for pattern detection by generating a class dia-

gram of the system with the suspected patterns highlighted. Tools, such as jgraph

[jgr] and graphviz [gra], can help.



195

Algorithm 11 Find All DPS (CMs, CMp)

Require: CMs is an (n + 1)× (n + 2) matrix, where n is the number of classes

in the system

Require: CMp is an (m + 1)× (m + 2) matrix, where m is the number of roles

in the pattern

1: i = 0; ci ∈ C, C is the set of classes, PRLj, j = 1..m, are sets for pattern roles

2: if Rs ⊇ Rp then

3: while (i < n) do

4: if (Rci
∩Rp = ∅) then

5: remove the row and column corresponding to ci from CMs

6: else

7: j = 0;

8: ciIsCandidatePatternRole = false;

9: while (NOT (ciIsCandidatePatternRole) ∧j < m) do

10: if (Rciin
⊇ Rpjin

∧Rciout
⊇ Rpjout

) then

11: ciIsCandidatePatternRole = true;

12: add ci to PRLj;

13: end if

14: j = j+1;

15: end while

16: if NOT (ciIsCandidatePatternRole) then

17: remove the row and column corresponding to ci from CMs

18: end if

19: end if

20: i = i + 1;

21: end while

22: end if23: PRL1 × PRL2 × ...× PRLm are candidate patterns

24: while (more candidate exist) do

25: if (member classes of the next candidate are compatible

with each other as the pattern roles) then

26: report this candidate

27: end if

28: end while



Chapter 9: COUPLING-BASED FAULT MODEL

An object-oriented (OO) software system consists of components that interact with

each other to implement the behavior of the system. Principles of object-oriented

software development support reuse of software components and easier development

and maintenance through better data encapsulation [CCHJ94]. However, dynamic

binding, inheritance, polymorphism, and cycles in the dependency among compo-

nents increase the complexity of the relationships in the object-oriented software.

This increased complexity has brought new challenges to integration, testing, and

maintenance of the OO software system. Thus modeling and measuring the relation-

ships among components have become necessary and essential activities in finding

solutions to the emerged problems.

Coupling analysis models the relationships among software components. Two

components are coupled if they are connected. The coupling model in Chapter 3

can be used to develop a model of faults for OO software. This chapter presents a

theoretical model of faults in OO software. The eventual goals are to determine

causal correlations among faults in software, relationships among software compo-

nents, and couplings. This would expand our knowledge of how to avoid and detect

faults, improve designs, and create predictive models based on design information.

This chapter is preliminary and theoretical; substantial amounts of data would need

to be collected to refine and validate this model.

This chapter categorizes OO faults according to coupling types and examines

whether coupling types differ with respect to faults and failures. To evaluate coupling

196



197

types with respect to faults and failures, we define a measure, fault index.

Definition: Fault index, fi, measures the degree of correlation between

a coupling type and OO faults.

This chapter considers a class to be the interacting component, and a coupling

base type is formally defined as a tuple:

CBT =< C, LI,RT, D > (9.1)

where C is a finite set of classes, LI is a finite set of locus of impact, RT is a finite set of

relationship types, and D is a finite set of directions of connection between two classes.

Furthermore, the correlation between a coupling base type and faults is defined as a

tuple:

〈CBT, F, FI, δ〉 (9.2)

where CBT is a finite set of coupling base types, F is a finite set of faults, FI is a

finite set of coupling fault indexes, and δ : CBT → FI is the coupling fault index

function.

Among these elements, C, LI, RT , and D can be statically identified from software

artifacts. However, computing fault indexes for different coupling types is challenging.

The reason is that computing fault indexes requires to develop a comprehensive fault

model with detailed characteristics of each fault.

The organization of this chapter is as follows: Section 9.1 provides a conceptual

model for coupling-based fault analysis. Section 9.2 describes the Object-Oriented

(OO) coupling types and develops a coupling-based fault classification of OO software.

Section 9.3 describes a method for relating fault indexes to coupling types. Finally,

Section 9.4 summarizes the ideas.
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9.1 Conceptual Model for Correlations Among Re-

lationships, Couplings, and Faults in Object-

Oriented Systems

To identify the determining factors in computing a fault index for each coupling type,

we first study OO fault types and their relationship with OO coupling types.

Figure 9.1 shows a conceptual model that abstracts the connections among rela-

tionships, coupling types, and fault types in a software. It also shows the relationship

between faults and failures that are caused by the faults. The severity of failures

that are caused by faults is one of the determining factors in computing fault indexes

to coupling types. Therefore, before we further explain our conceptual model, we

analyze the connection between faults and failures.

A fault is defined as an incorrect step, instruction, or data definition in a program

[IEE90]. A fault may result in a failure, which is observed when the system exhibits

incorrect external behavior. An error is an internal difference between the computed,

observed, or measured values or conditions, and the true, specified, or theoretically

correct values or conditions. Finally, a mistake is a human misconception that re-

sults in a fault [IEE90]. We identify three attributes for a fault: type, severity, and

frequency. The type shows in what kind of dependency a particular type of fault

may occur. Severity is defined according to the severity of the failure that caused

by a fault. Frequency means how often a particular type of fault occurs in OO soft-

ware. Defining the frequency of OO faults is a nontrivial task and has not yet been

addressed.

The relationship between faults and failures is extremely complex. Figure 9.2

illustrates the relationship between faults and failures through an example. The
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Figure 9.1: Conceptual Model for Correlation Among Relationships, Couplings and

Faults in Object-Oriented Systems

figure shows that there is a many-to-many relationship between faults and failures;

a fault can cause many failures and a failure can be caused by different types of

faults. In addition to type, severity, and frequency, another attribute, percentages of

faults causing a failure, can be ascribed to failures to more thoroughly reflect their

association with faults. At the same time, the severity of a particular type of fault

can be determined by the severity of failures that are caused by that fault.

The computation of a fault severity can be defined as follows:
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Figure 9.2: Conceptual Model for Relationships Between Faults and Failures

Let FR be a set of failures and FT be a set of faults. Let FRi be the set

of failures < fr1, fr2, ...frn > that are caused by fault fti. The severity

of fault fti is computed by the following formula:

fti.severity =
n∑

j=0

(frj.severity × frj.percentage(fti)), frj ∈ FRi

(9.3)

The fault index, fi, of a coupling type is determined according to the faults that

are associated with that particular coupling type. We use the following equation to

compute the fault index of a coupling type:

Let FTi be a set of faults < ft1, ft2, ..., ftn > that are associated with a coupling

type CBTi.
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CBTi.fi =

[
n∑

i=1

(fti.severity × fti.frequency)

]
/n where fti ∈ FTi. (9.4)

9.2 Coupling Levels and Coupling-based Fault Clas-

sification of Object-Oriented Software

Chapter 3 defined eight coupling base types for OO software:

1. Inheritance Base (InhrCB) type coupling measures inheritance-based interac-

tions between two classes.

2. Abstract Class Implementation Base (AbsCB) type coupling measures abstract

class implementation based interactions between two classes.

3. Interface Implementation Base (IfimCB) type coupling measures interface im-

plementation based interactions between two classes.

4. Composition Coupling Base (CompCB) type coupling measures composition

based interactions between two classes.

5. Aggregation Coupling Base (AggrCB) type coupling measures aggregation based

interactions between two classes. Exception Coupling Base (ExcpCB) type cou-

pling measures interaction between an exception throwing class and an excep-

tion handling class.

6. Association Coupling Base (AssoCB) type coupling measures association based

interactions between two classes.



202

7. Dependency Coupling Base (DpdnCB) type coupling measures dependency based

interactions between two classes.

Based on these coupling types, we develop a coupling-based fault classification for

OO software. In functional programming, program faults are categorized as domain

faults and computation faults [How76,Zei89,HOT97]. A domain fault occurs when,

due to an error in control flow, a program generates incorrect output. A computation

fault occurs when a program takes the correct path, but generates incorrect output

because of faults in the computations along that path. Domain faults are further

classified into two categories. A missing path fault is caused by a missing conditional

or clause and the associated statements, and a path selection fault is caused by an

incorrect decision at a predicate. Path-selection faults can result from an incorrect

predicate (predicate fault) or from an incorrect assignment statement that propagates

to a control point, leading to an incorrect decision (assignment fault).

We can extend the fault classification of functional programs for object-oriented

software. Faults are categorized as local faults, interaction faults, or subtyping faults.

A local fault occurs in a class or component, and it is independent of other classes or

components in the system. An interaction fault occurs in the relationship between two

classes or components. A subtyping fault may occur in an inheritance relationship.

Figure 9.3 depicts the fault categorization in OO software.

Using our OO coupling types, we characterize each type of fault that occurs due

to interaction or dependency as inheritance, abstract class implementation, interface

implementation, composition, aggregation, exception, association, or dependency cou-

pling faults. One open question about this model is how can we know that this model

is comprehensive for interaction faults.
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Figure 9.3: Coupling-based Object-Oriented Fault Classification

Inheritance faults share the same characteristics as subtyping faults as defined

by Offutt et al. [OAW+01]. If class B uses subtype inheritance to inherit from class

A, then it is semantically possible for any instance of B to be used (substituted) freely

when an instance of A is expected. Offutt and his colleagues identified nine types of

faults and anomalies that are related to subtype inheritance:

(1) Inconsistent type use

(2) State definition anomaly

(3) State definition inconsistency
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(4) State defined incorrectly

(5) Indirect inconsistent state definition

(6) Anomalous construction behavior(1)

(7) Anomalous construction behavior(2)

(8) Incomplete (failed) construction (IC)

(9) State visibility anomaly (SVA)

The following description is taken from Offutt et al.’s paper [OAW+01].

For Inconsistent Type Use (ITU) faults, a descendant class does not override any

inherited method. Thus, there can be no polymorphic behavior. Every instance of a

descendant class C that is used where an instance of T is expected can only behave

exactly like an instance of T . That is, only methods of T can be used. Any additional

methods specified in C are hidden since the instance of C is being used as if it is an

instance of T . However, anomalous behavior is still a possibility. If an instance of C

is used in multiple contexts (that is, through coercion, say first as a T , then as a C,

then a T again), anomalous behavior can occur if C has extension methods. In this

case, one or more of the extension methods can call a method of T or directly define

a state variable inherited from T . Anomalous behavior will occur if either of these

actions results in an inconsistent inherited state.

In general, for a descendant class to be behaviorally compatible with its ancestor,

the state interactions of the descendant must be consistent with those of its ancestor.

That is, the refining methods implemented in the descendant must leave the ancestor

in a state that is equivalent to the state that the ancestor’s overridden methods would

have left the ancestor in. For this to be true, the refining methods provided by the
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descendant must yield the same net state interactions as each public method that

is overridden. From a data flow perspective, this means that the refining methods

must provide definitions for the inherited state variables that are consistent with the

definitions in the overridden method. If not, then a potential data flow anomaly

exists. Whether an anomaly actually occurs depends upon the sequences of methods

that are valid with respect to the ancestor.

Any extension method that is called by a refining method must also interact

with the inherited variables of the ancestor in a manner that is consistent with the

ancestor’s current state. Because the extension method provides a portion of the

refining method’s net effects, to avoid a data flow anomaly, the extension must not

define inherited state variables in a way that would be inconsistent with the method

being refined. Thus, the net effect of the extension method cannot be to leave the

ancestor in a state that is logically different from when it was invoked. For example,

if the logical state of an instance of a stack is currently not-empty/not-full, then

execution of an extension method cannot result in the logical state spontaneously

being changed to either empty or full. Doing so would preclude the execution of pop

or push as the next methods in sequence.

The introduction of an indiscriminately named local state variable can easily result

in a data flow anomaly where none would otherwise exist. If a local variable is

introduced to a class definition where the name of the variable is the same as an

inherited variable v, the effect is the inherited variable is hidden from the scope of the

descendant (unless explicitly qualified, as in super.v). A reference to v by an extension

or overriding method will refer to the descendant’s v. This is not a problem if all

inherited methods are overridden since no other method would be able to implicitly

reference the inherited v. However, this pattern of inheritance is the exception rather
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than the rule. There will typically be one or more inherited methods that are not

overridden. A data flow anomaly might exist if a method that normally defines the

inherited v is overridden in a descendant when an inherited state variable is hidden

by a local definition.

Suppose an overriding method defines the same state variable v that the overrid-

den method defines. If the computation performed by the overriding method is not

semantically equivalent to the computation of the overridden method with respect to

v, then subsequent state dependent behavior in the ancestor will likely be affected,

and the externally observed behavior of the descendant will be different from the

ancestor. While this problem is not a data flow anomaly, it is a potential behavior

anomaly.

An inconsistent state definition can occur when a descendant adds an extension

method that defines an inherited state variable. For example, consider the class

hierarchy shown in Figure 9.4A where Y specifies a state variable x and method m(),

and the descendant D specifies method e(). Since e() is an extension method, it

cannot be directly called from an inherited method, in this case T::m(), because e()

is not visible to the inherited method. However, if an inherited method is overridden,

the overriding method (such as D::m() as depicted in Figure 9.4B) can call e() and

introduce a data flow anomaly by having an effect on the state of the ancestor that is

not semantically equivalent to the overridden method (e.g. with respect to the variable

T::y in the example). Whether an error occurs depends on which state variable is

defined by e(), where e() executes in the sequence of calls made by a client, and what

state dependent behavior the ancestor has on the variable defined by e().
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Figure 9.4: IISD: Example of Indirect Inconsistent State Definition.

9.3 Fault Index Computation for Couplings

Table 9.1 gives three coupling types and associated faults with their attributes. The

values used for fault severity and frequency are based on intuition, and therefore

should be considered speculative. We wish to use these data to show that it is possible

to compute coupling fault indexes from fault attributes when data is available. In

this example, we use a range [1..5] for fault severity where 5 is the most severe, and

[1..100] for fault frequency.

Using equation 9.4 and the limited data available in Table 9.1, the fault indexes,

fi, of coupling types are computed as follows:

CBTinheritance.fi = (5× 10 + 2× 15 + 2× 3 + 2× 20 + 3× 12 + 4× 5)/6

= 50 + 30 + 6 + 40 + 36 + 20)/6

= 182/6

= 30.33
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CBTassociation.f i = (1× 10 + 2× 15 + 3× 6 + 4× 6 + 5× 3 + 3× 8 + 2× 15 +

3× 7 + 1× 30 + 5× 2 + 1× 10 + 3× 5 + 2× 18)/13

= (10+10+18+24+15+8+10+21+12+10+10+30+24)/13

= 273/13

= 21

CBTexception.f i = (5× 6 + 2× 4 + 2× 10 + 2× 5 + 4× 2)

= 30 + 8 + 20 + 10 + 8)/5

= 76/5

= 15.2

The fault index computation result shows that inheritance coupling has the highest

fault index and the exception coupling has the lowest fault index. This order will be

useful to develop a fault prediction model for a software system.

9.4 Summary

While we tried to reflect accurately the relationship between faults and failures, it

became extremely difficult to enumerate the attributes of faults and failures by ex-

perimentation. First, it is almost impossible to enumerate all the faults and failures;

especially the faults that cause a particular failure. Second, the frequency of a fault

and the frequency of a failure are different concepts. However, frequencies of both

faults and failures are hard to count. Third, severity of failures is a qualitative, not

a quantitative, attribute. We have to consider the issue of assigning severity values
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subjectively. Last, it is complicated to determine the percentages of faults that cause

each failure.

We are searching for methods other than empirical evaluation to validate this

approach. However, we believe this model has potential to help solve numerous

problems in software engineering.



210

Table 9.1: OO Coupling Levels and OO Faults - Example

Coupling Fault Fault Fault Comment
Level Severity Frequency

ITU 5 10 inconsistent type use
SDA 2 15 state definition anomaly

Inheritance SDIH 2 3 state definition inconsistency
due to state variable hiding

SDI 2 20 sate defined incorrectly
IISD 3 12 indirect inconsistent state definition
IL 4 5 inheritance loops

Association A 1 10 public method not used by object
users

B 2 15 message/object mismatch
C 3 6 message sent to object without

corresponding method
D 4 6 message sent to wrong server object
E 5 3 message parameters incorrect

or missing
resulting in wrong or failed binding

F 3 8 message not implemented
in the server

G 2 15 formal and actual parameters
inconsistent

H 3 7 missing object
I 1 30 unused object
J 5 2 reference to undefined or

deleted object
K 1 10 missing initialization;

incorrect constructor
L 3 5 server contract violated
M 2 18 incorrect visibility/scoping

Exception ENC 5 6 Exception not caught
EPOS 2 4 Exception propagates out of scope
IRE 2 10 improperly raising an exception

from server to client
REIC 2 5 raising an exception under

improper circumstances
FRE 4 2 failure to raise an exception under

proper circumstance



Chapter 10: CONCLUSION AND FUTURE

WORK

This dissertation presented a new approach for Object-Oriented (OO) coupling anal-

ysis. This approach takes into account design level relationships among OO software

components and their effects on implementation level couplings. Design level rela-

tionships are mapped onto implementation level couplings. The approach is based

on the static analysis of object-oriented programs, and shows how to effectively mea-

sure relationships among components and apply the measures to specific problems in

testing and maintenance.

The core theoretical results of this research were applied to three specific testing

and maintenance problems. They can also be applied to other areas, such as web

maintenance, coupling-based test case generation, fault analysis, etc. The following

section discusses the contributions of this research in detail, and the final section of

this chapter presents possible topics for future research.

10.1 Contributions

The main contribution of this research is theoretical. A key contribution is a tech-

nique for analyzing and measuring object-oriented couplings. The foundation of this

technique is the distinction of relationships at the different level of abstractions.

This research also contributes a set of coupling measures for OO software. The

coupling measures are defined using the unified OO coupling framework [BDW99]
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with some modifications. The coupling measures are defined in a way that distin-

guishes high level relationships and low level connections in the measure. These

measures are theoretically validated using mathematical properties of couplings, and

also empirically shown to be applicable to concrete problems. This research has also

mapped design level relationships to implementation level connections, and developed

algorithms to compute coupling measures in source code.

Another contribution is the practical application of the coupling measures to

the Class Integration and Test Order (CITO), Change Impact Analysis

(CIA), and Design Pattern Detection (DPD) problems. In all three cases,

this research developed algorithms to find optimal solutions to the problems using

coupling measures.

For CITO, this research led to five results. (1) It found that whether the ser-

vice provided by a class to its clients overlaps will result in different stubs. (2) A

method to compute test stub complexities for classes using coupling measures was

given. In particular, the method computes specific stub complexity for each client

of a class and a total stub complexity for all clients. (3) A method to construct

weighted object relation diagrams (WORD) using specific stub complexities on edges

and total stub complexities on nodes was developed. (4) Algorithms were developed

to eliminate cycles in WORDs. (5) Algorithms were developed to order classes for

integration testing. The advantage of this approach is that the CITO problem is

reduced to a weighted graph problem and the results are at least as good as the far

more complicated genetic algorithm based approach.

For CIA, this research led to four results. (1) It analyzed the characteristics of

changes in OO software and presented techniques to analyze their impacts. (2) Several
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algorithms were developed to compute the impacts of different change categories.

(3)Change impact and sensitivity to change metrics were defined to evaluate classes.

(4) A kiviat diagram was used to visualize several metrics.

For DPD, this research led to three results. (1) A method to reduce the pattern

detection scope was developed. The method first used packages and package pairs

to divide a system into subsystems, then developed an algorithm to remove classes

that cannot participate in the pattern. This further reduced the search scope. The

algorithm used coupling measures to judge classes for possibility that they are part

of a pattern. (2) Weighted graphs were used to represent the reduced subsystem and

a pattern. This resulted in one graph for the subsystem and one for a pattern. (3) A

graph similarity algorithm was used to determine if the subsystem matches a pattern.

This dissertation has also produced a metamodel of couplings in object-oriented

system for analyzing and understanding the effects of relationships on couplings.

This research also resulted in a proof of concept tool that demonstrates the

practicality and effectiveness of coupling-based analysis techniques.

Finally, this dissertation has contributed a conceptual model for relation-

ships, couplings, and faults in OO systems.

This research has resulted in the following publications:

1. “Coupling-based Class Integration and Test Order”, Aynur Abdurazik and Jeff

Offutt. (AST 2006) [AO06]

2. “Using Coupling-based Weights for the Class Integration and Test Order Prob-

lem”, Aynur Abdurazik and Jeff Offutt. Accepted for publication, Computer

Journal [AO07]
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3. “Quantitatively Measuring Object-Oriented Couplings”, Jeff Offutt, Aynur Ab-

durazik, and Stephen R. Schach. Accepted for publication, Software Quality

Journal [OAS07]

4. “An Analysis Tool for Coupling-based Integration Testing”, Jeff Offutt, Aynur

Abdurazik and Roger T. Alexander. (ICECCS ’00) [OAA00]

Several papers are in various stages of preparation:

1. “Object-Oriented Coupling Measures for Testing and Maintenance” from chap-

ter 3

2. “Coupling-based Change Impact Analysis” from chapter 7

3. “Coupling-based Design Pattern Detection” from chapter 8

4. “Coupling-based Class Ranking” from chapters 7 and 9

During my study, I have been involved in other research projects and have pub-

lished the following papers:

1. “Generating Test Cases from UML Specifications”, Jeff Offutt and Aynur Ab-

durazik. (UML 1999) - based on my MS thesis. [OA99]

2. “Using UML Collaboration Diagrams for Static Checking and Test Genera-

tion”,Aynur Abdurazik and Jeff Offutt. (UML 2000) - based on my MS thesis.

[AO00]

3. “Generating Test Data from State-based Specifications”, Jeff Offutt, Shaoying

Liu, Aynur Abdurazik, and Paul Ammann. (STVR 2003) [OLAA03]
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4. “Evaluation of Three Specification-based Testing Criteria”, Aynur Abdurazik ,

Paul Ammann, Wei Ding and Jeff Offutt. (ICECCS 2000) [AADO00]

5. “Analyzing Software Architecture Descriptions to Generate System-level Tests”,

Aynur Abdurazik, Zhenyi Jin, Jeff Offutt, and Elizabeth L. White. (WESAS

2000) [AJWO00]

10.2 Future Work

The research reported in this thesis could potentially apply to web applications, inte-

gration fault analysis, component ranking, testing, and concurrent program analysis.

The coupling analysis as presented could be used for some problems. For other

problems, the same approach could be used, but different couplings would need to

be identified and analyzed. The following subsections discuss some future research

topics.

10.2.1 Application of Coupling Model to Web Applications

Web applications are accessed with a Web browser over a network such as the Internet

or an intranet. Though many variations are possible, a common structure for web

applications is a three-tiered application. In its most common form, a Web browser

is the first tier, an engine using some dynamic Web content technology (such as ASP

or ASP.NET, CGI, JSP, or PHP) is the middle tier, and a database is the third tier.

The Web browser sends requests to the middle tier, which services them by making

queries and updates against the database and generating a user interface. While

there are some similarities with OO stand-alone applications, web applications have

characteristics that are different than OO software. The exciting part is there are
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some novel types of couplings. Coupling-based analysis of web applications would

give researchers improved insight into the characteristics of web applications. It may

also help promote testing and maintenance of web applications.

10.2.2 Coupling-based Fault Analysis

Chapter 9 associated OO couplings with OO faults. There are two possible future

work directions for this research. One is to use statistical analysis and approximation

techniques to find relationships between couplings and faults. Another is to carry

out extensive empirical validation. This research has the potential of identifying and

categorizing possible OO faults in a comprehensive way. It can also further validate

coupling measures, and make it possible to use coupling measures in fault prediction

models.

10.2.3 Comprehensive Empirical Validation of Three Specific

Problems

Chapters 6, 7, and 8 discussed the application of coupling measures to three specific

problems, class integration and test order, change impact analysis, and design pattern

detection. The main contribution of this research was the theoretical foundation of

the application. An open question is how well these results will scale to large systems

and we hope to work on that problem soon. In the future, we plan to complete

automation of this work and then carry out detailed experiments to fully assess the

value of the technique.
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10.2.4 Extension of Design Pattern Detection

The results from design pattern detection research are very promising. We can add

elemental design patterns (EDPs) to the picture. EDPs are conceptual subcompo-

nents of design patterns. As such, EDPs may even change the way we define coupling

measures. Also, currently only three design patterns are identified. Adding all pat-

terns is necessary for practical use, although this does not seem likely to lead new

research results. Finally, other graph matching algorithm have been developed. An

especially interesting one uses labeled graphs [CS]. Labeled graphs incorporate more

information about the system on the graph than directed graphs. More information

may help in developing decisive ways to detect design patterns. Also, it is worthwhile

to try different graph matching algorithms and compare the results.

10.2.5 JCAT Enhancement

Currently, JCAT can compute couplings for connection types without distinguishing

the coupling base types. The algorithms for CITO, CIA, and DPD are implemented

separately, and have not been integrated into JCAT. JCAT can be enhanced to com-

pute all measures and integrate application specific algorithms. Then, JCAT will not

only have research value, but can be a useful tool for practitioners.

10.2.6 Coupling-based Reverse Engineering

This research produces enough details from source code to reverse engineer its de-

sign. The coupling information would particularly be useful in reverse engineering

structural information, including the interactions among components. A pilot study

has shown that it is easy to generate class diagrams from coupling tables using open
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source graph visualization software, such as graphviz [gra] and jgraph [jgr].

10.2.7 Coupling-based Component Ranking

Ranking of classes or components is useful in assessing the reusability of a class

and its relation to other classes. Component Rank is a method for ranking software

components, based on analyzing actual use relations among the components and

propagating the significance through the use relations [IYF+03,NIC06].

There is a possibility of ranking components/classes based on coupling measures.

Coupling measures should help indicate how a component is used and its dependency

on other classes. When ranking components and classes, two issues have to be con-

sidered: how a component is used and how it uses other components. The method

applied for ranking also depends on the purpose of ranking. Because coupling mea-

sures reflect both how much a class is used and how much it depends on others, it

could be useful in ranking classes for their reusability.

We plan to use change impact analysis metrics to develop a class ranking model

for reuse, and compare our approach with other studies [IYF+03,NIC06].

10.2.8 Coupling-based Testing

A key area of research related to this dissertation is the generation of test cases

that satisfy particular coupling-based criterion. Some couplings have been used in

testing. Jin and Offutt used method call based coupling in their coupling based testing

techniques [JO95], whereas Alexander and Offutt used inheritance and polymorphism

[AO04]. This research can be extended to develop comprehensive coupling-based test

criteria for OO software.
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10.2.9 Coupling-based Analysis of Concurrent Software

Many object-oriented languages, such as Java and Eiffel, incorporate some type of

threading mechanism. This results in greater complexity of relationships among soft-

ware components. An interesting area of investigation that remains open is whether

or not the coupling model and coupling measures would be applicable in the presence

of multiple threads.
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Appendix A: Unified Framework for Coupling -

Definitions of Terms

We use the following 17 definitions from the unified framework for coupling measure-

ment by Briand, Daly, and Wüst [BDW99].

DEFINITION 1 System, Classes, Inheritance and other Relationships.

An object-oriented system consists of a set of classes, C. There can exist

inheritance relationships between classes such that for each class c ∈ C let

• Parents(c) ⊂ C be the set of parent classes of class c.

• Children(c) ⊂ C be the set of children classes of class c.

• Ancestors(c) ⊂ C be the set of ancestor classes of class c.

• Descendants(c) ⊂ C be the set of descendent classes of class c.

DEFINITION 1-1 System, Classes, Interfaces, Abstract Classes, Regular Classes,

Stable Classes, and Unstable Classes.

An object-oriented system consists of a set of classes, C.

• IN ⊂ C be the set of Interfaces.

• AC ⊂ C be the set of abstract classes.

• RC ⊂ C be the set of regular classes.

• C = IN ∪ AC ∪RC, and IN ∩ AC ∩RC = ∅.
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• SC ⊂ C be the set of stable classes.

• UC ⊂ C be the set of unstable classes.

• C = SC ∪ UC.

DEFINITION 1-2 UML Relationships.

An object-oriented system consists of a set of classes, C. There can exist

relationships between classes such that for each class c ∈ C let

• Compositions(c) ⊂ C be the set of classes that have composition re-

lationship with class c.

• Aggregations(c) ⊂ C be the set of classes that have aggregation rela-

tionship with class c.

• Associations(c) ⊂ C be the set of classes that have association rela-

tionship with class c.

• Dependencies(c) ⊂ C be the set of classes that have dependency re-

lationship with class c.

• Exceptions(c) ⊂ C be the set of exception handler classes that handles

exceptions thrown by class c.

• Externals(c) ⊂ C be the set of classes that shares external media with

class c.

DEFINITION 2 Methods of a Class.

For each class c ∈ C let M(c) be the set of methods of class c.

DEFINITION 3 Declared and Implemented Methods.
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For each class c ∈ C, let

• MD(c) ⊆ M(c) be the set of methods declared in c, i.e., methods that

c inherits but does not override or virtual methods of c.

• MI(c) ⊆ M(c) be the set of methods implemented in c, i.e., methods

that c inherits but overrides or non-virtual non-inherited methods of

c.

• where M(c) = MD(c) ∪MI(c) and MD(c) ∩MI(c) = φ.

DEFINITION 4 Inherited, Overriding, and New Methods.

For each class c ∈ C, let

• MINH(c) ⊆ M(c) be the set of inherited methods of c.

• MOV R(c) ⊆ M(c) be the set of overriding methods of c.

• MNEW (c) ⊆ M(c) be the set of non-inherited, non-overriding meth-

ods of c.

DEFINITION 5 M(C). The Set of all Methods.

M(C) is the set of all methods in the system and is represented as M(C) =

∪c∈CM(c).

DEFINITION 6 Parameters.

For each method m ∈ M(C), let Par(m) be the set of parameters of method

m.

DEFINITION 7 SIM(m). The Set of Statically Invoked Methods of m.
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Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′ ∈ SIM(m) ⇔ ∃d ∈ C

such that m′ ∈ M(d) and the body of m has a method invocation where m′

is invoked for an object of static type class d.

DEFINITION 7-1 SIM(c,d). The Set of Statically Invoked Methods of d by c.

Let c ∈ C, d ∈ C, and m ∈ MI(d). Then m ∈ SIM(c, d) ⇔ ∃m ∈ C(d)

such that the body of c has a method invocation where m is invoked for an

object of static type class d.

DEFINITION 8 NSI(m,m’). The Number of Static Invocations of m′ by m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ SIM(m). NSI(m,m′) is the number of

method invocations in m where m′ is invoked for an object of static type

class d and m′ ∈ M(d).

DEFINITION 8-1 NSI(m,m’). The Number of Static Invocations of m′ by m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ SIM(m). NSI(m,m′) is the number of

method invocations in m where m′ is invoked for an object of static type

class d and m′ ∈ M(d).

DEFINITION 9 PIM(m). The Set of Polymorphically Invoked Methods of m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′PIM(m) ⇔ ∃d ∈ C

such that m′ ∈ M(d) and the body of m has a method invocation where

m′ may, because of polymorphism and dynamic binding, be invoked for an

object of dynamic type d.

DEFINITION 10 NPI(m,m’). The Number of Polymorphic Invocations of m′ by

m.



236

Let c ∈ C, m ∈ MI(c), and m′ ∈ PIM(m). NPI(m, m′) is the number of

method invocations in m where m′ can be invoked for an object of dynamic

type class d and m′ ∈ M(d).

DEFINITION 11 Declared and Implemented Attributes.

For each class c ∈ C, let A(c) be the set of attributes of class c. A(c) =

AD(c) ∪ AI(c) where

• AD(c) is the set of attributes declared in class c (i.e., inherited at-

tributes).

• AI(c) is the set of attributes implemented in class c (i.e., non-inherited

attributes).

DEFINITION 12 A(C). The Set of all Attributes.

A(C) is the set of all attributes in the system and is represented as A(C)

= ∪c∈CA(c).

DEFINITION 13 AR(m).

For each m ∈ M(C) let AR(m) be the set of attributes referenced by

method m.

DEFINITION 14 Basic Types and User-Defined Types.

• BT is the set of built-in types provided by the programming language

(e.g., integer, real, character, string).

• UDT is the set of user-defined types (e.g., records, enumerations, but

not classes).
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• CT is the set of built-in or user-defined collection types (e.g., array,

list, set, hashtable).

DEFINITION 15 T The Set of Available Types.

The set T of available types in system is T = BT ∪ UDT ∪ C.

DEFINITION 16 Types of Attributes and Parameters.

For each attribute a ∈ A(C) the type attribute a is denoted by T (a) ∈ T.

For each method m ∈ M(C) and each parameter v ∈ Par(m) the type of

parameter v is denoted by T (v) ∈ T.

DEFINITION 17 Uses.

Let c ∈ C, d ∈ C. uses(c, d) ⇔ (∃m ∈ MI(c) : ∃m′ ∈ MI(d) : m′ ∈

PIM(m)) ∨ (∃m ∈ MI(c) : ∃a ∈ AI(d) : a ∈ AR(m)).

A class c uses a class d if a method implemented in class c references a method or an

attribute implemented in class d.

DEFINITION 18 External Media.

For each class c ∈ C, let E(c) be the set of external files and devices that

used by class c.

DEFINITION 19 D(C). The Set of all External Media (Device and Files).

D(C) is the set of all external files and devices in the system and is rep-

resented as D(C) = ∪c∈CE(c).

DEFINITION 19 E(C). The Set of Exceptions.
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E(C) is the set of classes in the system.

DEFINITION 19 E(c). Exceptions.

E(c) is the set of exceptions that generated by class c.

DEFINITION 20 Constructors of a Class.

For each class c ∈ C let CR(c) be the set of constructors of class c.

DEFINITION 21 Inherited, Overriding, and New Constructors.

For each class c ∈ C, let

• CRINH(c) ⊆ CR(c) be the set of inherited constructors of c.

• CROV R(c) ⊆ CR(c) be the set of overriding constructors of c.

• CRNEW (c) ⊆ CR(c) be the set of non-inherited, non-overriding con-

structors of c.

DEFINITION 22 NI(m,m′, v). Number of invocation of m’ by m through variable

v.

Let c ∈ C, m ∈ MI(c), and m′ ∈ M(d). NI(m,m′, v) is the number of

method invocations in m where m′ is invoked for an object of static type

class d through variable v where v ∈ Vas.

DEFINITION 23 NDI(m, m′). Number of direct invocation of m’ by m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ M(d). NDI(m,m′) is the number of

direct invocations of m′ in m.
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Appendix B: Sample Implementation of Design

Patterns

This appendix presents sample implementation of the Adapter, Composite, and Ob-

server patterns.

B.1 Adapter Pattern Structure Java Sample Im-

plementation

The following structural code demonstrates the Adapter pattern which maps the

interface of one class onto another so that they can work together. These incompatible

classes may come from different libraries or frameworks.

// Adapter pattern -- Structural example

class Client {

public static void main(String args[])

{

// Create adapter and place a request

Target target = new Adapter();

target.request();

}

}

// "Target"
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public interface Target

{

public void request();

}

// "Adapter"

class Adapter implements Target

{

private Adaptee adaptee = new Adaptee();

public void request()

{

// Possibly do some other work

// and then call specificRequest()

adaptee.specificRequest();

}

}

// "Adaptee"

class Adaptee

{

public void specificRequest()

{

System.out.println("Called specificRequest().");

}
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}

Output from running Client class:

Called specificRequest().

B.2 Composite Pattern Structure Java Sample Im-

plementation

The following structural code demonstrates the Composite pattern which allows the

creation of a tree structure in which individual nodes are accessed uniformly whether

they are leaf nodes or branch (composite) nodes.

// Composite pattern -- Structural example

// Client

public class Client

{

Component comp;

public Client( Component comp )

{

this.comp = comp;

}

public void printout()

{

comp.print();

}
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}

// "Component"

public abstract class Component

{

public void add(Component c)

{

throw new UnsupportedOperationException();

}

public void remove(Component c)

{

throw new UnsupportedOperationException();

}

public void print()

{

throw new UnsupportedOperationException();

}

}

// "Composite"

class Composite extends Component

{

String name;

private ArrayList children = new ArrayList();

// Constructor



243

public Composite(String name)

{

this.name = name;

}

public void add(Component component)

{

children.add(component);

}

public void remove(Component component)

{

children.remove(component);

}

public void print()

{

System.out.println("Composite");

}

}

}

// "Leaf"

public class Leaf extends Component

{

String name;
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// Constructor

public Leaf(String name)

{

this.name = name;

}

public void print()

{

System.out.println("Leaf");

}

}

B.3 Observer Pattern Structure Java Sample Im-

plementation

The following structural code demonstrates the Observer pattern in which registered

objects are notified of a state change and updated accordingly.

class MainApp

{

pubilc static void main(String args[])

{

// Configure Observer pattern

ConcreteSubject s = new ConcreteSubject();

s.registerObserver(new ConcreteObserver(s,"X"));
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s.registerObserver(new ConcreteObserver(s,"Y"));

s.registerObserver(new ConcreteObserver(s,"Z"));

// Change subject and notify observers

s.setState("ABC");

s.notify();

}

}

public interface Subject {

public void registerObserver(Observer o);

public void removeObserver(Observer o);

public void notifyObservers();

}

public interface Observer {

public void update();

}

public class ConcreteSubject implements Subject {

private ArrayList observers;

private String state;

public ConceretSubject() {

observers = new ArrayList();

}



246

public void registerObserver(Observer o) {

observers.add(o);

}

public void removeObserver(Observer o) {

int i = observers.indexOf(o);

if (i >= 0) {

observers.remove(i);

}

}

public void notifyObservers() {

for (int i = 0; i < observers.size(); i++) {

Observer observer = (Observer)observers.get(i);

observer.update();

}

}

public void setState( String newState )

{

state = newState;

}

public String getState()

{

return state;

}
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}

public class ConcreteObserver implements Observer{

...

private ConcreteSubject concreteSubject;

String observerState;

String name;

public ConcreteObserver(ConcreteSubject concreteSubject,

String name) {

this.concreteSubject = concreteSubject;

this.name = name;

concreteSubject.registerObserver(this);

}

public void update() {

observerState = concreteSubject.getState();

System.out.println( "Observer " + name +

"’s new state is: " + observerState );

}

}


